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The need to extract the trend from a given time series is a common problem in a wide
variety of fields, such as signal processing or econometrics. Ordinary least squares
regression (OLS), locally weighted polynomial regression (LWP), moving average,
wavelet decomposition and empirical mode decomposition (EMD) are examples of
methods which are used for trend extraction. In the present work, the aforementioned
methods are first presented and then showcased on a simulated time series. Some of
the properties of the methods are discussed afterwards.
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1 Introduction

The technology developed during the last decades has allowed the collection and
processing of data at an unprecedented scale, leading to a recent growing interest in
data analysis. One of the objects of study of data analysis are time series. Broadly
speaking, a time series is a sequence of values of a variable taken at distinct time
instants, for instance the temperature at a weather station taken every day.

In some cases, time series can have slowly changing fluctuations, and its values
can increase or decrease over a large time scale. This variation in the values of the
time series, referred to as trend or drift, might impede its analysis. When this happens,
it is useful to be able to identify and extract this underlying trend. In other situations,
the trend is the object of interest. An example which has recently captured global
attention are the upward trends detected in sea and surface temperature time series.
However, the problem of trend extraction occurs naturally in many fields. It can be
found in medical imaging, oceanography, econometrics, seismology, and climatology,
to name a few.

The present work focuses around five methods used for trend extraction: ordinary
least squares regression (OLS), locally weighted polynomial regression (LWP),
moving average, wavelet decomposition and empirical mode decomposition (EMD).
The structure is as follows. Chapter 2 sets the fundaments for the following chapters.
In Chapter 3, the trend extraction methods are presented. The methods are then used
on a simulated time series in Chapter 4, and some of its properties analyzed. Finally,
Chapter 5 gathers the conclusions of the work and proposes possible paths to be taken
in future work on the topic.

It should be noted that there is a wide collection of trend extraction methods,
and thus the ones covered here are merely a subset of them, chosen based on how
often they appeared in the reviewed literature. To provide an example, some classical
methods which have not been included are the Henderson and the Hodrick-Prescott
filters, as well as singular spectrum analysis (SSA) [1, 2]. In recent years, EMD has
inspired a vast variety of decomposition methods, some of which have also been
proposed to extract trends from time series, such as ensemble EMD (EEMD) [3,
4], the synchrosqueezed wavelet transform [5], and variational mode decomposition
(VMD) [6, 7]. These methods are also not considered here.
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2 Preliminaries

2.1 Time series

Definition 2.1. A time series is a set of observations {𝑥𝑡}𝑡∈T , each one associated
with a different time instant 𝑡 ∈ T ⊆ ℝ. If the set of times T corresponding to
the observations is continuous, e.g. an interval, then the time series is said to be
continuous-time. If it is discrete, then the time series is discrete-time [8].

Remark. Since the present work revolves around finite discrete-time time series, here
they are simply referred to as time series. A common assumption which is also made
here is that the values {𝑥𝑡} are real and evenly spaced in time. These assumptions
allow the time series to be written as {𝑥𝑡}𝑁𝑡=1 where 𝑥𝑡 ∈ ℝ. Note that if {𝑦𝑡}𝑡∈T is a
finite discrete-time time series with 𝑁 values spaced by 𝑇 which starts at time 𝑡 = 𝑡0,
then one can define the time series {𝑥𝑡}𝑁𝑡=1 as 𝑥𝑡 = 𝑦𝑡0+(𝑡−1)𝑇 in order to obtain the
time indexing 𝑡 = 1 . . . 𝑁 .

In time series analysis, {𝑥𝑡} is often seen as a realization of a set of random
variables {𝑋𝑡}. Once a model is chosen for {𝑋𝑡} and its parameters fit to {𝑥𝑡}, the
model can be used to describe and better understand {𝑥𝑡}. The set {𝑋𝑡} is called the
underlying process of {𝑥𝑡}.

Definition 2.2. The underlying process {𝑋𝑡}𝑡∈T of a time series is wide-sense
stationary if E

[︁
|𝑋𝑡 |2

]︁
< ∞ for all 𝑡 ∈ T , E[𝑋𝑡] is constant in 𝑡 ∈ T , and cov

(︁
𝑋𝑡1 , 𝑋𝑡2

)︁
depends solely on 𝑡1 − 𝑡2 for all 𝑡1, 𝑡2 ∈ T [9].

Example 2.3. A classical way to model {𝑥𝑡} is to decompose {𝑋𝑡} as

𝑋𝑡 = 𝜏𝑡 + 𝑠𝑡 + 𝑌𝑡 ,

where 𝜏𝑡 is a slowly changing function called trend, 𝑠𝑡 is a periodic function called
seasonal component, and 𝑌𝑡 is the random noise component [8, 10]. A commonly-
made assumption for this model is that {𝑌𝑡} is wide-sense stationary. This assumption
simplifies the analysis of {𝑥𝑡}. One can first obtain {𝑦𝑡} by subtracting {𝜏𝑡} and {𝑠𝑡}
from {𝑥𝑡}, then leverage the theory of wide-sense stationary processes to analyze {𝑦𝑡},
and finally extend the analysis naturally to {𝑥𝑡}. This approach relies on being able to
extract the two deterministic components of the model: the trend and the seasonal
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component. Note that if {𝑌𝑡} is a wide-sense stationary process, then in general {𝑋𝑡}
will not be, since E[𝑋𝑡] = 𝜏𝑡 + 𝑠𝑡 + E[𝑌𝑡] and both 𝜏𝑡 and 𝑠𝑡 depend on 𝑡.

2.2 Trends

The simple model considered in Example 2.3 includes a trend, which has been loosely
defined as being a slowly changing function. The definition of trend is often taken
for granted or given in an informal sense. This is due to the difficulty in finding a
definition that is formally rigorous. In fact, there is currently no precise definition of
trend with a broad consensus [11]. With this in mind, the rather imprecise definition
from Example 2.3 is used in the present work.

There are many factors which can influence what is considered a trend in a given
time series. The most obvious one is perhaps the choice of model, which in turn
depends on the time series itself. In some cases, one might not be interested in
considering a seasonal component and a trend separately, and might choose to model
the time series as 𝑋𝑡 = 𝜏𝑡 +𝑌𝑡 instead. On the other hand, in other cases it might make
more sense to use a model which decomposes the time series into a product of its
components, for example, 𝑋𝑡 = 𝜏𝑡𝑠𝑡𝑌𝑡 . In any case, as commonly done, in this thesis
the trend is considered as an additive component of the time series.

Remark. Under the assumption that 𝜏𝑡 , 𝑠𝑡 , 𝑌𝑡 > 0, the model 𝑋𝑡 = 𝜏𝑡𝑠𝑡𝑌𝑡 can be
linearized by taking the logarithm of both sides: log 𝑋𝑡 = log 𝜏𝑡 + log 𝑠𝑡 + log𝑌𝑡 .

The concept of trend is also strongly linked to the time scale of the phenomenon
being studied, which determines what is considered a slow change. For instance, if
a certain phenomenon lasts approximately 24 hours, one might want to interpret a
sudden 10 minute sharp increase in a time series related to such phenomenon as the
result of randomness rather than as a trend.

Figure 2.1. Two time series (black) and their corresponding trends (blue).
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3 Trend extraction methods

3.1 Ordinary least squares regression

Using ordinary least squares regression (OLS) is a relatively simple way to extract
the trend from a time series 𝑥 = {𝑥𝑡} [12–16]. This method relies on choosing a set of
predefined functions 𝛷 =

{︁
𝜑1, . . . , 𝜑𝑟

}︁
whose linear combination suffices to obtain a

good enough estimation of the trend. The trend is estimated as �̂� = {�̂�𝑡}, where

�̂�𝑡 = _1𝜑1
𝑡 + · · · + _𝑟𝜑𝑟𝑡

for some coefficients _1, . . . , _𝑟 ∈ ℝ. The coefficients are chosen so that Euclidean
distance between 𝑥 and the estimated trend �̂� is minimized. In other words, _1, . . . , _𝑟

are obtained from solving the optimization problem

min
_𝑖∈ℝ

∥𝑥 − �̂�∥2
2 = min

_𝑖∈ℝ

𝑁∑︂
𝑡=1

(𝑥𝑡 − �̂�𝑡)2,

where ∥·∥2 denotes the Euclidean norm.
A commonly chosen set of functions are polynomials which span the space of

polynomials up to a certain degree, for example, 𝛷 =
{︁
1, 𝑡, 𝑡2, . . . , 𝑡𝑟−1}︁ . In this case,

the choice of degree depends on the time series. In general, the more complex the trend
is, the higher the chosen degree. Although being quite simple, this method requires
the choice of predefined functions which have a great impact on the performance of
the method [7]. This will be showcased in Chapter 4.

3.2 Locally weighted polynomial regression

Locally weighted polynomial regression (LWP) is another possible method which can
be used to extract the trend from a time series 𝑥 = {𝑥𝑡} [1]. This method is also based
on minimizing the distance between the time series and the estimated trend. However,
in this case the values of the estimated trend are computed locally. For each time 𝑡, a
local trend 𝜐 = {𝜐𝑢}𝑁𝑢=1 around 𝑡 is first found, and then used to define the estimated
trend at time 𝑡, as �̂�𝑡 = 𝜐𝑡 .

7



Each local trend 𝜐 is given by

𝜐𝑢 = _1𝜑1
𝑢 + · · · + _𝑟𝜑𝑟𝑢

for some coefficients _1, . . . , _𝑟 ∈ ℝ, and a predefined polynomial basis 𝛷 ={︁
𝜑1, . . . , 𝜑𝑟

}︁
. The coefficients are chosen so that a predefined locally weighted

distance between 𝑥 and 𝜐 is minimized. In this case, _1, . . . , _𝑟 are obtained by solving
the optimization problem

min
_𝑖∈ℝ

∥𝑥 − 𝜐∥2
𝑤 = min

_𝑖∈ℝ

𝑁∑︂
𝑢=1

𝑤𝑢 (𝑥𝑢 − 𝜐𝑢)2, (3.1)

where ∥·∥𝑤 is a predefined locally weighted seminorm and 𝑤1, . . . , 𝑤𝑁 ≥ 0 its
corresponding weights.

Remark. Some observations need to be made:
1. Although 𝜐, 𝛷, _1, . . . , _𝑟 , ∥·∥𝑤, and 𝑤1, . . . , 𝑤𝑁 depend on 𝑡, this is not

included in the notation to avoid overcomplicating it.
2. In general, the seminorm ∥·∥𝑤 is not a norm. Note that for any 𝑧 such that

𝑧𝑢 = 0 if and only if 𝑤𝑢 > 0, the equality ∥𝑧∥𝑤 = 0 holds.
3. The values 𝑥𝑢 for which 𝑤𝑢 = 0 have no effect in the optimization problem

(3.1), whereas those for which 𝑤𝑢 is greater have a greater influence.

The weights are defined with the last observation in mind. Only the times
neighboring 𝑡 are assigned a nonzero weight, with those closer to 𝑡 having a greater
weight. In particular, a predefined integer 𝑘 is chosen and the weights are given by

𝑤𝑢 = 𝑊

(︃
𝑢 − 𝑡

𝑑𝑡

)︃
,

where 𝑊 ([) is a predefined weight function, and 𝑑𝑡 is the distance between 𝑡 and its
𝑘-th nearest neighbor in time. 𝑊 ([) is often chosen so that the following holds [17]:

1. 𝑊 ([) = 𝑊 (−[) for all [ ∈ ℝ.
2. 𝑊 ([) is strictly positive and nonincreasing for 0 ≤ [ < 1.
3. 𝑊 ([) = 0 for [ ≥ 1.

Therefore, the value of the estimated trend �̂�𝑡 at each point 𝑡 depends at most on the
𝑘 − 1 nearest values from 𝑥𝑡 in time (including 𝑥𝑡).
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Example 3.1. An example of weight function is the tricube weight function, defined
as 𝑊 ([) = (1 − |[ |3)3 for |[ | ≤ 1 and 𝑊 ([) = 0 everywhere else [17].

This method requires the choice of several parameters. It is necessary to choose
𝑘 , the weight function 𝑊 , and the degree of the polynomials. Usually, polynomials
of degrees 1 or 2 are used [1, 17, 18]. However, there is a classical trend extraction
method called moving average which can be seen as a particular case of LWP using
polynomials of degree 0. The method is presented below.

3.3 Moving average

Moving average is a very simple trend extraction method based on locally averaging
the values of the given time series {𝑥𝑡}. In this method, the estimated trend {�̂�𝑡} is
given by

�̂�𝑡 =
1
𝑘

𝑞∑︂
𝑖=−𝑞

𝑥𝑡+𝑖, (3.2)

where 𝑘 = 2𝑞 + 1 is a predefined positive odd integer. Note that the expression above
is defined only for 𝑞 + 1 ≤ 𝑡 ≤ 𝑁 − 𝑞, as 𝑥𝑡 does not exist for 𝑡 < 1 or 𝑡 > 𝑁 [8]. This
means that the values on the boundaries need to be treated differently. One possibility
is to extend {𝑥𝑡} by mirroring it on its boundaries, so that Equation (3.2) is defined
for every time 𝑡. Namely, to define 𝑥𝑡 = 𝑥1−𝑡 for 𝑡 < 1 and 𝑥𝑡 = 𝑥2𝑁−𝑡+1 for 𝑡 > 𝑁 .

Remark. As mentioned in Section 3.2, this method can be seen as a particular
case of LWP. To recover the moving average method from LWP, one can choose
𝛷 =

{︁
𝜑1 = 1

}︁
, 𝑘′ = 𝑘 + 2, and the trivial weight function, defined as 𝑊 ([) = 1 for

|[ | < 1 and 𝑊 ([) = 0 everywhere else. After these choices, the optimization problem
(3.1) becomes

min
_1∈ℝ

∥𝑥 − 𝜐∥2
𝑤 = min

_1∈ℝ

𝑞∑︂
𝑖=−𝑞

(𝑥𝑡+𝑖 − _1)2 (3.3)

for 𝑞′ + 1 ≤ 𝑡 ≤ 𝑁 − 𝑞′, where 𝑞′ = (𝑘′ − 1)/2. The moving average method then
results from the fact that the value _1 which solves the optimization problem (3.3) is

_1 =
1
𝑘

𝑞∑︂
𝑖=−𝑞

𝑥𝑡+𝑖,

giving �̂�𝑡 = 𝜐𝑡 = _11 = _1. Once again, the values on the boundaries require additional
attention. In this case, LWP yields the values �̂�𝑡 = (𝑘𝜏𝑞′+1 + 𝑥1)/(𝑘 + 1) for 𝑡 < 𝑞′ + 1,
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and �̂�𝑡 = (𝑘�̂�𝑁−𝑞′ + 𝑥𝑁 )/(𝑘 + 1) for 𝑡 > 𝑁 − 𝑞′. The reason why the values �̂�𝑡 on the
left boundary are the same is that the optimization problems which give these values
are also the same. The same happens on the right boundary.

The main drawback of this method, as will be showcased in Chapter 4, is that it
is very sensitive to the choice of the parameter 𝑘 . However, an interesting property
of the method is that it can be interpreted as a linear time-invariant (LTI) filter, in
particular, as a low-pass filter [7]. As a consequence, the theory of LTI filters can be
leveraged to better understand the behavior of the method. In fact, it is possible to
find examples of other LTI filters which have been used to extract trends, such as
Butterworth filters [19, 20] or exponentially weighted moving average [21].

3.4 Wavelet decomposition

The wavelet decomposition of the given time series {𝑥𝑡} is sometimes used to obtain
an estimation of its underlying trend. The time series is decomposed into several
components, each corresponding to a different time scale, and the estimated trend is
obtained from the largest-scale component [13].

The wavelet decomposition is the result of successively applying high-pass (HP)
and low-pass (LP) filters. In the first stage of the decomposition, {𝑥𝑡} is taken as
an input for the initial HP and LP filters, and the outputs are downsampled by a
factor of two. The results 𝑑1 and 𝑎1 are called first-level detail and approximation
coefficients, respectively. The coefficients 𝑑𝑖 and 𝑎𝑖 of the next levels are computed
analogously, taking 𝑎𝑖−1 as an input. The 𝑛-th level decomposition of {𝑥𝑡} is given by
𝑑1, . . . , 𝑑𝑛, 𝑎𝑛, where 𝑎𝑛 is corresponds to the largest scale of the decomposition.

The HP and LP filters are determined by the choice of two 𝑁-dimensional vectors
called mother and father wavelets, respectively. Although some properties are required
on the mother and father wavelets, these are not presented here.

Remark. The wavelet decomposition is only loosely presented above, as a rigorous
explanation would require introducing an extensive background, which is beyond the
scope of this work. The interested reader is referred to Frazier’s book on wavelets,
where their theory is explored in a well-structured and detailed way [22].

An important detail to note about this method is that different choices of wavelet
lead to different wavelet decompositions. Thus, it is necessary to choose a wavelet
whose properties are considered suitable for the time series. It is possible to find many
examples wavelets which have been used for trend extraction in the literature, such
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as the 16th order symlet [23], the 4th order Daubechies wavelet [7, 13], the Morlet
wavelet [19], and the 4th order coiflet [1]. Nevertheless, the most important parameter
to be selected is the number of levels in the decomposition, as it determines the time
scale of the estimated trend. The greater the number of levels, the greater the time
scale of the estimated trend.

3.5 Empirical mode decomposition

Empirical mode decomposition (EMD) is another decomposition method that can be
used to extract the trend from a time series {𝑥𝑡}. As in wavelet decomposition, {𝑥𝑡} is
decomposed into several additive components, each one associated with a different
time scale. The trend is estimated by adding the largest-scale components [11].

The EMD is obtained by successively extracting the current smallest-scale
component until no more such components can be extracted. The method is based on
the following heuristic. For every pair of consecutive extrema of {𝑥𝑡} occurring at
times 𝑡− and 𝑡+ (e.g. two minima), one can consider {𝑥𝑡} to locally be the sum of a
high-frequency part {𝑑𝑡}𝑡+𝑡=𝑡− and a low-frequency part {𝑚𝑡}𝑡+𝑡=𝑡−

𝑥𝑡 = 𝑚𝑡 + 𝑑𝑡 , 𝑡− ≤ 𝑡 ≤ 𝑡+,

with {𝑑𝑡} having an extremum at 𝑡− and 𝑡+, and another one in between [24]. Moreover,
one can assume that the high-frequency part is centered around 0. With this idea in
mind, EMD extracts the smallest-scale component {𝑑𝑡} with the following algorithm:

Algorithm 3.2.
1. The upper {𝑢𝑡} and lower {𝑙𝑡} envelopes of {𝑥𝑡} are found by interpolating

between the maxima and the minima, respectively.
2. The global low-frequency part {𝑚𝑡} is defined as the average of the upper and

lower envelopes: 𝑚𝑡 = (𝑢𝑡 + 𝑙𝑡)/2.
3. The smallest-scale component is extracted: 𝑑𝑡 = 𝑥𝑡 − 𝑚𝑡 .
4. The residual is 𝑟𝑡 = 𝑥𝑡 − 𝑑𝑡

In order to continue extracting the next smallest-scale components, this algorithm
is repeated until a certain stopping criterion is met, by taking the previous {𝑟𝑡} instead
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of {𝑥𝑡} at each iteration. After 𝑛 iterations, the decomposition is given by

𝑥𝑡 =

𝑛∑︂
𝑖=1

𝑑𝑖𝑡 + 𝑟𝑛𝑡 , (3.4)

where
{︁
𝑑𝑖𝑡

}︁
is the smallest-scale component obtained at the 𝑖-th iteration, and

{︁
𝑟𝑛𝑡

}︁
is

the residual of the 𝑛-th iteration.
In practice, the smallest-scale component {𝑑𝑡} obtained in Algorithm 3.2 requires

further refinement. This refinement is achieved with the sifting procedure, which
consists on repeating steps 1 to 3 by taking the {𝑑𝑡} of the previous repetition instead
of {𝑥𝑡}, until a certain criterion is met. After doing so, Equation (3.4) still holds. The
objective of the sifting procedure is that the smallest-scale component satisfies the
definition of intrinsic mode function (IMF), which is given below. For this reason,
each of these components are referred to as IMFs from now on.

Definition 3.3 (Huang et al., 1998). An intrinsic mode function (IMF) is a function
that satisfies two conditions:

1. in the whole data set, the number of extrema and the number of zero crossings
must either equal or differ at most by one, and

2. at any point, the mean value of the envelope defined by the local maxima and
the envelope defined by the local minima is zero [9].

Definition 3.3 is motivated by the definition of instantaneous frequency proposed
by Huang et al. [9], which requires that the IMFs are symmetric with respect to their
local mean and that they have the same amount of zero crossings and extrema [25].
Nevertheless, this topic is not further discussed in the present work.

There are a few details of the method which need additional attention. The first
one is the definition of the upper and lower envelopes from Algorithm 3.2. Originally,
Huang et al. propose to obtain them by interpolating the maxima and the minima using
natural cubic splines, as shown in Figure 3.1 [9]. However, this choice is arbitrary and
other options have also been explored, such as the usage of B-splines [26].

Additionally, the envelopes can get distorted at the boundaries if one simply
chooses 𝑥1 and 𝑥𝑁 as knots for the spline interpolation regardless of whether they are
actually maxima or minima. A possible solution is to extend {𝑥𝑡} on both ends using
the frequency and the amplitude inferred from the first two and the last two extrema,
respectively [9]. Once again, there have been other alternatives proposed, such as the
one considered by Zeng and He [27].
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Figure 3.1. Time series (black) with its upper and lower envelopes (blue and
green), obtained using natural cubic splines.

Another important detail are the stopping criteria. The overall stopping criterion
follows naturally from the initial reasoning behind EMD. The procedure is stopped
when the residual is monotonic or zero according to a predefined threshold [9]. For
the sifting stopping criterion, Huang et al. [9] originally propose a stopping criterion
based on how close the current IMF candidate {𝑑𝑖, 𝑗𝑡 } is to the previous IMF candidate
{𝑑𝑖, 𝑗−1

𝑡 }. They define the coefficient

𝑆𝐷 =

𝑁∑︂
𝑡=1

(︄
𝑑
𝑖, 𝑗
𝑡 − 𝑑

𝑖, 𝑗−1
𝑡

𝑑
𝑖, 𝑗−1
𝑡

)︄ 2

,

and accept the candidate as an IMF if the coefficient is lower than a certain threshold.
An alternative approach is given by Huang et al. [28], which suggest choosing an
integer 𝑆 and stopping the sifting procedure when the number of extrema and zero
crossings of the IMF candidate {𝑑𝑖, 𝑗𝑡 } is the same for 𝑆 consecutive steps. Unlike the
previous criterion, this one relies on the definition of IMF.

Finally, a way to determine the components from which to obtain the estimated
trend is needed. Although this can be done by inspection, there exist approaches
which allow to do so automatically, such as the ratio approach, the energy approach
and the energy-ratio approach, proposed by Moghtaderi et al. [2]. The estimated
trend {�̂�𝑡} is given by

�̂�𝑡 =

𝑛∑︂
𝑖=𝑞

𝑑𝑖𝑡 + 𝑟𝑛𝑡 ,

for a chosen 𝑞. It should be noted that it is possible to stop the decomposition procedure
once the residual already corresponds to the trend, as performing more iterations will
only decompose the estimated trend. This will be used in Chapter 4.
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4 Trend extraction on a simulated time series

In this chapter, the previously introduced trend extraction methods are showcased
using a simulated time series. The intention of this chapter is not to provide an
exhaustive analysis of each of the methods, but rather to show how they perform on a
particular example and to describe some of their properties.

4.1 The simulated time series

The chosen underlying process for the example is 𝑋𝑡 = 𝜏𝑡+𝑌𝑡 , where 𝜏𝑡 is a continuously
differentiable trend and 𝑌𝑡 ∼ N

(︁
0, 𝜎2)︁ for an arbitrary fixed 𝜎2 = 242, where the 𝑌𝑡

are assumed to be uncorrelated. The underlying process is intentionally simple, so as
to not obfuscate the results unnecessarily.

The trend is predefined. This allows an easy way to compare the trend estimated
by each of the methods to the actual trend. The chosen trend is defined by sampling
from a known arbitrary piecewise infinitely differentiable function. The idea behind
this definition is to have a function which is complex enough so that it is not trivial
for any of the methods, but at the same time does not have any abrupt changes. In
particular, 𝜏𝑡 is given by 𝜏𝑡 = 𝑓 ((𝑡 − 1)/2) for 𝛼0 ≤ (𝑡 − 1)/2 < 𝛼4, where

𝑓 (𝑠) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑓0(𝑠) = −𝛽0(𝑠 − 𝛼0) (𝑠 − 𝛼1) + 𝛽1
𝛼1−𝑠
𝛼1−𝛼0

, 𝛼0 ≤ 𝑠 ≤ 𝛼1

𝑓1(𝑠) = 𝑔1(𝑠) sin ℎ1(𝑠), 𝛼1 ≤ 𝑠 ≤ 𝛼2

𝑓2(𝑠) = 𝛽4𝑔2(𝑠) + 𝛽5 sin ℎ2(𝑠) 𝛼2 ≤ 𝑠 ≤ 𝛼3

𝑓3(𝑠) = 𝛽6 + 𝛽7(𝑠 − 𝛼3)2, 𝛼3 ≤ 𝑠 < 𝛼4

.

The functions are 𝑔1(𝑠) = 𝛽2 + 𝛽3(𝑠 − 𝛼1), ℎ1(𝑠) = 5𝜋(𝑠 − 𝛼1)/(2(𝛼2 − 𝛼1)) + 𝜋,
𝑔2(𝑠) = 𝑠2(𝑠 − 𝛼2) (𝑠 − 𝛼3) − 𝛼2

2 (𝑠 − 𝛼3)2/2 − 𝛼2
3 (𝑠 − 𝛼2)2/2, and ℎ2(𝑠) = (𝑠 −

𝛼2)2/(𝛼3 − 𝛼2)2𝜋 + 3𝜋/2, whereas the parameters 𝛽0, 𝛽4 and 𝛽6 are

𝛽0 =
1

𝛼1 − 𝛼0

(︃
5𝜋
2

𝛽2
𝛼2 − 𝛼1

− 𝛽1
𝛼1 − 𝛼0

)︃
,

𝛽4 =
2

𝛼2
2 (𝛼2 − 𝛼3)2

(𝛽2 + 𝛽3(𝛼2 − 𝛼1) − 𝛽5) ,

𝛽6 = 𝛽5 − 𝛽4
𝛼2

3
2
(𝛼3 − 𝛼2)2,

14



100 200 300 400 500 600 700 800 900 1000

0

200

400

Figure 4.1. Time series generated from 𝑋𝑡 (black) and its trend 𝜏𝑡 (blue).

and the values for the remaining parameters are 𝛼0 = 0, 𝛼1 = 64, 𝛼2 = 256, 𝛼3 = 384,
𝛼4 = 512, 𝛽1 = −192, 𝛽2 = 36, 𝛽3 = 1/8, 𝛽5 = 128 and 𝛽7 = 1/64. The trend is
shown in Figure 4.1.

4.2 Details on the methods used

Each of the previously presented methods can have several small modifications. For
example, in wavelet decomposition, one can choose among many families of wavelets.
In practice, however, it is only possible to limit oneself to a subset of these variations.
The different options that are considered here to extract the trend from the simulated
time series are presented below. For convenience, in this section the number of values
of the simulated time series is denote by 𝑁 = 1024.

4.2.1 Ordinary least squares regression

Only polynomials are considered, with degrees ranging from 0 to 𝑁/4.

4.2.2 Locally weighted polynomial regression

In this case, polynomials of degrees 0, 1 and 2 are considered, and odd values for
𝑘 ranging from 5 to 𝑁/2 − 1. The chosen weight functions are the tricube and the
trivial weight functions, presented in Sections 3.2 and 3.3.

4.2.3 Moving average

For the moving average method, odd values for 𝑘 ranging from 1 to 𝑁/2 − 1 are
considered. The boundaries are treated in the two ways covered in Section 3.3. Namely,
by mirroring {𝑥𝑡} on the boundaries, and also by extending the trend as a constant.

15



4.2.4 Wavelet decomposition

The used wavelets are the 4th order Daubechies wavelet, the 4th order coiflet, and
the 16th order symlet, as chosen by Homborg et al. [13], Mushini et al. [19] and
Alexandrov et al. [1], respectively. The decomposition is considered up to several
levels: from 1 to 8. The boundaries are again treated in two different ways: by constant
extension, that is, defining 𝑥𝑡 = 𝑥1 for 𝑡 < 1 and 𝑥𝑡 = 𝑥𝑁 for 𝑡 > 𝑁 , and by mirroring.

4.2.5 Empirical mode decomposition

The chosen sifting procedure is stopping after 𝑆 consecutive IMF candidates have
equal number of extrema and zero-crossings. Values for 𝑆 ranging from 1 to 10
are considered, which includes the values mentioned by Huang et al. [29] as being
typically successful as the default value (3 ≲ 𝑆 ≲ 5). Since there is no guarantee that
the sifting procedure will eventually stop [29], an arbitrary maximum of 200 sifting
iterations is allowed. The envelopes are here computed using natural cubic splines
after extending the maxima and the minima on both boundaries. Finally, different
values for the maximum number of IMFs are considered: from 1 to 8. The residual is
taken as the trend, as discussed in Section 3.5.

4.3 General comparison of the methods

4.3.1 A brute-force approach

In this subsection, the best potential performance of each of the methods is compared.
This is done by generating 100 different time series and then running all the methods
with each of the variations considered in Section 4.2. For each of the generated
time series and method, the variation which minimizes the root mean squared error
between the actual trend {𝜏𝑡} and the estimated trend {�̂�𝑡} is chosen as the optimal.
The root mean squared error is defined as

RMSE(�̂�) =

⌜⃓⎷
1
𝑁

𝑁∑︂
𝑡=1

(𝜏𝑡 − �̂�𝑡)2.

The fact that only 100 different time series are used is mainly justified by the
computational cost of performing this brute-force optimization. The results of the
optimization, presented in Figure 4.3 and Table 4.1, show that OLS and LWP are
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Figure 4.2. In gray, time series generated from 𝑋𝑡 . In blue, its trend 𝜏𝑡 . The
remaining trends are the result of the brute-force optimization on this time series
for each method: OLS (yellow), LWP (orange), moving average (red), wavelet
decomposition (cyan), EMD (green).

consistently the two best options, with LWP being the best one. On the other hand,
EMD performs slightly better than wavelet decomposition, which in turn performs
better than moving average. Figure 4.2 shows the result of the optimization on a single
time series. Overall, all the methods perform reasonably well when its parameters are
optimally chosen. Statistics of the optimal parameters are shown in Table 4.2.

Error Rank
med. mean std. dev. med. mean std. dev.

OLS regression 3.64 3.68 0.47 2.0 2.09 0.53
LWP regression 3.27 3.23 0.52 1.0 1.11 0.31
Moving average 4.63 4.60 0.47 5.0 4.46 0.74
Wavelet decomp. 4.52 4.47 0.54 4.0 4.01 0.76
EMD 4.19 4.20 0.62 3.0 3.33 0.92

Table 4.1. Per each method, statistics of the optimal error and the rank from
all the time series considered. The rank of a method for a given time series is
defined based on its optimal error compared to the other methods: from 1 (best
method) to 5 (worst method).

4.3.2 Error with respect to a parameter of interest

Although interesting as an initial approach, when thinking about real-world data, the
previous comparison is only partially useful. Using a brute-force optimization, it has
been possible to detect what is the best error that can be obtained for each method out
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Figure 4.3. Per each of the methods, boxplot of the optimal errors from all the
time series considered. Left to right: OLS (yellow), LWP (orange), moving
average (red), wavelet decomposition (cyan), EMD (green).

Ordinary least squares regression

value freq. median mean std. dev.
Polynomial degree 21.5 21.79 2.18

Locally weighted polynomial regression

value freq. median mean std. dev.
Polynomial degree 2.0 2.00 0.00
𝑘 180.0 179.60 16.54

Weight function Tricube 94
Trivial 6

Table 4.2. Statistics of the brute-force optimization. (Continued on next page)

of all the variations considered. However, in most cases one cannot know which is
the optimal variation of each of the methods. Moreover, it could be possible that a
particular variation of a method gives the best result compared to any method, but any
other variation of the method performs very poorly. With this in mind, it is perhaps
also relevant to see how the root mean squared error changes along a parameter
of interest, for example the amount of levels in the decomposition in the wavelet
decomposition method.

For each of the methods, a parameter among those which determine the variations
is chosen, while the other parameters are fixed. The choice of fixed parameters is
based on Table 4.2. For OLS there is only one parameter, which is the degree of the
polynomial, so there is no alternative choice. The parameter of interest chosen for
the LWP is 𝑘 , whereas the weight function is fixed to the tricube function and the
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Moving average

value freq. median mean std. dev.
𝑘 35.0 35.86 2.69

Boundary Constant 0
Mirror 100

Wavelet decomposition

value freq. median mean std. dev.

Wavelet
Daub. 4th 19
Coif. 4th 28

Sym. 16th 53
Levels 5.0 5.16 0.37

Boundary Constant 72
Mirror 28

Empirical mode decomposition

value freq. median mean std. dev.
𝑆 7.0 6.70 2.80
Max. IMFs 6.0 6.25 0.58

Table 4.2. (Continued) Statistics of the brute-force optimization.

degree of the polynomials to 2. For moving average, the chosen parameter is again
𝑘 , and the boundary treatment is fixed to mirroring the original time series. For the
wavelet decomposition method, the chosen parameter of interest is the number of
levels of the decomposition. The wavelet is fixed to the 16th order symlet and the
boundary is treated by mirroring. Finally, in EMD, the value 𝑆 is fixed to 7 and the
chosen parameter of interest is the maximum amount of IMFs.

The root mean squared errors of the corresponding estimations of the trend are
shown in Figure 4.4 using a continuous box plot. It is clear from the graphs that in this
case it is possible to approximately choose an optimal default value for each of the
parameters of interest. After noticing this, the next natural question is what happens
when one deviates from this value. When using moving average, deviating slightly
from the optimal value for 𝑘 can lead to very poor results. This property, which is
evident in Figure 4.4, is often mentioned as the main disadvantage of moving average.
In comparison, doing the same when extracting the trend with a LWP has a much less
drastic effect, making the latter method preferable in this sense. For the OLS method,
the effect is less pronounced than in moving average, although one still needs to be
careful when selecting the polynomial degree. Choosing a degree which is too high
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Figure 4.4. For each method, continuous boxplot displaying the error of the
method with respect to the chosen parameter of interest. The colored line is the
median, which is bounded by the lower and upper quartiles (solid black). The
whiskers are the dashed black lines and outliers are displayed in gray. Left to
right and top to bottom: OLS (yellow), LWP (orange), moving average (red),
wavelet decomposition (cyan), EMD (green).

might lead to undesired oscillations and overfitting, while doing the opposite might
lead to an estimated trend that does not properly capture the details of the actual trend.

In this case, EMD and wavelet decomposition offer an advantage compared to the
previous methods, which is that the amount of reasonable values for the parameter
is much lower. In practice, this means that whenever possible, one might be able to
determine the optimal value for the parameter of interest by inspection. Additionally,
for these two methods there are ways to estimate the best value for the maximum
number of IMFs and levels, respectively. The ratio, energy and energy-ratio approaches
proposed by Moghtaderi et al. [2] can be used for empirical mode decomposition,
whereas statistical parameters can be used in the wavelet decomposition method to
assess which approximation coefficients correspond to the trend [7].
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4.4 Additional properties of the methods

In this section some properties which are usually desirable in the problem of trend
extraction are mentioned and commented for each of the methods presented. A good
property for a trend extraction method is locality, namely that the value of the trend at
a given time is only affected by the values occurring at nearby times in the original
time series. An example of situation in which this can be crucial is when considering
a time series which is regularly updated with new values as time passes. For instance,
in a time series where values are spaced in time by an hour, it might not make sense
that a recently added value affects the value of the trend one month ago.

Moving average and LWP are clearly local trend extraction methods, whose
locality can be easily adjusted by varying the value of 𝑘 . On the other hand, the
locality of OLS depends on the choice of functions. Polynomial regressions, which are
the most commonly chosen option, are nonlocal. The wavelet decomposition method
is also local provided that the right wavelet family is chosen. EMD might seem local
at first sight, because the trend is obtained using natural cubic splines, which are
local. Nonetheless, the common sifting stopping criteria considered in Section 3.5
are both global, making the method also global. A way to tackle this issue is to only
sift the regions of the IMF candidate which need sifting, as proposed by Rilling et al.
[24]. This property is illustrated in Figure 4.5, where a comparison between the trend
extracted from the whole time series and only from a subsequence of it is shown.

The simplicity of a method might also be desired, perhaps as a first approach to a
problem which might require trend extraction. In this case moving average and OLS
most likely become the best options, followed closely by LWP. Wavelet decomposition
and EMD might be seem as more complex, although the fact that there already exist
ready-to-use implementations make these methods also reasonably accessible.

When attempting to understand the effect of a trend extraction method on a given
time series, a method supported by a rigorous mathematical framework becomes
of special interest. Unlike the other methods presented here, EMD suffers greatly
from a lack of such theory, as it is essentially defined by an algorithm which relies on
heuristics [5, 30]. Despite that, EMD has an advantage over the other methods, which
is the fact that it is adaptative. The time-scale of the trend is clearly determined by 𝑘

in moving average, and also by the weight function in LWP. For OLS, the scale is
fixed by the chosen basis functions, while wavelet decomposition fixes the scale when
the number of levels in the decomposition is chosen. These parameters, which fix the
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Figure 4.5. Same content as in Figure 4.2, but adding also the optimal estimated
trends obtained from considering the subsequence starting at 𝑡 = 1 and finishing
at 𝑡 = 896 (colored dash-dotted lines).

time-scale of the trend, are oftentimes predefined, although they can have a major
effect on the estimated trend, as seen in Subsection 4.3.2. This is not the case in EMD,
as each of the components is not necessarily associated with a single time-scale. In
fact, there can be several time-scales in a component.

In some cases, it might be useful to choose a method for which the resulting trend
can be easily summarized by a few values. Using OLS is then reasonable, as the trend
can be described merely using the coefficients of the predefined basis functions. The
same happens with the wavelet decomposition method, where the approximation
coefficients characterize the trend once the wavelet function and the way to treat the
boundaries has been predefined. However, for the remaining methods there is not an
immediate way to summarize the trend.

A common assumption for the trend is that it is a smooth enough function. When
this assumption is made, it makes sense to choose a method which yields a smooth
estimated trend. This is guaranteed in EMD, as the trend is a finite linear combination
of natural cubic splines, which are two times differentiable with continuity. When
using OLS, this is also true provided that the basis function are also smooth. As can
be seen in Figure 4.2, the same cannot be said for moving average, which offers no
guarantee of smoothness. Although this is also the case for LWP, in practice it seems
to produce smooth results. The wavelet decomposition method also seems to yield
smooth trends, as shown in Figure 4.2.
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5 Conclusions

Five trend extraction methods have been presented and compared using an arbitrary
simulated time series. The main conclusion of this work is that there is no overall best
trend extraction method among the ones presented. This is partly due to the fact that
the trend extraction problem is itself ill-defined in the sense that it lacks a rigorous
formal definition. The definition of trend is oftentimes strongly linked to the model
chosen to explain a particular time series. When in need to extract the trend from
a time series, one should consider the desired properties of the method in order to
choose the most appropriate one for that particular case.

The results obtained are in line with the literature that has been reviewed, although
there seems to be a positive bias towards adaptative methods such as those belonging
to the empirical mode decomposition family. It has also been noticed that it is relatively
common in the reviewed literature to ignore and not sufficiently specify the details of
the empirical mode decomposition algorithm used, sometimes relying on third-party
implementations. This practice hinders the reproducibility of the results and should
be avoided whenever possible. Additionally, it also appears to be common to base
the method comparisons on a very small set of examples, sometimes rather simple.
While doing so can be useful in order to have an idea of the behavior of each method
considered, one can be easily tempted to immediately extrapolate such results to any
time series, which is something that should be done carefully.

The present work uses one example to showcase the results of applying each
method to a time series, which can be seen as insufficient. Another reasonable criticism
is the lack of a more in-depth explanation of some parts which might be considered
nontrivial, such as the wavelet decomposition. This is justified by format limitations.

The possibilities to extend the present work are numerous. One option could be to
analyze other trend extraction methods, presenting also methods which have been
invented in recent years. Following this line of work, it could also be interesting to
consider other variations of the methods presented, such as different ways to treat
the boundaries, which might lead to better results. Another possibility would be to
propose a more extensive comparative study by considering several examples, in
hopes of being able to produce results which can be extrapolated to more general
cases. Similarly, one might also choose to limit the comparison to a very specific
situation where the need to extract a trend appears.
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