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     Objective: The importance of heart rate variability (HRV) for the evaluation of heart condition and 
autonomic nervous system (ANS) in different status has resulted in attempts for expanding the use  
of optical heart rate monitoring (OHR) devices. OHR technology can be utilized as wristbands to 
provide comfort. The working principle is based on emission and reflection of light through skin and 
measuring the changes in blood volume in small arteries and arterioles  and generating the heart rate 
signal by the help of algorithms within the OHR device. The objective of this thesis was to assess the 
performance of optical HRV monitoring in gastrointestinal surgery patients.  
 
     Materials and Methods: Data from electrocardiogram (ECG) reference and OHR wristband was 
collected from 31 patients after undergoing gastrointestinal surgeries. The duration of recorded data 
for each subject was ranging from 24 to 72 hours and approximately 1200 hours of data was collected 
as a whole. The signals obtained from ECG reference and OHR wristband were compared with each 
other and beat-to-beat error was estimated. In the next step, HRV parameters were calculated in 5-
minute length intervals and measurement error of OHR was estimated. The effects of ectopic beat 
removal on the result of error estimation were also evaluated. 
 
    Results and Discussion: The average mean error (ME), mean absolute error (MAE) and relative 
mean absolute error (MAPE) of beat-to-beat comparison of the HRV data obtained from the OHR and 
ECG reference were -1.34 milliseconds (ms), 10.39 ms and 1.28 %, respectively. Concerning the 
HRV parameters estimated by the OHR device, the accuracy was varied based on the type of HRV 
parameter. While the relative mean absolute errors (MAPE) of SDNN and SD2 were 9.11% and 
7.54%, for RMSSD and SD1 MAPE values were 34.28% and 34.29%, respectively. The result of beat-
to-beat error estimation approves the accuracy of OHR technology for recording HRV and it can be 
still improved by reducing the motion artifacts. For estimating the HRV parameters through OHR 
technology, the accuracy is not similar for all parameters. Some parameters such as SDNN, SD2, 
DFA 𝛼1 and DFA 𝛼2 can be reliably estimated while for RMSSD, SD1 and pNN50 the OHR technology 

should be used with caution. Finally, by evaluating the cross-correlation and Bland-Altman plots it 
was concluded that the results obtained with OHR technology demonstrate a high agreement and 
correlation with the results obtained with conventional ECG device. 
  
    Keywords: electrocardiogram, error estimation, heart rate variability, inter-beat-intervals, optical 
heart rate monitoring  
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1. INTRODUCTION 

The main role of technology is to enhance the quality of life. Therefore, it is required to be 

affordable and have suitable outcomes especially when it comes to healthcare industry for 

the purpose of saving lives. Now, the healthcare industry is confronted with some major 

challenges such as lack of accessibility, quality, and the high costs of the medical equipment. 

There should be some solutions and alternatives to reduce the medical expenses for 

maintaining or even improving the quality of them. Moreover, there is a need that the medical 

equipment to be available for everyone and easy for healthcare personnel to have real-time 

access to patients’ monitoring data. It therefore reduces the additional costs significantly if 

there will be more focus on preventions people from diseases instead of treating them. 

Wearable technology can be a suitable alternative due to its versatile and portable nature 

which can be safe, effective, patient-centered while it can reduce the costs at the same time 

[1]. 

 

In the past two decades, heart diseases such as ischemic heart diseases (IHD) together 

with strokes have remained the major reasons of mortalities world-wide [2]. IHD is a heart 

disease in which insufficient amount of oxygen and blood reach a portion of the myocardium 

which leads to an imbalance between the supply and demand of oxygen in the myocardium 

[3]. Due to not having any specific symptoms, IHD can put the life of the patient in danger 

and in some extreme cases it might result in the death of the patients [4]. One way to monitor 

IHD could be angiography which is an invasive method that could be bothersome for patients 

and healthcare personnel; thus, using a wearable device can be more beneficial and less 

cumbersome for the patient. Although ischemic events cannot directly be detected with 

wearable devices, research has shown that patients with IHD have different linear and non-

linear heart rate variability (HRV) parameters [5] [6]. By designing a wearable device which 

can non-invasively monitor heart and extract related information (such as HRV), these kinds 

of life-threatening issues could be mitigated. This was just an example indicating that long-

term measurement using wearables can be highly useful for monitoring vital organs of body 

such as heart.   
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Electrocardiography (ECG) has been the most used and common method for monitoring 

heart in the past decades. It is considered the “gold standard” which can provide information 

accurately and precisely. The ECG devices can be found in various shapes and models 

such as stationary ones commonly used in hospitals, the chest straps and Holter monitors 

which are the portable versions of ECG. While they all provide a great efficiency, some 

limitations are also associated with them. In case of stationary ECG devices used in hospital 

environments, the patients should stay in a specific position with the least possible 

movements while 10 electrodes are attached to different parts of their bodies. During long-

term recordings in case of pre- and post-operative patient monitoring, this might become 

bothersome for the patients. The poor attachments of the chest straps to the skin can also 

lead to the generation of noisy signals.  

 

To overcome the mentioned limitations, a wearable device is required which can be easy to 

use and provide comfort for long-term recordings, be able to reduce the medical expenses 

and be reliable in terms of data recording. Optical heart rate (OHR) technology can be a 

suitable alternative and embedding this technology in a wristband can have benefits for both 

patients and healthcare personnel. HRV information recorded by OHR could potentially be 

used to recognize post-surgery complications and deterioration of patient status. My 

motivation for this thesis was to compare the long-time data collected by OHR and ECG.    

 
The main objective of this thesis is to evaluate if OHR technology could be an effective tool 

for post-operative patient monitoring. More specifically, to evaluate the beat-to-beat 

accuracy of OHR and to evaluate the accuracy of OHR for estimating HRV parameters. 

Another objective is to investigate the effect of ectopic beat removal methods on final error. 

 
The whole content of this thesis is associated with ECG, photoplethysmogram (PPG) 

technology, and HRV; therefore, during the theoretical background, one chapter is devoted 

to each one of them. It is then followed by Chapter 5 where the methods of data processing 

and utilized materials for data recording are explained. The results of the thesis are 

demonstrated in Chapter 6 and in the same chapter, the obtained results are discussed. 

Finally, a summary of the whole thesis is provided in Chapter 7.    
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2. HEART AND ARRYTHMIAS 

The cardiac diseases can be manifested as arrythmias and some of them might not have 

any symptoms such as tachyarrhythmias triggered by acute coronary events [7]. Therefore, 

screening and monitoring of heart continuously can provide useful information regarding the 

status of heart and the generated signals from it. Multiple techniques have been utilized in 

the past years for monitoring of heart. Electrocardiography is one of them.  

2.1 Electrocardiography 

Electrocardiography (ECG) is the most common way to record the signals generated by 

heart [8]. In each cardiac cycle, an electrical signal is generated which contains peaks and 

valleys. The whole signal is composed of 5 peaks and valleys called P, Q, R, S, T. The 

analysis of the ECG signal is highly dependent on the extraction of QRS complex, P and T 

waves. The excitation of the ventricles is represented by QRS complex and the time 

differences between R-peaks is called HRV. Also, some premature contractions which are 

not originated from sinus node could be present in the ECG signal. A normal heart usually 

has some stable characteristic such as the intervals between P-R or Q-T which are normally 

between 0.12 to 0.2 seconds for P-R and 0.42 seconds for Q-T [9]. Different features of the 

ECG signal such as QRS complex can be helpful with diagnosing cardiac arrythmias. In 

Figure 1, the ECG waveform containing P, Q, R, S, T is depicted. 
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 ECG signal. ISO is the isoelectric line or baseline which does not have any 
electrical polarities. P-wave is the depolarization of the atria in response to SA 

node triggering. QRS complex is the depolarization of the ventricles. T wave is the 
ventricular repolarization. [10].  

 

2.2 ECG recording techniques 

The ECG recording is commonly based on 12-lead electrocardiogram. It starts by placing 

10 electrodes on the surface of the skin in different parts of the body. By production of 

heartbeats during activities of myocardium, 12 views of its electrical activity can be obtained 

using 12-lead electrocardiogram. The formation of the ECG signal and the interpretations 

regarding the time and voltage properties of the signal are valid only if the placement of the 

electrodes on the body skin follows the “standardized methodology” which is already 

determined. Following a standardized methodology will allow to have accurate comparison 

between different recorded ECGs in various situations and healthcare personnel. It also 

permits to track the changes over time and evaluate the responses of treatments to the ECG 

signal [11].  

 

At first, there are four limb electrodes which should be placed in four areas of body such as 

right arm, left arm, right leg and left leg. The electrode on the right leg is utilized as the earth 

connection. The correct placement of electrodes on limbs is the extremities of the limb and 

for minimizing the effect of motion artifacts, it would be a good idea to attach the electrodes 

when the muscles of the patients are in the natural resting position. Any surface of the limb 

such as posterior, interior and lateral can be used for the placements of limb electrodes. In 

case of the leg limb, placement of the electrodes to the posterior would be difficult compared 

to other sides. Limb electrodes include RA (right arm), LA (left arm), RL (right leg), LL (left 

leg) which are placed on right arm near the wrist, left arm near the wrist, right leg near the 

ankle and left leg near the ankle, respectively. As well as 4 limb electrodes, there are also 6 

chest (precordial) electrodes which are called V1, V2, V3, V4, V5, V6. V1 is placed to the 

right of the sternal border and V6 is placed over the fifth intercostal space at the mid-axillary 

line. V2, V3, V4 and V5 are placed within V1 and V6 [11]. 
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2.3 ECG electrodes and electrolytes  

The outer layer of skin is dry and has high electrical impedance. High impedance of the skin 

prevents the electrical current from flowing throughout the skin. Suitable skin preparations 

and electrolytes can reduce the impedance and boost the flow of ionic current through skin. 

The electrodes are attached to a preamplifier which measures the voltage of the metal 

electrodes. It can be the difference between one electrode and voltage average of other 

electrodes. Based on Ohm law (𝑉 = 𝐼 × 𝑅), less resistance against the electrical current 

results in a better signal quality. The used electrolytes for ECG are usually free ions such as 

chlorine (Cl-) and sodium (Na+) ions. They increase the conductivity; however, the high 

concentration of electrolytes might irritate the skin [11].  

 

ECG electrodes can be reusable or disposable (single use). Currently, the disposable 

electrodes together with solid gel electrolyte are being used for ECG recording. An ideal 

electrode should have a good conductivity, attach to the surface of skin properly, be removed 

from skin easily, reduce the impedance at the skin-electrode interface and does not cause 

any skin irritations [11].  

2.4 QRS detection in ECG signal 

QRS is the most important part of the ECG waveform and provide information regarding 

heart rate (HR), HRV and can be used as a mean for developing automated ECG analysis 

algorithms. Recently, different techniques have been adopted to develop algorithms for QRS 

detection. These algorithms can be in the fields of artificial neural networks (ANN), filter 

banks, wavelet transforms, heuristic methods, and genetic algorithms [12].  

 

In most QRS detection methods, there is a need to filter the signal beforehand. The filtering 

process should include removing the incoupling noise and baseline drift. For removing 

baseline drift, there is a need for a high-pass filter while for incoupling noise removal and 

attenuation of P and T waves, a low-pass filter is required [12].  

2.4.1 Derivative based algorithms 
This method is based on the usage of characteristics of the QRS complex such as the steep 

slope of the R-peak. Therefore, a differentiator such as a high-pass filter can be utilized. 

There are various choices for the differentiator filters. First and second derivatives-based 
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algorithms have been used for QRS complex detection and estimating the duration of QRS. 

The first and the second derivatives of the ECG signal will produce square shape pulse wave 

at the place of QRS complexes and the duration of the pulses are proportional to the duration 

of QRS complexes [13].  

2.4.2 Algorithms based on digital filters 
It is possible to use sets of filters for QRS complex detection. A non-linear median filter has 

been used in order to smooth the ECG signal in a way that there is no sign of R-peaks 

anymore. Then the filtered signal was subtracted from the original ECG signal which resulted 

in the removal of baseline drift. Finally, a simple R-peak threshold detection was applied 

[14]. The effect of use of four finite impulse response (FIR) band-pass filters has been 

evaluated and QRS complexes were classified by the help of a detection threshold (DT) [15]. 

Concerning QRS complex detection using filters, multiplication of backward differences 

(MOBD) can be utilized which provides more information regarding the occurrence of QRS 

complexes [16].  

2.4.3 Wavelet-based QRS detection 
The result of wavelet transform is a time-series representation of the function 𝑓(𝑡) which 

uses set of analyzing functions. A method was proposed for QRS complex detection as well 

as P and T waves based on wavelet transform. According to M. Bahoura et al. the advantage 

of detecting QRS complex together with P and T waves would be helpful in terms of 

tachycardia and long QT syndrome recognition [17]. ECG signal has a time-varying 

morphology, and it has been found out that the wavelet-based algorithms exhibit a sufficient 

performance and robust response to noise in the ECG signal [18]. Wavelet transform-based 

QRS complex detection could have good capabilities of distinguishing different parts of the 

ECG waveform such as QRS complex and P and T waves as well as making difference 

between the ECG components and the extreme noise and baseline drift [19].  

2.4.4 QRS detections based on neural networks 
Artificial neural networks (ANN) have been widely utilized in the fields of non-linear signal 

processing. The most frequently used approaches of ANN are linear vector quantization 

(LVQ), radial basis function (RBF) and multilayer perceptron (MLP). The ECG signal has a 

non-linear characteristic derived from a non-linear system (human body). Applying a linear 

adaptive filter for QRS detection could have some limitations and result is not always 

optimal. ANN has a non-linear nature and therefore is an appropriate approach for non-
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linear signals and systems [20]. Supervised learning and competitive learning such as grow 

and learn (GAL) and Kohonen networks are mostly utilized for the purpose of “signal 

classifications” or specifically “QRS detection”. In a study by Z. Dokur et al., GAL was found 

to have the best performance among other competitive learning methods for R-peak 

detection [21]. 

2.5 Ectopic beats 

Heart starts beating from SA node which is a primary source pacemaker throughout the 

whole heart. There are also other pacemakers together with SA node which are usually 

rejected as the source pacemaker during the refractory period of heart cells [22]. However, 

in some cases, some electrical impulses might be generated by other pacemakers which 

results in the generation of ectopic beats. Under this circumstance, a premature beat is 

arisen and the next beat after that would be a normal beat; however, the interval between 

the premature beat and the normal beat is longer than a normal distance. These long 

distances in QRS complex will generate sharp transients in HRV and can affect the result 

negatively especially when it comes to power spectral density (PSD) estimation of HRV [22].  

 

Ectopic beats can be in different types. Sometimes the SA node is not reset by ectopic focus 

location which leads to the creation of an ectopic beat in the place of the missed normal 

beat. It is then followed by a normal beat again. By removing the ectopic beat, the distance 

between two adjacent beats will become twice as long as the mean of R-R intervals. The 

solution would be inserting an intermediate beat instead of the missed beat to have good 

quality PSD estimate [22]. The application of suitable ectopic beat removal methods reduces 

the error of different HRV parameters such as SDANN (standard deviation of the 5-minute 

average NN intervals) in time domain as well as LF and HF in the frequency domain [23].    

2.6 ECG accuracy 

In general, the 12-lead ECG recording principle is not always accurate and there might be 

inaccuracies in terms of factors associated with patients such as respirations patterns, the 

effect of everyday meals on the recorded ECG signal, body habitus and gender. There are 

also factors associated with practitioners and healthcare personnel such as incorrect 

attachment of electrodes to the skin or inappropriate skin preparations [11]. The artifacts can 

also affect the quality of ECG signals negatively. 
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• Artifacts affecting ECG signal 
 
The artifacts affecting ECG signal can be baseline wandering, powerline 

interference, EMG noise and motion artifacts.  

 

• Powerline Interference: It is a 50/60 Hz frequency noise which is flowing in the lead 

wires. Then the corresponding noise is transferred to body which is later also 

available in the ECG signal and should be removed before further processing. There 

is a need for a filter which is capable of removing powerline interference without 

affecting the neighboring frequency components. Basic analogue filters might affect 

the ECG components near the PL frequency. Other methods of PL frequency 

removal such as notch filters which are digital filters can be insufficient if the deviation 

of frequency of the interference is too large, and adaptive filters might generate 

transient response time which could be unacceptable. Subtraction procedure can be 

a suitable method for PL frequency noise removal without affecting the spectrum of 

the signal and it has been tested on different ECG signals and has provided desirable 

outcomes [24]. 

 
• Baseline Wandering: In an ideal case, the baseline of the ECG signal should be at 

the same level compared to the isoelectric level. The skin-electrode impedance 

keeps changing according to the changes of the respiration volume and in the long 

run it results in the wandering of the ECG signal baseline compared the isoelectric 

level. By using a suitable filter having an appropriate cut-off frequency, this problem 

can be solved. In order to remove the baseline wandering and at the same time 

maintaining the low frequency components of the ECG signal, there is a possibility 

to use a cascade adaptive filter. This method works based on the detection of QRS 

complex to preserve the signal components which are in correlation with QRS 

complex, so the extremities of the signal should be already known [25]. 

Decompositioning the ECG signal and then reconstructing it again would be another 

method for coping with baseline wandering; however, the signal should be filtered 

beforehand which requires a prior knowledge of the R-R intervals [26]. The 

combination of discrete Mayer wavelet filter with cubic spline estimation has been 

used for baseline wandering removal. Using cubic spline, the baseline of the ECG 

signal is estimated, and it is subtracted from the raw ECG signal. This is a time 
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domain non-linear approach [27]. Kalman filter and window moving averaging are 

two methods of baseline wandering removal which do not require a prior knowledge 

of the signal [28].  

 
• EMG noise: The movements of any muscle in our body can generate a signal which 

is called electromyography (EMG) signal. The frequency range of the EMG signal is 

almost similar to the range of the ECG signal which leads to their interference. The 

presence of the EMG noise in the long-term recordings might cause some problems 

while in short-term measurement its effect can be ignored. Applying a wavelet filter 

and choosing appropriate thresholds for that could be one approach to remove the 

effect of motion artifacts and EMG noise in the ECG signal [29] [30]. The other 

methods for EMG noise removal could be Hopfield neural networks [31], Savitzky 

and Golay (S&G) filters by choosing appropriate thresholds [32] and transfer domain 

windows such as time-frequency plane Wiener [33] and singular value 

decomposition (SVD) filters [34]. 

 

• Motion artifacts: The motion of the body can move the electrodes attached to the 

surface of the skin and results in a noise in the ECG signal. The whole sets of 

electrodes together with body skin can be modeled as sets of resistors and 

capacitors and any movements of body can affect the related parameters which 

results from the changes of the impedance between the electrodes and the surface 

of the skin. In long-term recordings it can affect the ECG signal negatively as it highly 

overlaps with the ECG signal in 1-10 Hz frequency range.  
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3. PHOTOPLETHYSMOGRAPHY 

PPG is an optical method for measuring the propagation of light from tissues when they 

contain different amounts of blood in each phase of the cardiac cycle. PPG is non-invasive, 

low cost and easy to use. The general PPG measurement technique is based on emitting 

light to tissues and getting the light back after propagation from the tissue. The whole 

procedure starting from emitting light from the source which is a light emitting diode (LED) 

to its detection through photodetectors and obtaining signals, is often modeled by Beer-

Lambert law. Based on this law, the intensity of light in a homogenous medium is dependent 

on factors such as length of the light path 𝐼 and light absorption coefficient 𝛼. Equation (1) 

presents Beer-Lambert law and 𝐼0 is the primary intensity of light; the one which is emitted 

to the medium in the first place: 

 

𝐼 =  𝐼0𝑒−𝛼𝑙,  (1) 

 

If there are several substances such as skin, blood etc; light is absorbed by each of them 

and the effect of each one can be summed up together to obtain the final values of 𝐼. Beer-

Lambert law is used for homogenous mediums. Biological tissues and blood are not 

homogenous due to the changes in number of blood cells in different cardiac cycles leads 

to the non-linear absorbance of light.  

 

On each heartbeat, blood is pumped through the vessels in all parts of body. This will lead 

to the changes in the geometry and properties of the mediums (such as arteries). These 

changes affect the way that light is absorbed and scattered via blood cells and the variation 

of the light intensity can later be displayed by PPG signal. The whole PPG signal is 

composed of two main components which are alternating current (AC) and direct current 

(DC). These two terms are used in electrical engineering where AC refers to the voltage 

changing to different values and DC is the static voltage. In a PPG signal, pulsatile arterial 

blood is the AC component, and the DC component is the constant light absorption which is 

not always constant in reality and it has some small alteration by heart beats. When it comes 

to the detection of the light through photodetectors, two types of pathways could be utilized 

for this procedure. These two pathways are “transmissive” and “reflective”. In the transition 

mode, the light passes through the tissue and the detector which is attached to the other 
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side of the tissue receives the light. This way light collection is not possible for getting the 

PPG signal in some specific locations of body such as forehead or ankle where light is fully 

absorbed through the tissues. The reflectance pathway is mostly used for PPG applications 

where the detector and the light source are placed on the same side close to each other.  

 

The wavelength of the emitted light plays an important role regarding absorption or extinction 

of the light through different constituents of the tissues. One of the constituents of the tissues 

is water (H2O) and light can be transmitted through that efficiently if its wavelength is less 

than 950nm. Out of other constituents of the tissues, melanin absorbs the lights which have 

wavelengths less than 500nm, which means that the lights having less than 500nm cannot 

be effectively detected by the detectors and they are mainly absorbed by the melanin of the 

tissues. The concentration of melanin is different based on various types of skin 

pigmentation. The associations of skin tone pigmentations with the accuracy of 

measurements have been evaluated. Based on Fitzpatrick skin tone scale, there are 6 types 

of variations of skin tone which differ based on the concentration of melanin in the skin 

tissues. It was shown that the coverage of reliable heartbeats of the OHR device compared 

to an ECG reference reduced slightly for the 5th and 6th grade of Fitzpatrick scale. The other 

wavelengths of the OHR device might provide different accuracies which should be further 

investigated [35]. 

 

The main constituent of blood is hemoglobin (Hb) and based on its binding with oxygen can 

be categorized into two forms of functional and dysfunctional hemoglobin. The functional 

hemoglobin is called oxyhemoglobin and it is saturated fully with oxygen and in the blood of 

healthy people there are mostly the functional type of hemoglobin. In order to choose the 

wavelength in a way that the light is not absorbed by melanin and scattered by water 

molecules, the range of that could be varied from 510 to 920 nm. This range is equal to the 

wavelengths of green lights and infra-red lights, respectively. A research has shown that the 

green light has some benefits compared to the red and infra-red light due to AC/DC 

component ratio [36]. The longer wavelengths are able to penetrate to deeper parts of the 

tissues; and this can lead to the generation of more complex signals due to the effect of 

scattering in deeper parts of the tissue.  

 

LED is used as the source of the light due to its small size and efficiency. As the detectors 

it is possible to use photodiodes, photocells and phototransistors. The detected signal from 
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the light sensors will be then preamplified, filtered and set to a specific sampling frequency 

which is usually in the range of 20 - 100 Hz.  

 

As mentioned before, the PPG signal is composed of DC and AC components. Several 

features can be then extracted from DC and AC components. The DC component is the 

static part, and it determines the pulse foot (the bottom part of the signal). The AC 

component is the wave of the PPG signal, and it is not totally unique (the shape of cycles is 

not similar to each other); however, the overall pattern of the signal is closely similar which 

starts by a sharp rise in the beginning of the signal and ends by a decrease in the levels of 

the amplitude. The features that can be extracted from the AC components of PPG signal 

can be used to calculate HRV parameters. Pulse intervals themselves can be detected using 

different fiducial points in the PPG signal.   

3.1 Measurement site 

Based on targeted applications, there are different possibilities for choosing the most 

suitable site for the measurements. In the transmission mode where the detector is placed 

on the other side of the LED, the measurement sites could be the tissues which have less 

thickness such as earlobes or fingertips. In the reflectance mode, there are various choices 

for measurements sites such as wrist, forearm, forehead and torso [37]  [38] [39]. One major 

difference between these two modes is that there is a need for cuff in transmission mode 

which pressures the arteries and leads to the prevention of venous oscillations. The 

anatomical features of different sites of the body also plays an important role in the formation 

of the PPG signal as they have different features such as different amounts of fat, muscles, 

tendons, arteries etc. in order to reduce the effects of motion artifacts on the PPG signal, 

forearm can be a good choice for the measurement site compared to wrist [40] while wrist 

can be a more comfortable choice for long-term measurements. Moreover, comparison of 

several potential measurement sites has concluded that pulse spectral power of PPG is the 

highest when the measurement site is finger and it is lowest when PPG sensor is attached 

to the forearm [41]. Different measurement sites can result in different PPG signal 

waveforms characteristics such as pulse peak time (Tp), dicrotic notch time (Tn), and the 

reflection index (RI). These characteristics are usually used for the evaluation of arteries 

property under different physiological conditions. They can also be utilized for diagnosing 

cardiovascular diseases. By choosing finger as the measurements site, it is more convenient 

to extract Tp, Tn and RI from PPG. Tp and RI is much smaller when the measurement site 
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is finger compared to other measurements sites such as forehead, forearm, earlobe and 

wrist, and the mean amplitude of the PPG signal is higher in this case [42]. Measurement 

site can be chosen in a way that it is less prone to motion artifacts caused by movements. 

Choosing forearm as the measurement site reduces the estimation error as it is less 

influenced by motion artifacts [36].  

3.2 Factors affecting the quality of the PPG signal 

Factors can be categorized into three groups such as sensing factors, biological factors and 

cardiovascular factors. The factors associated with sensing could be the characteristics of 

the light emitted from the LED, the photodetector which is responsible for collecting the light, 

the coupling effect between skin and the sensor. The design and the geometry of the sensor 

should be in a way that minimizes the effects of the ambient light on the PPG signal. The 

distance between the photodiode and the LED should also be taken into consideration. The 

best distance between the LED and the photodiode for infra-red and green light can be 6 to 

10 mm and 2 mm [43], respectively. The biological factors could be some innate 

characteristics of the tissue such the skin pigmentation and cardiovascular factors could be 

the position of body, age, the stresses applied to the vessels which leads to the alterations 

in the flow of the fluids etc.  

 

Moreover, the motion artifacts can have profound effects on the quality of the PPG signal 

and therefore it is needed to be removed or at least minimized their effects. There are usually 

three different types of motion artifacts affecting the PPG signal: 

 

• Tissue modifications due to movements: Any movements of the tissues whether 

they are intentional or non-intentional can affect the status of the shape of the fat and 

other inner cells of the tissue. It will then result in the light that is being received by 

the photodiode and alters the shape of the PPG signal. The reasons for creation of 

these types of artifacts could be the location of the PPG sensor implanted on the 

tissue such as writs, earlobes, forearm etc. (for example, the implementation of the 

PPG sensor in earlobes is less prone to the creation of movement artifacts compared 

to wrist) and the way the PPG sensor is placed on the tissues such as the stress of 

the mechanical components of the sensor to the skin or the strap responsible for 

fastening the PPG sensor to the tissue [44].  
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• Relative motion of the sensor-skin interface: The interaction of the surface of the 

skin with the PPG sensor is not rigid and it is prone to movements which can be 

resembled to a mass-spring system. Any movements which result in the 

displacement of the sensor compared to the surface of the skin can affect the light 

path leading to the creation of noise in the PPG signal [44]. 

 
• Changes in the pressure between the optical probe and the skin: The amplitude 

of the PPG can be altered due to the amount of applied pressure from the sensor 

probe to the surface of the skin. For having an appropriate interaction between the 

skin and the sensor probe some levels of pressure are required; however, if the 

applied pressure exceeds the threshold, the amplitude of the PPG signal may 

decrease due to squeezing the blood vessels [44].  

 

• Effects of skin temperature on PPG signals: The effects of the temperature on the 

surface of the skin where there is a constant contact with the PPG sensor have been 

evaluated. The direct contact of the PPG sensor with skin generates heat and results 

in vasodilatation. By increasing the temperature from 34 to 45 degrees Celsius, the 

fluctuations of the amplitude in the PPG signal decreases significantly resulting in a 

more stable PPG signal. This research was done by infra-red light and the distance 

between the LED and photodiode was fixed to 6 mm [44].     

 

• Effects of the distance between LED and photodiode on PPG signal: The distance 

between the light emitter and detector can affect the resulting PPG signal. As the 

distance between the LED and detectors increases, the light should go the longer 

path to reach the detector which results in the reduction of the intensity of received 

light. The AC and DC components of the PPG signal decrease by increasing the 

distance. However, the relative pulse amplitude and stability of the signal increases 

when the distance increases. Traveling longer distance of light by increasing the 

distance of emitter and detector results in higher levels of absorption of light and 

therefore larger plethysmograph signal. But it also leads to the decrease of the signal 

to noise ratio as soon as the intensity of the light decreases [45].  
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• Effects of using multiple photodetectors instead of one: The effect of increasing 

the number of photodiodes has also been evaluated. The use of three photodiodes 

instead of one photodiode increases the chances of collecting the backscattered 

lights more easily. Detection of larger amounts of backscattered lights leads to the 

larger pulse amplitude and therefore larger photoplethysmograms [44]. 

 

• Wavelengths of the source light: The wavelengths of the lights used as the light 

source can be 463nm (blue light), 543nm (green light), 571nm (yellow light), and 

634nm (red light). Red light is able to penetrate in more depth of the tissue compared 

to shorter wavelengths. Modifying the distance between the detector and the emitter 

has different effects for different colors. By increasing the distance of detector and 

emitter, all lights will lose their intensities [44].  
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4. HEART RATE VARIABILITY 

HRV can provide useful information regarding health status of individuals such as 

functionality of nervous system or determining possible heart dysfunctionalities. In QRS 

complex, there are alterations between the time intervals of each adjacent heartbeat called 

HRV which is illustrated in Figure 4 [46]. It is concluded that the reduced HRV might be a 

sign of cardiovascular diseases. Other areas in which HRV can provide useful information 

are problems which directly affect autonomic system such as diabetes [47]. HRV can be 

quantified with different metrics in time and frequency domain as well as with non-linear 

parameters [48]. In Figure 2, a part of an ECG signal is depicted and by collecting the 

differences between adjacent R-peaks, HRV can be obtained.   

 

 

 

 HRV is derived by collecting the differences between adjacent R-peaks. 
Heart is not a metronome and R-R intervals differ from each other [49]. 

 

4.1 Physiological background of HRV 

HRV is regulated by autonomic nervous system (ANS). ANS is responsible for the 

maintenance of homeostasis which means it can for example regulate gastrointestinal 

responses to food, eye focus, blood pressure etc. ANS has two components: the 

sympathetic (SNS) and parasympathetic (PNS). Each of these components are being 

stimulated by different factors. In case of sympathetic component, it is affected by exercise, 

heart disease and stress which results in the increases of heart rate. In case of 
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parasympathetic component, it is being influenced by the functionality of internal organs and 

allergic reactions which decrease the levels of heart rate [50]. 

4.1.1 HRV Parameters 
HRV can be quantified with different metrics in time and frequency domain as well as non-

linear parameter and in total 31 HRV parameters are introduced in this thesis. Common time 

domain HRV parameters are SDNN, NN50, pNN50 and RMSSD. SDNN is the standard 

deviation of normal R-R intervals in milliseconds (ms). It can provide information about the 

risk of mortality and morbidity [51]. NN50 is the number of each pair of R-R intervals which 

have differences more than 50 ms and its percentage is described by pNN50. RMSSD is 

the root mean square of differences of adjacent beats.  

 

The time domain beat-to-beat heart rate signal can be converted into frequency domain 

using fast Fourier transform (FFT) or autoregressive (AR) model. Common frequency 

domain parameters are very low-frequency (VLF) power, low-frequency (LF) power, high-

frequency (HF) power and total power (TP) [52]. The range of LF band is between 0.04 to 

0.15 Hz and the usual minimum window for measuring LF is 2 minutes [53]. The range of 

HF band is between 0.15 to 0.4 Hz and the minimum time window for measuring HF is 

usually 1 min. The LF/HF ratio is usually measured for long term recordings (over 24 hours) 

and is intended to measure the activity of SNS compared to PNS [64].  

 

The factors resulting in the generation of HRV are not following a simple pattern like a 

straight line and they have a non-linear characteristic. The non-linear parameters such as 

SD1, SD2 and SD1/SD2 can be obtained after fitting the ellipse. The predictability of the R-R 

intervals can be understood using ApEn (approximate entropy) and if it has a higher value 

then it demonstrates a lower predictability [48]. 

 

Here are the usages of some of HRV parameters in interpreting HRV: 

 
• pNN50: NN50 was first introduced in 1984 [54] to collect the number of beats which 

have differences more than 50ms compared to their neighboring beats. The 

threshold could also be a variable (such as 7% of the previous NN interval) instead 

of choosing a fix number (50ms). It is concluded that choosing a fix threshold would 

be simpler and easier for measurements [55]. pNN50 was later introduced to 

measure the probability of the beats having differences more than 50 ms with 
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neighboring beats [56] [57]. pNN50 can provide useful diagnostic and prognostic 

information regarding different conditions. pNN50 can reflect the activity of vagal 

tone [58] and the reduction of pNN50 can be associated with the risk of cardiac 

events [59]. For post-myocardial infarction (MI) patients, the lower levels of pNN50 

could be associated with higher mortality rate [60]. People having systemic 

hypertension also have reduced pNN50 [55].  

 

Having stress and doing a mental task also affects the functionality of SNS and PNS 

and therefore reduces the levels of pNN50 [61]. Schizophrenia which is a mental 

disorder leads to the reduction of vagal tone and in a study all patients dealing with 

schizophrenia had the percentage of pNN50 lower than 4 [62]. General anesthesia 

(GA) also decreases pNN50 significantly and there is no correlation anymore 

between pNN50 and HF components of frequency domain parameter of HRV during 

GA [63]. Hypertension which is a serious reason of coronary diseases and stroke are 

associated with ANS and hypertensive individuals have significantly reduced pNN50 

[64]. The relationship between body mass index (BMI) and ANS has also been 

evaluated. It was shown that for non-obese adults, the BMI and pNN50 are inversely 

related [65].    

 

The threshold for calculation pNNx is usually considered 50 ms. pNNx has also been 

measured with other thresholds other than 50 (preferably < 50) and in a study by J. 

E. Mietus et al. the result for different groups of patients by setting the threshold to 

20 ms was more distinguishable which makes it a more suitable threshold when it 

comes to comparing the pNNx values of different patients’ groups [55].  

 

• SDNN: SDNN is the standard deviation of successive inter-beat-intervals. Age and 

gender can affect the value of SDNN [66]. During the analysis of patients with MI, 

the lower levels of SDNN were more associated with the risk of mortality [67]. SDNN 

is a strong predictor of mortality for some specific diseases such as amyloid light-

chain (AL) amyloidosis where patients have a limited life expectancy [68]. SDNN has 

a good specificity and sensitivity when it comes to the detection of autonomic 

dysfunction [69]. Also, the effects of depression and anxiety with SDNN parameters 

have been evaluated. SDNN was found to be decreased in patients dealing with 

social phobia, panic disorder and generalized anxiety disorder; however, the reason 



 

 

19 

could be mostly due to the antidepressants that they were taking [70]. Going under 

surgeries such as coronary artery bypass grafting could result in the reduction of 

HRV parameters including SDNN. The reason for immediate reduction in SDNN 

could, besides the actual response of ANS, be the surgical manipulations on heart 

and the surrounding tissues [71]. The levels of blood glucose and diabetics have 

associations with SDNN, and they are inversely related. Patients having impaired 

fasting glucose levels have reduced levels of SDNN [72].  

 

• RMSSD: RMSSD is the root mean square of differences of successive beats and an 

important time-domain HRV parameter which can provide useful information 

regarding the status of ANS. For epileptic patients it can be a good predictor of 

sudden unexplained death in epilepsy (SUDEP). SUDEP risk and RMSSD are 

inversely related [73]. RMSSD in smokers is lower than non-smokers which is due 

to the effect of smoking on ANS [74]. RMSSD is significantly associated with body 

mass index (BMI) inversely and it has been found to be significantly lower in children 

with obesity than children having normal weight [75].  

 

• The Poincaré plot: The Poincaré plot is the demonstration of R-R intervals against 

the following R-R intervals. In order to prepare the plot, an ellipse should be fitted to 

the datapoints. The ellipse is obtained by adding two extra axes which are 

established at 45 degrees to the main axis. The distances of the datapoints from 

each of these axes are measured and their standard deviations are calculated. The 

obtained standard deviations SD1 and SD2 determine the width and length of the 

fitted ellipse, respectively. The width of the ellipse (SD1) represents the short-term 

HRV which has a linear characteristic and highly correlated with SDSD (standard 

deviation of successive RR interval differences) which is a time-domain HRV 

parameter, and the length of the ellipse (SD2) indicates the long-term HRV [76]. The 

datapoints which have placed above the line of identity, which is the length of the 

ellipse, are the R-R intervals that have longer lengths compared to the previous ones 

and the opposite applies to the ones located below the identity line [77]. It has been 

shown that the length and width of the Poincaré plot become wider in different states 

of body (supine lying, standing, exercising and following recovery) after an 

endurance training [78]. Figure 3 illustrates the Poincaré plot where SD1 and SD2 are 

the width and length of the fitted ellipse. 
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 This figure represents the R-R intervals VS next R-R intervals which is 
called Poincaré plot. SD1 and SD2 are the width and length of the fitted ellipse [78].   

        

4.1.2 Time domain vs frequency domain HRV parameters 
Frequency domain HRV parameters can provide more useful information during short-term 

recording, and they perform better in short-term measurements compared to long-term 

monitoring. In general, 5-minute recording can be a suitable length for accurate 

measurement of frequency components of HRV [79]. The time domain parameters can also 

provide information for short time recordings; however, the frequency domain parameters 

can be interpreted more easily in terms of physiological regulations. For long term 

measurements, time domain parameters are preferred. The reason is that heart rate 

modulation is less stable during long-term recordings due to significant difference during day 

and night recordings. Under this circumstance, the frequency components of HRV cannot 

be properly interpreted [79].    

 

Some of the frequency domain parameters have a high correlation with time domain 

parameters especially during long-term recordings (over 24h). The reason behind that could 

be mathematical and physiological relationships. For instance, SDNN, triangular index (Tri) 

and interpolation of R-R intervals (TINN) have correlations with TP parameter. SDANN has 

correlation with ultra-low frequency components and RMSSD, SDSD, pNN50, NN50, 

differential index and logarithmic index have a correlation with HF parameter [79]. 
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4.2 Association of HRV with post-surgery complications 

Several studies have revealed that HRV can be affected by post-surgery complications. In 

a study by Scheffler et al [80], 47 subjects had undergone abdominal surgeries in which 19 

subjects faced complications. On the second post-surgery day, there was a decrease from 

8.51 ± 4.46 (mean ± standard deviation) to 5.71 ± 2.81 in pNN50 values for subjects with 

complications. Ernst et al [81] showed that for patients with hip fracture, those who had post-

surgery complications had a fall in RMSSD and a rise in TP and SDNN remained without 

any changes. In another study by Lerma et al [82], the effect of complications on non-linear 

parameters of HRV was evaluated and it was concluded that “complicated” group had lower 

SD1 and SD2.  
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5. MATERIALS & METHODS 

5.1 Materials 

In this section, the recruited subjects and study devices are introduced.  

5.1.1 Subjects 
There were altogether 31 selected subjects for this study. There were 17 females and 14 

males. The median age and BMI were 71 and 27, respectively. 26 of the patients were non-

smokers. They had undergone gastrointestinal surgeries in Päijät-Häme central hospital 

and their HRV was recorded by both ECG reference and an OHR wristband after surgeries. 

The duration of recordings was varied from around 24 hours up to 72 hours for each subject. 

In total around 1200 hours of data was analyzed.  

5.1.2 Devices  
The ECG reference device was eMotion Faros 360 made by Bittium and the OHR wristband 

was Aino by PulseOn. The sampling frequency used for the OHR device was 25 Hz and the 

LED was emitting green light with wavelength of 573 nm. The sampling frequency of the 

ECG reference was set either 250 Hz or 1 kHz. Figure 4 displays the OHR study device for 

recording PPG signal.     

 

 

 PulseOn Aino used as the OHR device for recording HRV. (a) is the top 
view, (b) is the LEDs and photodiode side [84]. 
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5.2 Methods 

The methodology used in this thesis consists from a set of data processing steps and 

algorithms for analyzing the recorded signals. In Figure 5 different steps of the methodology 

are depicted.  

 

 

 

 

 The main steps involved in the methodology of this thesis. The signal 
preparation in step 1 is the filtrations of the signals and R-peaks extraction. Step 3 
includes the introduction of different error matrices used in the thesis work. In step 
5 there are HRV parameters calculations in different time and frequency domains 

as well as non-linear ones and error metrics are calculated. 

 

 

The whole signal processing from steps 1 to 6 in the thesis work was done by 

MATLAB_R2019b and Python.  

 

 

 

1. Preparations of 
the recorded 

signals

2. Alignment and 
synchronization

3. Beat-to-beat 
error 

estimation

4. Putting data 
into segments and 
setting a threshold 
for validating the 

segments

5. HRV parameter calculation 
and error metrics estimation

6. Effects of 
ectopic beat 

removal on the 
accuracy
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5.2.1 Preparations of the recorded signals 
The signals that were already obtained from the ECG reference device contained noise (high 

frequency noise due to power line interference and baseline wandering) which could have 

been affecting the accuracy of final result negatively. As a result, prior to any further data 

processing, it was required to minimize the effects of these noises available in the ECG data. 

Concerning the filtrations of the ECG raw signal, the baseline wandering was removed using 

a median filter having 100 ms length and subtracting the median value of ECG signal from 

the original signal. This was done in order to enhance the accuracy of R-peak extraction in 

the next step. Figure 6 displays the ECG signal before and after the removal of baseline 

wandering. 

 

 

 Removal of baseline wandering. The upper figure is the ECG signal 
containing baseline wandering and it is removed in the bottom figure for the 

improvement in R-peaks extraction in the next step. 

 

Apart from the baseline wandering, there is a “high frequency” noise due to power line 

interference which can be properly removed using a low-pass infinite impulse response (IIR) 

filter having cut-off frequency equal to 40 Hz (order = 4) and forward-backward filtering.  
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The preprocessing stage was then followed by the detection of R-peaks for preparation 

HRV. There are different methods for QRS complex detection such as Pan-Tompkins which 

is based on suppressing the P and T waves and its algorithm also contains the filtering 

process [83]. ‘findpeaks’ is an inbuilt function on MATLAB which takes sets of parameters 

as the input to find the R-peaks. The performance of the function was quite efficient and 

therefore it was mainly utilized for this thesis. The variables that ‘findpeaks’ takes as the 

input are the sampling frequency of the ECG signal, the minimum height of the R-peaks and 

the minimum width of the two-consecutive R-peaks that are going to be detected. The 

detected R-peaks were then visually checked for confirmation. An example of pre-processed 

ECG with detected R-peaks marked with red circles is illustrated in Figure 7. 

 

 

 ECG signals with detected R-peaks marked by red circles. 

 

After extracting R-peaks, the time difference between each two beats was calculated which 

represents the HRV and it is called RR tachogram. Next, the time vectors of ECG RRIs and 

PPG IBIs were created. Inter-beat-intervals estimated with PulseOn proprietary algorithms 

along with a signal quality estimate for each beat was directly saved and therefore there was 

no need for calculation of peak/heel distance in the PPG signal. The time vector of the IBI 
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signal is saved in timestamp format. The low-quality recorded beats caused by patients’ 

movements were removed prior to any PPG IBIs signal processing. 

5.2.2 Further filtration and ectopic beats 
A threshold was set to remove the beats which values were significantly higher or lower 

compared to the mean of previous beats [84]. The HRV can be further processed by 

detecting the ectopic beats and removing them. The algorithm proposed by Thuraisingham 

[85] for the detection of ectopic beats is provided in Equation (2). Prior to applying the ectopic 

beat detection method, the RR tachograms were detrended to have a steady baseline. 

 

𝐷(𝑛) =  
|𝑆(𝑛) − 𝑆𝑚|

1.483𝑚𝑒𝑑{|𝑆(𝑛) − 𝑆𝑚|}
, 

 
(2) 

 

𝑆(𝑛) denotes the RR-intervals and 𝑆𝑚 is the median value of the RR-intervals. 𝐷(𝑛) which 

is a vector, contains numbers ranging from very small values (close to zero) to higher values. 

The bigger 𝐷(𝑛) is, the more IBIs are deviating from the main trend of the signal. The 

threshold proposed by Thuraisingham for ignoring ectopic beats was 4.  

5.2.3 Synchronization and alignments 
Up to this stage of signal processing, four vectors including the ECG RRIs, PPG IBIs and 

their corresponding time vectors have been constructed. The ECG device and the OHR 

wristband were using different internal clocks which resulted in a time drift especially during 

long-term recordings. Therefore, the time drift was compensated to make the beat-to-beat 

error estimation between ECG RRIs and PPG IBIs possible. In some cases, the 

synchronization needed to be repeated in different segments of the HRV as they sometimes 

went out of sync in long-term recordings. 

5.2.4 Beat-to-beat error estimation 
After proper synchronization and alignment of the ECG RRIs and PPG IBIs, it was possible 

to compare IBIs with each other. This comparison between each two corresponding beats 

could be represented by different error metrics such as mean error (ME) or bias, mean 

absolute error (MAE), relative mean squared error (RMSE) and their percentages (MAPE 

and RMSPE, respectively) as well as the standard deviation of mean error. 

 

The equations for different error metrics are as following: 
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Mean error (ME): 

 

𝑀𝐸 =
−1

𝑛
∑(𝑦𝑖 − 𝑥𝑖)

𝑛

𝑖=1

, 
 

(3) 

 

In Equation (3), the values of 𝑦 are heartbeat intervals produced by the OHR device. 𝑛 is 

the total number of beats. In this thesis, the number of beats detected by the OHR device 

was generally less than the number of beats detected by the ECG reference, so the number 

of paired IBIs were equal to the number of beats recorded by the OHR wristband. The other 

variable 𝑥 provides the data points of the reference measurement method. The subtraction 

of each paired IBIs divided by the number of all paired IBIs results in the calculation of mean 

error which can have positive or negative polarity.   

 

Mean absolute error (MAE): 

 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑥𝑖|,

𝑛

𝑖=1

 
 

(4) 

 

Similar to ME calculation, MAE provides the average of difference between two 

measurement data; however, in MAE, the absolute values of differences are calculated 

which always results in a positive number as MAE. 

 

Mean absolute percentage error (MAPE): 

 

𝑀𝐴𝑃𝐸 =
100

𝑛
∑|(𝑦𝑖 − 𝑥𝑖)/𝑦𝑖|,

𝑛

𝑖=1

 
 

(5) 

 

The differences between the paired IBIs are first divided by the values of the reference 

measurement. At the end, the final value is multiplied by 100 to demonstrate it in percentage.   
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Root mean square error (RMSE): 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑥𝑖)2

𝑛

𝑖=1

, 

 

(6) 

 

In RMSE, the average of squared differences is measured, then the second root of that is 

calculated.    

 

Relative mean square percentage error (RMSPE):  

 

𝑅𝑀𝑆𝑃𝐸 = 100√
1

𝑛
∑((𝑦𝑖 − 𝑥𝑖)/𝑦𝑖)2

𝑛

𝑖=1

, 

 

(7) 

 

The differences between paired IBIs are divided by the values of the reference device. Then 

the average of squared differences is measured. The final value is in percentage. 

 

Standard deviation of differences (Std): 

 

𝜎 =  √
1

𝑛
∑(𝑥𝑖 − 𝜇)2

𝑛

𝑖=1

, 

 

(8) 

 

𝑋𝑖  is the set of differences between the ECG RRIs and PPG IBIs which are subtracted by 𝜇 

which is the mean of the differences. 

 

In addition to the previously mentioned error metrics, e20 and e50 are defined which are the 

number of paired IBIs having less than 20 ms and more than 50 ms mean error, respectively.  

5.2.5 Preparation the data for HRV analysis 
As it was mentioned in the previous chapter, one way to evaluate the performance of OHR 

was comparing each beat of PPG IBIs with each beat of ECG RRIs. To obtain more 

information regarding the performance of OHR devices, the HRV parameters obtained from 

OHR and ECG were compared with each other. The signals were divided into segments and 
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the duration of each segment was chosen as 5 minutes. In each segment there were various 

number of beats and in order to make sure that the quality of each window was sufficient 

enough for being compared with the ECG reference, a threshold was then chosen to ignore 

the segments in which there were not enough number of beats as described in the next 

section. 

5.2.6 Choosing segments having enough IBIs  
In this thesis, the threshold was set based on the length of windows. The length of each 

window was 5 minutes and if the sum of the duration of IBIs in each was equal to the 80% 

of the length of the segments, then that window was being accepted. In each set of data, 

setting the threshold to 80% of the length of each window would result in the acceptance of 

different number of segments based on the quality of the recorded PPG signal which was 

later displayed as the coverage in the results section. The error metrics were then 

represented by comparing the corresponding segments with each other and also comparing 

individuals with each other. 

5.2.7 HRV parameter calculations 
Linear and non-linear HRV parameters were calculated for each segment. Each type of 

parameters could provide specific information regarding ANS and the measurement error 

could be varied for different parameters. In this thesis, calculated HRV parameters are listed 

in Table 11. 

 

 HRV parameters in time and frequency domain as well as non-linear parameters which 
were utilized in this study. 

 

Time Domain Parameters 

SDNN  standard deviation of NN intervals 

RMSSD root mean square of successive differences 

pNN50  percentage of intervals having more than 50 ms difference 

NN50  number of intervals having more than 50 ms difference 

IQR  The middle spread of IBIs  

Median median of IBIs  

Mean RR  mean of IBIs  

Kurtosis kurtosis of IBIs 

 
1 The HRV parameters open-source code can be found at: 
https://github.com/MarcusVollmer/HRV/blob/master/HRV.m 
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Variance variance of IBIs 

Mode mode of IBIs 

HR Mean  mean of heart rate 

TRI  triangular index 

TINN  triangular interpolation of NN intervals 

Frequency Domain Parameters 

VLF Abs  very low frequency absolute power 

LF Abs  low frequency absolute power 

HF Abs high frequency absolute power 

LF Norm  LF normalized power 

HF Norm  HF normalized power 

VLF Log natural logarithm of VLF absolute power 

LF Log natural logarithm of LF absolute power 

HF Log natural logarithm of HF absolute power 

VLF Rel VLF relative power 

LF Rel LF relative power 

HF Rel HF relative power 

LF/HF LF power to HF power ratio 

Non-linear Parameters 

ApEn approximate entropy 

SD1 in Poincaré plot, the standard deviation perpendicular to the line-of-identity 

SD2 in Poincaré plot, the standard deviation along the line-of-identity 

SD1/SD2 ratio of SD1 to SD2  

DFA 𝛼1 short-term fluctuation slope of detrended fluctuation analysis 

DFA 𝛼2 long-term fluctuation slope of detrended fluctuation analysis 

 

The HRV parameters mentioned above were calculated for all subjects in 5-minute 

segments. 

5.2.8 Error measurement of HRV parameters 
The same error metrics than in section 5.2.4 were used for HRV parameters here again. 

Instead of the differences between paired IBIs, the differences between corresponding 

segments were used. In addition, two new parameters: 5th percentile and 95th percentiles of 

the relative error were also evaluated. They were the values of relative error that 5 % and 

95 % of the data lies below them, respectively. 
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5.2.9 Presentation of similarities 
Scatter plot and Bland-Altman (BA) plot can visualize the similarities and provide information 

for two groups of data. As we also had two sets of data in this thesis, the agreement could 

be assessed using these methods. Scatter plot can provide relationship between two 

variables and BA plot can tell regarding the differences between the two methods. Scatter 

plot, which is a statistical technique, can say how much the two data sets are related with 

each other and it can be determined using coefficient of determination (r2) which can be 

varied from 0 to 1 and the more it is closer to 1, the more correlation is between the two data 

sets [86].  

 

In BA plots, the x-axis represents the mean of methods A and B and the y-axis is represented 

by the differences between the methods A and B. The BA plot contains at least three 

horizontal lines indicating the upper and bottom limits of measurements as well the mean 

value of differences. It is expected that 95 % of data points are within the limits of agreement 

(LoA). The LoAs are calculated using Equation (9). 

 

𝐿𝑜𝑅 = 𝑏𝑖𝑎𝑠 ± 1.96 ∗ 𝑆𝑡𝑑,  (9) 

 

where bias is the average of differences between two methods and Std is the standard 

deviation of differences [87].  

 

Confidence intervals (CI) can be defined around three horizontal lines of upper and bottom 

LoA and mean. Previously, the 95 % LoA was calculated by Equation (9), 95 % confidence 

intervals were then calculated using Equation (10). 

 

95% 𝐶𝐼 𝑜𝑓 𝑏𝑖𝑎𝑠 = 𝑏𝑖𝑎𝑠 ± 𝑡
(𝑛−1,1−

𝛼
2)

∗ (
𝑆𝑑

√𝑛
), 

 
(10) 

 

In Equation (10), bias is the average of differences of measurements, 𝑛 is the population, 

and, in this thesis, it was either the number of patients or segments, 𝛼 is 0.05 if 95 % of 

confidence intervals is required, t is the t-test and 𝑆𝑑 is the standard deviation of differences. 

95 % CI of upper and bottom LoA is obtained by Equation (11): 

 



 

 

32 

95% 𝐶𝐼 𝑜𝑓 𝐿𝑜𝐴 =  𝐿𝑜𝐴 ±  𝑡
(𝑛−1,1−

𝛼
2)

 √(
1

𝑛
+

1.962

2(𝑛 − 1)
) 𝑆𝑑 , 

 
(11) 

 

The variables in this Equation are similar to Equation (10).  

5.2.10 Effects of ectopic beat removal on the accuracy of the 
measurements  

The ectopic beats available in ECG signal and various noises in PPG signal such as effects 

of motion artifacts and ambient light could affect the accuracy of error estimation negatively. 

Effects of different methods of noise cancellation on final error were evaluated in this study. 

Two methods proposed by [85] and [84] were utilized for removing ectopic beats and other 

beats which were deviating so much from the main trend of the signals.  
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6. RESULTS & DISCUSSION 

6.1 Beat-to-beat error estimation results 

In Table 2, the result of beat-to-beat error estimation for all subjects is provided. The 

variables from left to right are: subjects, number of paired IBIs, mean error (ME), mean 

absolute error (MAE), percentage of mean absolute error (MAPE), root mean square error 

(RMSE), percentage of root mean square error (RMSPE), the standard deviation of ME, the 

number of IBIs which have less than 20 ms differences, the number of IBIs which have 

differences more than 50 ms, the coverage2 of PPG IBIs and the duration of recorded data 

with either of devices. These results were obtained after applying ectopic beat removal 

methods and artifact correction algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
2 The PPG wristband automatically detects the IBIs which did not have good qualities and therefore they were 
removed before making the beat-to-beat comparisons. The “IBI coverage” in Table 2 refers to the percentage 
of good quality IBIs to the sum of all detected IBIs. Properly fastening the wristband can improve the result in 
this section. 
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 The error metrics for 31 subjects are provided in this Table. The Table contains information regarding the paired IBIs, ME [ms], MAE 
[ms], MAPE [%], RMSE [ms], RMSPE [%], standard deviation of ME, e20 (number paired IBIs having less than 20 ms absolute 

difference), e50 (number of paired IBIs having more than 50 ms absolute difference), IBI quality (percentage of good quality beats over 
all detected beats) and the duration of recordings.    

 

P.No 
Paired 

IBIs 
ME [ms] 

MAE 
[ms] 

MAP
E [%] 

RMSE 
[ms] 

RM
SPE 
[%] 

Std 
[ms] 

e20 [ms] 
e50 
[ms] 

IBI 
cove
rage 

PPG 
duratio

n [h] 

ECG 
duratio

n [h] 

1 55393 -3.46 11.86 1.14 30.24 3.19 30.04 50451 2222 59.20 71.7 68.5 

2 62511 -3.14 10.82 1.2 22.89 2.75 22.65 57763 2158 49.59 31.2 28.1 

3 20327 2.77 10.62 1.14 17.66 1.89 17.44 17593 349 62.15 15.9 34.3 

4 59722 1.41 10.81 1.13 25.59 2.72 25.47 54233 2253 42.76 32.8 46.9 

5 192573 -4.14 7.63 0.82 16.91 2.05 16.37 181300 2318 67.52 73 70.1 

6 63963 -4.67 9.1 1.09 16.15 1.95 15.41 58152 1250 53.16 26.8 25 

7 125372 -1.74 10.26 1.66 19.15 3.26 19.05 111798 3788 49.81 48.4 47.1 

8 38732 -5.55 10.65 1.02 23.27 2.34 22.58 35378 1211 50.26 20.1 68.6 

9 57560 -6.64 13.90 1.61 25.38 2.92 24.5 47325 2042 23.13 32.8 32.3 

10 183488 -4.92 9.02 1.05 17.22 2.08 16.48 168975 2719 59.63 71.8 68.5 

11 60222 3.13 9.28 0.99 18.86 2.12 18.52 54676 1618 65.29 23.1 23.8 

12 132359 2.64 9.66 1.13 17.07 2.02 16.78 118573 2636 59.44 51.4 47.2 

13 57506 -7.53 23.01 2.3 48.01 4.91 47.31 42026 5258 63.32 24.1 23.7 

14 107826 -6.43 13.45 1.31 30.04 3.05 29.32 94517 5111 60.27 48.2 46.8 

15 53050 2.78 10.13 1.18 16.82 2 16.58 46619 931 56.35 22.1 22 

16 177102 2.97 10.11 1.17 17.62 2.1 17.36 156739 2204 42.09 79.3 71.2 

17 82793 1.73 11.44 1.48 19.64 2.66 19.56 70150 1656 36.19 49.7 48.2 

18 67584 3.17 7.02 0.75 14.21 1.56 13.77 64560 895 69.80 24.2 24.3 
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19 17683 -3.06 7.69 1.21 12.83 2.02 12.46 16395 175 12.93 5.8 6.5 

20 91461 -3.69 8.04 1.26 12.69 2.01 12.12 84602 702 60.61 27.8 48.8 

21 46471 -3.8 9.84 1.13 17.09 2.07 16.56 42986 875 28.77 71.1 23.8 

22 46197 2.76 9.54 1.02 18.84 2.08 18.34 42324 1360 45.78 22.4 24.7 

23 137120 3.06 12.13 1.73 24.42 3.58 24.19 120473 6157 57.57 49.5 48.5 

24 51585 -1.76 15.26 3.71 38.1 4.42 37.99 43014 4100 52.41 24.3 24.3 

25 966 -10.2 35.74 4.84 69.47 9.74 68.7 544 157 1.65 2.2 2.2 

26 101416 -3 4.54 0.66 7.89 1.16 7.29 99529 365 76.81 26 26 

27 26305 -4.08 10.93 1.22 22.26 2.5 21.89 23132 831 22.79 24.7 45.1 

28 122193 -3.33 13.05 1.65 24.63 3.7 24.4 102198 3257 54.95 48.6 46.8 

29 111022 3.48 10.19 1.23 17.92 2.23 17.48 96351 2544 56.72 48 43.8 

30 127521 -4.03 10.61 1.33 17.22 2.19 16.72 110207 2602 58.94 47.8 46.8 

31 62640 4.21 9.12 1.03 20.78 2.55 20.55 57878 994 62.06 24.4 24.1 

Average/Total 2540663 -1.34 10.3 1.28 20.28 2.51 19.86 2270461 64738 49.63 1170.5 1209.7 
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2.5 % of paired IBIs had more than 50 ms absolute difference, and 89.3 % of paired IBIs 

had less than 20 ms absolute difference which shows that there is a high agreement 

between the HRV recorded by both devices. The high accuracy of OHR for recording IBIs 

can be further approved by the weighted average of MAE which was 10.3 ms.  

 

Several studies already evaluated the performance of OHR devices (by beat-to-beat 

comparison) in different situations. In the study by Parak et al, subjects wore an OHR 

wristband together with an ECG reference device at home. After ectopic beats removal and 

alignments of signals, mean absolute error (MAE) and mean error (ME) of beat-to-beat 

intervals were calculated 5.94 ms and -0.33 ms, respectively [88]. The number of subjects 

was 10 and the duration was 5.1 ± 1.2 hours. 

 

Tarniceriu et al [89] calculated the error metrics for the patients who had undergone 

surgeries and they were recovering from anesthesia in post-anesthesia care unit. There 

were altogether 18 patients which were classified into two groups of sinus rhythm (SR) and 

atrial fibrillation (AF) group. For the SR group the MAE and RMSE were 7.34 ms and 16.70 

ms, respectively. For the AF group the error was higher compared to SR group and its MAE 

and RMSE were 14.31 ms and 23.52 ms, respectively. Comparing the result to the current 

study for monitoring of gastrointestinal surgery patients, the MAE lies within the obtained 

error for SR and AF groups. 

6.2 HRV parameters error estimation 

In Table 3, measurement error of OHR for calculation of linear and non-linear HRV 

parameters is provided. The variables from right to left are HRV parameter, MAE, MAE (%), 

RMSE, RMSPE, P05, P95, Bias, Bias (%) and standard deviation. P05 and P95 are 5th and 

95th percentiles of the Bias (mean differences), respectively. SD is the standard deviation of 

biases of all individuals.  
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 The error metrics of HRV parameters in different domains. The error metrics were obtained by taking the average of accepted windows 
(not the subjects).   

 

Parameters  MAE MAE (%) RMSE RMSE (%) P05 P95 Bias Bias (%) SD 

SDNN  [ms] 2.76 9.11 5.25 14.64 -14.47 2.37 -0.66 1.92 5.42 

RMSSD [ms] 4.28 34.28 5.34 43.23 -1.16 6.07 3.61 32.37 2.21 

pNN50 [%] 1.97 139.74 2.81 264.54 -1.40 4.21 0.90 94.92 1.91 

NN50 [beats] 5.79 188.75 8.46 332.30 -5.00 14.80 2.27 153.91 6.26 

IQR [ms] 3.58 9.57 6.48 14.02 -19.42 4.35 -0.58 2.31 6.84 

Median [ms] 4.08 0.45 4.76 0.53 -4.00 7.80 0.30 0.03 3.29 

Mean RR [ms] 4.67 0.52 5.97 0.66 -3.53 13.42 0.95 0.10 5.37 

Kurtosis [-] 0.34 10.10 0.60 16.91 -0.47 0.34 0.03 2.84 0.36 

Variance [ms] 238.29 19.86 616.45 45.15 -1449.94 142.35 -126.24 6.95 498.33 

Mode [ms] 13.23 1.47 19.37 2.20 -40.30 34.70 -0.91 -0.07 23.12 

HR Mean [BPM] 0.35 0.51 0.44 0.65 -1.17 0.31 -0.07 -0.10 0.47 

TRI [-] 0.82 11.44 1.08 14.72 -1.76 1.73 0.05 3.41 1.26 

TINN [ms] 0.01 11.08 0.016 15.99 -0.03 0.02 0.0016 4.24 0.01 

VLF Abs [ms2] 422.38 20.36 631.78 28.48 -1529.24 85.45 -375.94 -17.45 560 

LF Abs [ms2] 140.18 23.10 203.32 37.17 -467.17 253.71 -9.60 3.75 263.45 

HF Abs [ms2] 165.37 54.38 222.80 79.74 -264.69 188.59 66.80 43.45 132.54 

LF Norm [n.u.] 7.24 13.71 9.29 18.45 -9.65 5.41 -4.54 -4.77 4.06 

HF Norm [n.u.] 7.24 31.39 9.29 42.66 -5.41 9.65 4.54 26.21 4.06 

VLF Log [log] 0.27 3.6130 0.40 5.38 -0.80 0.05 -0.24 -3.24 0.32 

LF Log [log] 0.22 3.6182 0.32 5.25 -0.60 0.30 -0.018 -0.15 0.31 

HF Log [log] 0.34 6.5297 0.44 8.58 -0.50 0.46 0.21 4.47 0.29 

VLF Rel [%] 7.06 11.97 9.73 15.97 -20.26 -0.50 -6.19 -9.84 6.58 

LF Rel [%] 3.52 22.96 5.19 43.56 -0.75 14.69 1.91 16.46 4.97 

HF Rel [%] 5.38 71.38 7.15 111.91 -2.16 6.62 4.27 67.65 2.63 

LF/HF [n.u.] 0.88 28.70 1.22 36.64 -1.18 0.24 -0.74 -11.79 0.41 

ApEn [-] 0.07 8.21 0.10 12.51 -0.09 0.07 0.02 3.80 0.05 

SD1 [ms] 3.03 34.29 3.77 43.24 -0.82 4.29 2.55 32.37 1.56 

SD2 [ms] 3.48 7.54 7.27 13.20 -21.66 2.42 -2.0023 -1.63 7.73 

SD1/SD2 [-] 0.10 37.20 0.13 49.42 -0.02 0.13 0.09 35.80 0.04 

DFA 𝜶𝟏 [-] 0.14 8.25 0.17 10.31 -0.04 0.18 0.11 6.83 0.07 

DFA 𝜶𝟐 [-] 0.08 4.71 0.13 7.42 -0.06 0.16 0.05 3.19 0.09 
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The error metrics for each HRV parameter is weighted by the number of accepted segments. 

The RMSE for some parameters is significantly higher than MAE which shows that there is 

a variance between the individual errors. There is a considerable variance between error 

metrics of HRV parameters. While the relative mean absolute error for SDNN and HR is 9.57 

% and 0.53 %, for parameters such as pNN50 and NN50 it is 139.74 % and 188.75 %, 

respectively. The reason is that pNN50 and NN50 recorded by the reference device for some 

subjects were extremely low (close to 0) and the more they get close to 0, the higher values 

of MAPE is achieved. The accuracy of the OHR device for estimation of HRV parameters 

can be varied based on patients and parameters. 

 

The results in Table 3 are obtained based on setting the threshold (for accepting segments) 

to 80% which means that only the segments that the sum of their good quality IBIs were 

more than 4 minutes have been chosen. Setting the threshold to 80% produces a series of 

boxplots for different HRV parameters as well as the distribution of the percentage of 

accepted segments for each individual. The distributions of MAPE are depicted in Figure 8. 

The bars are clipped at 100% that’s why the 75 th percentiles for some parameters are not 

visible in the figure. The left bar is the MAPE, and right bar is the coverage of accepted 

segments. The bottom part of the bars is 25th percentiles and the upper part of the bars is 

the 75th percentiles. The dotted circles in the centers of the bars are the median values. 

Outlier (the most extreme datapoints) have also been determined by red crosses. 
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 The distribution of the average MAPE for all the subjects. Each bar contains 
30 datapoints which are the number of all subjects. The bar to the right is the 

coverage of accepted windows after applying the threshold in percentage.   

 

In Figure 9, the relative bias of all windows of all patients is depicted. It can be concluded 

that some certain time domain and non-linear parameters such as SDNN and Poincare SD2 

have very small biases. On the other hand, RMSSD and Poincare SD1 exhibit higher levels 

of bias. The reason could be that the irregular and large beat-to-beat intervals can affect 

RMSSD, pNN50 and SD1 more significantly compared to SDNN and SD2. Concerning the 

frequency domain HRV parameters, the absolute and relative values of VLF, LF and HF 

exhibit high bias, however; the same parameters in logarithmic domain have less bias and 

spreads. The parameters which demonstrate the ratio of frequency and non-linear 

components such as LF/HF and SD1/SD2 had high systematic underestimation and 

overestimation, respectively.  
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 The analysis of the relative bias for all windows. Each datapoint in each bar 
represents a segment. The outliers are not depicted in this figure and the lower part 
of the bar in 25th percentiles and the upper part is the 75th percentile. The circles in 

the middle of the bars are median values.      

 

The difference between Table 3 and Figure 8 is that in Table 3, the average of error of all 

windows was calculated and in Figure 8 it is only the average of relative MAE for individuals. 

By comparing these two, it can be seen that the average of relative MAE of individuals for 

some specific parameters is higher than those in Table 3. It can be concluded that the 

accuracy of OHR is higher for some subjects. For the best 25% of individuals, the relative 

mean error was around 10% for most of the HRV parameters.  

 

The comparison between the average of windows for each subject for both ECG reference 

(ground truth) and OHR monitoring (estimation) is illustrated in Figure 10 and 11. In Figure 

10 and for pNN50 parameter, it can be seen that the majority of subjects are having a very 

low HRV values close to 0 which significantly reduced the accuracy of OHR monitoring. For 

RMSSD in Figure 10 and DFA 𝛼1 in Figure 11, there is a systematic overestimation while 

for SDNN, the estimation is more accurate as most lines are straight.  
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 The comparison between the ECG reference (ground truth) and the OHR 
device (estimation) for each subject for SDNN, RMSSD and pNN50. There is a 

systematic overestimation of RMSSD by OHR.   

 

For the ratio parameters such as LF/HF and SD1/SD2 there are many crossing lines which 

make them less reliable parameters to be estimated by OHR monitoring. Low levels of HRV 

in pNN50 ground truth (close to 0) also explains why the values of MAPE in Table 3 and 

Figure 8 is higher than other parameters. 
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 The comparison of the ground truth and the estimation for SD1/SD2, DFA 
𝛼1, HF Log and LF/HF. Each line represents a subject. 

 

Here in Figure 12, the Bland-Altman plot of SDNN parameter for subjects is depicted. The 

majority of datapoints which represent the SDNN values of subjects, are placed within the 

limits of agreements (LoA). The confidence intervals (CI) have been also calculated for LoAs 

as well as the mean of biases (shaded areas). From statistical point of view, the zero line is 

placed within the CIs of the bias which shows a high agreement between SDNN values 

measured by reference and the OHR device [86]. The dashed line in the plot is the best fit 

line which has a negative trend. It can be concluded that for subjects with higher SDNN 

values, the OHR device underestimate SDNN.      



 

 

43 

 

 

 

 The Bland-Altman plot the SDNN parameter. The trend of datapoints is 
negative showing that for higher levels of SDNN, it is overestimated by the OHR. 
The zero line is placed within the CIs of the bias meaning that the estimation of 

SDNN is accurate.    

 

 

In Figure 13, the Bland-Altman of RMSSD is depicted. In this case, the zero line is not placed 

within the CIs of the bias which can be a sign that agreement is not as good as SDNN 

parameter. This was already revealed that RMSSD can be measured less accurately by 

OHR monitoring compared to SDNN. Similar to the Bland-Altman plot of SDNN, the trend of 

the best fit line for RMSSD BA plot is negative as well which shows that OHR monitoring 

starts underestimating RMSSD in higher values of the RMSSD.  

 



 

 

44 

    

 

 The Bland-Altman plot for RMSSD parameter. The shaded areas are the 
CIs of bias and LoAs. The trend of datapoints, similar to SDNN parameter is 

negative supporting that for higher levels of HRV performance of OHR decreases.   

 

In Figure 14, the Bland-Altman plot of SDNN but this time for all windows (21315) is depicted. 

The same results of the BA plot of SDNN of subjects also apply here for the BA plot of 

windows and the majority of datapoints are placed within the LoAs. The slope of the negative 

trend in BA plot of SDNN for subjects (Figure 12) is a bit sharper than the slope of the 

negative trend in BA plot of SDNN for windows (Figure 14) which shows the effect of 

inaccurate measurements by OHR technology for some individuals. The overestimation of 

RMSSD for subjects with lower values of HRV happen and as HRV increases, the accuracy 

of OHR for recording RMSSD also increases. 
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 Bland-Altman plot of SDNN for all windows (21315). Datapoints hold the 
same trend as BA plot for subjects but with a bit different slope.  

 

The scatter plot can also provide information regarding the way that two sets of data are 

related to each other. Unlike Bland-Altman plots, scatter plots do not directly provide 

information regarding the agreement of the measured data. In Figure 15, the scatter plot of 

subjects for SDNN parameter is depicted; the dashed line is the best fit line, and the straight 

line is the equality line (x=y). Datapoints represent the subjects (in total 30 datapoints). The 

coefficient of determination (r2) is 0.987 which demonstrate a high relationship between the 

HRVs for the SDNN parameter. 
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 The scatter plot of SDNN parameter. Each datapoint represent a subject. 
The dashed line and the straight line are best fit line and the equality line, 

respectively. The coefficient of determination is 0.987. 

 

 

In Figure 16, the scatter plot of RMSSD is depicted. It has also exhibited a high correlation 

between the two sets of data; however, its coefficient of determination is a bit lower than 

SDNN’s (0.942) and it was already approved that the agreement of the results for SDNN 

parameter is higher than RMSSD by Bland-Altman plot.  
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 The cross-correlation plot for RMSSD parameter. The obtained coefficient 
of determination is 0.942. 

 

The scatter plot of all 5-minute windows for SDNN parameter is depicted in Figure 17. The 

coefficient of determination is 0.901 which is lower than the coefficient of determination of 

SDNN parameter for subjects.  
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 The cross-correlation plot for all segments of SDNN. Compared to scatter 
plot of subjects for SDNN, the coefficient of determination decreased to 0.901. 

 

In Table 4, the coefficient of determination (r2) of all parameters for all subjects and segments 

is provided. For most of the HRV parameters, the coefficient of determinations are above 

0.8 which shows that two sets of data exhibit an efficient correlation and in general, the 

coefficient of determinations of subjects are all higher compared to segments.  

 

 The coefficient of determination of all parameters for both subjects and segments. 
 

Parameters Coefficient of determination of subjects Coefficient of determination of segments 

SDNN  0.987 0.901 

RMSSD 0.942 0.858 

pNN50 0.959 0.873 

NN50 0.956 0.861 

IQR 0.990 0.906 

Median 0.999 0.998 

Mean RR 0.998 0.997 

Kurtosis 0.811 0.494 
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Variance 0.981 0.779 

Mode 0.999 0.971 

HR Mean 0.999 0.997 

TRI 0.989 0.873 

TINN 0.991 0.879 

VLF Abs 0.693 0.523 

LF Abs 0.941 0.702 

HF Abs 0.909 0.763 

LF Norm 0.878 0.751 

HF Norm 0.878 0.751 

VLF Log 0.746 0.565 

LF Log 0.926 0.666 

HF Log 0.806 0.702 

VLF Rel 0.828 0.785 

LF Rel 0.922 0.774 

HF Rel 0.902 0.800 

LF/HF 0.597 0.469 

ApEn 0.541 0.353 

SD1 0.942 0.858 

SD2 0.991 0.889 

SD1/SD2 0.795 0.695 

DFA 𝛼1 0.826 0.683 

DFA 𝛼2 0.816 0.671 

 

6.3 Effect of ectopic beat removal on accuracy of measurements 

The same HRV parameters and error metrics than in Table 2 were again calculated in this 

section without removing ectopic beats. Figure 18 represents the relative MAE of all HRV 

parameters with and without applying ectopic beat removal methods. It can be seen that 

almost all of the error metrics increased significantly due to the existence of ectopic beats. 

The obtained result emphasizes the importance of ectopic beat removal methods regarding 

error estimation of HRV parameters by OHR. The details of the result of HRV error 

estimation are provided in Table 5 of appendix A. Moreover, the MAE of beat-to-beat 

comparison increased from 10.39 ms to 12.12 ms without removing ectopic beats.    
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Figure 18. Effect of ectopic beat removal on MAPE. (a) MAPE before removing ectopic 
beats. (b) MAPE after removing ectopic beats. 
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Summary of the results 

In this section, a short summary of the result and discussion regarding the accuracy of the 

measured HRV parameters is provided.  

 

1. In time domain, measurement of low frequency parameters such as SDNN was done 

accurately with MAE, relative MAE and percentage bias of 2.76 ms, 9.11 %, and 1.92 %, 

respectively. RMSSD and pNN50 were estimated less accurately. The relative MAE (34.28 

% and 139.74 %) were considerably significant. Mean, median, IQR, kurtosis and mode of 

IBI intervals were all estimated accurately and the relative MAEs were obtained 0.52 %, 0.45 

%, 9.57 %, 10.1 % and 1.47 %, respectively. Triangular index and TINN were also estimated 

with relatively high accuracy with relative MAE of 11.44 % and 11.08 %, respectively. 

 

2. In frequency domain, the absolute values of frequency parameters were estimated with 

high errors and the relative MAE of VLF, LF and HF were 20.36 %, 23.1 % and 54.38 %, 

respectively. However, the frequency parameters in logarithmic domain were estimated with 

higher accuracy by OHR where the relative MAE for VLF, LF and HF were obtained 3.61 %, 

3.618 % and 6.52 %, respectively. The normalized frequency components were estimated 

with higher error compared to logarithmic values which means that the performance of OHR 

in the logarithmic domain is the most accurate. 

 

3. For the estimation of non-linear HRV parameters, it was found that ApEn, SD2, DFA 𝛼1 

and DFA 𝛼2 can be estimated with confidence by OHR where the exhibited relative MAE 

was obtained 8.21 %, 7.54 %, 8.25 % and 4.71 %, respectively. SD1 was the only non-linear 

HRV parameter tested, which was estimated with a significantly higher error (relative MAE 

= 34.29 %) compared to other non-linear HRV parameters and therefore it should be utilized 

with caution.   

 

4. SD1/SD2 and LF/HF were both estimated without efficient accuracy and their relative MAE 

were 37.2 % and 28.7 %, respectively. Due to having overestimation and underestimation 

in measurements they still need further improvements to be used confidently. 
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Several studies have evaluated the HRV parameters of patients in different conditions, such 

as before and after the surgeries or for the patients who had complications after the surgery 

and the ones who did not have any. In a study by Ernst et al [90], subjects were undergone 

hip surgeries and it was seen that complications after surgery were decreasing the HRV 

parameters such as RMSSD and frequency domain parameters of HRV. For RMSSD 

parameter, the mean value together with standard deviation was 18.2 ± 0.9 ms for the 

“uncomplicated” group and the for the “complicated” group it was 14.9 ± 1.3. Based on the 

result in the present study, MAE for RMSSD was 4.28 ms and RMSE was 5.34 ms which 

means that the OHR device cannot efficiently distinguish these two groups of subjects for 

RMSSD and frequency domain HRV parameters. The calculation of frequency domain HRV 

parameters in the present study was done based on single 5-minute segments and 

combining more segments could possibly improve the results. 

 

In another study by Ushiyama et al [91], SDNN was calculated for the complicated and 

uncomplicated groups. For the “complicated group”, SDNN was 48.7 ± 24.4 (mean ± 

standard deviation) and for the “uncomplicated group” it was 71.2 ± 19.6. In the present 

study, the MAE and RMSE of SDNN were 2.76 ms and 5.25 ms indicating that these two 

groups can be clearly distinguished by OHR technology.  

6.4 Limitations and future work 

Some of the limitation of the study together with some suggestions for the future studies are 

provided in this section.  

 

• Proper BBIs alignment minimizes the final beat-to-beat error. If the signals are 

aligned properly and false beats are removed efficiently, the final beat-to-beat error 

will be the lowest possible. For some subjects, the signals went out of sync for long-

term recordings due to the time drift caused by different internal clocks. It was 

therefore required to align the signals multiple times which could be prone to 

miscalculations, so more signal processing methods and algorithms for automatic 

synchronization can be investigated.  

 

• The accuracy of the OHR monitoring is very dependent on the motion artifacts and 

ambient light. By comparing the ECG RRIs and PPG IBIs it could clearly be seen 

that during daytime the accuracy of estimation by OHR device reduces significantly. 
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The main reason is the movements by the patients. It is therefore required to conduct 

more tests to evaluate the effect of ambient light on the accuracy of estimation and 

possibly investigating the methods to minimize the negative effects of ambient light 

and motion artifacts. 

 

• The subjects of the present study were all sharing almost similar skin pigmentation 

based on Fitzpatrick skin types and the accuracy of the OHR estimation can be 

different depending on the skin pigmentation. So, it would be beneficial to evaluate 

the accuracy of OHR for darker skins. Moreover, the green light was utilized as the 

source (LED) for this study and the effects of other wavelengths on the accuracy of 

measurements could be further investigated. 
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7. CONCLUSION 

Continuous monitoring of post-surgery patients could provide information about 

complications after surgeries and OHR is one comfortable option for monitoring of surgery 

patients. The aim of this thesis was to evaluate the accuracy of OHR technology for post-

operative patient monitoring (by measuring beat-to-beat error and HRV parameter error). It 

was revealed that OHR can produce accurate beat-to-beat information. The accuracy of 

OHR was further investigated by estimating HRV parameters in time and frequency domain 

as well as non-linear parameters and error metrics were calculated. It was concluded that 

the accuracy of estimation was not the same for all HRV parameters. While the final error 

metrics were relatively low for time domain parameters such as SDNN, OHR was 

overestimating parameters such as RMSSD, and for pNN50/NN50, the estimation was done 

less accurately by the OHR. In frequency domain, the absolute values of parameters were 

estimated less accurately, however, after converting them to logarithmic domain, error 

metrics were reduced significantly. Among non-linear parameters, except for SD1, the rest 

of the investigated parameters were having a relatively low error. It was also concluded that 

the preprocessing the IBIs and cleaning up the ectopic beats can significantly improve the 

accuracy of estimation.  

 

Finally, the OHR technology can be a comfortable alternative for the conventional ECG 

recordings due to the benefits that it provides for the users and the healthcare personnel. 

However, based on the findings in this thesis, there is still room for improvement in 

estimating HRV parameters by investigating more robust approaches of IBIs estimation 

which are less prone to be affected by artifacts.    
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APPENDIX A 

In Table 5, the numeric values of HRV parameters error estimation without applying ectopic 

beat removal methods are provided. 
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 The result of HRV metrics error estimation without applying any ectopic beat removal methods. 
Parameters  MAE MAE (%) RMSE RMSE (%) P05 P95 Bias Bias (%) SD 

SDNN  [ms] 7.11 20.20 11.41 36.24 -17.13 19.40 0.47 9.95 13.68 

RMSSD [ms] 12.58 62.21 18.81 101.75 -23.29 34.73 4.08 52.25 23.17 

pNN50 [%] 2.19 132.56 3.17 257.46 -3.13 6.5 0.99 98.23 3.60 

NN50 [beats] 7.25 195.57 10.41 352.07 -17.0 18.0 1.51 167.47 12.71 

IQR [ms] 4.37 10.07 7.47 14.48 -10.5 7.25 -0.25 2.49 9.28 

Median [ms] 4.24 0.47 5.04 0.56 -6.0 8.0 0.27 0.03 5.42 

Mean RR [ms] 5.06 0.56 6.39 0.71 -7.56 11.16 0.46 0.05 6.93 

Kurtosis [-] 15.29 276.48 34.11 758.14 -20.50 68.48 6.33 259.78 38.28 

Variance [ms] 832.22 57.41 1468.2 143.19 -2123 1779.83 -124.95 39.65 2282.10 

Mode [ms] 14.94 1.64 22.54 2.53 -33.0 29.0 -1.91 -0.15 28.79 

HR Mean [BPM] 0.38 0.56 0.48 0.70 -0.85 0.54 -0.03 -0.05 0.51 

TRI [-] 0.88 11.76 1.16 15.12 -2.0 1.87 0.07 3.59 1.22 

TINN [ms] 0.01 11.83 0.01 17.18 -0.03 0.02 0.001 4.37 0.01 

VLF Abs [ms2] 478.16 30.87 688.17 46.87 -1644.62 332.02 -367.20 -12.90 626.72 

LF Abs [ms2] 178.67 35.95 261.64 60.75 -439.17 450 21.17 17.2 269.48 

HF Abs [ms2] 252.16 78.80 350.34 131.20 -553.92 676.15 91.56 64.98 358.28 

LF Norm [n.u.] 10.08 25.75 13.67 39.42 -33.29 16.83 -4.31 3.35 14.52 

HF Norm [n.u.] 10.08 41.18 13.67 63.04 -16.83 33.29 4.31 31.93 14.52 

VLF Log [log] 0.38 5.50 0.57 8.17 -1.27 0.39 -0.26 -3.39 0.53 

LF Log [log] 0.29 4.98 0.42 7.19 -0.68 0.79 0.05 1.22 0.44 

HF Log [log] 0.44 8.12 0.58 11.21 -0.56 1.53 0.25 5.41 0.62 

VLF Rel [%] 10.59 23.78 14.94 36.85 -33.66 9.21 -7.70 -8.46 13.70 

LF Rel [%] 4.89 34.44 7.11 60.47 -6.52 15.44 2.69 26.44 6.83 

HF Rel [%] 9.05 106.52 12.79 183.55 -14.47 28.42 5 97.06 12.68 

LF/HF [n.u.] 1.01 48.96 1.48 79.05 -4.85 0.59 -0.75 5.34 2.20 

ApEn [-] 0.09 11.04 0.12 17.43 -0.11 0.28 0.04 6.94 0.12 

SD1 [ms] 8.90 62.22 13.30 101.76 -16.47 24.56 2.88 52.25 16.38 

SD2 [ms] 7.07 15.75 11.98 28.73 -19.94 19.92 -0.02 5.69 13.37 

SD1/SD2 [-] 0.15 47.13 0.20 67.21 -0.26 0.44 0.07 38.93 0.20 

DFA 𝜶𝟏 [-] 0.18 10.52 0.24 13.91 -0.26 0.58 0.09 6.54 0.25 

DFA 𝜶𝟐 [-] 0.12 6.57 0.18 9.77 -0.16 0.39 0.07 4.17 0.17 

 


	1. INTRODUCTION
	2. HEART AND ARRYTHMIAS
	2.1 Electrocardiography
	2.2 ECG recording techniques
	2.3 ECG electrodes and electrolytes
	2.4 QRS detection in ECG signal
	2.4.1 Derivative based algorithms
	2.4.2 Algorithms based on digital filters
	2.4.3 Wavelet-based QRS detection
	2.4.4 QRS detections based on neural networks

	2.5 Ectopic beats
	2.6 ECG accuracy

	3. PHOTOPLETHYSMOGRAPHY
	3.1 Measurement site
	3.2 Factors affecting the quality of the PPG signal

	4. HEART RATE VARIABILITY
	4.1 Physiological background of HRV
	4.1.1 HRV Parameters
	4.1.2 Time domain vs frequency domain HRV parameters

	4.2 Association of HRV with post-surgery complications

	5. MATERIALS & METHODS
	5.1 Materials
	5.1.1 Subjects
	5.1.2 Devices

	5.2 Methods
	5.2.1 Preparations of the recorded signals
	5.2.2 Further filtration and ectopic beats
	5.2.3 Synchronization and alignments
	5.2.4 Beat-to-beat error estimation
	5.2.5 Preparation the data for HRV analysis
	5.2.6 Choosing segments having enough IBIs
	5.2.7 HRV parameter calculations
	5.2.8 Error measurement of HRV parameters
	5.2.9 Presentation of similarities
	5.2.10 Effects of ectopic beat removal on the accuracy of the measurements


	6. RESULTS & DISCUSSION
	6.1 Beat-to-beat error estimation results
	6.2 HRV parameters error estimation
	6.3 Effect of ectopic beat removal on accuracy of measurements
	Summary of the results
	6.4 Limitations and future work

	7. CONCLUSION
	APPENDIX A

