
Joonas Palonen

MACHINE LEARNING FOR COMPUTATIONAL

COHERENT NEAR-EYE DISPLAY

End-to-end optimization frameworks with CNNs

Bachelor’s Thesis

Faculty of Information Technology and Communication Sciences

Examiner: Jani Mäkinen

November 2021



i

ABSTRACT

Joonas Palonen: Machine Learning for computational coherent near-eye display
Bachelor’s Thesis
Tampere University
Information technology
November 2021

Near eye displays (NEDs) have grown greatly in popularity in a few years and they have been
adapted to numerous fields. They still have multiple problems with one of them being vergence-
accommodation conflict (VAC). VAC causes visual fatigue and discomfort for the user because the
displays are not able to produce accurate enough visual cues for the human visual system (HVS)
to interpret.

In this thesis, we study the further development of pre-processing systems for the method
proposed by U. Akpinar et.al [1]. It presents an accommodation-invariant computational near-eye
display to alleviate the symptoms of VAC. To achieve this, U. Akpinar et.al used U-Net architecture
for pre-processing. We implement three alternative end-to-end optimization framework architec-
tures for image pre-processing that are based on Super-Resolution CNN (SRCNN), Very Deep
Super-Resolution CNN (VDSR), and Denoising-CNN (DNCNN) respectively. The proposed im-
plementations are compared to the existing U-Net architecture.

The implementations were done with Matlab. In the training phase, the models were given
256x265 RGB image patches from a dataset of 17000 images. At each iteration, the accommo-
dation depth z was randomly selected from 0-3D range. The models were compared by using
peak-signal-to-noise-ratio (PSNR) and structural-similarity-index measure (SSIM). Also, the qual-
itative features of the processed images and the training phase were taken into account. The
experiments showed that only the SRCNN based method was able to compete against U-Net. It
reached better PSNR values and higher quality images but in a narrower accommodation depth.

Further research on the training process for these architectures is needed. Also, other more
complex methods for image-processing have been proposed and those could prove successful for
this use case but implementing them is beyond the scope of this thesis.

Keywords: machine learning, neural network, optimization framework, near-eye display, vergence-
accommodation conflict

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.
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TIIVISTELMÄ

Joonas Palonen: Lähinäyttöjen kuvien esiprosessointi neuroverkoilla
Kandidaatin tutkielma
Tampereen yliopisto
Tietotekniikka
Marraskuu 2021

Lähinäytöt (near-eye display) ovat kasvattaneet suosiotaan valtavasti viime vuosina ja niitä on
otettu onnistuneesti käyttöön lukuisilla toimialoilla. Lähinäytöissä esiintyy kuitenkin useita ongel-
mia, joista yksi on vergenssi-akkommodaatio konflikti (vergence-accommodation conflict). Se ai-
heuttaa käyttäjälle silmien väsymystä ja epämukavuutta, sillä lähinäyttöjen tuottamat kiintopisteet
eivät ole tarpeeksi tarkkoja ihmisissilmän tulkittavaksi.

Tässä tutkimuksessa jatkokehitän esiprosessointisysteemiä, jonka U. Akpinar ym. esittelivät
julkaisussaan [1]. Siinä vergenssi-akkommodaatio konfliktin oireita pyritään lieventämään kehittä-
mällä akkommodaatiosta riippumaton lähinäyttö. Tämän saavuttamiseksi systeemin sisääntuloda-
ta tulee esiprosessoida sopivasti käyttäen konvolutionaalisia neuroverkkoja. U. Akpinar ym. käytti-
vät esiprosessointiin U-Net neuroverkkoarkkitehtuuria, jolle pyrin löytämään paremman vaihtoeh-
don. Toteutan ja vertailen kolme eri arkkitehtuuria, jotka perustuvat super-resoluutio neuroverk-
koon (SRCNN), erittäin syvään super-resoluutio neuroverkkoon (VDSR) ja kohinanpoisto neuro-
verkkoon (DNCNN).

Tutkimuksessa neuroverkot toteutettiin Matlab -ohjelmistolla. Opetusvaiheessa neuroverkoil-
le syötettiin pienissä erissä 17000 kuvan joukosta kooltaan 256x256 värikuvia. Jokaisessa erässä
akkommodaatio syvyys, jolle kuva pyrittiin tarkentamaan, arvottiin väliltä 0-3D. Opetustulosten ver-
tailuun käytettiin prosessoitujen kuvien huippusingaali-kohinasuhdetta (PSNR) ja rakenteellisen
samankaltaisuuden mittaa (SSIM). Myös kuvien laadulliset ominaisuudet ja neuroverkkojen ope-
tusprosessin ominaisuudet vaikuttivat vertailussa. Tulokset osoittivat ainoastaan SRCNN-verkko
kykenevän vastaavaan suorituskykyyn kuin U-Net arkkitehtuuri. SRCNN-verkko saavutti PSNR
arvoiltaan ja laadullisesti paremmin prosessoituja kuvia, mutta kapeammalla akkommodaatio sy-
vyydellä.

Jatkokehityksellä kaikkien verkkojen suorituskykyä voitaisiin parantaa entisestään. Kirjallisuu-
dessa on myös esitetty kompleksisempia arkkitehtuureja, jotka voisivat parantaa esiprosessoinnin
laatua, mutta näiden toteuttaminen on tämän tutkimuksen laajuuden ulkopuolella.

Avainsanat: koneoppiminen, neuroverkko, optimointisysteemi, lähinäyttö, vergenssi-akkommodaatio
konflikti

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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1. INTRODUCTION

Near-eye displays (NEDs) have seen a huge jump in popularity in recent years with a

growing number of applications in scientific visualization, medical imaging, education, op-

erating remote devices and more. Doctors, engineers and pilots all benefit from having

additional information and capabilities right at their visual field. [2][3] However, these dis-

plays often cause visual fatigue and discomfort in the user due to distortions in perceived

three-dimensional (3D) structure compared to the real scenes [4]. Another cause for

these symptoms is the dissociation between vergence and accommodation in the human

visual system, caused by the displays not being able to create proper visual cues, known

as vergence-accommodation conflict (VAC) [5].

In this thesis, we will further develop the method proposed by U. Akpinar et.al. in [1] which

presents accommodation-invariant computational NED. It uses extended depth of field

imaging with a diffractive optical element together with a conventional refractive eyepiece

and a pre-processing convolutional neural network (CNN) to address the VAC problem.

The goal of this study is to implement and compare end-to-end optimization frameworks to

do the pre-processing and find the most suitable one for optimizing the system proposed

in [1]. The frameworks are implemented using Matlab, MatConvNet library and Deep

Learning toolbox. All the neural networks are trained to compensate for the effect of the

optics, such that the resulting image is perceived as sharp as possible.

The thesis is structured in following way. Chapter 2 presents background and theory

for the technologies behind the study and gives insight to other related work related to

addressing the VAC problem. In chapter 3, we discuss the machine learning methods

used in this study. The fourth chapter reviews the data used in the CNNs, the experiments

conducted and the results from the experiments. Conclusion about the results and their

is given in the final chapter.
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2. BACKGROUND

Machine learning (ML) is and has been a growing trend in information technology for many

years now. The development of ML has been accelerated by the increased availability in

computational power and data in different forms and a strong open source culture. [6] The

ability for algorithms to learn from data and improve their performance in assigned tasks

opens numerous applications in fields such as image processing. In image processing,

applications can be used, for example, to achieve image super resolution where a higher

resolution image can be reconstructed from observed lower-resolution images. [7]

2.1 Multilayer perceptron

The basic structure of any artificial neural network is multilayer perceptron (MLP) which

mimics the brains way of doing decisions. There, numerous single units called neurons

are linked together to form a neural network. Each neuron consists of three basic com-

ponents which are also presented in Figure 2.1.

1. A set of i synapses each having a weight wi. The value of weight wi may be positive

or negative. A positive weight will favor the effect of input xi in the summation

function, while negative will disfavor it.

2. Summation function which adds the weighted input signals. Often, neural networks

also include a bias for better a threshold of the specific neurons output. This can

be expressed by equation ysum =
∑︁n

i=1 wixi + b.

3. Activation function σ which results in an output signal only when the sum of the input

signals exceeds a specific threshold. The activation function can be expressed as

yout = σ(ysum).

Most common activation functions are logistic sigmoid function and rectified linear unit

(ReLU). Sigmoid is defined as

σ(y) =
1

1− e−y
, (2.1)

and it moves the input value y to finite range of (0,1). The benefit of using sigmoid is that

it is differentiable and hence continuous which is required by many learning algorithms.
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ReLU is defined as

f(x) =

⎧⎨⎩x, x ≥ 0

0, x < 0
(2.2)

In many applications ReLU can result in faster learning and it can be used for training

deeper networks. [8][9]. Both of these activation functions will be used in the CNNs

implemented in this thesis.

Figure 2.1. The structure of a neuron with n inputs and bias using ReLU activation
function. The activation of this neuron is inserted as an input to subsequent neurons
according to MLP connections. Adapted from [8].

MLP is a feed-forward network, consisting of consecutive layers of neurons linked to-

gether. By definition, MLPs consist of an input layer, one or more hidden layers and an

output layer. [9] An example, fully connected MLP structure is presented in Figure 2.2.
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Figure 2.2. The structure of an example fully connected multilayer perceptron with 3
inputs, 2 hidden layers that have 4 and 3 neurons and one output. Neurons are repre-
sented with Σ

∫︁
labels which represent the summation and activation functions in neu-

rons. Adapted from [8].

The number of neurons in the output layer depends on the purpose of the model. In a

simple classification problem the output may be set to be either 1 or 0. If we want to

do multi-class classification, we need the same number of output neurons as we have

classes. Each neuron will then correspond to the probability of an input belonging to each

class. [8] If the purpose of the model is to do image processing the output layer can have

a neuron for every pixel of the input image or output corresponding to a smaller batch of

the image [7][10].

Neural networks learn by iteratively tuning the weight and biases of the individual neurons.

In supervised learning each input is matched with the correct answer and error between

the networks output and the correct answer is calculated. In each iteration the weights

and biases of neurons are tuned to minimize the errors of the model. [8] [9]

2.2 Convolutional neural network

Images are complex data to use as an input for fully connected MLP architectures. As-

sume we had a 16 × 16 grayscale image as an input and a fully connected MLP archi-

tecture with one hidden layer consisting of 1000 neurons. The image can be thought of

as a 16 × 16 = 1024 dimensional vector. All the neurons and elements are connected

together, meaning that the fully connected layer would have 1024 × 1000 = 1024000
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distinct parameters. [11] It would require a lot of computing resources to process this

architecture in a meaningful way. This is why most image processing tasks and ML tasks

in general are solved by using convolutional neural networks (CNNs). CNNs have much

fewer parameters and connections and thus, are easier to train. Pairing this with modern

powerful GPUs, highly-optimized convolution implementation and well-designed CNN ar-

chitectures means that very complex and computationally challenging problems can be

solved. [12]

CNNs apply, for example, a series of convolution, pooling and backpropagation operation

to extract features from inputs. They learn to adjust the weighting of the filters in such a

way that in the last layer of the network, different classes become linearly separable. The

architecture of the CNN plays a vital role on its performance and results. [12]

Let us take an example with random filters to understand the role of the convolution better.

Figure 2.3 illustrates a simple system with two consecutive convolution layers where the

input is an RGB image. The first layer has six 7×7×3 filters. The input has three channels

(RGB) and therefore, the third dimension of the first convolutional layer must be equal to

3. Applying the first set of filters to the image produces a six-channel image (each filter

produces a single-channel image). The second convolution layer has only one 5× 5× 6

filter. Because the output of the first layer is fed directly to the second convolution layer

without activation functions, the third dimension of the second convolution layer must be

equal to 6. Since the second layer has only one filter, the resulting image will have one

channel. [11]

Figure 2.3. A simple convolution system with three channel input. [11]

By looking at 2.3 we can see that two of the filter in the first layer worked as low-pass

filters (smoothing filters) and the rest worked as high-pass filters (edge-detection filters).

The second layer then produces a single channel image by taking a value (m,n) and

linearly combining all six channels of the first layer in the 5 × 5 neighborhood at location

(m,n). [11]



6

2.3 Vergence-accommodation conflict

The human visual system interprets multiple visual cues such as retinal blur and disparity

to generate a comfortable 3D viewing experience. Retinal blur is the cue that drives the

lens adjustment of the eye to focus on desired depth, known as accommodation, thus

minimizing the blur. Retinal disparity is the visual cue that drives rotational movement of

the eye in horizontal and vertical directions, called vergence. These two measures also

work in parallel to help each other to adjust the eye’s focus optimally. [13]

Vergence–accommodation conflict is a well-known problem regarding all stereoscopic

displays. In a conventional near-eye display, the optics position the displayed image to

a variable depth according to the content of the frame. According to the basic princi-

ples of lens imaging in a simple lens system, the image is sharp only at one depth at a

time and blurred at all the other depths. [14] Thus, such a system produces focus cues

which are inconsistent with a true 3D scene. The inability of traditional NEDs to generate

accurate visual cues for the visual system to adjust causes conflicts in the eye’s vergence-

accommodation feedback loops which, in turn, results in the symptoms of VAC. [13] The

basic geometry of VAC is described in Figure 2.4.

Figure 2.4. The basic geometry behind the vergence-accommodation conflict [13].

By processing the displayed images in a way that removes the focus cues and sharpens

them at any given depth, the eye does not have to change its accommodation. This has

the potential to mitigate the symptoms of VAC. [15]

2.4 Architecture of the existing method

The architecture of the method proposed by U. Akpinar et.al. in [1] is illustrated in Figure

2.5. The system consist of two main parts: the pre-processing and the display. First,
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an all-in-focus image I is given as an input to the pre-processing network. The output

of this is Id and it is given as an input to the display model. The output of the whole

network is Ip which is the simulated perceived image seen by the eye. As a last step,

the loss between the initial input I and Ip is calculated which is used to co-optimize the

display design and the pre-processing network. The point spread function (PSF) is used

to calculate the response of the imaging system for the desired accommodation distance

z to display images.

Figure 2.5. Representation of the method proposed in [1].

The computational near-eye display combines a refractive lens and a diffractive optical

element (DOE). In forward model the perceived images are simulated on the reference

plane at which an assumed aberration-free eye is supposed to be accommodated. This

is shown in Figure 2.6. The system PSF needed for the model can be derived using the

generalized pupil function.

Figure 2.6. Architecture the NED setup proposed in [1].



8

The main difference in this architecture compared to others proposed in literature is the

use of static optics, which is easy to integrate into conventional headsets. Also, it is

compatible with any 2D display unit.

2.5 Related work

Numerous other methods have been proposed to alleviate and fix the problems of VAC,

mainly by either making the display accommodation-invariant (AI) [15] or by providing the

depth cues accurately (i.e. using accommodation enabling displays). AI displays have

been achieved, for example, by using light field displays [16][17] or with varifocal [18] or

multifocal plane [19] displays.

Some network architectures that achieve image super-resolution and deblurring include,

for example, generative adversial network (GAN) [20] and residual dense network (RDN)

[21]. In a GAN two networks are working in a feed-forward configuration. The first one

generates a high-resolution image ISR and the other tries to compare and distinguish the

ISR from real high-resolution images. Thus, the first network can learn to create solutions

that are highly similar to real images. [20] RDN generates high-resolution images ISR in

more straightforward manner by regular learning-based model. This can lead to higher

PSNR values compared to GAN, but the output images can contain unpleasing artefacts

or other visual imperfections. [21].



9

3. METHODOLOGY

We implement three deblurring convolutional neural networks (D-CNNs) and integrate

them into the end-to-end optimization and display system shown in Figure 2.5. These

methods are then compared to the existing D-CNN that uses U-Net [22] architecture.

Comparison is done by giving the trained networks testing images and then calculating

their peak-signal-to-noise-ratios (PSNR) and structural similarity index measures (SSIM).

Also, the qualitative features of the test outputs are taken into account.

The three D-CNNs implemented are based on Super-Resolution CNN (SRCNN) pro-

posed by C. Dong et.al in [7], Very Deep Super-Resolution CNN (VDSR) proposed by

J. Kim et.al in [23] and Denoising-CNN (DNCNN) proposed by K. Zhang et.al in [10]. All

of these methods are discussed in more detail in the following section.

3.1 UNET

The existing implementation uses U-Net architecture [22], which has been shown to be

a performant way to tackle various image restoration problems. U-Net is a multi-level

network that consists of two main parts; a contraction (encoding) path and an extension

(decoding) path which are connected via skip connections at every level. The architecture

as a whole is illustrated in Figure 3.1. [22]
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Figure 3.1. Architeture of U-Net CNN where convolutions are light yellow block, ReLUs
are graded yellow, max poolings are red, transposed convolutions are blue and clamping
is purple. The channel sizes after each convolution are given below the blocks. Adapted
from [22].

The encoding part consists of 3x3 convolutions, shown as light yellow in Figure 3.1, with

ReLU activation functions (graded yellow blocks). The feature maps’ channel size after

each convolution is given under each block. The channel size doubles after every down-

sampling. Downsampling is done by 2x2 max pooling layers with stride 2, shown as red

blocks in Figure 3.1. [22] [1]

In the decoding part, feature maps are upsampled via 2x2 transposed convolutions (blue

blocks) with an upsampling parameter of 2. The output feature maps from the encoding

part are concatenated to corresponding feature maps after each upsampling via skip

connections, illustrated as arrows in Figure 3.1. Lastly, a 1x1 convolution layer is used

to map the network output to the original image size of 3 channels. [22] The output is

clamped to be between 0 and 1 in order to account for the dynamic range of the physical

display (purple block). The clamped output Id then goes to the display model. [1]

3.2 SRCNN

The first and the simplest of the three implemented D-CNNs uses the architecture of

Super Resolution CNN (SRCNN) illustrated in Figure 3.2 [7]. It consists of the following

three parts:

1. patch extraction and representation,

2. non-linear mapping and

3. reconstruction.
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Figure 3.2. Architeture of SRCNN. Number of feature channels is given below each step.
Adapted from [7]

The first step extracts (overlapping) patches from the input image ILR and represents

those patches as high-dimensional vectors. These vectors comprise a set of feature

maps. The number of feature maps determines the dimensionality of each vector. For-

mally, the first step applies a 9x9 convolution with ReLU activation. Then, a 1x1 con-

volution with ReLU is applied to map each high-dimensional vector onto another high-

dimensional vector to conceptually represent a high-resolution patch. It would be possible

to add more similar convolutional layers to increase non-linearity with the cost of complex-

ity and thus, more training time. Finally, the high-resolution patch-wise representations

are aggregated to generate the final high-resolution image IHR. This is done by applying

a 5x5 convolution to the high-dimensional vectors from the second step. Throughout the

three steps, the number of feature channels is reduced, in order to have the output in the

original image size of 3 channels. [7]

3.3 VDSR

Similarily to SRCNN, the Very Deep Super Resolution CNN (VDSR) [23] consists of the

same three parts. However, VDSR uses n number of 3x3 convolutional non-linearity

layers, rather than 9-1-5 convolutions. The output of the n 3x3 convolutions with ReLU

activations is a residual image which is then summed to the input ILR to get the final

output image IHR. Again, the IHR is then given to the display model. [23]
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Figure 3.3. Architeture of VDSR with n number of hidden layers. Number of feature
channels after every convolution is given below each block. Adapted from [23]

A high-resolution image consists of low frequency (corresponding to low-resolution im-

age) and high frequency information (residual image). Because VDSR models residual

images rather than high-resolution images directly, like SRCNN does, the training can be

focused on the details of the image, rather than carrying the input through the model. This

means that VDSR can have faster convergence with even better accuracy. [23]

3.4 DNCNN

The third and final denoising CNN implemented in this study follows the architecture pro-

posed by K. Zhang et. al. in [10]. While the architecture of the model is very similar

to the previous two, one key difference could make this model perform better; DNCNN

utilizes batch normalization in the hidden layers between 3x3 convolutions and ReLUs.

These batch normalization blocks are illustrated light blue in Figure 3.4. From the figure

we can see that other than the batch normalization, the DNCNN architecture is indentical

to VDSR.

Figure 3.4. Architeture of DNCNN with n number of hidden layers. Number of feature
channels is given below each step. Adapted from [10]

In their paper, K. Zhang et. al. argue that by using the batch normalization together with

residual learning, the training process is faster. This is due to residual learning and batch

normalization benefiting each other in the training phase to, not only speed up training,

but also boost the denoising process. [10]
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3.5 Loss function

In neural networks, the loss layer is a vital part of the training process. Comparing the

outputs of the network and the ground truths during training and then shifting the weight

of the training to more desirable direction is essential. Thus, a loss metric that favours

relevat properties is necessary. [24]

The loss between the output Ip, given by the display model (Figure 2.5), and the all-in-

focus image I is calculated using both, a regularized L1-loss, and Structural Similarity

(SSIM) index. For a batch of N ground-truth images IN and corresponding outputs IpN
the reconstruction L1 loss is calculated by

EL1(I, I
p) =

1

N

N∑︂
n=1

(||In − Ipn||+ αR(In, I
p
n)), (3.1)

where α is the regularization weight and R(In, I
p
n) is the regularization term. A dark

channel prior is utilized as the regularization term, as it has been shown to be a powerful

prior for image restoration problems. [1][24]

For the same batch of N images the SSIM index is calculated on various windows of the

images. SSIM between two windows x and y of same size is

ESSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(3.2)

The use of L1-loss is desirable because it does not over-penalize large errors. While on

the other hand, SSIM aims to produce visually pleasing images.[24]
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4. EXPERIMENTS

In this section, we go over the training process, some parameters necessary for training

and the training setup. After that, we compare the results between models and discuss

their quality and usability.

4.1 Training

In the training process, the models were given 256x265 RGB image patches from a

dataset of 17000 images. At each iteration, the accommodation depth z was randomly

selected from {0D, 0.5D, 1D, 1.5D, 2D, 2.5D, 3D} range. Adam optimization function, with

initial learning rate of 1e-3 and weight decay of 1e-4, was used. Each model was trained

for 20 epochs with a system equipped with a high-end GPU, which resulted in average

training times of two weeks per model.

Figure 4.1 illustrates the L1 and SSIM loss functions (see 3.5) of each model during train-

ing (blue) and validation (orange) processes. Because the results vary a lot between

models and epochs, the "best" epoch was hand-chosen for every model to ensure best

results. These epochs were as follows: U-Net 20, SRCNN 17, VDSR 19 and DNCNN

19. From these figures we can see that all the models converge similarily and the same

training setup works quite well for all of them. But clearly, the complexity also adds uncer-

tainty. If the images in a given epoch are not favorable to the model, the more complex

models experience larger jumps in loss values.
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Figure 4.1. Graphs of loss functions during training and validation processes. From
top-left: UNET, SRCNN, VDSR, DNCNN

4.2 Results

To validate the training results, we compare each model using Peak-Signal-to-Noise-Ratio

(PSNR) and also take a look into resulting images and compare their perceived quality.

Images used as reference are shown in Figure 4.2. The PSNR values of those images

after going through the model pipelines, are shown in Figure 4.3.

If we analyze the PSNR plots further, we see that VDSR and DNCNN are clearly be-

hind U-Net and SRCNN in all accommodation depths. This might be due to the fact

that they were initially designed for image denoising and super-resolution tasks, and the

high number of non-linearity in hidden layers hurts their performance in this task. With

better fine-tuning and tweaking they might be able to compete with the previous U-Net

architecture but due to the very long training process this is not viable in this study.

SRCNN on the other hand is almost on-par with U-Net. It out-performs U-Net in a nar-

rower depth-of-field. And comparing the complexity of these two models, SRCNN is much

simpler and faster to train that U-Net. So with more tuning and double the training time,

SRCNN might out-perform U-Net in the desired depth range.



16

Figure 4.2. Reference test images. From top-left: test images a, b, c, d

Figure 4.3. Comparison of PSNR values between networks. Each figure corresponds to
one reference image. From top-left: test images a, b, c, d
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Focusing more on the perceived quality of the output images shown in Figure 4.4, we can

see that here also VDSR and DNCNN are clearly not competing with U-NET and SRCNN.

The output images suffer from heavy color oversaturation, where especially the reds and

yellows suffer the most. This effect is not visible on the other two models, where colors

look similar to the reference image in 4.2.

UNET SRCNN VDSR DNCNN

2.5D

(a) 28.16 (b) 27.59 (c) 26.62 (d) 25.14

2D

(e) 28.47 (f) 28.70 (g) 27.64 (h) 25.82

1.5D

(i) 28.19 (j) 28.41 (k) 27.20 (l) 25.52

1D

(m) 28.14 (n) 28.23 (o) 26.82 (p) 25.28

Figure 4.4. Comparison of the outputs given by different networks at varying depths for
test image a. The PSNR values are given under each image in dB

4.3 Discussion

The results given here are definitely not the best that these models can achieve. They

lack the latest optimization tricks that are not implemented in Matlab. Also, additional

training could still give better results, but is not viable in this study due to time constraints.

Multiple publications address more complex models to solve this problem. For example,

Generative Adversial Network (GAN) based model proposed by C. Ledig et. al. in [20]

or EnhanceNet proposed by M. Sajjadi, B. Schölkopf and M. Hirsch in [25] could give

far better results. However, as this study is limited to using Matlab for model coding,

implementing these models is outside the scope of this thesis.
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5. CONCLUSION

Most of the near-eye displays suffer from vergence-accommodation conflict that leads to

user discomfort. By mitigating the symptoms of VAC, NEDs could become available for

broader set of professional and entertainment users.

This thesis attempted to implement the best end-to-end optimization frameworks for im-

age pre-processing for accommodation-invariant computational NED. Three convolutional

neural networks implemented were based on Super-Resolution CNN (SRCNN), Very

Deep Super-Resolution CNN (VDSR) and Denoising-CNN (DNCNN). The proposed im-

plementations were compared to previous related work where the pre-processing was

done by using U-Net architecture. Different architectures were compared by training char-

acteristics, using PSNR and perceived quality.

In the experiments all models were trained to pre-process images to a random accommo-

dation depth z from 0D-3D range at each iteration. The results show, that only SRCNN

model was able to achieve the same level results as previously proposed U-Net. SRCNN

performed measurably better in 2D-1D range. This means that U-Net has the advantage

of being performant in a wider depth range and it might altogether be a better model for

this task with further tuning.

Experiments with state-of-the-art complex architectures such as Generative Adversial

Networks (GANs) or residual dense networks (RDNs) should be conducted in order to

achieve more significant results. Also, doing the development in another programming

language might be advantageous to have access to state-of-the-art machine learning

libraries and optimization tools.
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