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ABSTRACT

Weerin Wongwarawipatr: BioBERT for Dietary Compounds and Cancer Relation Extraction
Master of Science Thesis
Tampere University
Master of Science in Computing Science - Data Science
November 2021

The relation extraction of biomedical publications has been an essential natural language pro-
cessing task for constructing the biomedical network. This network will allow the study of genes,
disease, and food compounds holistically together, which will help to solve many biomedical prob-
lems. Biomedical papers, which are growing exponentially over time, are the primary resource
for network construction. Thus, natural language processing is an integral part of enabling this
network creation from biomedical text papers. The fully connected biomedical knowledge graph
that connects many sub-fields will benefit the better data management and analysis of text data in
the biomedical domain.

While there are several pieces of research on genes and disease natural language text relation
extraction, there are not many works on disease and food compounds conducted. This research
aims to conduct the natural language relation extraction models for dietary compounds and cancer.

This research uses the transfer learning method to acquire the pre-trained models and fine-
tune them with the prepared biomedical text dataset. The state-of-art natural language under-
standing model, BERT, will be explored with other BERT-based variations, DistilBERT and BioBERT.
The fine-tuned BioBERT model is expected to give the best result in the end since it is the spe-
cialized model pre-trained with biomedical text documents. In addition, to benchmark the model
performance effectively, we include the two traditional machine learning classification models,
Support Vector Machine and Gaussian Naive Bayes, to be the baseline for the comparison with
the proven state-of-art language models. The text data is acquired from PubMed search engine,
and the articles are biomedical paper abstracts about cancer and food compounds. The food and
cancer entities are annotated manually.

The result shows that BioBERT has the best performance with a 0.7855 F1-score. It is higher
than the original BERT model for 0.0011 F1-score. DistilBERT also acquires acceptable perfor-
mance with a 0.7338 F1-score. DistilBERT performs justifiable prediction with only 0.05 lower
than BERT original model but 50% faster in model fine-tuning compared to its model size. We
have also constructed learning curves to visualize each model learning process. All BERT-based
models can be improved with more datasets in future research.

Keywords: Biomedical Text Mining, Relation Extraction, Natural Language Processing, Natural
Language Understanding, Information Extraction, Transformers, BERT, BioBERT

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.
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1 INTRODUCTION

Genetics, diseases, and food science are linked to each other according to the nature

of substances. However, a holistic approach to study the documents from these three

research areas entirely together has not yet been fully available. There has been an

effort from the computer science community to create a biological network to study about

genes and disease relationship (Emmert-Streib, Dehmer and Haibe-Kains 2014). The

work by Emmert-Streib, Dehmer and Haibe-Kains 2014 has expressed the importance

of gene regulatory network that it can help in solving many biomedical problems and

to make the network completed, it should be linked with other life science networks to

get the fully connected information. Due to the number of biomedical publications grows

exponentially over time, text data in biomedical field can be the main resource for the

network construction. The natural language processing is an important part to enable

this network to be constructed from the text data. The fully connected biomedical network

will benefit the better data management and the analysis of text data in the biomedical

domain.

Natural language processing can enable the information extraction system from biomed-

ical publications. Relation extraction is one of the important task that has an important

role in linking the entities. It is the task to classify relation types of two or more entities

appearing in natural language text. Many researchers conduct this task with biomedical

entities, proteins, drugs, genes, and diseases (Perera et al. 2020). However, there have

not been many pieces of research on relation extraction of dietary compounds associ-

ated with diseases conducted even though many papers about phytochemicals, nutrition,

and food components related to diseases are available in biomedical databases. Hence,

this research will perform the relation extraction between dietary compounds and dis-

ease, specifically cancer, from the biomedical papers’ abstracts available on PubMed, a

free search engine of MEDLINE database containing science journals about life science

biomedical topics.

There have been many approaches to achieve the relation extraction task. They can be

classified into four groups, co-occurrence-based, pattern-based, rule-based, and machine

learning-based (Abdul Wahab Muzaffar 2015). Before processing relation extraction, the

implementation of named-entities recognition to annotate the entities will need to be done.

When the named entities have already been annotated, the machine learning process af-
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terward will become more powerful (Giuliano et al. 2006).

This research will compare the result of relation extraction done by the natural language

processing models, BERT (Devlin et al. 2019), DistilBERT(Sanh et al. 2019), BioBERT

(Lee et al. 2019), comparing with the method done by traditional machine learning, Sup-

port Vector Machine, and Gaussian Naive Bayes Classifiers. The text data will be the

biomedical papers on the diet

(food, phytochemicals, nutrition) associated with cancer, available on Pubmed, the biomed-

ical papers search engine. Only the sentences in the abstracts part will be used as the

dataset. In the end, the BioBERT model is expected to give the best result since it is the

model trained with Biomedical text data, which should manifest specialty for natural text

in biomedical field.
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2 LITERATURE REVIEW

Information Extraction(IE) is the field of study for extracting information from natural lan-

guage text. IE aims to create the understandable text for machines to process. It can

be used for many tasks such as text summarization, question answering system, search

optimization and etc. To extract information within the text, the first task to be done is

Named-Entity Recognition(NER). NER automatically detects and locates keywords in a

sentence that are classified as predefined categories. After performing the NER pro-

cess, the Relation Extraction(RE) task can be done to process the relations between the

extracted entities within the sentence. Therefore, RE is the task focusing on extracting

semantic relations between the extracted entities in the text. There are many prominent

works in the RE performed by biomedical text data. They have been proposed with many

different approaches, which can be classified into four main groups.

2.1 Co-occurrence Based

Percha et al. 2011 conducted a co-occurrence approach for the relation extraction task.

This method uses the frequency of occurrence between entities in the target sentences

to determine the probability of association.

2.2 Rule-Based

This method relies on semantic analysis using part-of-speech to detect relations. Fundel

et al. 2006 proposed syntactic parse trees to break down sentences to find the relation

between noun phrases and verbs. This approach requires a predefined list of verbs that

can identify relations between noun phrases, for example, prevent, inhibit, prohibit, accel-

erate.

2.3 Conventional Machine Learning

Machine learning models applied to the relation extraction are mostly supervised learning

models that require an annotated dataset with a predefined target class for the models to

learn during the training process. H. . Yang et al. 2011 had proposed the machine learning

model, support vector machine (SVM), to classify a polarity and evaluate the strength level
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of relations between food-disease entities. This model is a multiclass classifier separating

the polarity between positive, negative, neutral, and irrelevant associations.

Another machine learning model was explored by Jensen et al. 2014. This work had

proposed a Naive Bayes model for classifying food-disease associations. The TF-IDF

feature extraction was applied to the dataset before inputting it into the training process.

2.4 Deep Learning

The deep learning models commonly used for relation extraction are the convolutional

neural network (CNN), recurrent neural network (RNN), and the combination between

CNN and RNN (Emmert-Streib, Z. Yang et al. 2020). The input features can be the

sentence-level or word-level embedding vector representation and the position of enti-

ties that appeared within the sentences. One of the work on using CNN for biomedical

relation extraction was proposed by Liu et al. 2016. CNN was used for extracting drug-

drug interaction(DDI), obtaining an F-score of 69.75%. The result outperformed SVM, the

most state-of-art DDI extraction machine learning model at that time, by 2.75%. However,

CNN requires the input data length to be similar, so zeros padding needs to be done. To

further research, Sahu and Anand 2018 did DDI extraction by long short term memory

network(LSTM), which is an RNN based model. The model has a word and a position

embedding as latent features extracted from sentences. In contrast to CNN, LSTM pro-

cesses the input vectors sequentially and has no restriction in the length of each input.

Bi-LSTM is also explored in this work. It is a two way LSTM going forward and backward

concatenated together. This model got the better performance as it allows the network

to extract the implicit features from both left-to-right and right-to-left sequences in the

sentences.

In 2017, the Transformers model was introduced in the publication; Attention is all you

need by Vaswani et al. It introduced the self-attention or intra-attention mechanism, which

can encode the input parallelly. The model structure entirely consists of different attention

cells in both encoding and decoding parts without using any convolutional neural net-

work(CNN) and RNN, LSTM cells. This introduced a better approach with the improve-

ment in time consumption and the better quality of language understanding. Afterward,

BERT (Devlin et al. 2019) had been established. BERT structure is simply the layers of

the encoder part of Transformers stacking together to get the deeper context for language

understanding which is the origin for its name, “Bidirectional Encoder Representation from

Transformers”.

Shi and Lin 2019 had applied BERT-based models to the RE task. BERT can provide

state-of-art performance using a simple neural architecture without the lexical and syn-

tactic features like part-of-speech tags and dependency tree.
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BioBERT (Lee et al. 2019) is the BERT architecture model that has processed the pre-

trained stage with a Biomedical domain corpus which consists of PubMed abstracts and

PMC articles. When comparing to the pre-trained weights from BERT that was pre-trained

by Wikipedia and BooksCorpus, BioBERT improves the performance of the biomedical

text relation extraction task by 2.8% of F1 score.
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3 BACKGROUND THEORIES

3.1 Deep Learning Methods in Natural Language Processing

3.1.1 Transfer Learning

Transfer Learning is the method of transferring the knowledge gained from the prior model

training. The trained model weights will be reused and adjusted according to the dataset

in another related task. The first stage of training the model weight from scratch is called

pretraining, while the latter stage of training the trained model weights to fit in with a

particular task is called fine-tuning.

Transfer learning has become a prevalent method for utilizing available pretrained models.

During the pretraining process, the model requires much cost in computation and time.

For the model solving Natural Language Processing tasks, Transformer architecture has

become very well-known and has been used as the base model for other language mod-

els. It is shown that more parameters and more datasets during the training process

improve the model performance. However, the larger models cost a lot in computing re-

sources, time, and even environmental impact. It is shown in the work by Strubell et al.

2019 that training a Transformer model with 213 Million parameters can emit over 626,000

pounds of carbon footprint. Transfer Learning is the way to utilize the knowledge gained

from pre-trained models. To fine-tune the trained model weights instead of training it from

scratch will decrease the time, computational cost, and even the global CO2 emissions.

Figure 3.1. Training a single AI model can emit as much carbon as five cars in their
lifetimes (MIT Technology Review 2019).
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Hence, low-resource models become more demanding. One of the outlier models, Dis-

tilBERT, which will be explored in this research, only has 66 million parameters but still

maintains a high performance comparable to other state-of-art models.

Figure 3.2. The size of NLP models through time (TensorFlow Blog 2020).
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3.1.2 Transformers

Transformers(Vaswani et al. 2017) was introduced in June 2017. It was originally made for

translation tasks. The intuition was from improving an issue with translating the long sen-

tences. Before it was introduced, Recurrence Neural Network (RNN) and Convolutional

Neural Network (CNN) with an encoder and decoder were the most prominent solution

for machine translation as it was designed to work with sequence-to-sequence model.

However, when the input sentences get longer, they become less efficient and consume

much time. The intuition concept of Transformers was from the natural way of humans

translating text by paying attention to each word and its contextual relating words within

the sentence. This approach is more effective than having the model use all the words

in the sentence with equal weights during the computation process. The key feature of

Transformers that makes it different from RNN is the ability to train all words in the sen-

tence simultaneously, takes lesser time to train, and achieves the better performance.

Transformers is the state-of-art model for transduction problems, such as language mod-

eling and machine translation. Moreover, it has been used as the base model for many of

other state-of-art language models, such as BERT, GPT, RoBERT ,and GPT-3.

We can categorize the transformer based models into 3 categories, autoregressive, au-

toencoding, and sequence-to-sequence models.

• Autoregressive Models / Decoder Models

The models are based solely on decoder layers of transformer model stacking on

each other. It predicts the future result based on only the past outputs. This type

of model is designed for a text generation task. The Example of this type of models

are GPT, GTP-2, GPT-3, and Transformer-XL.

• Autoencoding Models / Encoder Models

The models only use the encoder part of the transformer model. It can access all

the words in the sentence in each stage simultaneously. This feature has been

called bi-directional attention. This type of model is good for natural language un-

derstanding tasks, such as words classification, relation extraction, and question

answering tasks. The example encoder models are BERT, ALBERT, and RoBERTa.

• Sequence-to-Sequence Models

The Transformer model is a sequence-to-sequence model where both the encoder

and decoder parts have been used. It is suitable for the task that requires sen-

tences as the inputs and also outputs the result as sentences. Hence, the machine

translation task is the perfect case. Other examples of language models with this

architecture are Pegasus, BART, and T5.
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The Transformer Model Architecture

Figure 3.3. The Transformer model architecture

As can be seen from the figure 3.3, the model has mainly the encoder and decoder

chunks. It does not incorporate CNN or RNN layers. Instead, it has the Multi-Head

attention blocks as the primary critical components for contextual text processing, which

we will describe further in the latter topic.

Encoder

The encoder consists of 2 sub-layers, a multi-head self-attention and a feed-forward neu-

ral network. In each sub-layer, the output is normalized by the result from the sub-layer

added up by the input vector from the previous stage. This is to reduce the vanish gradi-

ent problem during the backpropagation process. The model consists of 6 encoder layers

stacking on each other. It receives and produces the vector with 512 dimensions.

LayerNorm = (x+ Sublayer(x)) (3.1)
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Decoder

The architecture within the decoder layers is overall the same as the encoder, except for

the additional multi-head attention layer that receives the input from 6 encoder layers. All

sub-layers are normalized with the input from each stage in the same fashion as in the

encoder layer. Another prominent feature is the self-attention mechanism in the decoder

layer. It prevents the computation of subsequent words in the sentence compared to the

focus word in each iteration. It only computes attention for the words that position before

the word embedding input in that stage. There are six decoder layers. All of them receive

the input from the last encoder layer similarly.

Figure 3.4. The Illustration of how data pass between encoder and decoder

Attention Mechanism

The attention mechanism is the key part of transformer architecture. It enhances the

contextual meaning within text data. This valuable feature is acquired by the numerical

operation of the input word embeddings. The input word embeddings are converted into

three matirces, Query(Q), Key(K),and Value(V). These three matrics conversion is sim-

ply proceeded by multiplying the input word vectors with three matrices that have been

initialized with some values and are trained during the training process.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (3.2)
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Softmax(xi) =
exi∑︁K
j=1 e

xj

(3.3)

We can describe the concept of the attention formula (Equation 3.2) in a simpler way by

seeing the calculation from each row of the matrix one by one. In the vector level, the

formula 3.2 is simply to acquire the dot product of the similarity between the word vector

through other words in the sentence and its value vector (Vi). The similarity of each

word embedding vectors (QiK
T
1→n) is the dot product of the query vector representing

the specific word Qi and key vectors of other words in the sentences including itself

K1→n. According to the equation 3.2, the dot product of the query and the key vectors is

divided by the square root of key vector dimension (
√
dk). This is for decreasing the large

magnitude value when applying the softmax function afterward. The softmax function is

applied to scale the dot product for having them sum up to 1 and making it suitable for

using as the weight for the attention value calculation.

The attention mechanism is applied to self-attention layers where all query vectors pro-

cess sum-product operation with their own and other key vectors in the sentence. More-

over, it has also been used in the second Multi-Head Attention layer in the decoding block

layers where it receives inputs from the encoder, as can be seen in the figure 3.3. This

layer can be called the encoder-decoder layer. In this is attention layer, the input from

the encoder is used as key vectors operating dot product with the query vectors from the

output of the previous attention layer in the decoder stack itself.

Instead of finalizing the model parameter based on one attention, the transformer model

uses the multi-head attention to attend more information from h attention heads. The

multi-head attention is the method of computing h attention layers in parallel and con-

catenating the result into an output vector with the set dimension. This is to make the

model understand the sentence context even further since the natural text grammar is not

always straightforward for the machine to know which words shall it pay attention to when

doing the translation. For Example,

Figure 3.5. Example for demonstrating the importance of multi-head attention

When the model sees the word "pomegranate" from this sentence during the translation
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process, there are many possible relations that the model should rather pay attention to

with some weight differences. If the model has only one attention head for the prediction,

it can be too subjective to conclude the correct weights and should have more attention

layers to give more information.

Feed-Forward Layers

Feed− Forward(x) = max(0, xW1 + b1)W2 + b2 (3.4)

The feed-forward network is applied in both encoder and decoder layers. It is position-

wise, which means it is applied to each input vectors separately. The feed-forward con-

sists of two linear transformations and a ReLu activation function.

Positional Encoding

PE(pos,2i) = sin(
pos

10002i/dmodel
) (3.5)

PE(pos,2i+1) = cos(
pos

10002i/dmodel
) (3.6)

The positional encoding is proposed to add the feature of word position within the sen-

tence into the model. It has the same dimension as the model input (dmodel), so it can

be summed directly with the input embedding vector. This process is done at the begin-

ning of the model initialization stage after embedding the input and the target sentences

into word vectors. The value of the positional encoding vector is calculated from the sine

and the cosine function following the equation 3.6. pos refers to the word position, d is

the dimension of the model embedding input, and i is the iteration value of the positional

encoding vector dimension.

In the Transformer original paper by Vaswani et al. 2017, the number of heads in Multi-

head attention (h) is set to be 8. The dimensions of query, key, and value vectors are

set to be 64, which is the number of model input embedding dimensions divided by the

number of heads (512/8 = 64). This is to make the total computational cost similar to one

head attention with 512 Q, K, V dimensions. The transformer model is trained with the

standard WMT English-German dataset with 4.5 million sentence pairs using byte-pair

encoding with 37,000 token vocabularies. It is trained with Adam optimizer with ϵ = 1e−9,

β1 = 0.9, and β2 = 0.98. The learning rate varies warm up over 4,000 steps with L2

weight decay of 0.5.

An issue with the transformer model is it can only receive the fixed length, 512 dimensions,

word embedding input. If the input has a longer length than that, it will only take the

first 512 tokens and leave the rest tokens unused. This gave an intuition of another

transformer-based model, TransformerXL(Dai et al. 2019) which can be trained by the

longer sentences which can solve the context fragmentation problem.
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3.1.3 BERT

BERT (Devlin et al. 2019) is a machine learning model for language understanding intro-

duced by Google in 2018. It is the model for understanding the natural language in a deep

context. It has been pre-trained into many versions by researchers from many domains.

The model structure was evolved from the deep learning model, Transformers. BERT is

shorted for "Bidirectional Encoder Representation from Transformers". Its architecture is

the transformer model’s encoders stacked on top of each other. It effectively addresses

ambiguity in a human-like common sense which is the most challenging task for Natural

Language Processing. In 2019, Google announced using BERT in their production for

their search engine.

In the original paper by Devlin et al. 2019, there were two trained BERT models intro-

duced, BERT-based and BERT-Large. The BERT-based model has 12 encoder unit lay-

ers, 768 hidden units in feedforward networks, and 12 attention heads. BERT-Large has

24 encoder layers, 1024 hidden size, and 16 attention heads. The BERT-base model has

the exact same parameter with GPT(Radford et al. 2018) by OpenAI for the performance

comparison purpose. While BERT-base is bidirectional where the attention can be cal-

culated across all words in the sentence, the GPT is constructed by decoder layers that

omit access to the context on the right of the sentences.

Regarding the bidirectional feature of BERT compared to other language models that

have been introduced before, BERT shows that its bidirectional training technique can

have the model understand the context in a deeper context than having a single direc-

tion training or the concatenation of results from the left-to-right and right-to-left pieces

of training, which is the concept proposed in Peters et al. 2018. BERT is non-directional

where all word embedding vectors can be trained simultaneously, and the contextual re-

lations can be referred to any other words in the input sentence from both left and right

sides. The training techniques that BERT has introduced are the masked language model

(MLM) and the next sentence prediction (NSP).

Input Representation

The input of BERT is constructed from three vectors, a token embedding, a segment em-

bedding, and a position embedding following the Figure 3.6. According to Devlin et al.

2019, the token embedding is tokenized by the pretrained embedding, WordPiece em-

bedding Wu et al. 2016 where it stores a 30,000 token vocabulary. The beginning of

the input sequence is added with a token [CLS], and a token [SEP] is added between

each sentence in the input sequence. The segment embedding is the label for separat-

ing the different sentences within one input vector. Position embedding is the position of
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the words in the input sequences. The requirement for having the segment embedding

and the position embedding is to reserve the word order features during the training pro-

cess. By summing the token embedding, segment embedding, and position embedding

together, we get the input for BERT.

Figure 3.6. Input Representation (Devlin et al. 2019).

Pre-training

In this stage, BERT is trained to understand the language and the context by these two

unsupervised tasks.

Masked Language Model (MLM)

When training BERT, 15% of words in each input embedding sequence are randomly

replaced with [MASK] token. It has to predict the [MASK] words based on the 85% of left

words in the sequence. This is similar to the cloze test in human language learning, where

we are given a task to fill in the blanks for checking our language context understanding.

During the training process, the 15% of words are not always be replaced with [MASK]

token, as doing so will prevent the words from being seen in the fine-tuning stage. Instead,

they are 80% of the time be replaced with [MASK] token, 10% of the time be replaced

by random words, and 10% has been left unchanged. The process started from passing

the input encoding with [MASK] tokens, passed through transformer encoder layers and

a classification layer in the end. The classification layer transforms the output vectors into

a vocabulary dimension where it uses the softmax function to calculate the probability of

each word in the vocabulary. Only the output prediction of [MASK] token is taken into

consideration during the backpropagation. The cross-entropy loss function ignores other

un-masked words.

Next Sentence Prediction (NSP)

During the pretraining process, BERT passed two sentences for the model to predict

whether the second sentence is the subsequent sentence to the first sentence. 50% of
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the input sequences are pair sentences from the original document, while other 50% in-

puts have the second sentence randomly chosen from the document.

During the implementation, the two training tasks, MLM and NSP, are processed together,

as can be seen in Figure 3.7. The final hidden vector of the [CLS] token is token as C and

is used as an output for the NSP task. The original paper Devlin et al. 2019 uses text data

from the BooksCorpus (Zhu et al. 2015) with 800 Million words, English Wikipedia with

2,500 Million words in the sentences level, and also incorporates document-level input

from Billion Word Benchmark (Chelba et al. 2013).

Figure 3.7. BERT Training (Devlin et al. 2019).

Fine-tuning

At this point, BERT can be fine-tuned to do different downstream tasks, such as ques-

tion and answering, named-entity recognition, and many other classification tasks, for

instance, sentiment analysis, relation extraction, etc. The input and output layers are

used in different forms depending on the task we would like to achieve. The input can be

two sentences packed together for sentence pairs, paraphrasing, question answering, or

any other tasks that require the language understanding of relations between sentences.

Additionally, the input embedding can also be just a one single sentence and be trained

for classification and entity recognition tasks.

Specifically, in this research, we aim to use BERT for relation extraction between the two

annotated tokens, @FOOD$ and @DISEASE$. Our fine-tuning stage is similar to the

training of the Stanford Sentiment Treebank (SST-2) and the corpus of linguistic accept-

ability (CoLA). They are parts of the tasks in GLUE benchmark experiments (A. Wang

et al. 2018) which the original paper(Devlin et al. 2019) has conducted. SST-2 is the task

for classifying the sentiment of single-sentence input from movie reviews. CoLA is the

task predicting the linguistic acceptability of single-sentence inputs. With these specific

types of classification tasks, the classification layer is added to the BERT output for the
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predicting the [CLS] token. The illustration can be seen in the Figure 3.8

Figure 3.8. Single Sentence Classification Fine-Tuning Task (Devlin et al. 2019).

The training time in this fine-tuning stage is relatively fast since it only has to learn the

new output parameters in the output layer, but the rest of the model parameters are only

fine-tuned.
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3.1.4 BioBERT

BioBERT (Lee et al. 2019) is one of the variations of BERT where the BERT model was

pre-trained with Biomedical text data from PubMed abstracts and PMC articles. The

pre-trained BioBERT model can be fine-tuned to do specific natural language processing

tasks in the biomedical area.

The key idea of BioBERT is to give the BERT model specialization for understanding the

specific domain knowledge, the biomedical field. Since the language used in a specialized

field has a lot of terms and jargon that make it only understandable to the specialists but

hard to fathom for ordinary people. BERT model does not bring the best out of biomed-

ical text data since BERT has been trained for general language purposes. BioBERT,

which has been pretrained with biomedical text papers, is expected to perform better with

specialized natural language processing tasks in biomedical text data.

The work by (Lee et al. 2019) has pre-trained BERT not only with biomedical text but also

tried the different combinations with general language text from English Wikipedia and

BooksCorpus dataset. The datasets used in this work are detailed as follows.

Corpus Number of Words

English Wikipedia 2.5 Billion

BooksCorpus 0.8 Billion

PubMed Abstracts 4.5 Billion

PMC Full-text Articles 13.5 Billion

The work provides four BERT fine-tuning models in comparison by the different text

corpora. Firstly, Lee et al. 2019 initialized BioBERT with BERT pretained with English

Wikipedia and Books Corpus datasets. Then, they trained that BERT pretained model

into BioBERT with the Biomedical data in combination as follows.

• Wiki + Book + PubMed

• Wiki + Book + PMC

• Wiki + Book + PubMed + PMC

The input embedding vectors for training the model is still the WordPiece embedding Wu

et al. 2016, the same method as what BERT original paper (Devlin et al. 2019) used. The

training process was done with batch sizes 10, 16, 32, 64. The learning rate was 5e−5 ,

3e−5, 1e−5 ran on NVIDIA V100 GPUs (32GB). In total, it takes 23 days of pre-training.

Then, the initialization of BERT model and the other three BioBERT models have been

fine-tuned to do different tasks.

• Name Entity Recognition (NER)
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The name entity recognition is a prevalent task in biomedical natural language pro-

cessing. It is the task required for the prediction of domain-specific nouns in the

biomedical text corpus. BERT architecture is proper for performing this task as it

gives the probability prediction vector for the [MASK] word. Applying it for biomedi-

cal text nouns is an appropriate application for the task. The researchers used the

preprocessed datasets designed for performing NER from X. Wang et al. 2018. The

text data included many types of entities, such as proteins, genes, chemicals, and

disease. They compared the result from BERT and BioBERT models with entity-

level F1 score, precision, and recall for evaluating the result. In summary, BioBERT

(pre-trained with PubMed and PMC) achieved the best performance and outper-

formed the state-of-art model for 0.62 by average F1-score.

• Relation Extraction

The researchers have utilized the sentence classification from what has been intro-

duced in BERT original paper (Devlin et al. 2019) using [CLS] token representation

as to the classification output. In this work, [CLS] has been used for classifying the

two different target entities in the input sentences. The input sentences are anno-

tated with @GENES$ and @DISEASE$ for the BioBERT model to classify the rela-

tionship. The researchers incorporated the preprocessed RE datasets, GAD(Bravo

et al. 2015), EU-ADR(Van Mulligen et al. 2012) and CHAMPROT(Krallinger et al.

2015) which the preprocessing step following the work by Lim and Kang 2018. The

dataset used in this fine-tuning task includes the relations between gene-disease

and protein-chemical. The result was reported with the measurements, F1-score,

precision, and recall. In conclusion, BioBERT with PubMed, PMC pre-training out-

performs the state-of-art model by 2.80 higher F1-score.

• Question Answering

The researchers used the same fine-tuning architecture with BERT fine-tuning with

SQuAD, one of the GLUE benchmark experiments dataset (A. Wang et al. 2018).

The researchers used BioASQ dataset (Tsatsaronis et al. 2015) by incorporating

the full abstracts and the pair questions and answers. On the final note, BioBERT

pretrained with PubMed and PMC achieved the new state-of-art performance by

the higher 7.0 of MRR score.
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3.1.5 DistilBERT

DistilBERT(Sanh et al. 2020) is a light transformers model. It is one of the variations of the

BERT model, which requires less resource during the pretraining stage, is 40% smaller

in model size, and is faster for 60%. The architecture of DistilBERT is the same as BERT

except that it removes the token-type embedding and the pooler. The number of layers

also decreased by half. The crucial concept of this model is the knowledge distillation

from the BERT model. This knowledge distillation of DistilBERT was created based on

the work by Hinton et al. 2015 where it introduces the concept of knowledge distillation

developed from the work of Buciluǎ et al. 2006 in 2006. This knowledge distillation is also

known as teacher-student training, where the teacher refers to the larger model, BERT in

this case, and the student is the smaller model, DistilBERT.

The loss in the model training process is calculated based on the cross-entropy from the

teacher model instead of directly from the target class. This makes the distillation model

gets supervision from the larger model.

L = −
∑︂
i

tilogsi (3.7)

t is the logits from the teacher model and s is logits from the student model

When optimizing the model, Kullback-Leibler loss is used as the loss function since it

shows the probability distribution difference of the prediction probability outputs between

the teacher and the student models. The probability distribution demonstrated in Hinton et

al. 2015 is the Softmax function which is suitable for multiclass classification. It converts

the logits, zi, into a probability of each class the data belong to, pi. T parameter in the

Softmax function is set to 1 for the standard classification. However, it can be adjusted.

The higher value of T leads to a smoother probability distribution between classes.

KL(p||q) =
∑︂
i

pilog(pi)−
∑︂
i

pilog(qi) (3.8)

The Kullback-Leibler loss where p illustrates the probability output from the teacher
model and q illustrates the probability output from the student model

pi =
exp(Zi/T )∑︁
j exp(Zj/T )

(3.9)

The Softmax function
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According to Sanh et al. 2020, DistilBERT has experimented with General Language

Understanding Evaluation (GLUE) benchmarks in comparison with BERT-base and ELMo

models. Taking average values from each task score, DistilBERT scores 77, which is only

2.5 points behind the BERT-base model, moreover, higher than ELMo performance for

8.3 points.

Model Score CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B WNLI
ELMo 68.7 44.1 68.6 76.6 71.1 86.2 53.4 91.5 70.4 56.3
BERT-base 79.5 56.3 86.7 88.6 91.8 89.6 69.3 92.7 89.0 53.5
DistilBERT 77.0 51.3 82.2 87.5 89.2 88.5 59.9 91.3 86.9 56.3

Table 3.1. The DistilBERT performance comparison on GLUE benchmart (Sanh et al.
2020).

Parenthetically, the knowledge distillation concept has also been applied to another transformer-

based model, GPT2, called DistilGPT2.
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3.2 Traditional Machine Learning

Traditional machine learning can be an approach for relation extraction tasks that can be

done after applying some of the possible data extraction methods, such as word embed-

ding and TF-IDF vectors (Ramos et al. 2003).

3.2.1 Term Frequency - Inverse Document Frequency (TF-IDF)

Since text data is not understandable by computer programming, transforming the text

information into a numerical value is required. The concept behind TF-IDF is to vectorize

the text documents into numerical value by the term frequency compared by how frequent

the term is represented to the overall corpus.

TF-IDF calculation process starts from creating a corpus of all unique words in the doc-

ument dataset and the frequency of their appearance in the dataset. The list of unique

words is used as a dimension of the output vectors. The row will be the sentences in the

text dataset.

TF is a fraction of the frequency of word occurrence divided by the number of words that

the sentence contains.

TF =
count of term x in sentence n

total of words contain in sentence n
(3.10)

IDF is used for representing the importance of the terms. If the term occurs too much, it

can be stopwords that do not convey important context to the document. IDF will weigh

down the frequently used term and weigh up the scarce ones.

IDF = log(
N

( occurence of term x in the document + 1 )
) (3.11)

For Example, the following text data can extract 4 TF-IDF vectors with 48 dimensions as

follow.

"The International Agency for Research on Cancer (WHO-IARC) classified red meat and

processed meat as probably carcinogenic and carcinogenic for humans, respectively.

These conclusions were mainly based on studies concerning colorectal cancer, but sci-

entific evidence is still limited for other cancer locations. In this study, we investigated the

prospective associations between red and processed meat intakes and overall breast and

prostate cancer risk."
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Figure 3.9. The Demonstration of TF-IDF vectors generation

After transforming the text dataset into TF-IDF vectors, traditional machine Learning can

be used for the following relation extraction process.

3.2.2 Support Vector Machine (SVM)

Support Vector Machines (Noble 2006) is a nonprobabilistic supervised learning tech-

nique originally created for binary classification tasks. It can be used in regression either,

but using this model as a classifier is more common. SVM beats other models most of the

time when a high-dimensional dataset is proposed. This is because the model considers

the set of attributes more than the number of data records.

To put it simply, this model separates two classes by drawing the best line separating the

area with a boundary. The main question to be considered is what can be defined as the

best line.

Figure 3.10. An Illustration of SVM operation

From the figure, when comparing between two lines which can separate the data into two

classes, the line in picture A suits better since it is in the middle between 2 classes. On

the other hand, line B is a bit too close to some points on both sides. We can see this

clearly by seeing the distance between the closest point to the line. The distance between

the closest point to the line from the figure is longer in picture A than in picture B. This is

the principal concept demonstrating the SVM algorithm. It finds the separating line, which

maximizes the distance of the line and the closest point.

Operation behind SVM

When the data has only two classes, the line will be the element that separates between

two classes. With more variables, the process of separating data into different classes
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will become more complex. We call this the determination area where the line should be

a draw as a decision boundary.

Figure 3.11. SVM Decision Boundary

The decision boundary is in the form of a hyperplane with a p-1 dimension when the

dataset has p variables (Hastie et al. 2001). The figure 3.11 shows an example of a 1-

dimensional hyperplane which is simply a line separating data points with two dimensions.

The objects that fall on one side of the boundary will have the +1 as predicted value, while

those that fall on another side will be -1.

y = sign(wTx+ b); y ∈ {−1, 1} (3.12)

What can be defined as the best boundary for SVM is the line that maximizes the distance

between the closest vectors (James et al. 2013). Vectors in this context refer to the data

points which support the creation of the decision boundary. This concept co-aligns with

its name, Support Vector Machines, referring to the vectors supporting the creation of the

decision boundary (Rogers and Girolami 2016). The distance between the perpendicular

decision boundary and the closest vectors on either side is the margin (m).

Let x1 and x2 be the closest points of two classes, the vector joining these two points will

be (x1 − x2). The direction of the points perpendicular to the decision boundary is w
||w|| .

The outcome of the inner product of these two terms will result in the margin from both

sides combining.

2m =
1

||w||
wT (x1 − x2) (3.13)

We can derive m in the simpler form by reformatting the equation as follows (Rogers and
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Figure 3.12. A demonstration of the vector connecting x1 and x2

Girolami 2016).

2m = wT 1

||w||
(x1 − x2)

=
1

||w||
(wTx1 − wTx2)

=
1

||w||
(wTx1 + b− wTx2 − b)

=
1

||w||
(1 + 1)

m =
1

||w||

(3.14)

Thus, to define the best hyperplane separating data into two classes, the goal is to maxi-

mize margin given that the line classifies the data into two classes when it falls in the area

of margin edges and onwards. This optimization function can portray this concept.

maximize
w,b,||w||=1

=
1

||w||
(3.15)

Subject to yi(x
T
i w + b) ≥ m for i = 1, 2, 3, ..., N

After that, one can optimize the equation with any convex optimization techniques, such

as Stochastic Gradient descent and Lagrange multipliers methods.

Kernels Even though support vector machines can classify data in various cases, some

cannot be separated linearly. In some cases, applying polynomial features as an addi-

tional dimension to the data can make it linearly separable (Géron 2017).
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For instance, if our data have only one variable with two classes as follows.

Figure 3.13. A sample case suitable for applying Kernel function

The algorithm cannot find the appropriate points for separating the two classes from one

another. If we would like to apply a nonlinear function in linear regression, we can add

more x variables with a coefficient. From the sample in figure 3.13, if we apply another

feature with hyperbola function, x2 = x2
1, the classes can be separated by a linear deci-

sion boundary.

Figure 3.14. Polynomial Kernel function

There are many kernel functions available. The most well-known are these three following

kernels.

Linear Kernel

k(xn, xm) = xT
nxm

Polynomial Kernel

k(xn, xm) = (1 + xT
nxm)

γ

Gaussian Kernel

k(xn, xm) = exp{−γ(xn − xm)
T (xn − xm)}
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3.2.3 Naive Bayes

Naive Bayes is a classification machine learning algorithm that is well known for its fast

performance (James et al. 2013). It is widely used in spam email detection, sentiment

analysis, and recommendation system.

P (c|x) = P (x|c)P (c)

P (x)
(3.16)

From the formula 3.16, the classifier tends to find the probability of c, given that x has

occurred. The Naive Bayes assumes that all probability of events are independent from

each other and equally affect the expected outcome. This is the reason for its name

’Naive’ as in the actual world probability; there is more complex correlation and causation

to take into account.

The term P(c|x) is the posterior probability, and the event P(c) is prior. Variable x repre-

sents the many possible events that can occur.

x = (x1, x2, x3, ..., xn)

Hence, we can expand the Naive Bayes formula by the chain’s rule.

P (c|x1, x2, x3, ..., xn) =
P (x1|c)P (x2|c)P (x3|c)...P (xn|c)P (c)

P (x1)P (x2)P (x3)...P (xn)

As for each possible event x, the denominator will remain the same. We can remove it to

derive the approximate proportional calculation.

P (c|x1, x2, x3, ..., xn) ∝ P (c)Πn
i=1P (xi|c)

In the case of multivariate classification, just like the relation extraction task, this research

is achieving, the possible output c can be predicted by getting the class with the maximum

value.

c = argmaxcP (c)Πn
i=1P (xi|c)

In the case of continuous variables input, the possible independent variable value is as-

sumed to be followed the Gaussian distribution, and the formula for the conditional prob-

ability can be derived as follow.
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P (ci|x) =
1√︁
2πσ2

x

exp(−(ci − µx)
2

2σ2
x

)
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3.3 Evaluation Method

After creating five different models, the test results are compared by two types of mea-

surement, accuracy and F1 score.

To explain the measurement accuracy and F1 score, the concept of fundamental error is

worth to be explored priorly. In every prediction task, many measurements indicate the

effectiveness of the created models. The proper measurement should be appropriately

chosen based on the specific case the model is trying to solve. According to the following

table, there are four types of errors to consider in binary classification tasks.

Prediction

True False

Reality
True True Positive (TP) False Negative (FN)

False False Positive (FP) True Negative (TN)

Table 3.2. Four Types of Error

The most used measurement for evaluating the machine learning model is accuracy

which its calculation follows this formula.

Accuracy

A =
TP + TN

TP + TN + FP + FN
(3.17)

Accuracy can be a powerful measurement that can tell how effective the model is. How-

ever, it can be unsuitable in many cases, depending on the task that the scientific method

is trying to solve. For instance, in the case of the Covid-19 test, It will be more suit-

able to predict wrong for the negative case (False Positive) than to predict wrong for the

positive case (False Negative) since the False Negative can lead to letting some sample

patients struggle with the pandemic without knowing, being properly cured, and increase

the possibility of spreading the virus to the others. The cost of False Negative, in this

case, is hugely higher than False Positive and should maintain to be as low as possible.

In this case, accuracy alone cannot be a suitable measurement, while using the recall

measurement will be more appropriate(Emmert-Streib, Moutari et al. 2019).

Recall

R =
TruePositive

TruePositive+ FalseNegative
(3.18)

Recall, or sometimes has been called True Positive Rate or sensitivity, tells the rate of the

correct, true prediction among all true samples in reality. The main factor affecting the

recall is the False Negative value. With the high False Negative value, the recall will be
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less reflecting the low quality of the model as it cannot cover all positive cases(Emmert-

Streib, Moutari et al. 2019).

Precision

P =
TruePositive

TruePositive+ FalsePositive
(3.19)

Precision, which can be called Positive Predictive Value, conveys the correct, true predic-

tion rate over the amount of all samples predicted as true. The lower precision represents

the possibility of getting false alarms by the chosen statistic test(Emmert-Streib, Moutari

et al. 2019).

F1-Score

F-Score = (1 + β2)
(Precision ∗Recall)

(Precision+Recall)
(3.20)

F-Score is the weight between precision and recall. The weight can be adjusted by the

parameter β. When β = 0, F-Score will follow the value of precision. While when β −→ ∞,

F-Score will correspond to the recall. F1 − Score is when the β has been set to 1, giving

the harmonic mean of precision and recall. F-Score is a good option when one seeks the

balance between precision and recall and in case of imbalanced data (Emmert-Streib,

Moutari et al. 2019).

K-Folds Cross Validation

Cross-Validation is the method of segmenting the data into K amount of folds for the

model training process. The model will be trained and tested for K amount of time and

be evaluated in the end by an average of measurement results. In each iteration, there

will be K-1 number of training sets and one set for testing. The test set will be changed in

each round until all of the datasets have been used as a test set in K training iterations.

The support vector machine and Naive Bayes classification have been evaluated by 10-

fold cross-validation in this research. While the BioBERT, BERT, and DistilBERT model

has been measured by 3-fold cross-validation due to the time and resource taken.
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Figure 3.15. An Illustration of 3-Fold Cross Validation

Standard Error

In statistical analysis, we sample the dataset with the strategy to have the samples rep-

resent the overall population. After we got the samples, we created descriptive statistics

to describe the sample data distribution. To measure how effective do the sample data

represent the population distribution, we need to have the measurement for describing

the deviation of the sample distribution from the population. The standard error (SE)

is the measurement that estimates the deviation of the sample distribution by using the

standard deviation (SE).

The main difference between SD and SE is that SD measures the deviation of the data

points while SE measures how the mean deviates from the population mean.

Standard Error =
Standard Deviation√
Number of Samples

(3.21)

Standard Deviation =

√︄∑︁
(x1 − x̄)2

n− 1
(3.22)

Learning Curve

Learning Curve (Emmert-Streib and Dehmer 2019) is a visualized method for diagnostic

of the model performance. It shows the change in the prediction score when increasing

the number of sample sizes. The way to get the most information from the curve is to

conduct the learning curves comparing the learning of the training set and the validation

set. These compared learning curves can tell two pieces of information about our created

model. It tells the point where our model has a sufficient amount of samples for the
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training and how much bias and variance represent in the model. With an increase in

sample size, the slope of the learning curve can be interpreted as follow.

• The learning significantly changes.

This means the model still hasn’t learned much from the given dataset enough to

make an accurate prediction for the future dataset. It still requires a lot more data

for the training process.

• The learning gradually changes.

This shows that the model has almost reached the point that it can draw an accurate

conclusion from the pattern in the given data. However, it still requires a lot more

data to generalize the problem.

• The learning is flattened out.

This means the sample size is sufficient.

In addition, the training and test learning curve in the graph can tell information on bias

and variance that our created model has by seeing how the curve behaves.

• High Bias - Low Variance Suppose that the validation and the training learning

curves converge to the prediction score that is quite low. It means that the model

has a high bias. Moreover, if the training and validation curves have a small gap

between each other, it means that the model generalizes well with the future unseen

dataset that it can perform as well as the prediction performance of the training

dataset. This indicates the low variance. The solution for high bias and low variance

is to increase the complexity of the model so that it can fit more to the pattern in the

dataset. We can describe this high bias, low variance that the model is underfitting.

• High Variance - Low Bias The high prediction score means the model has a low

bias. Nonetheless, if the validation and training curves have a big gap between

each other, that signifies the high variance value. In other words, the model is

too overfitting to the training data set that it cannot generalize the task well enough

when it encounters the other future datasets. This issue can be solved by increasing

more sample size for the model to learn.

To illustrate and describe the learning curve, even more, we have created an example

of the learning curves charts from two classification machine learning models, SVM and

Random Forrest. We use an Iris dataset, a free open source dataset published by UCI

Machine learning, to construct the learning curves.

As can be seen, 3.16 has a very small gap between the validation and training learning

curves when compared to 3.17. This means the SVM model generalizes the data better

while the random forest model has a higher variance. The random forest model has a

higher tendency to be too overfitted with the training dataset. Both models perform well

in terms of prediction scores; this shows that both models have low bias values.
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Figure 3.16. SVM Learning Curve

Figure 3.17. Random Forest Learning Curve
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4 RESEARCH METHODS

4.1 Dataset

The dataset in this research has been acquired with a manual process from the biomedi-

cal text database. The process can be described as follow.

4.1.1 Data Collection

The dataset was acquired from PubMed, a free search engine for mainly accessing the

MEDLINE database’s research papers. It contains journals on the topic of life sciences

and biomedical sciences. In this research, we focus on papers’ content related to dietary

compounds and cancer. Hence, search terms, ’food’ and ’cancer’ were incorporated

accordingly. We have collected 150 papers in total.

The PubMed search engine can be accessed through the website, https://pubmed.
ncbi.nlm.nih.gov

4.1.2 Data Preparation

The text data used in this research is the sentences from only the abstracts part of the

papers. The sentences were split manually identified by a full stop(.). Then, the entity

recognition process was done manually. If there existed words referring to the disease,

cancer, they were replaced with ’@DISEASE$’. Examples of these words can be ’cancer’,

’bladder cancer’, ’carcinoma’. Concurrently, if words referred to food compounds, they

were replaced with ’@FOOD$’ annotation. Moreover, we created a field for collecting the

relationship between entities within each sentence. If there appeared only one type of

entity or no entity detected, we conclude that there wasn’t any relationship appeared and

the label was marked with the number 0.

If the @FOOD$ entity has an inhibit association to the @DISEASE$ entity, the label would

be 2. For the provoked connection, we assigned a label equal to 3. Label 1 conveys the

relation that two entities have an interconnection to each other but cannot tell the direction.

The number of records for each relation type can be reported as follows.

https://pubmed.ncbi.nlm.nih.gov
https://pubmed.ncbi.nlm.nih.gov
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Label Association

0 No Relation

1 Related

2 Prevent / Inhibit

3 Provoke

Table 4.1. Relation Labels

Label Number of sentences % Total

0 745 62.50%

1 107 8.98%

2 295 24.75%

3 45 3.77%

Altogether, we got 1,192 data records prepared for the model training.

4.2 Tools

In this research, the transformer-based model, BioBERT, BERT, and DistilBERT, had been

implemented by the Transformers python library provided by the company, Hugging Face.

The conventional machine learning models, SVM, and Naive Bayes was implemented by

the Scikit-learn library.

Transformers Library

Transformers is a Python library for Natural Language Understanding (NLU) and Natural

Language Generation (NLG). The library is compatible with Pytorch, Tensorflow machine

learning libraries. It supports the state-of-art models and hosts the model hub where re-

searchers can upload their fine-tuned model directly for others to use or develop forward.

Scikit-learn

Scikit-learn is a Python library for machine learning tasks with many supported conven-

tional machine learning algorithms, such as Support Vector Machine, Random Forrest,

K-mean Clustering, and Decision Tree. This library was originally created in 2007 as a

Google summer code project by David Cournapeau. Afterward, there have been many

contributors joined and helped continuously develop this tool until now.

Google Colab

Concerning the programming environment, the issue with fine-tuning a large complex

model like BERT is that it requires a lot of computing power and library version dependen-

cies. To solve this issue, Google Colaboratory (Colab) was used as the main environment

for conducting this research. Colab is the product from google hosting, an online Jupyter
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notebook service. Any users can execute their python code from their browser directly

without any setup in their local machine. The most prominent feature of this notebook

making it suitable for deep learning research is the free access to the limited amount of

GPU and TPU resources.

4.3 Analysis Method

After the data had been prepared, we used the data in fine-tuning process for BioBERT,

BERT, and DistilBERT. The language model was downloaded into the workspace from

the model hub hosted by Huggingface website, huggingface.co/models. For the BERT

model, the version which we used for the fine-tuning process is bert-base-cased that

has been updated on September 6, 2021. BioBERT model is provided by Data Mining

and Information System Lab, Korea University. In this research, we used the BioBERT

version 1.1, which was latest updated on May 19, 2021. In addition, for DistilBERT, we

use the model distilbert-base-uncased that was updated on August 30, 2021. Mainly, for

the model fine-tuning stage, the implementation was done with Transformer and Pytorch

libraries.

The process of Transformer based model fine-tuning can be divided into two parts; the

tokenization part and the model fine-tuning part.

Tokenization

With the transformers library, one can transfer the knowledge from the pretrained tok-

enizer to be used for word embedding of the input data. This can be done with the

method, Autotokenizer. We set the maximum input length of the tokenizer as 319, which

is equal to the number of words in the longest sentences among the dataset. We applied

the padding and chose the output as PyTorch tensors. The pretrained tokenizers were

downloaded from the three pretrained BERT-base models that we have conducted.

• dmis-lab/biobert-v1.1

• bert-base-cased

• distilbert-base-uncased

Model Fine-tuning

After the data had been transformed into a numeric vector with the pretrained tokenizer,

we downloaded the pre-trained weights of each BERT-based model to fine-tune with the

prepared dataset. All models are available on the Huggingface hub. This step required

a data transformation into PyTorch tensors. Since we use the Pytorch library for this

training, we used the data loader function to train the model with a batch size equal to

ten. Each BERT-based model was trained with three-fold cross-validation. In each fold,

the model was trained with three epochs. The Adam optimizer was used with learning
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rate equal to 2e−5 and ϵ equal to 1e−8. All the models have been set to use the same

output layers configuration as the GLUE task (A. Wang et al. 2018), Stanford Sentiment

Treebank (SST-2), the dataset for fine-tuning classification for single sentence inputs.

Conventional Machine Learning Model

We started with the feature extraction process from the text data with the @DISEASE$

and @FOOD$ entities annotation. While we used the pre-trained tokenizer for deep learn-

ing methods, TF-IDF vectors were extracted from the input text in the conventional ma-

chine learning method. In the end, we got the input vectors with 3,573 dimensions as

an input for our machine learning model. We created an SVM model with Linear Kernel

to predict the target class. Another model we have constructed is the Gaussian Naive

Bayes classifier. Both of the models are created by the Scikit-learn library and trained

with ten-fold cross-validation.

4.4 Evaluation

After obtaining the models, we applied evaluation methods to justify the models’ perfor-

mance. For BERT, BioBERT, DistilBERT, we applied the three-Fold Cross Validation using

accuracy and F1 score as the primary measurement. The reason behind choosing the K

parameter equal to three is due to the computational and time consumption in fine-tuning

process since Transformer models require lots of computational power in model tuning.

We are setting K as three as it is considered not wasting too many resources and not too

little to draw a conclusion based on the researcher’s justification. The standard error is

also recorded for measuring the reliability of the model performance in each fold.

As for SVM and Naive Bays, we used the same measurement but increased the K value

to ten-Fold Cross-Validation since the conventional models’ architecture is more straight-

forward and does not require too much resource.

In addition, after all results were acquired, we would like to get more information on the

amount of training set required for the models. We have created the learning curves to

visualize the effectiveness of the model learning process over the increasing sample size.

We tried different training samples from 200, 400, 600, 800, 1000, 1192. The F1-Score

from training and validation were compared.

We also constructed the learning curves for SVM and Naive Bayes to see the suitability

in the number of training samples and the bias-variance trade-off in the models.
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5 RESULTS

After we had done the process described in the method session, we evaluated the result

using the evaluation method described to see how well the created models have per-

formed. The process consists of the text data collection from the paper abstracts, data

preparation by manually splitting the text into sentences level, annotating the @FOOD$

and @DISEASE$ entities, and extracting entities’ relations. After that, we have created

three BERT-based models from the prepared dataset. The models were fine-tuned with

three-fold cross-validation with F1-score and accuracy recorded. The traditional machine

learning models, SVM and Naive Bayes Classifiers, have also been constructed. In ad-

dition, we have created the learning curves to see how the five models behave with the

increase in sample size.

5.1 BERT

With the entire 1,192 rows dataset, the fine-tuned BERT got F1-Score 0.7844 from the

three-fold cross-validation with a standard error equal to 0.0092. However, when we

measured by accuracy, the model got 0.8133 with 0.0027 standard error.

Figure 5.1. BERT Learning Curve : F1-Score

From plotting the learning curve, we can see that the model is still in the learning state as
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Figure 5.2. BERT Learning Curve : Accuracy

both test and training slope are still positive and tend to keep growing forward after our

limited 1,192 records sample size. The model still has not reached to the optimum level

that it can perform at its best.

5.2 DistilBERT

The fine-tuned DistilBERT got 0.7338 F1-Score with 0.0206 standard error. For accuracy,

it received 0.7559 with 0.0160 standard error.

Figure 5.3. DistilBERT Learning Curve : F1-Score
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Figure 5.4. DistilBERT Learning Curve : Accuracy

When seeing the learning curve, we can see that the slope for DistilBERT is flatter than

the BERT model showing that the sample size is almost enough for the model prediction.

However, since the standard error for DistilBERT is higher than BERT at the 1,192 sample

size, it shows that the flatten out learning curve might still fluctuate, and increasing the

amount of sample size can make the model learn better.

Even though DistilBERT received less score than the fine-tuned BERT for 0.05, the fine-

tuning process takes significantly less time. According to Sanh et al. 2019, DistilBERT

is 40% smaller than the BERT model size, and it is 60% faster in fine-tuning time. From

our observation table 5.1, we have recorded the time taken during the full dataset (1,192

records) trained in one epoch with a batch size equal to ten. The training set is 66.66%,

and test set is 33.33% of the input dataset. While BERT took 1 minute and 26 seconds

during fine-tuning one epoch with ten batch sizes, DistilBERT only took 43 seconds. That

is 50% faster. This applied the same to the test stage; it took 16 seconds for BERT and 8

seconds for DistilBERT.

Model Training Test

BERT 0:01:26 0:00:16

DistilBERT 0:00:43 0:00:08

BioBERT 0:01:23 0:00:15

Table 5.1. BERT-based Models Time Taken During Fine-tuning Stage
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5.3 BioBERT

The fine-tuned BioBERT received a 0.7855 F-score with 0.0123 standard error. The

accuracy is 0.8164 with 0.0068 standard error.

Figure 5.5. BioBERT Learning Curve : F1-Score

Figure 5.6. BioBERT Learning Curve : Accuracy

As can be seen, the learning curve has an upward trend with a positive slope showing

that the learning can still go on even more with the larger amount of sample size. With the

only amount of samples that we have, we can compare the measurement with the original

BERT fine-tuned score that BioBERT performs better for 0.0011 F1-Score and 0.0031 for

accuracy.

Since the difference between the BioBERT and BERT in our research is relatively small
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compared to the original paper(Lee et al. 2019) where BioBERT outperforms BERT in re-

lation extraction task for 2.8 F1-score. Thus, we conducted the t-test statistics to compare

the three-fold cross-validation test results from the two language models.

Model Validatioin Set1 Validatioin Set2 Validation Set3 Mean SD

BERT 0.8067 0.77 0.7766 0.7844 0.0195

BioBERT 0.8157 0.7695 0.7712 0.7855 0.0262

H0 : µBioBERT − µBERT ≤ d (5.1)

H1 : µBioBERT − µBERT > d (5.2)

t =
(x̄1 − x̄2)− (µ1 − µ2)√︂

Ss
1

n1
+

Ss
2

n2

(5.3)

df =
(
Ss
1

n1
+

Ss
2

n2
)2

(
S2
1

n1
)2

n1−1
+

(
S2
2

n2
)2

n2−1

(5.4)

The probability value from this T-test equals to 0.4794, which is larger than 0.05. We

can not reject that the average F1-Scores from BioBERT can be less than or equal to

F1-Scores from BERT.
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5.4 Support Vector Machine

We have conducted the traditional machine learning method, Support Vector Machine,

with the TF-IDF vectors extracted from our text dataset. It got a 0.6497 F-Score with

0.0107 standard error. In terms of accuracy, it received 0.7139 with 0.0089 standard

error.

Figure 5.7. SVM Learning Curve : F1-Score

Figure 5.8. SVM Learning Curve : Accuracy

Looking at the SVM learning curve, we can see that the gap between the train and the

test sets is very high. This shows that the model is overfitting to the training dataset that

it cannot generalize the future dataset which it has not seen before that well. This type of

model has high variance. Increasing the dataset can help the model to learn better.
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5.5 Gaussian Naive Bayes

Gaussian Naive Bayes classifier received the worst result among other models. After

we had trained the TF-IDF vectors with ten-fold cross-validation, we received a 0.5644

F-score with 0.0127 standard error and 0.5931 accuracy with 0.0132 standard error.

Figure 5.9. Naive Bayes Learning Curve : F1-Score

Figure 5.10. Naive Bayes Learning Curve : Accuracy

From plotting the the learning curves across the different sample size, we found that the

learning didn’t increase followed the increasing amount of samples overtime. The model

has almost the same performance since the point that the sample size equal to 200. It

can be said that the model has high bias error from its low prediction result which hasn’t

been improved over the growing amount of samples. In this case, increasing the model
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complexity is needed as the model isn’t sophisticated enough to learn the pattern from

the dataset.

5.6 The analysis of all results in comparison

Model F1 Training F1 Test Accuracy Training Accuracy Test

BERT 0.75(0.0054) 0.7844(0.0092) 0.7844 (0.0055) 0.8133 (0.0027)

DistilBERT 0.6296 (0.0127) 0.7338 (0.0206) 0.7426 (0.0046) 0.7559 (0.0160)

BioBERT 0.7412 (0.0144) 0.7855 (0.0123) 0.7832 (0.0098) 0.8164 (0.0068)

SVM 0.9517(0.0009) 0.6497(0.0107) 0.9564 (0.0007) 0.7139 (0.0089)

NB 0.9533(0.0009) 0.5644(0.0127) 0.9523(0.0009) 0.5931(0.0132)

The performance can be ranked in the following order.

BioBERT > BERT > DistilBERT > SVM > NB

We can conclude that the BERT-based language models have an exceptional perfor-

mance compared to the traditional machine learning models. While BERT, the state-of-art

language model, received a prominent performance. BioBERT has outperformed BERT

by 0.0011 F1-Score.

To compare the learning process from each model even better, we have constructed the

comparison in learning curves of the five constructed models.

Figure 5.11. BERT-based Models Learning Curve Comparison

From the figure 5.11, we can see the BERT and BioBERT have steep learning curves and
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can continue the training process even more, to perform the task better. The DistilBERT

learning curve, however, moderately increased after 1,000 samples. However, between

200 to 400 sample sizes, the DistilBert learning is steeper than the other two BERT-based

models. This is due to the model architecture design of DistilBERT to be the lightweight

model where it can learn faster but a bit poorer in performance than the full-scaled state-

of-art model, BERT.

From the figure 5.12, we can see that the SVM has a better learning process compared to

the Gaussian Naive Bayes, which almost has not learned from the newly increased sam-

ple size at all. At 200 sample size, Naive Bayes, however, perform better than the Support

Vector Machine. Overall, this plot shows that SVM has a more sophisticated model that

can learn from the increased data over time, while the Gaussian Naive Bayes’ model

architecture is too simple for performing the classification over TF-IDF vectors extracted

from the text dataset.

Figure 5.12. SVM and NB leaning Curve Comparison
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6 CONCLUSION

To sum up, we have created the five machine learning models to classify the four types

of relations between food and cancer entities from text data. The aim is to compare the

suitability of the natural language processing models that are proper to be used as an

information extraction system to construct a biomedical network knowledge graph.

The data was acquired from the biomedical papers search engine, PubMed. We only

specify the search terms "food cancer" to get the relevant topic. We used the abstracts

of the paper as our primary dataset. The sentences are separated by a full stop(.) and

annotated with @FOOD$ and @DISEASE$ entities manually.

The prepared dataset was used for fine-tuning the three BERT-based language models,

BERT, DistilBERT, BioBERT. The result proves that BioBERT is the best model choice

for biomedical natural language text relation extraction from its domain specialization. It

earned a 0.7855 F1-score with a 0.0123 standard error. The performance that it got is

more than the original BERT fine-tuned model for 0.0011 F1-score. Even though the

test results from our conducted three-fold cross-validation are not enough to statistically

prove that the BioBERT got the better performance, increasing sample size in the future

research will make the comparison of the results more apparent to see.

On the other hand, the DistilBERT has the least performance score among other BERT-

based models. However, it is faster in fine-tuning. Particularly in our research with 1,192

input datasets, DistilBERT fine-tuning is 50% faster than BERT with only 0.05 lower in

F1-score. It can be said that DistilBERT is more suitable for application production with a

compact resource.

When seeing the learning curve of the three BERT-based models in comparison, it can be

seen that BERT and BioBERT had a steep learning curve with the tendency to continue

with more samples than 1,192, which we currently have. DistilBERT, however, tended

to moderately increase with the higher sample size. At the smaller sample, DistilBERT

learning curve was steeper than the other two models. This shows that with the limited

amount of data, DistilBERT can be an option for an acceptable relation extraction per-

formance. However, since the slope of DistilBERT still had the positive value, increasing

more datasets will improve all BERT-based models’ performance.

We have also conducted the traditional machine learning models, Support Vector Ma-



47

chine and Gaussian Naïve Bayes classifiers, as the baseline comparison to the proven

state-of-art BERT-based models. The Support Vector Machine on the TF-IDF vectors per-

forms tolerable prediction output with a 0.6497 F1-score. Naive Bayes, however, performs

worst among other models. Seeing the learning curve in comparison between these two

conventional models lets us understand the learning process that actually took place. The

Naïve Bayes model had not learned from the increased dataset at all. It can be concluded

that the model is not sophisticated enough to learn from the dataset as the F1-score for

the test set was approximately around 0.56 since the beginning when the sample size

equal to 200 and hadn’t increased that much afterwards. Nonetheless, SVM also has an

issue with the model overfitting with the training dataset. This can be seen from the large

gap between the training and test curves. However, according to its test learning curve

slope, which has an upward trend, this illustrates that it can be improved with significantly

more samples in future work.

Despite the information gained from this research, this relation extraction task is only one

of the tasks that will enable biomedical network creation. The other related tasks, for

example, name-entity recognition, will need to be done to create an automated workflow.

With the limitation in time and resource, we did the entity annotation by hand instead.

Further research, study, and development will need to be done to construct this network

that fully connects all the life science together.

This research shows the possible application of applying natural language processing in

the specific domain, biomedical research, to create value for the field’s specialists.
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7 APPENDIX

All of the fine-tuned BERT-based models were uploaded to the huggingface model hub

for any further development. They can be found at

https://huggingface.co/Wiirin

Moreover, the Python code used for constructing the learning curves from the fine-tuned

BERT-based models that we have mentioned in this research is available at

https://github.com/wiirin/BioBERT-finetuned-FoodCancer

7.1 Measurement for Learning Curve

7.1.1 BERT

Sample Size F1 Training F1 Test Accuracy Training Accuracy Test

200 0.5467(0.0150) 0.5655(0.0187) 0.6422 (0.0105) 0.6833 (0.0150)

400 0.5911(0.0283) 0.6289(0.0524) 0.6767 (0.0094) 0.7156 (0.0265)

600 0.6611(0.0333) 0.7355(0.027) 0.7167 (0.0191) 0.7722 (0.0181)

800 0.6711(0.0259) 0.7222(0.0341) 0.7278 (0.0127) 0.7600 (0.0193)

1000 0.7389(0.0086) 0.76(0.0216) 0.7733 (0.0083) 0.7856 (0.0168)

1192 0.75(0.0054) 0.7844(0.0092) 0.7844 (0.0055) 0.8133 (0.0027)

7.1.2 DitilBERT

Sample Size F1 Training F1 Test Accuracy Training Accuracy Test

200 0.6296 (0.0127) 0.5622 (0.0170) 0.6217 (0.0129) 0.6803 (0.0129)

400 0.6636 (0.0002) 0.6839 (0.0192) 0.6991 (0.0058) 0.7385 (0.0086)

600 0.6836 (0.0109) 0.7069 (0.0164) 0.7164 (0.0020) 0.7422 (0.0118)

800 0.6925 (0.0018) 0.7253 (0.0099) 0.7225 (0.0089) 0.7397 (0.0118)

1000 0.7078 (0.0060) 0.7398 (0.0227) 0.7359 (0.0028) 0.7616 (0.0210)

1192 0.6296 (0.0127) 0.7338 (0.0206) 0.7426 (0.0046) 0.7559 (0.0160)

https://huggingface.co/Wiirin
https://github.com/wiirin/BioBERT-finetuned-FoodCancer


53

7.1.3 BioBERT

Sample Size F1 Training F1 Test Accuracy Training Accuracy Test

200 0.5787 (0.0158) 0.5651 (0.0188) 0.6742 (0.0117) 0.6846 (0.0146)

400 0.5861 (0.0179) 0.6068 (0.0217) 0.6877 (0.0104) 0.7040 (0.0110)

600 0.6855 (0.0055) 0.7179 (0.0402) 0.7394 (0.0018) 0.7506 (0.0244)

800 0.6721 (0.0302) 0.7123 (0.0510) 0.7390 (0.0192) 0.7577 (0.0288)

1000 0.7386 (0.0065) 0.7637 (0.0286) 0.7810 (0.0070) 0.7897 (0.0251)

1192 0.7412 (0.0144) 0.7855 (0.0123) 0.7832 (0.0098) 0.8164 (0.0068)

7.1.4 Support Vector Machine

Sample Size F1 Training F1 Test Accuracy Training Accuracy Test

200 0.8656(0.0056) 0.5054(0.0057) 0.9075 (0.0031) 0.6351 (0.0027)

400 0.9071(0.0034) 0.5604(0.0082) 0.9278 (0.0025) 0.6611 (0.0044)

600 0.9379(0.0018) 0.6165(0.0087) 0.9503 (0.0014) 0.6921 (0.0069)

800 0.9456(0.0012) 0.637(0.0106) 0.9559 (0.001) 0.7056 (0.009)

1000 0.9512(0.0019) 0.6414(0.0127) 0.9568 (0.0013) 0.7072 (0.0103)

1192 0.9517(0.0009) 0.6497(0.0107) 0.9564 (0.0007) 0.7139 (0.0089)

7.1.5 Gaussian Naive Bayes

Sample Size F1 Training F1 Test Accuracy Training Accuracy Test

200 0.9955(0.0005) 0.5533(0.0073) 0.9955(0.0005) 0.6124(0.0063)

400 0.9861(0.0011) 0.5544(0.0094) 0.986(0.0011) 0.5998(0.0088)

600 0.9713(0.0013) 0.5432(0.0114) 0.9708(0.0014) 0.583(0.0122)

800 0.9652(0.0011) 0.5533(0.0108) 0.9646(0.0011) 0.5864(0.0111)

1000 0.9549(0.0011) 0.57(0.0123) 0.9539(0.0012) 0.5998(0.013)

1192 0.9533(0.0009) 0.5644(0.0127) 0.9523(0.0009) 0.5931(0.0132)
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7.2 Learning Curves Data

This table shows the detail on measurement in each fold cross validation from five con-

ducted models. We have collected both accuracy and F1-Score.

n Data Type Model Measure

200 0.6367 Train BERT Accuracy

200 0.6667 Train BERT Accuracy

200 0.6233 Train BERT Accuracy

400 0.6767 Train BERT Accuracy

400 0.6967 Train BERT Accuracy

400 0.6567 Train BERT Accuracy

600 0.6700 Train BERT Accuracy

600 0.7367 Train BERT Accuracy

600 0.7433 Train BERT Accuracy

800 0.7433 Train BERT Accuracy

800 0.7433 Train BERT Accuracy

800 0.6967 Train BERT Accuracy

1000 0.7600 Train BERT Accuracy

1000 0.7667 Train BERT Accuracy

1000 0.7933 Train BERT Accuracy

1192 0.7733 Train BERT Accuracy

1192 0.7833 Train BERT Accuracy

1192 0.7967 Train BERT Accuracy
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n Data Type Model Measure

200 0.7000 Test BERT Accuracy

200 0.6467 Test BERT Accuracy

200 0.7033 Test BERT Accuracy

400 0.6767 Test BERT Accuracy

400 0.7800 Test BERT Accuracy

400 0.6900 Test BERT Accuracy

600 0.7333 Test BERT Accuracy

600 0.8100 Test BERT Accuracy

600 0.7733 Test BERT Accuracy

800 0.7767 Test BERT Accuracy

800 0.7900 Test BERT Accuracy

800 0.7133 Test BERT Accuracy

1000 0.8267 Test BERT Accuracy

1000 0.7633 Test BERT Accuracy

1000 0.7667 Test BERT Accuracy

1192 0.8200 Test BERT Accuracy

1192 0.8100 Test BERT Accuracy

1192 0.8100 Test BERT Accuracy
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n Data Type Model Measure

200 0.5300 Train BERT F1

200 0.5833 Train BERT F1

200 0.5267 Train BERT F1

400 0.5633 Train BERT F1

400 0.6600 Train BERT F1

400 0.5500 Train BERT F1

600 0.5800 Train BERT F1

600 0.6933 Train BERT F1

600 0.7100 Train BERT F1

800 0.7167 Train BERT F1

800 0.6867 Train BERT F1

800 0.6100 Train BERT F1

1000 0.7300 Train BERT F1

1000 0.7267 Train BERT F1

1000 0.7600 Train BERT F1

1192 0.7433 Train BERT F1

1192 0.7433 Train BERT F1

1192 0.7633 Train BERT F1

200 0.5833 Test BERT F1

200 0.5200 Test BERT F1

200 0.5933 Test BERT F1

400 0.5533 Test BERT F1

400 0.7567 Test BERT F1

400 0.5767 Test BERT F1

600 0.6767 Test BERT F1

600 0.7933 Test BERT F1

600 0.7367 Test BERT F1

800 0.7767 Test BERT F1

800 0.7500 Test BERT F1

800 0.6400 Test BERT F1

1000 0.8100 Test BERT F1

1000 0.7200 Test BERT F1

1000 0.7500 Test BERT F1

1192 0.8067 Test BERT F1

1192 0.7700 Test BERT F1

1192 0.7767 Test BERT F1
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n Data Type Model Measure

200 0.6754 Train BioBERT Accuracy

200 0.6984 Train BioBERT Accuracy

200 0.6488 Train BioBERT Accuracy

400 0.7132 Train BioBERT Accuracy

400 0.6744 Train BioBERT Accuracy

400 0.6755 Train BioBERT Accuracy

600 0.7350 Train BioBERT Accuracy

600 0.7417 Train BioBERT Accuracy

600 0.7417 Train BioBERT Accuracy

800 0.7529 Train BioBERT Accuracy

800 0.7710 Train BioBERT Accuracy

800 0.6932 Train BioBERT Accuracy

1000 0.7638 Train BioBERT Accuracy

1000 0.7889 Train BioBERT Accuracy

1000 0.7901 Train BioBERT Accuracy

1192 0.7596 Train BioBERT Accuracy

1192 0.7912 Train BioBERT Accuracy

1192 0.7987 Train BioBERT Accuracy

200 0.7000 Test BioBERT Accuracy

200 0.6490 Test BioBERT Accuracy

200 0.7048 Test BioBERT Accuracy

400 0.7310 Test BioBERT Accuracy

400 0.6921 Test BioBERT Accuracy

400 0.6889 Test BioBERT Accuracy

600 0.7517 Test BioBERT Accuracy

600 0.8017 Test BioBERT Accuracy

600 0.6983 Test BioBERT Accuracy

800 0.7799 Test BioBERT Accuracy

800 0.8046 Test BioBERT Accuracy

800 0.6885 Test BioBERT Accuracy

1000 0.8495 Test BioBERT Accuracy

1000 0.7725 Test BioBERT Accuracy

1000 0.7471 Test BioBERT Accuracy

1192 0.8325 Test BioBERT Accuracy

1192 0.8124 Test BioBERT Accuracy

1192 0.8043 Test BioBERT Accuracy
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n Data Type Model Measure

200 0.5873 Train BioBERT F1

200 0.6070 Train BioBERT F1

200 0.5418 Train BioBERT F1

400 0.6298 Train BioBERT F1

400 0.5625 Train BioBERT F1

400 0.5660 Train BioBERT F1

600 0.6804 Train BioBERT F1

600 0.6989 Train BioBERT F1

600 0.6772 Train BioBERT F1

800 0.7040 Train BioBERT F1

800 0.7140 Train BioBERT F1

800 0.5982 Train BioBERT F1

1000 0.7230 Train BioBERT F1

1000 0.7438 Train BioBERT F1

1000 0.7489 Train BioBERT F1

1192 0.7061 Train BioBERT F1

1192 0.7551 Train BioBERT F1

1192 0.7623 Train BioBERT F1

200 0.5844 Test BioBERT F1

200 0.5192 Test BioBERT F1

200 0.5918 Test BioBERT F1

400 0.6597 Test BioBERT F1

400 0.5836 Test BioBERT F1

400 0.5770 Test BioBERT F1

600 0.7487 Test BioBERT F1

600 0.7834 Test BioBERT F1

600 0.6215 Test BioBERT F1

800 0.7794 Test BioBERT F1

800 0.7700 Test BioBERT F1

800 0.5875 Test BioBERT F1

1000 0.8337 Test BioBERT F1

1000 0.7263 Test BioBERT F1

1000 0.7310 Test BioBERT F1

1192 0.8157 Test BioBERT F1

1192 0.7695 Test BioBERT F1

1192 0.7712 Test BioBERT F1
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n Data Type Model Measure

200 0.5905 Train DistilBERT Accuracy

200 0.6413 Train DistilBERT Accuracy

200 0.6333 Train DistilBERT Accuracy

400 0.6918 Train DistilBERT Accuracy

400 0.7132 Train DistilBERT Accuracy

400 0.6922 Train DistilBERT Accuracy

600 0.7158 Train DistilBERT Accuracy

600 0.7125 Train DistilBERT Accuracy

600 0.7208 Train DistilBERT Accuracy

800 0.7021 Train DistilBERT Accuracy

800 0.7261 Train DistilBERT Accuracy

800 0.7392 Train DistilBERT Accuracy

1000 0.7294 Train DistilBERT Accuracy

1000 0.7412 Train DistilBERT Accuracy

1000 0.7371 Train DistilBERT Accuracy

1192 0.7365 Train DistilBERT Accuracy

1192 0.7537 Train DistilBERT Accuracy

1192 0.7375 Train DistilBERT Accuracy

200 0.7000 Test DistilBERT Accuracy

200 0.6490 Test DistilBERT Accuracy

200 0.6921 Test DistilBERT Accuracy

400 0.7298 Test DistilBERT Accuracy

400 0.7595 Test DistilBERT Accuracy

400 0.7262 Test DistilBERT Accuracy

600 0.7350 Test DistilBERT Accuracy

600 0.7700 Test DistilBERT Accuracy

600 0.7217 Test DistilBERT Accuracy

800 0.7349 Test DistilBERT Accuracy

800 0.7668 Test DistilBERT Accuracy

800 0.7173 Test DistilBERT Accuracy

1000 0.8034 Test DistilBERT Accuracy

1000 0.7667 Test DistilBERT Accuracy

1000 0.7147 Test DistilBERT Accuracy

1192 0.7921 Test DistilBERT Accuracy

1192 0.7505 Test DistilBERT Accuracy

1192 0.7250 Test DistilBERT Accuracy
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n Data Type Model Measure

200 0.4959 Train DistilBERT F1

200 0.5459 Train DistilBERT F1

200 0.5250 Train DistilBERT F1

400 0.6125 Train DistilBERT F1

400 0.6607 Train DistilBERT F1

400 0.6157 Train DistilBERT F1

600 0.6638 Train DistilBERT F1

600 0.6638 Train DistilBERT F1

600 0.6632 Train DistilBERT F1

800 0.6661 Train DistilBERT F1

800 0.6748 Train DistilBERT F1

800 0.7099 Train DistilBERT F1

1000 0.6889 Train DistilBERT F1

1000 0.6923 Train DistilBERT F1

1000 0.6964 Train DistilBERT F1

1192 0.6969 Train DistilBERT F1

1192 0.7219 Train DistilBERT F1

1192 0.7045 Train DistilBERT F1

200 0.5909 Test DistilBERT F1

200 0.5216 Test DistilBERT F1

200 0.5741 Test DistilBERT F1

400 0.6716 Test DistilBERT F1

400 0.7293 Test DistilBERT F1

400 0.6506 Test DistilBERT F1

600 0.7190 Test DistilBERT F1

600 0.7339 Test DistilBERT F1

600 0.6677 Test DistilBERT F1

800 0.7329 Test DistilBERT F1

800 0.7415 Test DistilBERT F1

800 0.7016 Test DistilBERT F1

1000 0.7916 Test DistilBERT F1

1000 0.7312 Test DistilBERT F1

1000 0.6967 Test DistilBERT F1

1192 0.7820 Test DistilBERT F1

1192 0.7227 Test DistilBERT F1

1192 0.6968 Test DistilBERT F1
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n Data Type Model Measure

200 1.0000 Train NB Accuracy

200 0.9950 Train NB Accuracy

200 0.9950 Train NB Accuracy

200 0.9950 Train NB Accuracy

200 0.9950 Train NB Accuracy

200 0.9950 Train NB Accuracy

200 0.9950 Train NB Accuracy

200 0.9950 Train NB Accuracy

200 0.9950 Train NB Accuracy

200 0.9950 Train NB Accuracy

400 0.9950 Train NB Accuracy

400 0.9875 Train NB Accuracy

400 0.9850 Train NB Accuracy

400 0.9825 Train NB Accuracy

400 0.9850 Train NB Accuracy

400 0.9850 Train NB Accuracy

400 0.9850 Train NB Accuracy

400 0.9850 Train NB Accuracy

400 0.9850 Train NB Accuracy

400 0.9850 Train NB Accuracy

600 0.9783 Train NB Accuracy

600 0.9750 Train NB Accuracy

600 0.9717 Train NB Accuracy

600 0.9650 Train NB Accuracy

600 0.9767 Train NB Accuracy

600 0.9683 Train NB Accuracy

600 0.9683 Train NB Accuracy

600 0.9683 Train NB Accuracy

600 0.9683 Train NB Accuracy

600 0.9683 Train NB Accuracy
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n Data Type Model Measure

800 0.9675 Train NB Accuracy

800 0.9675 Train NB Accuracy

800 0.9638 Train NB Accuracy

800 0.9613 Train NB Accuracy

800 0.9725 Train NB Accuracy

800 0.9613 Train NB Accuracy

800 0.9613 Train NB Accuracy

800 0.9638 Train NB Accuracy

800 0.9638 Train NB Accuracy

800 0.9638 Train NB Accuracy

1000 0.9610 Train NB Accuracy

1000 0.9560 Train NB Accuracy

1000 0.9490 Train NB Accuracy

1000 0.9510 Train NB Accuracy

1000 0.9580 Train NB Accuracy

1000 0.9500 Train NB Accuracy

1000 0.9530 Train NB Accuracy

1000 0.9540 Train NB Accuracy

1000 0.9530 Train NB Accuracy

1000 0.9540 Train NB Accuracy

1192 0.9579 Train NB Accuracy

1192 0.9533 Train NB Accuracy

1192 0.9486 Train NB Accuracy

1192 0.9523 Train NB Accuracy

1192 0.9561 Train NB Accuracy

1192 0.9495 Train NB Accuracy

1192 0.9514 Train NB Accuracy

1192 0.9523 Train NB Accuracy

1192 0.9514 Train NB Accuracy

1192 0.9505 Train NB Accuracy
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n Data Type Model Measure

200 0.6083 Test NB Accuracy

200 0.5833 Test NB Accuracy

200 0.5966 Test NB Accuracy

200 0.6471 Test NB Accuracy

200 0.6050 Test NB Accuracy

200 0.6218 Test NB Accuracy

200 0.5966 Test NB Accuracy

200 0.6050 Test NB Accuracy

200 0.6218 Test NB Accuracy

200 0.6387 Test NB Accuracy

400 0.6167 Test NB Accuracy

400 0.6083 Test NB Accuracy

400 0.6218 Test NB Accuracy

400 0.5966 Test NB Accuracy

400 0.5714 Test NB Accuracy

400 0.6303 Test NB Accuracy

400 0.6134 Test NB Accuracy

400 0.5462 Test NB Accuracy

400 0.5714 Test NB Accuracy

400 0.6218 Test NB Accuracy

600 0.6500 Test NB Accuracy

600 0.5417 Test NB Accuracy

600 0.6050 Test NB Accuracy

600 0.5798 Test NB Accuracy

600 0.5462 Test NB Accuracy

600 0.5966 Test NB Accuracy

600 0.6303 Test NB Accuracy

600 0.5378 Test NB Accuracy

600 0.5882 Test NB Accuracy

600 0.5546 Test NB Accuracy
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n Data Type Model Measure

800 0.6333 Test NB Accuracy

800 0.5500 Test NB Accuracy

800 0.5630 Test NB Accuracy

800 0.5966 Test NB Accuracy

800 0.5294 Test NB Accuracy

800 0.6134 Test NB Accuracy

800 0.6387 Test NB Accuracy

800 0.5798 Test NB Accuracy

800 0.5798 Test NB Accuracy

800 0.5798 Test NB Accuracy

1000 0.6417 Test NB Accuracy

1000 0.5917 Test NB Accuracy

1000 0.5714 Test NB Accuracy

1000 0.6134 Test NB Accuracy

1000 0.5210 Test NB Accuracy

1000 0.6471 Test NB Accuracy

1000 0.6471 Test NB Accuracy

1000 0.6134 Test NB Accuracy

1000 0.5630 Test NB Accuracy

1000 0.5882 Test NB Accuracy

1192 0.6333 Test NB Accuracy

1192 0.5917 Test NB Accuracy

1192 0.5630 Test NB Accuracy

1192 0.5966 Test NB Accuracy

1192 0.5126 Test NB Accuracy

1192 0.6471 Test NB Accuracy

1192 0.6387 Test NB Accuracy

1192 0.6050 Test NB Accuracy

1192 0.5546 Test NB Accuracy

1192 0.5882 Test NB Accuracy
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n Data Type Model Measure

200 1.0000 Train NB F1

200 0.9950 Train NB F1

200 0.9950 Train NB F1

200 0.9950 Train NB F1

200 0.9950 Train NB F1

200 0.9950 Train NB F1

200 0.9950 Train NB F1

200 0.9950 Train NB F1

200 0.9950 Train NB F1

200 0.9950 Train NB F1

400 0.9950 Train NB F1

400 0.9876 Train NB F1

400 0.9851 Train NB F1

400 0.9826 Train NB F1

400 0.9851 Train NB F1

400 0.9851 Train NB F1

400 0.9851 Train NB F1

400 0.9851 Train NB F1

400 0.9851 Train NB F1

400 0.9851 Train NB F1

600 0.9786 Train NB F1

600 0.9752 Train NB F1

600 0.9720 Train NB F1

600 0.9657 Train NB F1

600 0.9769 Train NB F1

600 0.9690 Train NB F1

600 0.9690 Train NB F1

600 0.9690 Train NB F1

600 0.9690 Train NB F1

600 0.9690 Train NB F1
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n Data Type Model Measure

800 0.9680 Train NB F1

800 0.9679 Train NB F1

800 0.9644 Train NB F1

800 0.9619 Train NB F1

800 0.9728 Train NB F1

800 0.9619 Train NB F1

800 0.9619 Train NB F1

800 0.9645 Train NB F1

800 0.9645 Train NB F1

800 0.9645 Train NB F1

1000 0.9617 Train NB F1

1000 0.9569 Train NB F1

1000 0.9503 Train NB F1

1000 0.9521 Train NB F1

1000 0.9587 Train NB F1

1000 0.9511 Train NB F1

1000 0.9541 Train NB F1

1000 0.9551 Train NB F1

1000 0.9541 Train NB F1

1000 0.9549 Train NB F1

1192 0.9587 Train NB F1

1192 0.9542 Train NB F1

1192 0.9499 Train NB F1

1192 0.9533 Train NB F1

1192 0.9568 Train NB F1

1192 0.9506 Train NB F1

1192 0.9524 Train NB F1

1192 0.9533 Train NB F1

1192 0.9525 Train NB F1

1192 0.9516 Train NB F1
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n Data Type Model Measure

200 0.5338 Test NB F1

200 0.5336 Test NB F1

200 0.5203 Test NB F1

200 0.5800 Test NB F1

200 0.5619 Test NB F1

200 0.5663 Test NB F1

200 0.5348 Test NB F1

200 0.5413 Test NB F1

200 0.5779 Test NB F1

200 0.5828 Test NB F1

400 0.5750 Test NB F1

400 0.5764 Test NB F1

400 0.5659 Test NB F1

400 0.5260 Test NB F1

400 0.5391 Test NB F1

400 0.5918 Test NB F1

400 0.5644 Test NB F1

400 0.5032 Test NB F1

400 0.5214 Test NB F1

400 0.5806 Test NB F1

600 0.5988 Test NB F1

600 0.5040 Test NB F1

600 0.5475 Test NB F1

600 0.5234 Test NB F1

600 0.5194 Test NB F1

600 0.5699 Test NB F1

600 0.5957 Test NB F1

600 0.5005 Test NB F1

600 0.5554 Test NB F1

600 0.5173 Test NB F1
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n Data Type Model Measure

800 0.5933 Test NB F1

800 0.5093 Test NB F1

800 0.5294 Test NB F1

800 0.5639 Test NB F1

800 0.5119 Test NB F1

800 0.5948 Test NB F1

800 0.6022 Test NB F1

800 0.5388 Test NB F1

800 0.5427 Test NB F1

800 0.5464 Test NB F1

1000 0.6095 Test NB F1

1000 0.5495 Test NB F1

1000 0.5399 Test NB F1

1000 0.5688 Test NB F1

1000 0.5098 Test NB F1

1000 0.6265 Test NB F1

1000 0.6188 Test NB F1

1000 0.5835 Test NB F1

1000 0.5374 Test NB F1

1000 0.5563 Test NB F1

1192 0.6018 Test NB F1

1192 0.5447 Test NB F1

1192 0.5402 Test NB F1

1192 0.5542 Test NB F1

1192 0.5029 Test NB F1

1192 0.6239 Test NB F1

1192 0.6152 Test NB F1

1192 0.5781 Test NB F1

1192 0.5201 Test NB F1

1192 0.5633 Test NB F1
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n Data Type Model Measure

200 0.9350 Train SVM Accuracy

200 0.9000 Train SVM Accuracy

200 0.9050 Train SVM Accuracy

200 0.9050 Train SVM Accuracy

200 0.9050 Train SVM Accuracy

200 0.9050 Train SVM Accuracy

200 0.9050 Train SVM Accuracy

200 0.9050 Train SVM Accuracy

200 0.9050 Train SVM Accuracy

200 0.9050 Train SVM Accuracy

400 0.9450 Train SVM Accuracy

400 0.9350 Train SVM Accuracy

400 0.9350 Train SVM Accuracy

400 0.9275 Train SVM Accuracy

400 0.9225 Train SVM Accuracy

400 0.9225 Train SVM Accuracy

400 0.9225 Train SVM Accuracy

400 0.9225 Train SVM Accuracy

400 0.9225 Train SVM Accuracy

400 0.9225 Train SVM Accuracy

600 0.9567 Train SVM Accuracy

600 0.9550 Train SVM Accuracy

600 0.9517 Train SVM Accuracy

600 0.9500 Train SVM Accuracy

600 0.9567 Train SVM Accuracy

600 0.9467 Train SVM Accuracy

600 0.9467 Train SVM Accuracy

600 0.9467 Train SVM Accuracy

600 0.9467 Train SVM Accuracy

600 0.9467 Train SVM Accuracy
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n Data Type Model Measure

800 0.9563 Train SVM Accuracy

800 0.9563 Train SVM Accuracy

800 0.9513 Train SVM Accuracy

800 0.9550 Train SVM Accuracy

800 0.9600 Train SVM Accuracy

800 0.9513 Train SVM Accuracy

800 0.9538 Train SVM Accuracy

800 0.9575 Train SVM Accuracy

800 0.9588 Train SVM Accuracy

800 0.9588 Train SVM Accuracy

1000 0.9600 Train SVM Accuracy

1000 0.9560 Train SVM Accuracy

1000 0.9590 Train SVM Accuracy

1000 0.9550 Train SVM Accuracy

1000 0.9610 Train SVM Accuracy

1000 0.9560 Train SVM Accuracy

1000 0.9580 Train SVM Accuracy

1000 0.9610 Train SVM Accuracy

1000 0.9540 Train SVM Accuracy

1000 0.9480 Train SVM Accuracy

1192 0.9570 Train SVM Accuracy

1192 0.9589 Train SVM Accuracy

1192 0.9579 Train SVM Accuracy

1192 0.9542 Train SVM Accuracy

1192 0.9589 Train SVM Accuracy

1192 0.9533 Train SVM Accuracy

1192 0.9570 Train SVM Accuracy

1192 0.9589 Train SVM Accuracy

1192 0.9542 Train SVM Accuracy

1192 0.9542 Train SVM Accuracy
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n Data Type Model Measure

200 0.6500 Test SVM Accuracy

200 0.6333 Test SVM Accuracy

200 0.6218 Test SVM Accuracy

200 0.6303 Test SVM Accuracy

200 0.6303 Test SVM Accuracy

200 0.6303 Test SVM Accuracy

200 0.6471 Test SVM Accuracy

200 0.6303 Test SVM Accuracy

200 0.6387 Test SVM Accuracy

200 0.6387 Test SVM Accuracy

400 0.6667 Test SVM Accuracy

400 0.6667 Test SVM Accuracy

400 0.6387 Test SVM Accuracy

400 0.6639 Test SVM Accuracy

400 0.6555 Test SVM Accuracy

400 0.6471 Test SVM Accuracy

400 0.6807 Test SVM Accuracy

400 0.6471 Test SVM Accuracy

400 0.6639 Test SVM Accuracy

400 0.6807 Test SVM Accuracy

600 0.6917 Test SVM Accuracy

600 0.6833 Test SVM Accuracy

600 0.6975 Test SVM Accuracy

600 0.7143 Test SVM Accuracy

600 0.6807 Test SVM Accuracy

600 0.6723 Test SVM Accuracy

600 0.7311 Test SVM Accuracy

600 0.6639 Test SVM Accuracy

600 0.6723 Test SVM Accuracy

600 0.7143 Test SVM Accuracy
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n Data Type Model Measure

800 0.6833 Test SVM Accuracy

800 0.7083 Test SVM Accuracy

800 0.7143 Test SVM Accuracy

800 0.7227 Test SVM Accuracy

800 0.6975 Test SVM Accuracy

800 0.7227 Test SVM Accuracy

800 0.7479 Test SVM Accuracy

800 0.6555 Test SVM Accuracy

800 0.6723 Test SVM Accuracy

800 0.7311 Test SVM Accuracy

1000 0.6833 Test SVM Accuracy

1000 0.7083 Test SVM Accuracy

1000 0.7395 Test SVM Accuracy

1000 0.7227 Test SVM Accuracy

1000 0.7059 Test SVM Accuracy

1000 0.6891 Test SVM Accuracy

1000 0.7563 Test SVM Accuracy

1000 0.6555 Test SVM Accuracy

1000 0.6723 Test SVM Accuracy

1000 0.7395 Test SVM Accuracy

1192 0.7000 Test SVM Accuracy

1192 0.7083 Test SVM Accuracy

1192 0.7563 Test SVM Accuracy

1192 0.7227 Test SVM Accuracy

1192 0.7143 Test SVM Accuracy

1192 0.7143 Test SVM Accuracy

1192 0.7479 Test SVM Accuracy

1192 0.6639 Test SVM Accuracy

1192 0.6807 Test SVM Accuracy

1192 0.7311 Test SVM Accuracy
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n Data Type Model Measure

200 0.9156 Train SVM F1

200 0.8537 Train SVM F1

200 0.8609 Train SVM F1

200 0.8609 Train SVM F1

200 0.8609 Train SVM F1

200 0.8609 Train SVM F1

200 0.8609 Train SVM F1

200 0.8609 Train SVM F1

200 0.8609 Train SVM F1

200 0.8609 Train SVM F1

400 0.9285 Train SVM F1

400 0.9194 Train SVM F1

400 0.9173 Train SVM F1

400 0.9063 Train SVM F1

400 0.8999 Train SVM F1

400 0.8999 Train SVM F1

400 0.8999 Train SVM F1

400 0.8999 Train SVM F1

400 0.8999 Train SVM F1

400 0.8999 Train SVM F1

600 0.9426 Train SVM F1

600 0.9446 Train SVM F1

600 0.9411 Train SVM F1

600 0.9352 Train SVM F1

600 0.9476 Train SVM F1

600 0.9379 Train SVM F1

600 0.9326 Train SVM F1

600 0.9326 Train SVM F1

600 0.9326 Train SVM F1

600 0.9326 Train SVM F1
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n Data Type Model Measure

800 0.9450 Train SVM F1

800 0.9463 Train SVM F1

800 0.9421 Train SVM F1

800 0.9421 Train SVM F1

800 0.9502 Train SVM F1

800 0.9388 Train SVM F1

800 0.9436 Train SVM F1

800 0.9484 Train SVM F1

800 0.9497 Train SVM F1

800 0.9497 Train SVM F1

1000 0.9553 Train SVM F1

1000 0.9505 Train SVM F1

1000 0.9545 Train SVM F1

1000 0.9482 Train SVM F1

1000 0.9571 Train SVM F1

1000 0.9513 Train SVM F1

1000 0.9535 Train SVM F1

1000 0.9566 Train SVM F1

1000 0.9480 Train SVM F1

1000 0.9370 Train SVM F1

1192 0.9524 Train SVM F1

1192 0.9548 Train SVM F1

1192 0.9539 Train SVM F1

1192 0.9476 Train SVM F1

1192 0.9550 Train SVM F1

1192 0.9488 Train SVM F1

1192 0.9525 Train SVM F1

1192 0.9546 Train SVM F1

1192 0.9485 Train SVM F1

1192 0.9490 Train SVM F1
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n Data Type Model Measure

200 0.5392 Test SVM F1

200 0.5180 Test SVM F1

200 0.4769 Test SVM F1

200 0.4976 Test SVM F1

200 0.4976 Test SVM F1

200 0.4873 Test SVM F1

200 0.5238 Test SVM F1

200 0.5015 Test SVM F1

200 0.5061 Test SVM F1

200 0.5061 Test SVM F1

400 0.5762 Test SVM F1

400 0.5832 Test SVM F1

400 0.5134 Test SVM F1

400 0.5781 Test SVM F1

400 0.5472 Test SVM F1

400 0.5289 Test SVM F1

400 0.5864 Test SVM F1

400 0.5452 Test SVM F1

400 0.5597 Test SVM F1

400 0.5864 Test SVM F1

600 0.6139 Test SVM F1

600 0.6076 Test SVM F1

600 0.6218 Test SVM F1

600 0.6556 Test SVM F1

600 0.6027 Test SVM F1

600 0.5838 Test SVM F1

600 0.6612 Test SVM F1

600 0.5879 Test SVM F1

600 0.5916 Test SVM F1

600 0.6384 Test SVM F1
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n Data Type Model Measure

800 0.6070 Test SVM F1

800 0.6400 Test SVM F1

800 0.6451 Test SVM F1

800 0.6665 Test SVM F1

800 0.6304 Test SVM F1

800 0.6503 Test SVM F1

800 0.6905 Test SVM F1

800 0.5816 Test SVM F1

800 0.5975 Test SVM F1

800 0.6611 Test SVM F1

1000 0.6072 Test SVM F1

1000 0.6401 Test SVM F1

1000 0.6774 Test SVM F1

1000 0.6665 Test SVM F1

1000 0.6485 Test SVM F1

1000 0.6144 Test SVM F1

1000 0.7016 Test SVM F1

1000 0.5816 Test SVM F1

1000 0.5975 Test SVM F1

1000 0.6794 Test SVM F1

1192 0.6295 Test SVM F1

1192 0.6401 Test SVM F1

1192 0.6967 Test SVM F1

1192 0.6665 Test SVM F1

1192 0.6593 Test SVM F1

1192 0.6435 Test SVM F1

1192 0.6927 Test SVM F1

1192 0.5960 Test SVM F1

1192 0.6046 Test SVM F1

1192 0.6682 Test SVM F1
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