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We consider output tracking for a class of viscous nonlinear fluid flows including the incompressible 

2D Navier–Stokes equations. The fluid is subject to in-domain inputs and disturbances. We construct an 

error feedback controller which guarantees approximate local velocity output tracking for a class of refer- 

ence outputs. The control solution covers point velocity observations and assumes a smooth enough state 

space. Efficacy of the control solution is illustrated through a numerical example. 
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. Introduction 

In this work, we consider an output tracking problem for vis- 

ous nonlinear fluid flows in the neighborhood of a (locally) expo- 

entially stable steady state solution. We formulate our results for 

he incompressible Navier–Stokes equations on a sufficiently regu- 

ar domain � ⊂ R 

2 with boundary �. More precisely, we consider 

ontrolling an output y of the equations 

∂w 

∂t 
= ν�w − (w · ∇) w − ∇q + f w 

+ f u + f d , (1a) 

 = ∇ · w, w | � = 0 , (1b) 

here w (ξ , t) is the fluid velocity, q (ξ , t) is the fluid pressure, ν
s the kinematic viscosity, f w 

(ξ ) is a body force, f u (ξ , t) is the

ontrol action and f d (ξ , t) is the disturbance action. Our goal 

s to design a controller such that a chosen velocity output of 

1) converges to a desired reference output approximately for 

nitial states which are, in a certain sense, “close enough” to a 

teady state solution of (1) . 
� The research was supported by the Academy of Finland Grant number 310489 

eld by L. Paunonen. 
∗ Corresponding author. 

E-mail addresses: konsta.huhtala@tuni.fi (K. Huhtala), lassi.paunonen@tuni.fi (L. 

aunonen). 
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Theory of output regulation for nonlinear systems is still un- 

er development, especially for infinite-dimensional systems. The 

nite-dimensional results of [11] have been extended to a class of 

nfinite-dimensional systems in [5] and for co-located inputs and 

utputs in [6] , based on which several example cases are presented 

n [1] . In this work, we focus on output regulation in an approxi- 

ate sense utilizing the results of [13] . In [13] , the authors use an

rror feedback controller designed for robust output regulation of 

xponentially stable regular linear systems and show that the same 

ontroller achieves approximate local output regulation for a class of 

onlinear systems which they call regular nonlinear systems . Simi- 

ar approach of using linear control solutions for nonlinear systems 

as been utilized for local stabilization of nonlinear fluid flows in 

ifferent setups, see e.g. [3] for in-domain inputs, [14] for bound- 

ry inputs and [10] for observer design. 

As the main contribution of this paper, we show that the 

q. (1) can be formulated as a regular nonlinear system (in the 

ense of [13] ) for a wide range of velocity observations including 

he point observation. To achieve this, we consider the Eq. (1) on 

 “lifted” state space, i.e. we demand more smoothness from the 

elocity and the pressure than would typically be required to e.g. 

olve similar control problems for linear systems. To formulate 

1) as a regular nonlinear system, we rely on the fluid being vis- 

ous and assume that the domain � together with the bound- 

ry conditions are such that the system can be formulated on 

he “lifted” state space. These properties, together with the type 

x · ∇) x of the nonlinearity typical for fluid flows, characterize the 

uid flows for which the results can be applied. 
l Association. This is an open access article under the CC BY license 
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Using the results of [13] , we show that in the neighborhood of 

 steady state solution, velocity observations on (1) approximately 

onverge to any desired “small enough” periodic reference signal 

f the type 

 r (t) = a 0 + 

q s ∑ 

i =1 

a i cos (ω i t) + b i sin (ω i t) 

n the sense that for small enough initial data, a finite number of 

hosen harmonics of the system output and the reference output 

re the same. Here the coefficient vectors a i , b i ∈ R 

p y may be un-

nown but we expect to know the frequencies ω i . The controller 

ntroduced in [13] also rejects periodic in-domain disturbance sig- 

als of the type 

 d (t) = c 0 + 

q s ∑ 

i =1 

c i cos (ω i t) + d i sin (ω i t) 

ith small enough amplitude, where again c i , d i ∈ R 

d are allowed 

o be unknown. Note that several controllers have been designed 

or robust output tracking of similar signal classes in the case of 

inear systems, see e.g. [15,16] . 

Rest of the paper is organized as follows. In Section 2 , we re-

all the concepts of regular nonlinear systems and approximate lo- 

al output regulation. In Section 3 , we show that the Navier–Stokes 

quations with in-domain control and point observation fit into the 

ramework of regular nonlinear systems on a suitable state space. 

n Section 4 , we construct, based on [13] , a controller for approx-

mate local output regulation for the Navier–Stokes equations and 

hen illustrate the controller’s performance through a simulation 

xample in Section 5 . Finally, the paper is concluded in Section 6 . 

Throughout the paper we denote by L (X, Y ) the set of bounded

inear operators from a Hilbert space X to a Hilbert space Y . For 

 linear operator A : D (A ) → X , D (A ) is the domain of A , ρ(A ) is

he resolvent set of A and T A is the strongly continuous semi- 

roup generated by A on X . For a fixed s ∈ ρ(A ) , we denote by

 −1 the completion of X with respect to the norm ‖ x ‖ X −1 
= ‖ (sI −

 ) −1 x ‖ X and define X 1 = D (A ) , equipped with the norm ‖ x ‖ X 1 =
 (sI − A ) x ‖ X . Finally, the L 2 -inner product over a domain � is de-

oted by 〈 (·) , (·) 〉 L 2 (�) . 

. Regular nonlinear systems and output regulation 

Output regulation for fluid flow systems covered by this work 

s based on the concepts of regular nonlinear systems and approxi- 

ate local output regulation, which were introduced in [13] . These 

oncepts are presented next, with the definition of regular nonlin- 

ar systems formulated in a slightly restricted setting by excluding 

arts that are not relevant to this work. 

efinition 1. Let X , U , Y and V be Hilbert spaces, and let 

 
 defined by C 
x = lim s → + ∞ 

Cs (sI − A ) −1 x with D (C 
) = { x ∈
| the above limit exists } be the 
-extension of the observation 

perator C, see [21] . The system 

˙ x (t) = Ax (t) + Bu (t) + B d u d (t) + QF(x (t)) , 

 (0) = x 0 ∈ X, 

y (t) = C 
x (t) , 

hich we denote by �F , is called a regular nonlinear system if the 

ollowing hold. 

(i) The operator A generates an exponentially stable strongly 

continuous semigroup T A on X . 

(ii) It holds that B ∈ L (U, X −1 ) , B d ∈ L (U d , X −1 ) , Q ∈ L (V, X −1 )

and C ∈ L (X 1 , Y ) , and the triples (A, B, C) , (A, B d , C) and

(A, Q, C) are regular linear systems in the sense of [21] . 
137 
(iii) The nonlinear map F : X → V satisfies F(0) = 0 and is lo-

cally Lipschitz. That is, for every bounded set O ⊂ X , there 

exists a constant L O such that for all x 1 , x 2 ∈ O 

‖F(x 1 ) − F(x 2 ) ‖ V ≤ L O ‖ x 1 − x 2 ‖ X . 

Furthermore, for each γ > 0 there exists a ζ > 0 such that if 

sup 

{‖ x ‖ X ∣∣x ∈ O 

}
< ζ , then L O < γ . 

To generate the plant input, we use an error feedback controller 

f the form 

˙ 
 (t) = G 1 z(t) + G 2 e (t) , z(0) = z 0 ∈ Z, (3a) 

 (t) = Kz(t) , (3b) 

here e (t) = y (t) − y r (t) is the regulation error and Z is a Hilbert

pace. Coupling the controller with a regular nonlinear system 

ields the closed-loop system �E defined by 

˙ 
 e (t) = A e x e + B e w ext (t) + Q e F(x (t)) , x e 0 ∈ X e , 

e (t) = C e x e (t) + D e y r (t) 

n the Hilbert space X e = X × Z, where x e = [ x, z] T , w ext =
 u d , y r ] 

T , 

 e = 

[
A BK 

G 2 C 
 G 1 

]
, B e = 

[
B d 0 

0 −G 2 

]
, Q e = 

[
Q 

0 

]
, 

C e = 

[
C 
 0 

]
, D e = 

[
0 −I 

]
. 

Before introducing the output tracking problem, we recall the 

oncept of harmonics of a function. Consider a function f = f p + 

f e , where f p ∈ L 2 
loc 

([0 , ∞ ) ; C 

n ) is T -periodic and f e ∈ L 2 ([0 , ∞ ) ; C 

n ) .

or a non-negative integer l, the l th harmonic of f is the function 

f l (t) = αl sin 

(
2 π lt 

T 

)
+ βl cos 

(
2 π lt 

T 

)
, t ≥ 0 , 

here 

l = lim 

k ∈ N ,k →∞ 

2 

kT 

∫ kT 

0 

f (t ) sin 

(
2 π lt 

T 

)
dt , 

l = lim 

k ∈ N ,k →∞ 

2 

kT 

∫ kT 

0 

f (t ) cos 

(
2 π lt 

T 

)
dt , 

hus for frequencies of the harmonics, we have ω i = 2 π l i /T . Now

he problem of achieving approximate local output regulation is 

tated as follows. 

roblem 2. Let T > 0 be a constant. Assume that y r and u d are

 -periodic functions and let V = { l 0 , l 1 , . . . , l n v } be a finite set of

on-negative integers. Design an error feedback controller (3) such 

hat: 

1. The closed-loop system �E is a regular nonlinear system. 

2. There exist positive constants c y , c d and c e such that if 

‖ y r ‖ L 2 [0 ,T ] ≤ c y , ‖ u d ‖ L ∞ ≤ c d and ‖ x e 0 ‖ X e ≤ c e , then x e converges

asymptotically to a T -periodic function and the l th harmonic of 

y − y r is 0 for each l ∈ V . The output satisfies y = y p + y e , where

y e ∈ L 2 ([0 , ∞ ) ;Y ) and y p ∈ L 2 
loc 

([0 , ∞ ) ;Y ) is a T -periodic func-

tion. 

Accuracy of output tracking by solving the above problem 

learly depends on how dominant the harmonics included in V are. 

n many cases, ensuring that the first few harmonics of y match 

hose of y r results in a small tracking error, since higher harmon- 

cs of the output are typically small. 
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H · H → H 
. The incompressible Navier–Stokes equations as an abstract 

ontrol system 

The goal of this section is to formulate the Navier–Stokes 

q. (1) as a regular nonlinear system. We start by finding a suit- 

ble state space for the formulation and then verify that the re- 

uirements of Definition 1 are fulfilled. 

.1. Choosing the state space 

Translating the Eq. (1) to the vicinity of a steady state solu- 

ion (v e , p e ) using the change of variables v (ξ , t) = w (ξ , t) − v e (ξ ) ,

p(ξ , t) = q (ξ , t) − p e (ξ ) yields 

∂v 
∂t 

= ν�v − (v e · ∇) v − (v · ∇) v e (4a) 

− (v · ∇) v − ∇p + f u + f d , (4b) 

 = ∇ · v , v | � = 0 (4c) 

ith the initial state v (ξ , 0) = v 0 (ξ ) . We assume that the control

nd the disturbance are defined by 

f u (ξ , t) = 

[
g 1 (ξ ) g 2 (ξ ) · · · g m 

(ξ ) 
]
u (t) , (5a) 

f d (ξ , t) = 

[
g ′ 1 (ξ ) g ′ 2 (ξ ) · · · g ′ 

d 
(ξ ) 

]
u d (t) , (5b) 

here each g 1 , . . . , g m 

and g ′ 
1 
, . . . , g ′ 

d 
is an R 

2 -valued function

n �, u (t) ∈ U := C 

m is the finite-dimensional control input and

 d (t) ∈ U d := C 

d is the finite-dimensional disturbance input. Ad- 

itionally, we assume that the output space Y is also finite- 

imensional and Y = C 

p y with p y ≤ m . 

For simpler notation, we define the spaces 

˜ X = 

{
v ∈ (L 2 (�)) 2 

∣∣∇ · v = 0 , (v · n ) | � = 0 

}
, 

˜ 
 = 

{
v ∈ (H 

1 (�)) 2 
∣∣∇ · v = 0 , v | � = 0 

}
nd the bilinear and trilinear forms 

 (v , ψ) = 2 ν〈 ε(v ) , ε(ψ) 〉 L 2 (�) ∀ v , ψ ∈ 

˜ H , 

(v , φ, ψ) = 〈 (v · ∇) φ, ψ〉 L 2 (�) ∀ v , φ, ψ ∈ 

˜ H , 

here ε(v ) = 1 / 2(∇v + (∇v ) T ) . 

ssumption 3. We assume the following: 

(i) The boundary � is of class C 3 and f w 

∈ (H 

1 (�)) 2 . 

(ii) The linearization of (4) is exponentially stable. 

The first part of the assumption guarantees sufficient regular- 

ty of the solutions of the Navier–Stokes Eq. (1) , while the second 

art is required for Definition 1 .(i) to hold and is satisfied for large

nough ν , c.f. [3] . 

As the first step towards choosing the state space X , we con- 

ider semigroup generation for the linearized version of (4) on 

˜ X . A 

eak formulation for the stationary, linearized version of (4) sub- 

ect to zero control and disturbance inputs is given by 

 = −a (v , ψ) − b(v , v e , ψ) − b(v e , v , ψ) ∀ ψ ∈ 

˜ H . 

emma 4. The operator ˜ A defined by 

˜ 
 = 

˜ A 2 + 

˜ A 1 , 

 ̃

 A 2 x, ψ〉 L 2 (�) = −a (x, ψ) , 

 ̃

 A 1 x, ψ〉 L 2 (�) = −b(x, v e , ψ) − b(v e , x, ψ) , 

 ( ̃  A ) = D ( ̃  A 2 ) 

= 

{
x ∈ 

˜ H 

∣∣∀ ψ ∈ 

˜ H , ψ → a (x, ψ) is ˜ X -continuous 
}

enerates an exponentially stable analytic semigroup on ˜ X . 
138 
roof. We start by showing that a (·, ·) is ˜ H -bounded and 

˜ H - 

oercive, i.e. ˜ H can be continuously and densely embedded in 

˜ X 

nd there exist c 1 , c 2 , λ > 0 such that for every φ, ψ ∈ 

˜ H 

 a (φ, ψ) | ≤ c 1 ‖ φ‖ ˜ H ‖ ψ‖ ˜ H , (6a) 

 (φ, φ) ≥ c 2 ‖ φ‖ 

2 
˜ H 
− λ‖ φ‖ 

2 
˜ X 
. (6b) 

Since the norm ‖ ε(·) ‖ ˜ X is equivalent to the ‖ · ‖ ˜ H norm through 

orn’s and Poincare’s inequalities, we immediately have for a con- 

tant c 1 > 0 and for any v ∈ 

˜ H 

 (v , v ) = 2 ν‖ ε(v ) ‖ 

2 
˜ X 

≥ c 1 ‖ v ‖ 

2 
˜ H 
. 

imilarly, for a constant c 2 > 0 and any v , φ ∈ 

˜ H , 

 a (v , φ) | ≤ 2 ν‖ ε(v ) ‖ ˜ X ‖ ε(φ) ‖ ˜ X ≤ c 2 ‖ v ‖ ˜ H ‖ φ‖ ˜ H . 

s such, a (·, ·) is ˜ H -bounded and 

˜ H -coercive, which implies that ˜ A 2 

enerates an analytic semigroup T ˜ A 2 
on 

˜ X [2 , Section 2]. 

Regarding the trilinear form b(·, ·, ·) , Assumption 3 .(i) guaran- 

ees that v e ∈ 

˜ H , c.f. [12, Ch. 5]. We have for constants c 3 , c 4 > 0

sing integration by parts and Sobolev embeddings 

 b(v 1 , v 2 , ψ) | ≤ |〈 v 1 , (v 2 · ∇) ψ〉 �| + |〈 v 1 · n, v 2 · ψ〉 �| 
≤ c 3 ‖ v 1 ‖ L 4 (�) ‖ v 2 ‖ L 4 (�) ‖ ψ‖ ˜ H 

≤ c 4 ‖ v 1 ‖ ˜ H ‖ v 2 ‖ ˜ H ‖ ψ‖ ˜ H ∀ v 1 , v 2 , ψ ∈ 

˜ H . 

ow 

˜ A 1 ∈ L ( ̃  H , ˜ X ) , thus perturbation theory of semigroups, see e.g. 

7 , Ch. III], implies that ˜ A generates an analytic semigroup T ˜ A 
on 

˜ X . 

y Assumption 3 .(ii), T ˜ A 
is exponentially stable. �

The fact that we may choose λ = 0 in (6b) implies that the 

emigroup T ˜ A 2 
is exponentially stable for any ν > 0 . Furthermore, 

˜ 
 2 is self-adjoint and the fractional powers (− ˜ A 2 ) 

δ are well de- 

ned. Domains of the fractional powers are defined by, c.f. [18 , 

h. 2], [14] , 

 ((− ˜ A 2 ) 
δ ) = 

{
v ∈ (H 

2 δ(�)) 2 
∣∣∇ · v = 0 , (v · n ) | � = 0 

}
, 

 ≤ δ < 

1 

4 

, 

 ((− ˜ A 2 ) 
δ ) = 

{
v ∈ (H 

2 δ(�)) 2 
∣∣∇ · v = 0 , v | � = 0 

}
, 

1 

4 

< δ ≤ 1 . 

he norms corresponding to domains of the fractional powers for 

he full range δ ∈ R are given by 

 x ‖ D ((− ˜ A 2 ) δ ) 
= ‖ (− ˜ A 2 ) 

δx ‖ ˜ X . 

e next utilize domains of the fractional powers to find a “lifted”

tate space X such that in particular Definition 1 .(iii) is satisfied by 

4) . 

For the translated Navier–Stokes Eq. (4) , nonlinearity in the ab- 

tract framework �F is described by 

(v ) = −P 

(
(v · ∇) v 

)
, Q = I, (7) 

here P is the Leray projector, see e.g. [8,14] . The domains of def- 

nition for F and Q are dictated by the following Lemma. 

emma 5. For a (small) δ > 0 , choose X = D ((− ˜ A 2 ) 
1 / 2+ δ ) and V =

 ((− ˜ A 2 ) 
δ ) . Then Definition 1 .(iii) holds for F . 

roof. The proof is based on the “properties of multipliers”, see 

17 , Ch. 4.6.1, Thm. 1], [4 , Lemma 5.4], which state that if 

 2 > s 1 , s 2 > 

d �
2 

, (8) 

here d � is the spatial dimension, then 

s 1 s 2 s 1 
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G

s a continuous embedding, where 

 

s 1 · H 

s 2 := 

{
f g 

∣∣ f ∈ H 

s 1 , g ∈ H 

s 2 
}
. 

ince d � = 2 , we choose s 1 = 2 δ and s 2 = 1 + 2 δ, and apply the

bove result. Now for a constant c 1 > 0 and φ, ψ ∈ X

 φi ∂ j ψ k ‖ H s 1 (�) ≤ c 1 ‖ φi ‖ H s 2 (�) ‖ ∂ j ψ k ‖ H s 1 (�) (9a) 

or i, j, k ∈ { ξ1 , ξ2 } , thus for some constants c 2 , c 3 > 0 also 

 (φ · ∇) ψ‖ V ≤ c 2 ‖ φ‖ X ‖∇ψ‖ V 

≤ c 3 ‖ φ‖ X ‖ (− ˜ A 2 ) 
1 / 2 ψ‖ V 

= c 3 ‖ φ‖ X ‖ ψ‖ X . (9b) 

Utilizing (9) , for v 1 , v 2 ∈ X and some constants c 4 , c 5 > 0 we

ave 

F(v 1 ) − F(v 2 ) ‖ V 

= ‖ − P 

(
(v 1 · ∇) v 1 − (v 2 · ∇) v 2 

)‖ V 

= ‖ P 

(
((v 1 − v 2 ) · ∇) v 1 + (v 2 · ∇)(v 1 − v 2 ) 

)‖ V 

≤ c 4 
(‖ (v 1 − v 2 ) ‖ X ‖∇v 1 ‖ V + ‖ v 2 ‖ X ‖∇(v 1 − v 2 ) ‖ V 

)
≤ c 5 (‖ v 1 ‖ X + ‖ v 2 ‖ X ) ‖ v 1 − v 2 ‖ X , 

hus F is locally Lipschitz. Clearly F(0) = 0 , and if ‖ v 1 ‖ X , ‖ v 2 ‖ X <
γ
c for a large enough constant c > 0 , then (‖ v 1 ‖ X + ‖ v 2 ‖ X ) < γ ,

hich completes the proof. �

Due to Lemma 5 , we choose for a fixed (small) δ > 0 

 = D ((− ˜ A 2 ) 
1 / 2+ δ ) 

s the state space for our abstract system presentation and de- 

ote 

 s = D ((− ˜ A 2 ) 
1 / 2+ δ+ s ) ∀ s ∈ R , 

ith the corresponding norms defined accordingly by 

 x ‖ X s = ‖ (− ˜ A 2 ) 
s x ‖ X = ‖ (− ˜ A 2 ) 

1 / 2+ δ+ s x ‖ ˜ X . 

ow V = X −1 / 2 , F : X → V and Q = I V ∈ L (V ) . 

.2. The abstract system formulation 

We define the operators 

 = A 2 + A 1 : D (A ) → X, (10a) 

 2 = νP �, A 1 v = −P 

(
(v e · ∇) v + (v · ∇) v e 

)
, (10b) 

 (A ) = D (A 2 ) = D ((− ˜ A 2 ) 
3 / 2+ δ ) . (10c) 

Now A 2 v = 

˜ A 2 v and A 1 v = 

˜ A 1 v for v ∈ D (A ) . To verify that

efinition 1 .(i) holds on the state space X , we note that A gen-

rates a strongly continuous semigroup T A on X , c.f. [7 , Ch. 5]. The

emigroup T A is exponentially stable, since for x ∈ X

 T A x ‖ X = ‖ (− ˜ A 2 ) 
1 / 2+ δ

T A x ‖ ˜ X 

= ‖ T ˜ A (− ˜ A 2 ) 
1 / 2+ δx ‖ ˜ X 

≤ ‖ T ˜ A ‖ L ( ̃ X ) ‖ x ‖ X . 

We still need to verify Definition 1 .(ii). We do so for controls 

nd disturbances of the form (5) and observations up to the “level 

f unboundedness” of a point observation. Using integration by 

arts, we have for the X-adjoint of A 1 

 

∗
1 φ = P 

(
(v e · ∇) φ − (∇v e ) T φ

)
. 

roperties of multipliers with the choices s 1 = 1 + 2 δ, s 2 = 2 + 2 δ
o satisfy (8) imply, similarly to (9) , for any φ, ψ ∈ X 1 / 2 and a con-

tant c > 0 

 P 

(
(φ · ∇) ψ 

)‖ X ≤ c‖ φ2 ‖ X 1 / 2 ‖ ψ 2 ‖ X 1 / 2 , 
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‖ P 

(
(∇φ) T ψ 

)‖ X ≤ c‖ φ2 ‖ X 1 / 2 ‖ ψ 2 ‖ X 1 / 2 . 

ince Assumption 3 .(i) implies v e ∈ X 1 / 2 ⊂ (H 

2+2 δ(�)) 2 [12 , Ch. 5], 

e have A 1 , A 

∗
1 ∈ L (X 1 / 2 , X ) . 

As such, theory of admissible control and observation operators, 

ee [20 , Ch. 4–5], now states that 

• Let ˜ Y be a Hilbert space. If ˜ C ∈ L (X 1 / 2 , ̃  Y ) , then 

˜ C is an admissi-

ble observation operator for T A 2 
and its adjoint ˜ C ∗ ∈ L ( ̃  Y , X −1 / 2 )

is an admissible control operator for T A 2 
. 

• The sets of admissible control (observation) operators for T A 

and T A 2 
are the same. 

Note that above we assumed for ˜ Y to be self-dual. 

We first search for admissible observations for (4) on the state 

pace X by considering observations such that C ∈ L (X 1 / 2 , Y ) . Typ-

cally the “most unbounded” observation of interest would be the 

oint observation 

 p x (ξ , t) = x (ξp , t) (11) 

or some ξp ∈ �. By Sobolev embeddings, when � ⊂ R 

2 , H 

s (�) ⊂
( ̄�) for s > 1 , thus C p ∈ L (X, C ) . That is, all the observations of

nterest for (4) are bounded operators from X to Y . As such, C 
 = C

nd if U , U d and Q are admissible control operators for T A 2 
, then 

efinition 1 .(ii) holds. 

Consider next admissible control operators for T A 2 
, thus also 

or T A . We start with the operator Q = I V = I X −1 / 2 
. Note that in

his case the “input space” V is not self-dual, but instead the 

orrect dual is the X-dual of X −1 / 2 , i.e. V ′ = X 1 / 2 . Thus we have

 

∗ ∈ L (X 1 / 2 , V 
′ ) and Q ∈ L (V, X −1 / 2 ) , i.e. the triple (A, Q, C) is a

egular linear system. 

For a single control input of the type (5a) , we have B = g(ξ ) . If

 ∈ X s , then B ∈ L (C , X s ) . That is, if 

 ∈ X −1 / 2 = D ((− ˜ A 2 ) 
δ ) , 

hen B is an admissible control operator for T A 2 
. 

We conclude the section by gathering our findings in the fol- 

owing result. 

heorem 6. Given Assumption 3 , assume that the control shape func- 

ions g i and the disturbance shape functions g ′ 
j 

satisfy g i , g 
′ 
j 
∈ X −1 / 2 =

 ((− ˜ A 2 ) 
δ ) for each i = 1 , 2 , . . . , m , j = 1 , 2 , . . . , d and a small δ > 0 .

hen the translated Navier–Stokes Eq. (4) with the dynamics operator 

10) , the nonlinearity (7) , the control (5a) , the disturbance (5b) and

p y point observations (11) form a regular nonlinear system on the 

tate space X = D ((− ˜ A 2 ) 
1 / 2+ δ ) . 

. The controller 

We use a low-gain -type controller design introduced in [13] to 

olve Problem 2 . The only system information required to construct 

he controller is the transfer function gains 

 (±iω k ) = C(±iω k I − A ) −1 B 

f the linearized system (A, B, C) for the frequencies ω k = 2 π l k /T 

or each l k ∈ V . A good estimate for these gains of the linearized

ystem can be obtained experimentally from the gains of the non- 

inear system �N , see [13] , and robustness of the controller means 

hat the approximate gains can be used to achieve the output 

racking goal. 

The controller consists of two finite-dimensional systems. The 

rst system �F is described by the transfer function 

 F (s ) = I Y −
n v ∏ 

k =0 

s 2 + ω 

2 
k 

s 2 + εs + ω 

2 
k 

I Y , 
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Fig. 1. The closed-loop system. 
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Fig. 2. The steady state velocity field v e (ξ ) , where color depicts speed of the fluid. 
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here ε > 0 is the control tuning parameter. The second system 

R is described by the transfer function 

 R (s ) = 

n v ∏ 

k =0 

s 2 + ω 

2 
k 

s 2 + 2 s + ω 

2 
k 

×
n v ∑ 

k =0 

(
ρk R k 

s − iω k 

+ 

ρ−k R −k 

s + iω k 

)
, 

here 

R k = G 

∗(iω k )(G (iω k ) G 

∗(iω k )) 
−1 , 

R −k = G 

∗(−iω k )(G (−iω k ) G 

∗(−iω k )) 
−1 , 

ρk = 

n v ∏ 

j � = k, j =0 

ω 

2 
j 
− ω 

2 
k 

+ 2 iω k 

ω 

2 
j 
− ω 

2 
k 

, 

−k = 

n v ∏ 

j � = k, j =0 

ω 

2 
j 
− ω 

2 
k 

− 2 iω k 

ω 

2 
j 
− ω 

2 
k 

. 

e denote a state space realization of G F on X F = C 

n F by 

˙ 
 F (t) = A F x F (t) + B F u F (t) , x F (0) = x F 0 ∈ X F , 

 F (t) = C F x F (t) , 

nd a state space realization of G R on X R = C 

n R by 

˙ 
 R (t) = A R x R (t) + B R u R (t) , x R (0) = x R 0 ∈ X R , 

 R (t) = C R x R (t) + D R u R (t) . 

fter coupling the two subsystems of the controller as depicted 

n Fig. 1 , i.e. by setting u F = y − y r + y F and u R = y F , we have the

tructure of an error feedback controller (3) with z = [ x F , x R ] 
T ∈

 F × X R , 

 1 = 

[
A F + B F C F 0 

B R C F A R 

]
, G 2 = 

[
−B F 

0 

]
, (12a) 

 = 

[
D R C F C R 

]
. (12b) 

The following result is obtained in [13] for the class of regular 

onlinear systems and we formulate it for the incompressible 2D 

avier–Stokes equations. 

heorem 7. Assume that G (iω k ) is surjective for each k = 1 , 2 , . . . n v 
nd the assumptions of Thm. 6 hold. There exists ε ∗ > 0 such that an

rror feedback controller (3) with the operators chosen as (12) with 

 < ε ≤ ε ∗ solves Problem 2 for the system (10) , (11) . 

roof. The proof follows directly from Theorem 6 and [13 , Sec- 

ion 5.2]. �

. A Numerical Example 

Let � be the unit disk and consider the Navier–Stokes 

q. (1) with ν = 1 / 25 around a steady state solution correspond- 

ng to the body force 

f w 

(ξ1 , ξ2 ) = 

[
ξ2 (1 − ξ 2 

1 − ξ 2 
2 ) , −ξ1 (1 − ξ 2 

1 − ξ 2 
2 ) 

]T ∈ 

˜ H 

nd f u = 0 , f d = 0 . Our output tracking goal is to have the point

bservation 

 (t) = C 

[
v 1 (ξ , t) 
v 2 (ξ , t) 

]
= v 2 

([
0 . 4 , −0 . 4 

]
, t 

)
∈ L (X, R ) 
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rack the reference signal 

 r (t) = 0 . 5 sin (2 t) (13) 

espite the disturbance 

f d (ξ , t) = B d u d (t) = P 

[
0 , χ�d 

(ξ ) 
]T 

(1 + cos (2 t)) , 

here χ�d 
is the characteristic function and �d = [ −0 . 4 , −0 . 1] ×

 −0 . 4 , −0 . 1] . The output tracking is to be achieved, approximately

nd locally, by using the control 

f u (ξ , t) = Bu (t) = P 

[
χ�u 

(ξ ) , 0 

]T 
u (t) 

here �u = [ −0 . 6 , −0 . 3] × [0 . 1 , 0 . 4] . Now U = U d = Y = R and

ince χ�u 
, χ�d 

∈ H 

s (�) for any s < 1 / 2 [19] , also B ∈ L (U, X −1 / 2 )

nd B d ∈ L (U d , X −1 / 2 ) . As such, if the steady state (v e , p e ) is locally

xponentially stable, then the translated system (4) forms a regular 

onlinear system on the state space X . 

We use the Taylor–Hood finite element spatial discretization for 

he Navier–Stokes equations. With the help of functions included 

n the Matlab PDE toolbox, the unit disk is approximated by 694 

riangles with the maximum edge length of ≈ 0 . 1 , which leads to 

pproximation order of 1453 for each of the velocity components 

nd 380 for the pressure. The steady state solution (v e , p e ) , with

he steady state velocity depicted in Fig. 2 , is calculated using the 

ewton’s method, and we assume p e (0) = 0 to obtain a unique 

teady state pressure. 

We check numerically that linearization of the translated sys- 

em (4) is exponentially stable. Then we design an error feedback 

ontroller (12) with V = { 0 , 1 , 2 , 3 } and choose as the control tun-

ng parameter ε = 0 . 095 to roughly maximize the stability margin 

f the linearized closed-loop system. For the simulation, we relax 

he incompressibility condition by using a penalty method with 

he penalty parameter εp = 10 −5 , see e.g. [9 , Ch. 5.2], to decouple 

he fluid pressure from the fluid velocity. As the initial state, we 

se 

 e 0 = 

[
v e − v e 1 / 2 , 0 

]T ∈ X × Z, 

here v e 1 / 2 (ξ ) is the steady state velocity corresponding to the 

ody force f w 1 / 2 = 0 . 5 f w 

and f u = 0 , f d = 0 . Evolution of the

losed-loop system is then solved using Crank–Nicolson method 

ith the time step �t = 0 . 01 together with Newton iteration. 

Output tracking performance of the controller is depicted in 

ig. 3 and a snapshot of the fluid velocity at the time t = 120 is

hown in Fig. 4 . 

The controller achieves output tracking of (13) with satisfactory 

erformance for the chosen initial state despite the disturbance. 

he effect of the disturbance is not clearly visible in Fig. 3 , since
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Fig. 3. Thepoint observation y (t) (red) and the reference output y r (t) (black) for 

t ∈ [0 , 120] and t ∈ [110 , 120] . (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

Fig. 4. The velocity field v (ξ , 120) , where color depicts speed of the fluid. Bound- 

aries of the control and the disturbance domains are highlighted with black and 

red, respectively, and the observation point is highlighted with green. (For interpre- 

tation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

Fig. 5. Tracking error comparison of the implemented time step 0.01 (red) to the 

time steps 0.025 (black), 0.05 (blue) and 0.1 (cyan) for t ∈ [110 , 120] . (For interpre- 

tation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 
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[

[

[

he frequencies of y r and u d coincide. The locations of �u and �d 

ith respect to the observed point also lead to the disturbance not 

eing clearly visible in Fig. 4 , although the fluid velocity inside the 

isturbed region has a dominantly positive ξ2 -component for the 

ost part. 

A small tracking error remains after the transient behavior. This 

ould be due to the approximate nature of the output tracking, but 

lso at least partially due to the discretization schemes. A compar- 

son of tracking errors using different time step sizes for the im- 

lemented Crank–Nicolson method is presented in Fig. 5 . The fig- 

re indicates that refining step size from 0.1 to 0.025 is beneficial, 

ut further refinement to the implemented 0.01 has little effect. 

ecall that in practice the controller would be constructed with- 

ut having to rely on system approximations, since the construc- 

ion only requires knowledge of the transfer function gains at cer- 

ain frequencies, which can be experimentally estimated with good 

ccuracy. 
141 
. Conclusion 

We studied a velocity output tracking problem for the in- 

ompressible 2D Navier–Stokes equations. As the main result, we 

howed that the studied equations subject to in-domain control 

nd point observation form a regular nonlinear system, in the 

ense of [13] , on a smooth enough state space. As such, a specific

rror feedback controller, introduced in [13] , achieves approximate 

ocal velocity output tracking of periodic sinusoidal reference sig- 

als. Achieved output tracking is approximate in the sense that a 

nite number of harmonics of the system output and the reference 

utput are the same. 

The same control approach can be implemented directly for 

ther fluid flow models as well. To do so, the fluid should be 

iscous for the decomposition similar to (10a) to exist, and with 

he nonlinearity modeled by a term of the type (x · ∇) x . Addition- 

lly, the domain � together with the boundary � should be such 

hat the estimates used in Section 3 are justified. This means that 

o loss of regularity of the solutions may occur at least until the 

egularity level associated to the space X 1 / 2 . 
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