
Machine Learning and Applications in Ultrafast Photonics 
 

Goëry Genty,1 Lauri Salmela,1 John M. Dudley,2 Daniel Brunner,2 

Alexey Kokhanovskiy,3 Sergei Kobtsev,3 and Sergei K. Turitsyn3, 4 
1Laboratory of Photonics, Tampere University, FI-33101 Tampere, Finland 

2Institut FEMTO-ST, Université Bourgogne Franche-Comté 

CNRS UMR 6174, 25000 Besançon, France 
3Division of Laser Physics and Innovative Technologies, 

Novosibirsk State University, Pirogova str., 2, Novosibirsk, 630090, Russia. 
4Aston Institute of Photonic Technologies, 

Aston University, B4 7ET, Birmingham, United Kingdom. 
 
 

Abstract 

Recent years have seen the rapid growth and development of the field of smart photonics, where 

machine learning algorithms are being matched to optical systems to add new functionalities 

and to enhance performance. An area where machine learning shows particular potential to 

accelerate technology is the field of ultrafast photonics – the generation and characterization of 

light pulses, the study of light-matter interactions on short timescales, and high-speed optical 

measurements. Our aim here is to highlight a number of specific areas where the promise of 

machine learning in ultrafast photonics has already been realized, including the design and 

operation of pulsed lasers, and the characterization and control of ultrafast propagation 

dynamics. We also consider challenges and future areas of research. 

  



Machine learning is an umbrella term describing the use of statistical techniques and numerical 

algorithms to carry out tasks without explicit programmed and procedural instructions. Machine 

learning algorithms are widely used in many areas of engineering and science, with particular 

strengths in classification, pattern recognition, prediction, system parameter optimization, and 

the construction of models of complex dynamics from observed data. Machine learning tools 

have been widely applied in fields such as control systems, speech processing, neuroscience and 

computer vision [1]. 

In optics and photonics, early applications of machine learning have mostly been in the form 

of genetic algorithms for pattern recognition [2], image reconstruction [3], aberration corrections 

[4], or the design of optical components [5, 6]. More recent work has focused on the analysis of 

large data sets [7, 8] and on inverse problems where the superior ability of machine learning to 

classify data, to identify hidden structures and to deal with a large number of degrees of freedom 

have led to a many results. Particular areas of success include in the design of nanomaterials and 

structures with specific target properties [9–11], label-free cell classification [12], super 

resolution microscopy [13, 14], quantum optics [15], and optical communications [16–18]. 

In addition to applications in the general area of data processing, there is particular potential 

for machine learning methods to drive the next generation of ultrafast photonic technologies. 

This is not only because there is increasing demand for adaptive control and self-tuning of 

ultrafast lasers, but also because many ultrafast phenomena in photonics are nonlinear and multi-

dimensional with noise-sensitive dynamics that are extremely challenging to model using 

conventional methods. While advances in measurement techniques have led to significant 

progress in experimental studies of such complex dynamics, recent research has shown how 

machine learning algorithms are providing new ways to identify coherent structures within large 

sets of noisy data, and can even potentially be applied to determining underlying physical models 

and governing equations based only on the analysis of complex time series. 

Our aim here is to review a number of specific areas where the promise of machine learning 

in ultrafast photonics has already been realized, and to also consider challenges and future 

directions of study as well as application where significant impact is expected in the coming 

years. Before presenting specific details, we first illustrate in Fig. 1 an overview of different 

machine learning strategies and associated architectures, listing the core concepts, 



implementation methodologies, and applications where these have been applied in ultrafast 

photonics. 

LASER DESIGN AND SELF-OPTIMIZATION 
 

Self-tuning of ultrafast fibre lasers 
 
Ultrafast lasers are essential tools in many areas of photonics including telecommunications, 

material processing, and biological imaging [19–23]. They have also played a central role in 

several Nobel prizes awarded for femtosecond coherent control (1999); the development of the 

precision frequency comb (2005); and more recently the generation of high-power femtosecond 

pulses via chirped pulse amplification (2018). Although some ultrafast sources are based on 

relatively simple designs, the operation of many important laser systems is in fact very complex 

with dynamic pulse shaping determined by the interplay between a range of nonlinear, 

dispersive, and dissipative effects [24]. Although this complexity certainly creates challenges in 

controlling and optimizing the laser emission, it also offers considerable performance advantage 

not available with simpler systems. A key challenge is then to harness this complexity. 

The difficulty in optimizing a particular ultrafast laser arises from the number of degrees of 

freedom (or control parameters) that need to be balanced to achieve stable operation or reach a 

specific dynamical regime. Of course, efforts to develop self-optimized or auto-tuned lasers have 

been made for many years, with the dominant approach being to linearly sweep through a subset 

of the available parameter space while monitoring the laser output and using a feedback loop to 

obtain and maintain a desired operating state. While this is a straightforward approach for 

simpler laser designs with limited parameters, it becomes intractable when the laser operation 

depends on many degrees of freedom, or when multiple output characteristics need to be 

optimized simultaneously. Moreover, there is an increasing demand in both research and 

industrial applications for fully autonomous operation and active realignment in the presence of 

external perturbations, as well as for the ability to make dynamic changes in pulse characteristics 

adapted to the target environment (e.g. propagation medium or material). It is for such systems 

with greatly added complexity that approaches based on machine learning are especially 

promising and desirable. 

An important example here is the widespread fibre laser, where polarization control, pump 



power, spectral filtering and loss combine to create a wide range of possible operating regimes 

governed by a rich landscape of nonlinear dynamics [25, 26]. Depending on the exact choice of 

parameters, the same laser can exhibit very different behaviour: continuous-wave lasing, noise-

like pulse generation, Q-switching, mode-locking, multiple pulsing and bound states. It is for 

this multi-variable optimisation problem that machine learning has recently led to a number of 

dramatic improvements. The general approach has been to combine an algorithmic feedback 

loop together with the electronic control of intra-cavity elements varying polarization, pump 

power, and spectral filtering. Figure 3 shows a generic illustration of machine learning strategies, 

control elements, and output parameters for optimization of ultrafast fibre lasers. Specifically, 

Figure 3A illustrates the training phase where control electronics and advanced measurement 

devices are used to probe the parameter space and map the corresponding operation states, 

respectively. Collected data are then fed to machine learning algorithms for training. Figure 3B 

shows the self-tuning regime where the operation state of the laser is characterized in real-time 

with a simplified measurement system fed into the machine learning algorithm controlling the 

electronics to lock the system to a desired regime. This is where machine learning is particularly 

powerful as, once trained, the algorithm allows systematic scanning of the parameter space for 

optimum operation. Examples of machine learning algorithms that can be used are highlighted 

in Fig. 2, and general guidelines in applying them are provided in Box 1. 

Ultrafast fibre lasers mode-locked by nonlinear polarization evolution (NPE) are particularly 

complex, because a change in the polarization state affects both spectral and temporal pulse 

shaping, as well as the gain to loss balance in the cavity due to the intrinsic saturable absorber 

role played by the polarization-dependent losses. The first studies combining an algorithmic 

feedback loop with some cavity control parameter were in fact proof-of-concept numerical 

simulations of an NPE fibre laser, where it was shown that multi-pulsing instability could be 

reduced via filters optimized with a genetic algorithm [27], and that stochastic changes in 

environmentally-induced birefringence could be mitigated by applying a singular value 

decomposition method [28] or using variational autoencoders on the birefringence state map 

[29, 30]. This modelling was rapidly followed by an experimental implementation using a 

singular fitness function to identify self-starting regimes in an NPE laser [31]. A number of 

subsequent experiments for various laser configurations (NPE, ring-cavity, figure-of-eight) have 



used genetic algorithms to achieve self-tuning and auto-setting in different regimes such as Q-

switching, mode-locking, Q-switched mode-locking, or the generation of on-demand pulses 

with different duration and energies [32–36]. 

Table I summarizes a selection of results that have been obtained to date (extended from 

[37]), also providing the characteristics of the particular algorithms used in each case. In most 

of these studies, the feedback loop typically uses an advanced search or genetic algorithm 

targeting a desired optimal state based on some particular fitness or objective function as the 

reference criterion. Although these results are highly promising, genetic algorithms have to be 

carefully designed due to their sensitivity to the initial choice of population which can lead the 

fitness function to converge toward a local optimum and be detrimental to multistable dynamics 

often seen in ultrafast lasers. They also cannot accommodate for long-term dependencies, and 

the fitness function typically monitors a single parameter limiting the operating regime that can 

be achieved. Another important drawback of genetic algorithms is their relatively slow 

convergence time on the scale of minutes or even hours (see Table 1). However, recent 

developments have shown that one can reduce this time considerably using algorithmic 

modifications that can mimic human logic, with the possibility to lock the laser to a desired 

operating state and to recover to this state from perturbation in less than one second [38, 39]. 

Further improvement in self-tuning speed is likely to require algorithms that also include models 

of the pulse generating mechanism in order to provide more targeted control. Unfortunately, 

whilst models based on nonlinear Schrödinger-like equations (NLSE) are generally able to 

reproduce experimental characteristics qualitatively, quantitative comparison with experiments 

remains challenging. This is because accurate modelling necessitates the knowledge of a wide 

range of parameters which are not readily accessible in practice (for example, the random 

birefringence in the fibre). Ultrafast lasers are also stochastic systems and the impact of noise 

can generally be only reproduced via computationally intensive Monte-Carlo simulations that 

require the analysis of a very large amount of data. One can anticipate that the use of machine 

learning techniques for pattern recognition combined with the latest advances in real-time 

measurement techniques [40, 41] could lead to better understanding of ultrafast laser dynamics, 

allowing for the construction of laser systems with improved robustness. 

 
 



Control of coherent dynamics 
 
In addition to directly controlling laser emission as described above, there is widespread use of 

extra-cavity shaping technology to modify the characteristics of ultrashort pulses and other light 

sources used in particular applications. Because such optimization can involve multiple 

parameters that are interconnected in complex ways, this is an area where machine learning can 

clearly surpass other forms of manual or partially-automatised control. 

For example, pulse compression to a transform-limited duration is essential to femtosecond 

spectroscopy that uses few-cycle laser pulses to probe physical or chemical interactions. 

Recently, it was shown how an adaptive neural-network algorithm can control a pulse-shaper 

and accelerate significantly the compression implementation with a convergence speed 100 

times faster than that obtained using more conventional evolutionary algorithms (see Fig. 4A) 

[42]. Similarly, a neural network was used to determine and optimize the parameters of a pulse 

shaping system composed of a series of dispersive and nonlinear fibre elements in order to 

generate arbitrary pulse waveforms (parabolic, triangular or rectangular) of desired duration and 

chirp [43]. 

Genetic algorithms can also be used for these purposes, and their application to solve highly 

nonlinear optimisation problems such as fibre supercontinuum generation has also been very 

successful [44–47]. Using custom pulse train preparation via an integrated pulse-splitter, a 

genetic algorithm was used to optimize supercontinuum dynamics to maximize spectral intensity 

in specific wavelength bands [47] (Fig. 4B). In another study, it was shown how Gaussian-like 

peaks could be generated at desired wavelengths in a supercontinuum spectrum using a genetic 

algorithm to tailor the spectral phase of the incident ultrashort pulses [46]. Genetic algorithms 

have also been applied to the design of fibres with optimized dispersion and nonlinearity 

coefficient to maximise the bandwidth of coherent supercontinuum in the mid-infrared [44]. 

 
Ultrafast characterisation 

 
A central element in the application of machine learning to tune an ultrafast laser is the feedback 

loop coupling the emitted pulses with the laser cavity parameters. Although some success has 

been obtained through optimization based on measurements of pulse spectra or temporal 

autocorrelation functions, ideally a feedback signal based on more complete pulse measurements 



would be desirable. However, such complete pulse characterization on femtosecond and 

picosecond timescales generally requires complex optical systems, and the retrieval of the field 

parameters is an inverse problem which can be particularly time-consuming to solve [48]. 

Recently, deep neural networks have found applications in solving such inverse problems in 

areas such as coherent imaging [49, 50], imaging through scattering media [51, 52] or super-

resolution [53], and they are now also showing great promise in pulse reconstruction. The first 

attempt to apply a neural network to reconstruct a short pulse actually dates back to the mid-

1990’s and the first development of frequency-resolved optical gating (FROG) [54], although 

this was limited in making strong assumptions about the functional form of the pulse being 

retrieved. In other work, genetic algorithms have also been successfully applied to FROG trace 

retrieval [55, 56] but pulse retrieval times still took several minutes. More recently, a 

convolutional network trained on simulated data was used to reconstruct pulses from 

experimental FROG traces and was shown to be superior to conventional methods even in the 

presence of high noise (Fig. 4C) [57]. Additional studies have employed convolutional networks 

to reconstruct pulses from dispersion scan traces [58], or from multimode fibre nonlinear speckle 

measurements [59]. Phase recovery for image reconstruction [60–63], X-ray pulse 

characterisation [64, 65] are also among important emerging and growing areas of applications 

of machine learning techniques. 

 

COMPLEX DYNAMICS AND TRANSIENT INSTABILITIES 
 

Hidden physics models 
 
 
The application of machine learning to derive predictive models from sparse or noisy 

measurements has now penetrated research into the study of the basic properties of physical 

systems. In particular, a new field of “hidden physics models” has arisen where closed-form 

mathematical models or nonlinear differential equations governing a physical system [66] are 

identified automatically by analyzing samples of the dynamical data using “physics-informed 

neural networks”. In some cases, the form of the governing equation(s) may be known or 

assumed in advance, and the goal is to extract only the unknown coefficients [67]. Alternatively, 

one can combine a neural network with a compressed sensing-like method to only identify the 



active terms of the equation(s) from a basis of candidate nonlinear functions [68]. 

Using these approaches, a number of applications in ultrafast photonics have been 

demonstrated to analyse pulse propagation dynamics in optical fibre or in fibre lasers associated 

with the generation of localised and dissipative soliton structures (Fig. 4D) [67]. Model-free 

approaches in the form of reservoir computing (unlike physics-informed neural networks) have 

also been implemented to predict coherent dynamics in particular cases of soliton-like 

propagation (Fig. 4D) [69]. At present, however, such work has been based on numerical data 

only - the next step in this field is clearly to uncover the governing models from experimental 

data sets. 

Another important area of work involves the study of temporal dependencies observed in 

nonlinear pulse propagation dynamics, where the temporal and spectral intensity profiles at a 

specific time instant or propagation length depend on the intensity profiles at earlier times or 

distance. Recurrent neural networks with internal memory (that are traditionally used for 

processing and predictions of time-series) are particularly well suited to modelling this type of 

dynamic behaviour. Indeed very recent results exploiting the memory-capacity of recurrent 

neural networks show how a recurrent neural network with long short-term memory cell 

architecture can accurately predict the nonlinear propagation dynamics of short pulses for a wide 

range of scenarios from higher-order soliton compression (where comparison was made with 

experiment) to octave-spanning supercontinuum generation [70]. In addition to these studies of 

single-pass nonlinear propagation dynamics, there is clear potential to use recurrent neural 

networks in predictions of the complex multi-scale intermittence dynamics also seen in optical 

fibre lasers [71]. 

 
Chaotic systems and instabilities 

 
Chaotic modulation instability in NLSE-like systems is one of the most fundamental examples 

of instability in optics, with analogs in many other physical systems. Indeed, the study of how 

incoherent noise can “self-organize” within the NLSE to yield coherent breather structures has 

attracted wide interest, specifically because of possible links with rogue waves and extreme 

events [72]. However, the complexity of the measurement techniques needed to directly capture 

such chaotic breathers on ultrafast timescales has imposed severe constraints on the dynamical 



regimes that can be explored in experiments [73, 74]. 

Machine learning has been used to address this problem directly by training a neural network 

to determine the temporal characteristics of a chaotic field based only on the spectral intensity 

characteristics (which are easier to measure). Using numerical data generated from NLSE 

simulations, a neural network was used to construct a nonlinear transfer function that maps noisy 

broadband spectra to the local intensity maximum of the chaotic temporal field (see Fig. 4E). 

This function was then applied to experimental data measured using a high dynamic range real-

time spectrometer [75]. A similar approach was recently used to determine the peak power, 

duration, and temporal delay of extreme rogue solitons in noisy supercontinuum generation [76]. 

Also analyzing chaotic data from modulation instability, unsupervised clustering analysis using 

the k-mean algorithm was shown to successfully sort intensity spectra into sub-classes 

associated in the time-domain with specific solutions of the NLSE related to analytic soliton 

structures [75]. 

The application of machine learning techniques has been extended to even more complex 

systems such as those observed in transient laser behaviour and extreme events [77]. 

Specifically, using the knowledge of previous pulses in a chaotic time series from an optically 

injected semiconductor laser operating, machine learning methods (nearest neighbors, support 

vector machine, feed-forward neural networks, reservoir computing) were analyzed for their 

ability to predict the intensity of upcoming pulses emitted from the laser [77, 78]. Although this 

work was numerical, it clearly shows the potential of such prediction in experiment. Attempts 

have also been made to model highly incoherent system evolution including multidimensional 

spatiotemporal systems [79] but the predictions in this case tend to diverge over longer distances 

[80]. 

 
Multidimensional systems 

 
A major benefit of neural networks is their ability to efficiently analyze the properties of multi-

dimensional systems. This can be particularly useful in multimode fibre systems where spatio-

temporal coupling increases dramatically the parameter space and complexity of nonlinear 

propagation dynamics. The potential of machine learning in this case was recently demonstrated 

with experiments tailoring supercontinuum generation in a graded index fibre through control 



of the injected spatial beam profile via a neural-network driven spatial light modulator [81]. 

Extension to spatial control for enhanced near-field interactions was also shown by 

combining a neural network with a genetic algorithm to optimise spectral-phase shaping of an 

incident field to achieve second harmonic generation hotspot switching in plasmonic 

nanoantennas [82]. In this latter work, the genetic algorithm was added to generate a wide range 

of nanoantenna designs to be fed into the neural network. 

 
OUTLOOK AND CHALLENGES 

 
Ultrafast photonics systems are generally very complex, often nonlinear, and with dynamics 

extremely sensitive to both their internal parameters and external perturbations. The design and 

optimization of these systems have been typically based on physical models, numerical 

simulations, and trial-and-error approaches. With the increased complexity of these systems, 

driven by the demand for high stability, robustness against disturbances, tunability and adaptive 

control, these approaches are now starting to reach their limits such that future major advances 

will require new methodologies that can analyse the systems characteristics at a global level. 

One may therefore anticipate that machine learning techniques able to discover hidden features 

and independently adapt as they are exposed to new data, are likely to play a central role in the 

next generation of ultrafast systems and applications. There are of course many ways machine 

learning techniques can be exploited, and we discuss below some possible future direction of 

research and challenges to overcome. 

Ultrafast fibre lasers are dynamical systems operating in regimes determined by dispersion, 

nonlinearity, gain, losses, and saturation effects. Optimization, breakthrough performance, high 

stability against perturbations, and automatic-tuning requires in-depth understanding of the full 

system parameter space, which can be achieved by combining accurate real-time 

characterization and advanced data analysis. Machine learning-based approaches have the 

potential to reduce the complexity and number of measurement devices typically required. They 

could further allow for converting results of measurements into a higher-dimensional space 

where the separation of the role played by the different cavity elements is more apparent, aiding 

the construction of universal models. Machine learning may also yield significant developments 

in full and high-speed characterization of short pulses or complex fields arising from highly 



nonlinear dynamics. Adaptive optics and coherent control typically rely on ultrafast laser 

systems where the spatial, temporal and spectral properties of the laser beam are central to 

optimum performance in e.g. metrology [83], spectroscopy [84, 85], energy harvesting [86] or 

astronomy [87]. By enabling more systematic strategies rather than heuristic approaches (e.g. in 

the optimization of multidimensional systems including beam shaping and space-time focusing 

in multimode fibers [88–90]), machine learning could enable unprecedented level of control in 

those applications. Another important area where we expect machine learning to lead to 

significant progress is the discovery of models using data-driven strategy, allowing for finding 

governing mathematical equations of complex optical phenomena or photonics systems. It is 

even conceivable that in the future ultrafast fibre lasers could become testbeds for the physics 

discovered from machine learning. 

To date, the majority of machine learning applications to ultrafast photonics have been based 

on genetic algorithms or feed forward architectures. While these implementations have 

undoubtedly led to remarkable and pioneering results, there are still important approaches that 

have yet to be fully exploited. Indeed, it is likely that realising the full potential of machine 

learning will necessitate the combination of several strategies that have so far been used only 

separately. For example, recurrent networks based on long short-term memory cells, gated 

recurrent units, or reservoir computing that possess internal memory can be used to model 

dynamical systems consisting of time series of different states. These approaches could enable 

significant progress in understanding and optimizing nonlinear systems, allowing identification 

of long-term dependencies and internal dynamics in ultrafast lasers, or the prediction of complex 

evolution maps associated with the propagation of short pulses in nonlinear media and related 

instabilities. Also, the capabilities of unsupervised learning to draw inferences and reveal hidden 

internal structures from data sets without labelled responses could be of significant interest in 

problems where dimensionality reduction is key. These include e.g. multimodal systems or 

noise-sensitive dynamics where specific regimes can be divided into a number of different 

clusters associated with measurable parameter(s). Moreover, approaches employed for the 

design of nanophotonic components in the form of machine learning combined with the adjoint 

method [91] could be a powerful tool for the inverse design of ultrafast photonics systems. The 

concept of generative adversarial networks [92] where two distinct networks are optimized in 



the backpropagation operation [93] is another promising avenue to explore in ultrafast 

photonics. 

There are of course important challenges ahead. When using recurrent network to analyze 

and predict dynamics, proper sampling along the evolution dimension (time or distance) is 

essential to extract and reproduce the long-term evolution structure. Memory limitations can 

then become an issue especially in the context of lasers where it takes usually many cavity round 

trips for a regime to stabilize. Unsupervised learning analysis divides the data into subsets with 

similarities, but crucial information on the criterion used to perform the division, or on what the 

similarities actually are within the clusters is lacking. This means that in order to fully exploit 

the power of unsupervised learning, further human investigation is generally needed to establish 

the link between the clusters and specific parameters of the system analysed. This can be a 

limiting factor, especially for the case of noise-sensitive systems where tiny variations can result 

in dramatically different evolution patterns. 

The use of machine learning algorithms for real-time processing of photonic systems that can 

produce data in excess of billions of bits per second requires the ability to manage high data 

volumes, as well as a hardware framework capable of dealing with ultrafast processing rates. In 

order to reduce the large volume of data, one could use the approach of spike-based neural 

networks that can reconstruct features of spatio-temporal states based on a fraction of that regime 

information. Inspired by the human brain that strongly compresses the information received from 

the eye [94], spike-based neural networks use a specific set of rules such as spike time-dependent 

plasticity leading to self-organization of the network’s topology and allowing to identify possible 

correlations in the input data. When combined with lateral inhibition (a spike-based form of a 

winner take all topology), spiked-based neural networks can self-configure to perform a cluster 

analysis with performance similar to that achieved with a k-mean algorithm [95]. Efforts to 

develop a hardware framework allowing for high-speed processing and optimization on short 

time scales have already been made, and several all-optical network architectures have been 

proposed based e.g. on multiple layers of diffractive surfaces where each point on a given layer 

acts as a node [96], or based on optical matrix multiplication using a cascaded array of Mach–

Zehnder interferometers integrated into a silicon photonic circuit [97]. Another promising 

approach could be to combine all-optical field-programmable gate arrays and fully parallel 



photonic neural network hardware. Of course, one important constraint to the development of 

all-optical neural net- works that needs to be carefully studied is the tolerance to photonic 

component fabrication imperfections [98]. 

In the past few years, there have been remarkable developments enabled by the use of 

machine learning techniques, and an active field of machine-learning ultrafast photonics has 

now been established. As research continues to progress both in the development of machine 

learning algorithms and ultrafast photonics technologies, we can expect even more fruitful 

interactions with increased influence of the former in the physical understanding, design, 

optimization, and operation of the latter. 
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BOX 1. General considerations when applying machine learning models 
 
Choosing an architecture and associated parameters Neural networks are universal function 
approximators whose performance significantly depends on their hyperparameters (variables that 
determines the network structure and training). Selecting the optimum architecture (Figs. 1-2) and tuning 
the hyperparameters often involves significant heuristics, exhaustive scans, trial and error, and leveraged 
optimization tools (genetic algorithms or Bayesian methods). Nevertheless, one may consider the following 
guidelines to select an appropriate architecture and hyperparameters: a feedforward neural network is a 
good choice if the map from input to output lacks temporal context. This is typically the case when one 
considers input-output mappings of “single-pass” systems such as pulses undergoing nonlinear propagation, 
where fluctuations are expected to be independent and uncorrelated, and also for particular classes of 
similarly (partially) uncorrelated instabilities in Q-switched lasers. If data contains structure along a 
particular input dimension (e.g. space, time or wavelength), architectures including filters such as 
convolutional neural networks are better candidates; one may employ fully connected topologies for input 
data apparently lacking such features. If the output is expected to depend on current and past input data, 
recurrent topologies (long short-term memory, gated recurrent units, or reservoir computing) should be 
used.  

Accuracy generally increases with the number of hidden layers or nodes. The number of layers, 
nodes and training epochs can be increased until the validation error starts increasing (even if the training 
error still decreases). Note that too many nodes can lead to overfitting and reduce generalization (the ability 
of a trained model to adapt accurately to data outside the initial training data set). Continuously reducing 
the number of nodes for deeper layers is a common strategy to improve generalization, and 2 to 3 hidden 
layers comprising 50 to 1000 nodes appear sufficient for most tasks in ultrafast photonics. A neural 
network’s inference quality is quantified by a cost function such as mean squared or root mean squared 
error. The root mean squared error penalizes small divergences more heavily and can be employed when 
fast and accurate convergence is essential. Network weights are typically initialized randomly, and popular 
activation functions are the rectified linear unit and the sigmoid nonlinearity. The rectified linear unit is 
computationally less expensive and avoids vanishing gradients, while the sigmoid’s upper limit makes 
blowing-up solutions less likely. 
 
Selecting training data There is generally no one-size-fits-all criterion to determine the volume of training 
data needed for a specific network and task. Where possible, one can be guided by available examples of 
comparable problems, and more generally, an initial guess can be obtained by considering the number of 
classes (output neurons), relevant input features (e.g. optical modes), and parameters of the underlying 
model. One can then continuously increase the volume of training data until the validation error stagnates. 
The training data should be representative of the system’s possible states, and therefore sample uniformly 
the system’s phase space. This can be challenging, especially for ultrafast nonlinear systems which may 
rarely visit specific outlier regions (so-called skewed data-set), and can lead to degraded performance in 
testing. Feeding representative data sets is also not always possible during experiments, and data 
augmentation via simulation is an alternative approach. It is also important to normalize training data to the 
‘useful’ range of the neurons’ nonlinear response (around unity) so as to prevent the network operating in 
the linear or saturated regime. 
 
Avoiding overfitting Unlike in genetic algorithms, overfitting can occur in neural networks, typically when 
the testing error is large compared to the training error. The risk of overfitting may be reduced using the 
following strategies: simplification to reduce the network complexity; data augmentation by increasing the 
fraction of noisy data during training; cross-validation where division of data into training and testing sets 
is varied during training; early stopping where training is stopped when the testing error starts increasing; 
regularization by including penalties in the system’s loss function; drop-out by randomly removing 
individual connections during training. 
 



Robustness and transfer learning Ultrafast photonic systems are generally sensitive to their environment 
Enabling stable and robust operation is another key objective for machine learning. Performance 
degradation upon a change of environmental conditions will mostly depend on the parameter space and 
regimes explored during training and testing. It is therefore important to include training data that 
incorporates possible environmental variations (see also Selecting Training Data). Using unsupervised 
learning to determine the dynamic relation between external conditions and system output is another 
approach.  

A related question is “transfer learning”, or how a neural network architecture optimized for a 
particular system can be `transferred’ to a different yet related problem.  In particular, the output of an 
ultrafast system can be divided into different regimes depending on the system parameters. This is 
particularly true for mode-locked laser pulses which typically correspond to fundamental solitons, 
dissipative solitons, or periodic breathers depending on the laser dispersion, nonlinearity, gain, loss, and 
filtering.  Transfer learning may then use training data generated with simplified mathematical models or 
experiments with reduced complexity. In fact, transfer learning is in itself an important topic of machine 
learning research and from that point of view ultrafast photonic devices could be ideal testbeds for 
investigating transfer learning problems in general. 
 

  



FIGURE CAPTIONS 
 

 
FIG. 1. Overview of main machine learning concepts and implementations that can be used in 
ultrafast photonics. The figure illustrates the core concepts and corresponding implementation 
methodologies as delimited by the coloured arcs, and links these to particular applications where 
these have been applied in ultrafast photonics. There are also other concepts including semi- 
supervised learning and reinforcement learning which use some of the implementations mentioned 
in the figure, but these have yet to be exploited in an ultrafast context. Of course, we also stress 
that all these methods have been used in many other fields of science in addition to the ones shown 
here. 
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FIG. 2. Widespread and promising machine learning architectures for ultrafast photonics. A: 
Genetic algorithm. B: Feed-forward neural network. C: Convolutional neural network. D: 
Unsupervised learning. E: Recurrent neural network. F: Reservoir computing. The different 
algorithms can be used as indicated: in pre-training before being applied to a particular 
experimental system, for real-time optimization and tuning, or a combination of both where the 
algorithm is pre-trained and subsequently updated during system operation. 
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Genetic algorithms (GAs) belong to a family of 
evolutionary algorithms that are inspired by biological 
evolution. A (random) initial population is first 
evaluated by a fitness function, and the parents of the 
next generation are selected according to the fitness 
score. The reproduction includes a crossover of genes 
between the parents to create children that may 
undergo a mutation in which individual genes are 
randomly altered. GAs may also include elitism, 
where the best individuals are cloned to the next 
generation. 

Unsupervised learning refers to label-free statistical 
tools for exploratory data analysis without prior 
knowledge about the data or system. The goals of 
unsupervised learning techniques typically include 
finding inherent patterns and structures to partition data 
into natural groups or clusters according to coordinates 
(e.g. x1 and x2), or creating latent variable models for 
dimensionality reduction and data visualisation. 

Feedforward neural networks (FNNs) consist of an 
input layer accepting input data x, multiple hidden 
layers of basic computational units (neurons or nodes) 
that perform operations on the data using various 
weights and a nonlinear activation function, and an 
output layer which computes the network output y for 
regression or classification. In feedforward neural 
networks, the information flows forward from the 
input layer through the hidden layers to the output 
layer. 

Recurrent neural networks (RNNs) are a special type 
of neural network that are used for processing 
temporal/sequential data. Their topologies include 
intra-layers and nodes with recurrent connections that 
store information from the previous input values of 
the network. The hidden state of the recurrent nodes 
ht is passed on to the next time step such that the 
output of the recurrent layer yt+1 depends on both 
the new input xt+1 and the previous hidden state ht. 

Convolutional neural networks (CNNs) are a special 
type of feed-forward neural network where the input 
is convolved with a set of filters or kernels, followed 
by nonlinearity. The resulting feature map is then 
downsampled by a pooling function reducing the 
data dimensions by combining nearby points into a 
single value. The convolution and pooling operations 
can be followed by additional convolutional layers to 
extract further relevant information from the previous 
feature maps. The output may then be flattened into 
a vector form for classification or regression tasks. 

Reservoir computing (RC) is a particular class of 
RNN. In RC, the input Win and recurrent layer 
connections W do not participate in the training but 
instead they are pre-defined in an ad-hoc fashion and 
are often simply drawn from a random distribution. 
Training only modifies readout weights Wout and the 
usually complex neural network optimization 
becomes a simple matrix inversion that can be 
computed in a single step. 



 
FIG. 3. Illustration of machine-learning strategies for optimization and self-tuning of ultrafast 
fibre lasers using control of intra-cavity elements via a feedback loop and control algorithm. A. 
Training phase where control electronics acting e.g. on the polarization state (EPC: electronic 
polarization controller) sweep the parameter space to map different operating states of the laser to 
be used as inputs to the control algorithm (see Fig. 2). Guidelines for algorithm and parameter 
selection are given in Box~1. In the case of a search algorithm, the training phase is not necessary. 
Output characteristics are measured by diagnostics tools such as optical spectrum analyser (OSA), 
fast photodiode (PD) and oscilloscope (OSC), or radio-frequency spectrum analyser (RFSA) and 
subsequently used as input to the control algorithm. B. Machine learning assisted operation where 
the laser operation is measured in real-time and fed into the control algorithm. 
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FIG. 4. Machine learning applications in Ultrafast Photonics. A. Pulse compression. Aa. 
Optimization procedure. Ab. Convergence comparison between neural network and evolutionary 
algorithm. Ac. Compressed pulse FROG. B. Controlled nonlinear propagation.  Ba. Schematic. 
Bb and Bc. Examples of customized supercontinuum spectra. C. Pulse reconstruction using 
convolution neural network. Ca. Architecture. Cb. Reconstructed FROG. Cc. Reconstructed 
pulse. D. NLSE solution using a neural network. Da. Pulse evolution (top) and comparison of 
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predicted and exact solutions (bottom) at three particular points (dashed lines). Db. Kuznetsov-Ma 
(left) and Akhmediev breather (right) dynamics showing expected evolution (top), predicted 
evolution (middle), and relative difference (bottom).  E. Modulation instability. Ea Simulated 
spectra (network input) and Eb temporal profiles (network output). Ec. Network schematic for 
correlation of spectral and temporal characteristics. Ed. PDF of predicted temporal intensity based 
on experimental spectra (dashed red line) compared with simulated PDF (blue line). Panel A 
adapted with permission from REF [42], OSA. Panel B is adapted from REF [47], Springer Nature 
Ltd. Panel C adapted with permission from REF [57], OSA, Panel Da adapted with permission 
from REF [67], Elsevier. Panel Db adapted with permission from REF [69], APS. Panel E adapted 
from REF [75], Springer Nature Ltd. 
 

 

 

Table 1 | Comparison of machine learning tuning approaches in ultrafast fibre lasers 

Laser system Control 
Element(s) 

Fitness 
Function(s)  

Type of algorithm(s) Targeted 
regime/parameters 

Advantages Disadvantages Speed 

NPE fibre laser 
REF38,39,41 

Electrical 
polarization 
controller 

Different for 
different regimes 

Rosenbrock search 
algorithm, random 
collision recovery, 
genetic algorithm 

Fundamental and 
harmonic mode-
locking, Q-
switching and Q-
switched mode-
locking 

Versatile, real-
time, various 
regimes of 
operation  

Limitations of 
real time 
techniques to 
detect all 
classes of laser 
instability 

Average mode-
locking time of few 
seconds, sub-
second recovery 
time 

Figure of 8 
laser  
REF40 

Pump diode 
powers 

Pulse 
(autocorrelation) 
duration based on 
nonlinear fibre-
DFT 
measurements 

Feedforward neural 
network, XGBoost, 
linear regression 

Replace time 
domain comb, RF 
spectrum and DFT 
measurements by a 
single 
measurement tool 

Real-time 
multiparameter 
monitoring with 
a single 
oscilloscope 

Requires a large 
number of 
measured 
parameters  

Not available 

Mode-locked 
fibre laser 
REF30 

Waveplates, 
polarizer 

Pulse energy 
divided by spectral 
kurtosis of the 
waveform 

Recurrent neural 
network, variational 
autoencoder with 
latent variable 
mapping (FNN) 

Stable mode-
locking 

Fast recovery 
from changes in 
the fibre 
birefringence 

Complex and 
rather slow 
training process 

Numerical results 

NPE fibre laser 
REF35 

Liquid-crystal 
based 
electrical 
polarization 
controller 

RF power at 
expected 
repetition rate, 
spectral similarity 
and output power 

Genetic algorithm Stable mode-
locking 

Output spectra 
can be tuned 

Only 
fundamental 
mode-locking 

Initial mode-locking 
time of 90 s, 30 s 
recovery time 

Ring fibre laser 
REF34 

Electronic 
polarization 
controller, 
pump power 

Centre 
wavelength and 
repetition rate 

Genetic algorithm Stable and tunable 
Q-switching 

Tunable center 
wavelength and 
repetition rate 

Limited tuning 
range of around 
20 nm 

Not available 

NPE fibre laser 
REF32 

Polarization 
controller 

Modified 
amplitude of the 
nth harmonic in RF 
spectrum 

Evolutionary 
algorithm 

Harmonic mode-
locking regime with 
anomalous 
dispersion 

Optimized for 
high-harmonic 
mode-locking 

Slow 
convergence 

Harmonic mode-
locking time of 2 h 

Figure of 8 
laser  
REF33 

Electronic 
polarization 
controller, 
pump power 

Peak power, 
maximized RF 
signal at 
fundamental 
frequency, and 
spectral 
bandwidth 

Genetic algorithm Anomalous 
dispersion with 
NALM for stable 
single-pulse mode-
locking 

High contrast 
between stable 
and unstable 
pulsing regimes 

Complex fitness 
function, slow 
convergence 

~ 30 min 



NPE fibre laser 
REF31 

Electrical 
polarization 
controller 

SH power for 
anomalous 
dispersion 
operation, 
intensity of FSR RF 
component for 
normal dispersion 

Evolutionary 
algorithm 

Q-switched mode-
locking and stable 
mode-locking 

Two regimes of 
operation 

Slow 
convergence 

~30 min 

Mode-locked 
fibre laser  
REF28,29 

Polarizer, 
waveplates 

Pulse energy 
divided by spectral 
kurtosis of 
waveform 

Toroidal search 
algorithm and 
singular value 
decomposition, 
sparse search 
algorithm, 
extremum-seeking 
control 

Stable mode-
locking 

Library of 
identified 
birefringence 
states can be 
used for fast 
identification of 
unknown 
birefringence 
and optimal 
controller 
parameters 

Library of all 
possible 
birefringence 
states must be 
built 

Numerical results, 
few to tens of 
minutes to build the 
library  

NPE fibre laser 
REF27 

Waveplates, 
polarizers, 
amplifier and 
gain 

Pulse energy of 
single pulse 
solution 

Genetic algorithm High pulse energy 
mode-locking 
without multi-
pulsing instabilities 

Simple fitness 
function 

Requires 
complex 
polarization 
control 

Numerical results 

 


