

Sami Marin

INTERCONNECT AUTOMATION TOOL
IMPROVEMENT

Master of Science Thesis
Faculty of Information Technology

 and Communication Sciences
Examiners: Karri Palovuori

Erja Sipilä
November 2021

i

ABSTRACT

Sami Marin: Interconnect automation tool improvement

Master of Science Thesis

Tampere University

Master’s Degree Programme in Electrical Engineering

November 2021

Communication between IP components in System on Chip systems is crucial for providing
complex functionalities. The components are connected to each other with interconnects which
are responsible of handling the data exchange effortlessly. The interconnects are built to follow a
communication architecture which consists of a physical structure and a communication protocol.
As the interconnects are often simple and the number of interconnects necessary in a system is
large, the generation of the interconnects can be automated to reduce the work effort.

In this thesis, an existing interconnect automation tool is introduced and investigated in order
to improve it in various areas. The current implementation of the tool creates an interconnect RTL
and files for IP-XACT packaging and verification. The generated interconnect is based on
parameters, such as the communication protocol (for example AXI4 protocol) and the number of
IPs (slaves/masters), which are inserted into a spreadsheet working as the interface of the tool.
The generation itself is done by utilizing a macro in the spreadsheet. Multiple improvement ideas
were collected, and the progress done for them during the thesis is explained. The improvement
process followed a simple workflow of a feasibility study followed with an implementation of the
solution deemed the best.

Only one improvement, support for non-continuous address space for a single master, was
finished during the thesis due to an implementation change. However, the feasibility of multiple
improvements, such as master-slave visibility and flexible range for address regions, was
investigated. Some were unfeasible due to an underlying major restriction. For feasible
improvements, possible solutions are provided for future implementation.

Keywords: interconnect, automation, communication protocol, AXI4, IP-XACT

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

TIIVISTELMÄ

Sami Marin: Väyläkomponenttien automaatiotyökalun parannus

Diplomityö

Tampereen yliopisto

Sähkötekniikan diplomi-insinöörin tutkinto-ohjelma

Marraskuu 2021

Tiedonvälitys IP komponenttien välillä on keskeisessä asemassa monimutkaisten
toiminnallisuuksien tarjoamisessa System on Chip -järjestelmissä. Komponentit kytketään
toisiinsa väyläkomponenteilla, joiden vastuu on hallita tiedonvaihtoa tehokkaasti.
Väyläkomponentit suunnitellaan pohjautuen kommunikaatioarkkitehtuuriin, mikä koostuu
fyysisestä rakenteesta sekä tiedonvälitysprotokollasta. Usein väyläkomponentit ovat
yksinkertaisia ja niiden määrä on suuri järjestelmissä. Täten väyläkomponenttien generointi
voidaan automatisoida työmäärän vähentämiseksi.

Tässä diplomityössä esitellään olemassa oleva työkalu väyläkomponenttien luomiseen.
Työkalua myös tutkitaan tavoitteena sen parantaminen useasta näkökulmasta. Nykyinen työkalun
toteutus luo väyläkomponentin RTL -tiedoston sekä muita tiedostoja IP-XACT -paketointia ja
verifiointia varten. Väyläkomponentit generoidaan parametrien perusteella, mitkä voidaan asettaa
työkalun laskentataulukkoon perustuvaan käyttöliittymään. Asetettavia parametreja ovat
esimerkiksi tiedonvälitysprotokollana AXI4 -protokolla sekä yhdistettyjen komponenttien määrä ja
niiden rooli. Generointi tapahtuu laskentataulukkoon tehdyn makron avulla. Useita
parannusehdotuksia kerättiin diplomityön aikana ja edistys niitä kohtaan selitetään.
Parannusprosessi oli yksinkertainen, missä aluksi parannuksen soveltuvuus selvitettiin. Tätä
seurasi parhaimmaksi todetun ratkaisun implementointi.

Vain yksi parannus saatiin päätökseen diplomityön aikana implementointiratkaisun muutoksen
vuoksi. Tämä parannus oli epäjatkuvien osoiteavaruuksien tukeminen, kun ne asetetaan samalle
isäntäkomponentille. Tästä huolimatta useiden parannusehdotuksien soveltuvuus selvitettiin.
Näitä parannuksia olivat muun muassa isäntä-orja liitosten näkyvyyden parannus sekä
osoitealueiden leveyksien joustavuuden parannus. Osa parannusehdotuksista todettiin
toteuttamiskelvottomiksi rajoitteen vuoksi, minkä korjaus vaatisi suuremman muutoksen
väyläkomponentin toimintaperiaatteeseen. Toteuttamiskelpoisille parannuksille selvitettiin
mahdollinen ratkaisu, mikä voidaan implementoida tulevaisuudessa.

Avainsanat: väyläkomponentti, automaatio, tiedonvälitysprotokolla, AXI4, IP-XACT

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck –ohjelmalla.

iii

PREFACE

I would like to express my gratitude to my company for providing me the opportunity to

write this thesis. I would also want to thank my colleagues and supervisors for aiding me

in understanding topics which were not familiar for me. I would like to thank my thesis

supervisors as well for providing me feedback on the thesis.

Tampere, 3 November 2021

Sami Marin

iv

CONTENTS

1. Introduction ... 1

2. Interconnect theory ... 3

2.1 Interconnect principles .. 3

2.2 Protocol principles .. 5

2.3 AXI protocols .. 5

2.3.1 AXI4 protocol .. 7

2.3.2 AXI4-Lite protocol ... 10

2.3.3 AXI4-Stream protocol .. 11

2.4 IP-XACT packaging .. 12

2.4.1 Transparent bridge properties ... 13

2.4.2 Opaque bridge properties ... 14

3. Interconnect tool ... 16

3.1 Current features .. 16

3.1.1 Generator specific features ... 16

3.1.2 AXI4/AXI4-Lite specific features .. 17

3.1.3 Ring interconnect specific features ... 18

3.2 Working principles .. 19

4. Improvements ... 32

4.1 Limitations .. 32

4.2 Non-continuous address space improvement ... 35

4.2.1 Non-continuous address space with transparent bridges 38

4.2.2 Non-continuous address space with opaque bridges 43

4.3 Progress on the rest of the improvement requests 49

4.3.1 Master-slave visibility improvement ... 49

4.3.2 Range definition improvement... 51

4.3.3 Generic features improvement .. 51

4.3.4 Self-documentation improvement .. 52

4.3.5 Default master interface improvement ... 52

5. Conclusion .. 54

References ... 55

v

LIST OF SYMBOLS AND ABBREVIATIONS

AMBA Advanced Microcontroller Bus Architecture
API Application Programming Interface
AXI Advanced eXtensible Interface
CB Clock Bridge
CBR Clock Bridge Receiver
CBT Clock Bridge Transmitter
CDC Clock Domain Crossing
EDA Electronic Design Automation
GUI Graphical User Interface
IP Intellectual Property
IP-XACT XML format for defining electronic circuit designs
QoS Quality of Service
RTL Register Transfer Level
SoC System on Chip
TGI Tight Generator Interface
VBA Visual Basic for Applications
VHDL VHSIC Hardware Description Language
XML Extensible Markup Language

1

1. INTRODUCTION

Modern SoC (System on Chip) devices are complex systems with dozens of separate

components. These components are often IP (Intellectual Property) blocks with their own

functionality and purpose. The combination of the individual functionalities allows

complex applications on a single SoC device. [1] The key factor in enabling the complex

features is communication between the separate components. Communication is

enabled by using interconnects which are often components themselves. Interconnects

based on some communication architectures are the commonly used method.

As the system complexity increases, so does the requirements for the interconnects.

Flexibility for the number of IPs and their address spaces requires an effortlessly

modifiable interconnect. Manually writing interconnects with VHDL (VHSIC Hardware

Description Language) for every system is slow and cumbersome since the

interconnects themselves are in practice often just wiring between the IPs while allowing

communication with some communication protocol. Therefore, the interconnect

generation should be automated to reduce the manual work effort which could be used

elsewhere.

In this thesis, one implementation of an interconnect automation tool is introduced. The

tool can generate interconnects based on certain communication architectures which

determine the physical structure and the communication protocol of the interconnect [2].

The implementation is an all-in-one solution based on Excel spreadsheet. As an output,

the tool generates the necessary files for the interconnect and various extra files to aid

in integration and verification. Flexibility and ease-of-use is enabled by a simple interface,

which can be used to determine the parameters of the interconnect. These parameters

work as the input data for the generation.

The main goals of the thesis are to determine the current state of the automation tool

and improve it in various areas. The need and possibilities for improvement are

investigated during the thesis to determine the baseline of the current state. Then the

feasibility of the possible improvements is defined. Depending on the feasibility, as many

improvements as possible are implemented in the given timeframe of the thesis.

The outline of the thesis is the following. First, the basics of interconnects and

communication protocols related to the automation tool are explained in the chapter 2.

2

Then in chapter 3, the current implementation of the automation tool is introduced in

detail. Next the improvement process and the progress done during the thesis are

explained in the chapter 4. Lastly the overall improvement of the automation tool is

concluded in the chapter 5.

3

2. INTERCONNECT THEORY

To automate interconnect generation within the scope of this thesis, the required

knowledge can be divided into three categories: interconnect principles, communication

protocol principles and IP packaging. This chapter introduces these categories and starts

with the interconnect principles. Then the communication protocol principles are

explained. Next the standardized protocols used in the interconnect tool are introduced.

Lastly the IP-XACT packaging methods are explained.

2.1 Interconnect principles

As the communication is the critical factor in performance [3], the used interconnect

topology and architecture are important properties of the SoC design. The simple

approach for the physical implementation of the interconnect is using buses which could

be implemented with single wires. Multiple buses would then form a parallel bus

implementation which has been the typical approach for SoC applications. [2] However

with increasing complexity in the SoC designs, the simple parallel bus implementation

reaches its data transfer limits and most likely bottlenecks the performance [3]. To reduce

the effect of the bottlenecks due to the interconnect architecture, various approaches for

the physical implementation have been developed. One of the promising architectures,

which is also one of the two architectures relevant in this thesis, is a bus-matrix or

commonly known as a crossbar. The physical implementation of the crossbar

architecture is shown in the figure 1 below.

Figure 1. Crossbar architecture [2]

In the figure 1, there are blocks which represent components for example the IPs in the

SoC design. Every block also has a role of a master or a slave. They are distinguished

4

from each other by their functionality in regards of the communication. Master blocks

start and control the communication between the other blocks. Slave blocks can only

respond to the communication attempts from the master blocks. [4] As seen in the figure

1, there are buses from each master to each slave. Communication between the blocks

is packet switched as in the data transfer contents determine the destination. The

destination information is decoded from the packet and then multiplexed to the correct

end point. In a case where multiple data transfers occur to the same end point; arbitration

is present to decide the order of receival. [2] The crossbar architecture thus allows high

parallelism where multiple data transfers can occur simultaneously between different

slaves and masters [2,4]. The benefit of high data throughput has increased the

popularity of the architecture even though the implementation comes with high costs in

terms of area, power consumption and manufacturing [2,3,4]. The other relevant and

popular architecture is the ring bus architecture, which is introduced in the figure 2 below.

Figure 2. Ring bus architecture [2]

As shown in the figure 2, the ring bus architecture is quite different from the crossbar

architecture. Instead of having buses for every connection, there is a single ring bus

connection. The ring consists of nodes which operate as the end point for the

components and are connected serially to each other. The communication in a ring bus

is often token based [5]. The data transfer is passed to the ring and the nodes check the

contents of the transfer. If the destination information points to the component connected

to the node, the data transfer is appointed to component. Otherwise, the data transfer

continues through the ring until the current destination is reached. [2] The major benefit

of the ring interconnect is the great performance to area ratio. High performance is

achieved due to the short length between the nodes in the ring which allows higher

5

operating frequency. [5] The benefit stems from the location of the nodes. If the data

transfer is between adjacent nodes, the transfer is fast. The locations of the nodes are

however the drawback of the ring architecture as well. In worst case the data transfer

goes through the whole ring before it reaches its destination. This drawback can be

reduced by supporting transfers to both directions depending on for example distance

[2]. The nodes can also be allocated in proper locations where additional latency due to

distance is less crucial.

Both architectures have their own uses. Crossbars are used in applications, for example

high end processors, where data throughput and parallel operation are the most

important factors. Ring bus interconnects are used in applications which are cost

effective while allowing moderate performance.

2.2 Protocol principles

Now that the architecture for the physical implementation is clear, one important factor

missing are the common rules for communication. Often the interconnected components

are not new components. Some of the components are reused IPs or components

provided by external component sources. To ease the communication between the

components, communication protocol standards have emerged.

Communication protocol standards define two major features for the interconnected

components. First defined feature is the interface for the components which is the

physical pins on the device. A set number of pins are defined with their own functionalities

and purposes. [2] The second feature defined are the data transaction rules. The rules

define the properties for the data transmission such as the correct way to start and end

the transmission, order of the possibly multiple data packets, transaction and receival

acknowledgements and arbitration rules. [6] Following the features defined in the

protocol standard increases the flexibility of the system and decreases the complexity of

the interconnect designs as they are responsible of the data transmission between the

components. Simpler interconnect designs are possible due to the common interface

pins for the connections and the logic needed for the data transactions are not dependent

on the receiving components as they share the data transaction rules.

2.3 AXI protocols

In the scope of this thesis the communication protocol standards relevant are bus based

AXI (Advanced eXtensible Interface) protocols from AMBA (Advanced Microcontroller

Bus Architecture) 4 specification by ARM [7]. Three protocols are introduced in the

6

specification and each of them are focused on high performance systems. The protocols

are AXI4 protocol, AXI4-Lite protocol and AXI4-Stream protocol. These protocols have

slightly different features and use-cases, but they share the underlying basics for

communication. The combination of features makes these protocols a preferred choice

for SoC interconnect designs.

The first shared feature is the principle for interface definition. The protocols define only

master and slave interfaces. These interfaces are symmetrical between each slave and

master respectively [8]. This allows simple connections and data transmissions, thus

reducing the logic necessary in the interconnects. The second shared feature is allowing

independent topology [8]. In other words, the physical structure of the interconnect does

not have restrictions caused by the protocol. This allows the optimization of the

interconnect by choosing a suitable topology. Another feature is the interface signal

principles. Even though the interface signals are specific for each protocol, the principle

for them are to support high parallelism. This is achieved by having own channels for

address, read, write and response signals. The channels are independent from each

other. Thus, the operation is largely asynchronous and parallel. [8] The channels also

have their own purpose as in the address channels are only meant for the addresses

and so forth. Independent channels open the option to optimize the signal widths for

each of the channels since for example the addresses often require less bits than the

data blocks.

The protocols share similar data transaction rules as well. Firstly, the data transaction is

burst based. Each transaction consists of control information and the data itself. The

control information contains the address of the destination and a description of the data

which are relayed using the address channels. The data is relayed using either the write

channel or the read channel depending on the direction such as from the master to the

slave or vice versa. In both cases, the master starts the transfer by assigning the control

information on the respective address channel for either read or write operation. Then

the data is transferred in bursts until every burst is transferred. Indication for the last burst

is relayed though a separate channel. Throughout the transaction, handshake channels

are utilized. A response is given after the full transfer as well indicating a successful

transaction or certain error occurring. [9] The parallelism of the channels enables the

transactions for different IP blocks to occur out-of-order which is implemented in the

protocols by assigning an ID for each occurring transaction. The only restriction is that a

transaction with the same ID must be completed in order. [8] Out-of-order transactions

are highly beneficial in interconnects as the IP blocks connected most likely have

different response times.

7

The following sub-chapters introduce the protocol specific features and the interface

signals relevant for the thesis.

2.3.1 AXI4 protocol

As mentioned earlier, the AXI protocols have separate channels for write and read

transactions. The channels present in AXI4 protocol are the following: read address, read

data, write address, write data and write response channels [10]. The data transaction

procedures are visualized in the figure 3 below.

Figure 3. Write and read transaction procedure for AXI4 protocol [10]

As can be seen from the figure 3, the write and read transactions follow the basic

principles as earlier mentioned. The write transaction starts with the master sending the

control information and then the data is transferred. After every burst is transferred, a

separate response channel is used by the slave to send the status of the transaction.

8

The read transaction follows the same procedure with the difference being the channels

used and a separate response channel is not used. The separate channels consist of

interface signals which are listed in the table 1 below for each channel.

Table 1. AXI4 protocol interface signals [10]

Global signals

Name Description

ACLK clock signal, synchronous signals sampled on rising edge

ARESETn reset signal, active-LOW

Channel signals

Write/Read address channel Write/Read data channel Write response channel

Name
(x=W/R)

Description
Name

(x=W/R)
Description Name Description

AxID ID tag xID ID tag BID ID tag

AxADDR address xDATA data BRESP response

AxLEN burst length xLAST
last burst
indicator

BUSER
user

extension

AxSIZE burst size xUSER user extension BVALID
valid

handshake

AxBURST burst type xVALID valid handshake BREADY
ready

handshake

AxLOCK atomic type xREADY ready handshake

AxCACHE memory type RRESP read response

AxPROT
access

permission
WSTRB

valid write
datalanes

AxQOS QoS identifier

AxREGION region indicator

AxUSER user extension

AxVALID
valid

handshake

AxREADY
ready

handshake

The first signals in the table 1 are the global clock and reset signals. All the channel

signals are sampled on the rising edge of the clock signal [11]. Then there are the

channel specific signals. The write and read address channels have similar interface

signals. There are the ID and the address signals. Then the transaction settings such as

burst length, size and type signals. Additional settings include atomic operations,

memory types, access permissions, QoS (Quality of Service) and region interface

settings. There is also the user extension signal which the user can define for example

to add extra information about the transaction. The last signals in the read and write

address channels are the handshake signals. The data channels also share similar

signal interfaces with some differences. There are the ID and the data signals. The signal

used to indicate the last burst of the transaction. Similarly, there are the user and the

handshake signals. The differences between the data channels are the last two signals

which are specific for the read or the write channel. The read data channel has a

9

response signal, and the write data channel has an indicator signal for valid data lanes.

The last channel in the table 1 is the separate write response channel. The channel is

only used for write responses thus the channel consists of ID, response, user and the

handshake signals.

As indicated in the table 1, every transaction channel has the handshake signals. These

are utilized throughout the transactions and they are a crucial part of organizing the

communication. The channels have slightly different rules for handshaking which must

be followed. However, they follow the same process for handshaking. The process starts

with the source setting the VALID signal to a HIGH state. The source can be the master

or the slave as both can control the flow of information. The HIGH state for the VALID

signal indicates that the channel appropriate information is available for transferring.

Then the destination sets the READY signal to a HIGH state which indicates the

readiness for receival of information. The transfer is completed on the rising edge of the

clock signal when both handshake signals are in the HIGH state. [10,11] There are three

different allowed handshake cases which are introduced in the figure 4 below.

Figure 4. Allowed handshakes for AXI4 protocol channels [10]

The first handshake in the figure 4 is the basic process where the VALID signal is set to

HIGH before the READY signal. The other cases are also possible due to the READY

10

signal being allowed to be HIGH before the VALID is set. The benefit of doing so is to

reduce the time the transaction takes. In the second handshake the READY signal is

HIGH before the VALID signal. Thus, the transfer is done in one clock cycle instead of

the information being held in the channel until both signals are HIGH like in the first case.

In the last case, both handshake signals are set to HIGH at the same time. Therefore,

the transfer is completed at the next rising edge. [10,11]

In addition, there are channel specific rules for the handshakes and dependencies

between the handshake signals for the channels as well. These are present to avoid

deadlock and they must be followed. [10]

2.3.2 AXI4-Lite protocol

The next relevant AXI protocol is the AXI4-Lite protocol which is a simplified version of

the AXI4 protocol in the previous sub-chapter. Some of the features regarding the burst

based transfers are fixed instead of user-defined. The major settings being the burst

length fixed to value 1 and the usage of full width of the data channel for all accesses.

The simplified protocol is intended for simple control interfaces which do not need the

full capabilities of the AXI4 protocol. [10] The protocol has the same channels and follows

the same transaction processes as the AXI4 protocol. The simplified interface signals

are collected in the table 2 below.

Table 2. AXI4-Lite protocol interface signals [10]

Global signals

Name Description

ACLK clock signal, synchronous signals sampled on rising edge

ARESETn reset signal, active-low

Channel signals

Write/Read address channel Write/Read data channel Write response channel

Name
(x=W/R)

Description
Name

(x=W/R)
Description Name Description

AxADDR address xDATA data BRESP response

AxPROT
access

permission
xUSER user extension BUSER

user
extension

AxQOS QoS identifier xVALID valid handshake BVALID
valid

handshake

AxREGION region indicator xREADY ready handshake BREADY
ready

handshake

AxUSER user extension RRESP read response

AxVALID
valid

handshake
WSTRB

valid write
datalanes

AxREADY
ready

handshake

11

The interface for the AXI4-Lite protocol is much simpler due to the fixed burst length as

shown in the table 2. The signals for the transactions such as the address, data and

handshake signals have the same functionality. The additional signals are also present.

One major difference is the missing ID signals which means that the transactions must

be in order. The handshake process with the AXI4-Lite protocol is the same, and the

same rules and dependencies are present like in the AXI4 protocol.

2.3.3 AXI4-Stream protocol

The last protocol from the AMBA 4 specification is the AXI4-Stream protocol which is for

streaming data between the masters and the slaves. The protocol has a single interface

which is used for the streaming. The interface is similar with the AXI4 protocol write data

channel [8]. Data is transferred in data streams which are a series of transfers or

transfers grouped up as packets. Multiple data stream types are supported such as byte

streams or continuous streams. Byte stream is a collection of data bytes and null bytes.

The null bytes can be whenever in the byte stream and the data bytes are transferred

only on valid handshake. The continuous stream contains only data bytes. The stream

can be aligned or unaligned. In aligned stream, there are no extra bytes between the

packets. Unaligned stream is the opposite. [12] The interface signals used for the data

streaming are introduced in the table 3 below.

Table 3. AXI4-Stream protocol interface signals [12]

Protocol interface signals

Name Description

ACLK clock signal, synchronous signals sampled on rising edge

ARESETn reset signal, active-low

TVALID valid handshake

TREADY ready handshake

TDATA data

TSTRB data description

TKEEP data qualifier

TLAST transaction boundary

TID data stream ID

TDEST destination

TUSER user extension

As shown in the table 3, there are the necessary signals for the handshakes and the

data. Additionally, there are extra signals to add extra information about the data. The

TSTRB signal describes the type of the data and the TKEEP signal informs about the

null bytes. The TLAST signal is used to indicate the end of the packet. The multiple

12

masters and slaves are handled with the ID signal which separates the different data

streams. The destinations for the packets are determined with the TDEST signal. The

protocol has the optional user extension signal like in the other AXI protocols as well.

Like in the AXI4-Lite protocol, the handshake process is identical with the previous AXI4

protocol. [12]

2.4 IP-XACT packaging

As mentioned earlier, modern SoC devices can contain IPs from different sources. The

IPs and the interconnects could have different principles for designing which could hinder

the design process of the complete system. To improve the reusability of IPs and

compatibility with tools, IP-XACT standard can be used to describe IPs in a manner

which is consistent and machine readable [13]. The separate designs in the system using

the common documentation style enables less problematic integration which is a key

factor in the design of modern SoC devices [16].

The level of detail in the IP-XACT descriptions can be chosen for example only top-level

details such as ports are presented. For interconnects, the useful details to describe with

IP-XACT could be the top-level ports, bus definitions and internal memory maps. To

describe the necessary structures in the IP, the standard provides document types.

These types have their own purpose as they are used to describe certain details of the

IP. The document types important for interconnect designs are listed below.

• Component

• Design

• Design configuration

• Bus definition

• Abstraction definition

The first document type in the list is component which is the top-level type. It is used to

describe for example IP blocks. In this case, the component type describes the

interconnect and its top-level details. The necessary top-level information would be the

master and slave ports, buses and address mapping information. The next document

type is design which describes the hierarchy of the component. The design could contain

the information on the used internal sub-components and their properties. The

information about the hierarchy can be extended with the design configuration document

type which can be used to detail exact information about the sub-component instances.

[13,14,15] The first three document types are for describing the structure of the IP from

13

top-level to internal structure. The level of detail can then be chosen by using only the

component and not the other two types as they are extensions for the component. The

last two document types in the list are for describing the communication properties of the

interconnect. The bus definition type can be used to describe the direct connections in

the design. For interconnects these could be the connections between the masters and

the slaves. The bus definition contains also the protocol used for the connection and

ports. The bus definition can be extended by using the abstraction definition type which

defines the exact information about the buses such as logical ports and their properties.

Like with the structure, the level of detail for the communication properties can be

chosen. [13,14] The combination of the different document types enables the IP-XACT

description to have the preferred amount of detail.

One of the important features enabled by using IP-XACT for interconnects is the

possibility to include address mapping information. In the IP-XACT description, the

address mapping is enabled with using bridges in the component. The bridge works as

a connection between the master and the slave bus interfaces. In IP-XACT, there are

two different types of bridges and they define how the address mapping is linked between

the master and the slave. [14] The following sub-chapters explain the two bridge types:

transparent bridge and opaque bridge.

2.4.1 Transparent bridge properties

Transparent bridging utilizes direct mapping. This means that the address space of the

bridges master interface is one-to-one mapped to the address space of the slave

interface. An example with a connected component is shown in the figure 5 below.

14

Figure 5. An example of the address mapping with transparent bridges [14]

As shown in the figure 5, the address spaces of the master and the slave interfaces start

from the same position (0x0000). The master address space range is also mirrored to

the slave interfaces address space. When a component with its own address block

(0x0000-0x07FF) is connected to the master interface, the address block can be offset

into the master address space. However, the offset does not change the direct mapping

and only offsets the location in the master address space. The offsetting can be done in

both directions. Multiple bridges to different masters can be made for the same slave in

which multiple master address spaces are mapped to the same slave interface. The

transparent bridging does however have a restriction regarding the master interface

address spaces. The address spaces are declared with only a base address and a range.

Therefore, the address space must be continuous. [14] In some systems, this restriction

could cause overlap which might cause errors in the functionality. The transparent

mapping is simple and efficient in most interconnect designs.

2.4.2 Opaque bridge properties

Opaque bridging is used when the address maps should not be directly mapped. Using

the opaque bridges requires the usage of subspace maps in the slave interface. The

subspace maps are a way to divide the slave interface address map into smaller

sections. The subspace maps are then used to determine how the master address space

is mapped to the slave interface. An example with a connected component is shown in

the figure 6 below.

15

Figure 6. An example of the address mapping with opaque bridges [14]

In addition of the requirement for subspace maps, the master interface address space is

often divided to address space segments as shown in the figure 6. The opaque bridging

then maps the segment of the master address space to the subspace map of the slave

address space. The location of the segment does not affect the location of the subspace

map; thus, the segment offset can be freely changed. Only the range of the segment is

mirrored to the subspace map. For example, if the segments offset in the figure 6 would

be changed from 0x1000 to 0x3000, the segment would still be mapped to the subspace

map starting from 0x1000. This enables the option to choose which segment is mapped

to which subspace map. With multiple segments and subspace maps, the address

mapping is flexible and can be for example shuffled if necessary. Connected address

blocks are mapped like with transparent mapping in which the address block can be

offset. [14] Care must be taken when connecting components to ensure that the address

block is connected inside some segment in the master address space.

With the ever-increasing complexity of systems, the interconnects will become more

complex as well. Utilizing the opaque bridging offers the tools to modify the interconnect

address mapping rather freely in the later steps of the design process.

16

3. INTERCONNECT TOOL

This chapter introduces the interconnect automation tool used in the company. First the

current features of the implementation are listed. The features are separated to generator

and protocol specific features. Lastly the working principle and the flow of the tool is

explained thoroughly.

3.1 Current features

The interconnect automation tool is an RTL (Register Transfer Level) generator which

can be used to generate three different interconnect designs. These designs are

generated based on communication protocols which can be chosen by the user. The tool

includes an interface for setting various design parameters and information sharing.

Interface inserted data is then used for the generation of the interconnect RTL and

necessary files for later work steps such as packaging and verification. The following

subchapters introduce the generator specific and the protocol specific features.

3.1.1 Generator specific features

The generator features a single interface for everything to allow easy and fast usage.

The interface is used for setting the protocol for the generation and there are three

protocols to choose from. The protocols supported are AXI4, AXI4-Lite and modified

AXI4-Stream protocol. The design parameters for the interconnect can be set after the

protocol is chosen. There are universal parameters such as the number of masters and

slaves. Protocol specific parameters such as protocol signal widths can be set as well.

The generator supports the addition of address mapping for the interconnect RTL and

the packaging. The address mapping is inserted as address regions. Multiple address

regions can be assigned for the same master. The slave and master interfaces can be

named by the user. The generation is started from the interface and the generation is

done locally without the need for separate setup for the tool. The tool includes a status

window and the ability to point out the erroneous inputs from the user. The shared

features for every protocol are shown in the table 4 below.

17

Table 4. Shared generator specific features

Feature Options Constraints Limit

Protocol
AXI4, AXI4-Lite,
modified AXI4-

Stream
- -

Slaves - - max=32

Masters - - max=32

Address
regions

multiple regions
can be assigned to

single master

start address<=given address size,
no overlap,

continuous space for a single master,
alignment, range, destination

max=32

Port names -
no duplicates,

one word,
first character=letter

-

As can be seen from the table 4, there are constraints and limits for the shared features.

Multiple constraints are placed for the address regions since the address mapping is

affected by the interconnect RTL implementation heavily. The limits are present due to

the implementation of the interconnect tool interface thus they are not RTL specific

limitations.

3.1.2 AXI4/AXI4-Lite specific features

The protocol specific features for the AXI4 and AXI4-Lite protocols in the generator are

the possibility to modify the signal widths of the data and address bus sizes as well as

the protocol specific signal widths. The modifiable signal widths for the protocols are

collected in the table 5 below.

Table 5. Modifiable signal widths for AXI4 and AXI4-Lite protocols

Protocol parameter AXI4 AXI4-Lite Constraint

Datasize supported supported log2 format of bytes

Address bus size supported supported max=39bits

ID size supported not supported -

Len size supported not supported max=8bits

User size supported supported -

From the table 5, the datasize and the address bus size are the same in both protocols

and they have the same constraints. The constraint for the datasize indicates that the

data size must be given as binary logarithm of bytes. For example, value 2 would indicate

18

32 bits wide data bus. The maximum address bus size is 39 bits which depends on the

current RTL implementation. The protocol specific signals available for modification for

the AXI4 protocol are ID, Len and User signals. Only the user signal width is modifiable

in the AXI4-Lite protocol since the ID signals are not supported and the Len signals are

defined to be 1.

3.1.3 Ring interconnect specific features

When generating a ring interconnect, the datasize and the address bus size can be set

same as with the other protocols. The modified AXI4-Stream protocol does not however

have the same signals. Ring interconnect generation also has extra features for the

individual nodes regarding for example CDC (Clock Domain Crossing). The modifiable

signals and extra features are collected in the table 6 below.

Table 6. Ring interconnect specific features

Protocol parameter Options Restriction Constraint

Datasize -
value=2 only

supported (32bit
datasize)

log2 format

Address bus size - - max=39bits

Source and
destination signal

size
- - -

Protocol for
individual node

AXI4-Lite,
modified AXI4-

Stream
- -

Clock bridge
addition

full bridge,
half bridge

- -

Node sequence - no duplicates
must be a running

number from 0

As seen from the table 6, the only supported datasize with modified AXI4-Stream

currently is 32 bits. The modifiable signal widths are the source and the destination signal

widths, which are not present in the other protocols. The extra features shown in the

table 6 are the ability to set individual properties for the nodes. Firstly, the input signal

interface can be chosen between two protocols for the node which are the AXI4-Lite and

the modified AXI4-Stream. Then CDC components, as in full or half clock bridges, can

be added into the design for the desired nodes. Lastly, the node sequence for the ring

can be changed to be preferred while following the constraints and restrictions.

19

3.2 Working principles

The current implementation of the interconnect automation tool is based on Microsoft

Excel -spreadsheet software. Excel is a suitable software for the interconnect tool since

the tool should be easy and informative to use. Often multiple different interconnects are

needed thus the modification of the settings or the parameters should be fast while also

allowing the separation between the interconnects. Fast modification is possible since

the interface of the tool is a predesigned spreadsheet in which the user can alter various

settings for the generation and the parameters for the generated interconnect.

Separation, for example different input files, is also possible since the spreadsheet acts

as the input file for the generation. The generation itself is behind a macro which contains

multiple different functions such as checking functions or VHDL generation functions.

The macro uses Microsoft Visual Basic for Applications (VBA) -programming language.

VBA is suitable as the programming language for the generation since it has the

necessary functionalities [17,18]. With VBA, a separate tool or environment is not needed

for the generation. By using the spreadsheet as the interface and the macro for the

generation, the complexity of using the tool is reduced since the user does not need the

knowledge on how to setup multiple tools.

There are two workflows which are executed in the normal operation of the interconnect

automation tool. The first workflow is for the user and the second is for the generation.

Both workflows have been designed to be straightforward and fast. The user operates

only with the interface of the tool and there should be no reason to do otherwise. The

predesigned user interface consists of 4 different areas, which are introduced in the

following figures. The user workflow starts by setting the parameters in the interface area

shown in figure 7 below.

20

Figure 7. Modifiable parameters for the interconnect tool

As seen from the figure 7, the user can alter various parameters such as the interconnect

protocol used, the number of I/O ports, and the properties of the interconnect signal

widths. The blackened cells in the figure 7 indicate parameters which cannot be modified

with the current interconnect type. The same indicator is used in other parts of the

interface as well. The next step in the workflow is setting up the memory address

mapping for the interconnect which’s interface area is introduced in the figure 8 below.

Figure 8. Interconnect memory address mapping interface

The memory address mapping consists of address regions which are indicated by a start

address and a length as shown in figure 8. The routing for the address region is indicated

with a number belonging to the destination which in this interconnect tool is the master.

The amount of address regions visually available to modify is carried over from the value

set in the parameters area. Regarding the possible start addresses and ranges, some

rules and restrictions have been made for the address mapping which are checked in

the second workflow later. The next step in the user workflow is defining the master and

slave interface names. In the case of ring interconnect generation, the properties of the

21

nodes are also defined in this step. The interface for defining the individual properties for

the slaves and masters is shown in the figure 9 below.

Figure 9. The individual properties of the slaves and masters

As seen from the figure 9, the number of slaves and masters visually available is carried

over from the user set parameters similarly like in the address mapping. For the ring

interconnect type, there are various settings for the user to individually set for each of

the slave and master nodes. As shown in the figure 9, the user can alter the protocol

adaptation used for the node input side. The protocols supported are the AXI4-Lite

protocol or the modified AXI4-Stream protocol. The addition of clock domain crossing

components can also be set by the user. There can be full clock bridges indicated by CB

(Clock Bridge) or half bridges indicated as CBR (Clock Bridge Receiver) and CBT (Clock

Bridge Transmitter). Lastly for the ring interconnect, the user must set the order in which

the nodes are connected in the generated component. The tool interface is designed to

be less prone to user error, thus only the names can be modified if the interconnect type

is for crossbar generation. All Excel cells affiliated with the ring interconnect generation

are blackened to indicate that they are not used if it is not used as the interconnect type.

The last step in the user workflow is to start the generation workflow by using the ROUHI!

button of the interface. The last area of the user interface includes some quality-of-life

features as well which are shown in the figure 10 below.

Figure 10. Info and status interface

The button seen in the figure 10 starts the Excel macro which is responsible for the

generation flow. The generation flow includes checks for input errors which are then

22

indicated for the user using various visual methods such as coloring the cells and

message windows. The user must correct the possible errors and run the generation flow

again until a successful generation is indicated by the tool. As seen in the figure 10, the

user interface also includes some info bars for the parameters and a status bar about

the current progress of the generation workflow.

In a similar way to the user workflow division into different input areas, the generation

workflow can be divided into different tasks. These tasks consist of a series of functions

inside the Excel macro. Like a usual simple software program, the macro also includes

a main function which works as the task manager for the generation flow. The main

function called Generate is introduced in the program 1 below.

 Sub Generate()
2 ErrFound = 0
 IncMemMap = 1
4
 Do While True
6 SetVariables
 If ErrFound <> 0 Then Exit Do
8 CheckAddresses
 If ErrFound <> 0 Then Exit Do
10 CheckOverlap
 If ErrFound <> 0 Then Exit Do
12 GenVectors
 If ErrFound <> 0 Then Exit Do
14 CheckPrefix
 If ErrFound <> 0 Then Exit Do
16 If NodeMode <> 0 Then
 CheckNodeSequence_and_protoc
18 End If
 Exit Do
20 Loop

22 If ErrFound = 0 Then
 MakeDirectory
24 PrintTBSV
 Print_packager_csh
26
 If ICTypeValue = 0 Then
28 PrintVHDL_wrapper
 Print_axl_packager_tcl
30 Print_sanity_tb_wrapper
 Print_dut_sv_wrapper
32 ElseIf ICTypeValue = 1 Then
 PrintVHDL_wrapper_node
34 Print_node_packager_tcl
 Print_sanity_tb_wrapper_node
36 Print_dut_sv_wrapper
 ElseIf ICTypeValue = 2 Then
38 PrintVHDL_wrapper_AXI
 Print_axi_packager_tcl
40 Print_sanity_tb_wrapper_AXI
 Print_dut_sv_wrapper_AXI
42 End If

44 Cells(StatusRow, StatusCol).Value = "Generating... DONE!."
 MsgBox "Generation completed w/o errors!"
46 Else
 Cells(StatusRow, StatusCol).Value = "Generating... ERRORS FOUND!."
48 MsgBox "Generation completed w/ errors!"
 End If
50 End Sub

Program 1. The main function Generate of the generation workflow

23

There are three tasks in the generation workflow which can be seen in the code structure

of the main function in the program 1. The first task is responsible for checking the values

inputted in the Excel spreadsheet and generating the necessary variables and vectors

used later in the other tasks. If there are any errors made by the user, the error

information is relayed by notifications and the generation workflow is terminated. The

functions included in the first task are listed in the table 7 below.

Table 7. Functions and properties of the first task in the generation flow

Order of
execution

Function name Main feature Error check

1 SetVariables
generate variables from user

inputs
-

2 CheckAddresses
check if the addresses are inside

the inputted address size
start address

3 CheckOverlap
check if the address regions

overlap
overlap

4 GenVectors generate mapping vectors
address region

parameters

5 CheckPrefix
check if the master and slave
names are according to rules

master and
slave name

6
CheckNodeSequen-

ce_and_protoc
check if the node sequence and
protocol settings follow the rules

sequence and
protocol

As seen from the table 7, the order of execution follows the user workflow order of input

data since the address mapping and the interface inputs are dependent in the same

order. Five of the functions are executed always and the sixth function is protocol specific

which is when ring interconnect is generated. With every protocol the functions 2-4 in the

table 7 are responsible for checking the address mapping of the interconnect. The

checking logic structure is bottom up which is starting from the start addresses and

working towards the destination inputs. The checks include bit lengths, any kind of region

overlap, alignment to region range and destination checks. When the address mapping

checks are passed, the GenVectors function generates mapping vectors for a mapper

component used in the RTL design. The mapping vectors include the mapping data in

binary format which is then used to determine the destination for input addresses. The

last part of the first task is the checks for individual master and slave parameters. The

function 5 in the table 7 checks the names inputted and if ring interconnect is generated

the function 6 checks the node sequence and protocols for the nodes. After the first task,

the input data is valid, and everything is ready for the generation of various files.

The second task in the program 1 is focused on generating the files which are not

dependent on the protocol used for the interconnect. These files are necessary setup

24

files for the IP-XACT packaging and the sanity testbench. The functions in the second

task are listed in the table 8 below.

Table 8. Functions and properties of the second task in the generation flow

Order of
execution

Function name Main feature Other feature

7 MakeDirectory
generate necessary directory

structure
-

8 PrintTBSV
generate parameter and definition

files for sanity testbench

find a free address
segment for error
response testing

9 Print_packager_csh generate setup packaging script -

The necessary files for the sanity testbench in the second task are parameter and

definition files which are generated in the function 8 seen in the table 8. These files

contain the same input values for the parameter section and the memory mapping

section from the spreadsheet. They are needed in the testbench environment thus they

are exported from the spreadsheet as SystemVerilog -files. An error response area is

also generated within the memory mapping for the error response testing. The other part

of the second task is the generation of the setup script file for the packaging flow. The

script file is an existing setup script used by the company and its main purpose is to setup

the packaging environment and running the packaging flow. Automating the packaging

with scripts allows better clarity and less complicated approach for the IP-XACT

description generation [19]. The function 9 in the table 8 is responsible for modifying the

necessary parts of the script for the entity generated later in the third task.

The last task shown in the program 1 is the generation of protocol specific files. The

functions are responsible for the generation of the interconnect itself and the packaging

script for it. The required testbench files are generated as well after the interconnect

generation. Each protocol has its own functions for RTL, packaging and testbench files

which are listed in the table 9 below.

25

Table 9. Functions and properties of the third task in the generation flow

Order of
execution

Function name Main feature

10
PrintVHDL_wrapper

PrintVHDL_wrapper_node
PrintVHDL_wrapper_AXI

generate top-level VHDL wrapper

11
Print_axl_packager_tcl

Print_node_packager_tcl
Print_axi_packager_tcl

generate IP-XACT packaging script

12
Print_sanity_tb_wrapper

Print_sanity_tb_wrapper_node
Print_sanity_tb_wrapper_AXI

generate sanity testbench wrapper

13
Print_dut_sv_wrapper

Print_dut_sv_wrapper_AXI
generate setup files for sanity testbench

Appropriate function for the specific protocol is executed from the table 9 which can be

also seen in the program 1. The first function in the third task generates the top-level

VHDL wrapper which is the interconnect design. Even though there are three different

protocols and therefore the wrapper designs are different, for example in the components

used or interface, the basic principle and structure for the generation is similar. The

pseudo code for the AXI4 and AXI4-Lite protocol VHDL wrappers are shown in the

program 2 below.

26

 entity xbar_entity is
2 generic (
 --
4 -- Various generics
 --
6);
 port (
8 --
 -- Clock and reset
10 --
 Asynchronous clock input
12 Asynchronous reset input
 --
14 -- Status output
 --
16 Pipeline status output
 Mapping error output
18 --
 -- Priority, arbitration quantum
20 --
 Priority input port
22 --
 -- AXI4/AXI4-Lite SLAVE/MASTER interfaces
24 --
 Slave/Master interface #X to #Y, PREFIX = spreadsheet input
26 Slave/Master interface ports for different channels
 for every slave/master interface);
28 end xbar_entity;

30 architecture rtl of xbar_entity is
 --
32 -- Constants
 --
34 Constants from the inputted spreadsheet parameters
 --
36 -- Components
 --
38 component crossbar_component
 generic (
40 Input parameter generics
 Generics from top entity);
42 port (
 Protocol specific ports);
44 end component;
 --
46 -- Signals
 --
48 Internal signals for address mapping
 Internal input/output signals for the crossbar instance
50 begin
 --
52 -- Crossbar instance
 --
54 I_Crossbar : crossbar_component
 generic map (
56 Generic mapping)
 port map (
58 Port mapping to internal signals);
 --
60 -- Mapping vectors
 --
62 --
 -- Slave/Master IF mapping
64 --
 Slave/Master interface #X to #Y, PREFIX = spreadsheet input
66 Slave/Master interface ports are mapped to respective
 internal slave/master signals for every slave/master interface
68 end rtl;

Program 2. Pseudo code of the generated AXI4/AXI4-Lite wrapper

27

The VHDL wrapper in the program 2 is generated using VHDL template structures which

occur regardless of the set parameters. These templates are modified according to the

parameters and the calculated variables during the earlier stages in the generation. The

modification is done by inserting Visual Basic variables into the template which is then

written to the output file. As seen from the program 2, the wrapper structure is as follows.

First there is the entity declaration in which there are various generics and ports. The

ports of the entity are dependent on the protocol used and the number of masters and

slaves. These ports are generated using the respective protocol templates for the master

and slave interfaces. User set number of ports are generated, and the port declarations

are separated from other masters/slaves using the user set port names as a prefix in the

port declaration. Then in the wrapper structure there are the constants which are a

combination of user set and calculated variables. The constants are used later in the

component instantiation which’s component declaration is under the constants. Then

there are the internal signals which are used to contain the address mapping vectors and

the data from the masters and the slaves. Next in the wrapper structure, there is the

component instantiation. With AXI4 and AXI4-Lite protocols only a single crossbar

instance is used. The single crossbar is responsible for the operation of all the masters

and slaves. Lastly in the structure the internal signals are mapped to the crossbar

instance and the wrapper input/output ports. The mapping is done by slicing the

individual master and slave wrapper ports into the internal signals using the prefixes set

by the user.

When generating a ring interconnect there are differences in the function used for the

generation compared to the AXI4 or AXI4-Lite functions. The differences are due to the

nature of the interconnect. The master and slave nodes are in a ring as the name

suggests. There is also the feature for the user to modify these individual nodes. These

alter both the structure of the VHDL wrapper and the generation logic of the function.

The pseudo code of the wrapper for the ring interconnect is shown in the program 3

below.

28

 entity example_entity is
2 generic (
 Storage size generics
4 Clock bridge fifo size if used
 Various generics for the slave and master node instances);
6 port (
 --
8 -- Clock and reset
 --
10 --
 -- SLAVE/MASTER INTERFACES
12 --
 Slave and master interface ports for the set protocol
14 Generated interface depends on the user set parameters
 For example if the protocol for the node is set to
16 node or AXI4-Lite. The inclusion of half or full clock
 bridges also adds port.
18 --
 -- Status outputs
20 --
);
22 end example_entity;

24 architecture rtl of example_entity is
 --
26 -- Constants
 --
28 --
 -- Components
30 --
 Components declared is a separate package
32 These include the node component, clock bridges,
 protocol converters and queue components.
34 --
 -- Signals
36 --
 Mapping signals
38 Node specific signals for every node instance
 Slave/master signals for AXI4Lite/modified AXI4-Stream protocol
40 Status signals
 begin
42 --
 -- Delta balancing.
44 -- Domain clock mapping.
 --
46 --
 -- Mapping vectors
48 -- Values imported from Excel.
 --
50 --
 -- Node instances
52 --
 Node ID vector used for user set sequence
54 Separate node instance for every slave and master
 --
56 -- Slave/master interfaces
 --
58 Clock bridge and converter instantiations if necessary
 Slave/master interface mapping to signals and nodes
60 --
 -- Status output retiming
62 --
 end rtl;

Program 3. Pseudo code of the generated ring interconnect wrapper

29

As seen from the program 3, the structure of the ring interconnect wrapper is like the

other protocols. The user set parameters for the nodes are the varying parameters which

must be considered in the generation. These parameters are the chosen protocol for the

node, inclusion of clock bridges and the node sequence. First difference seen in the

program 3 is the wrapper port declarations. These are dependent on the individual

settings for the node. Different templates are used according to the settings for the

generation. In AXI4 and AXI4-Lite protocols the templates were always the same for

each of the master and slave ports. The second major difference is the usage of VHDL

package for the component declarations. This is due to the number of necessary

components. The package allows better clarity for the wrapper and the generation logic.

As in the logic for deciding the necessary component declarations is not needed. Due to

the nature of the ring interconnect, the signals and the instantiations are the third major

difference. The signal declarations are separate for every node and not like in AXI4 and

AXI4-Lite protocols where a single signal was used for every master and slave. This is

seen also in the instantiations where every master and slave have its own node instance

instead of a single instance for them all. The user set parameters also add signals and

instantiations for the added clock bridges and the necessary protocol converters between

the nodes. Lastly the signal and the component mappings are different since the nodes

must be connected in the user set sequence.

After the VHDL wrapper is generated the next function executed in the third task is the

second script for the packaging. This script is generated in the appropriate function for

the protocol from the table 9. The second script for the packaging is launched from the

setup script and is responsible for running the actual packaging commands in the

packaging environment. The script is generated by modifying a template script used in

the company and adding the user inserted memory address mapping data in the script.

The resulting XML (Extensible Markup Language) file from the execution of the

packaging script follows the IP-XACT standard. Thus, the memory mapping commands

are generated in the script by using the IP-XACT transparent mapping which is simple

for the current implementation of the interconnect tool. The commands used in the

packaging environment depend on the packaging tool used. The current packaging

approach uses commands from the TGI (Tight Generator Interface) API (Application

Programming Interface) [20]. The commands used in the script are abstracted even

further into functions containing the necessary TGI commands to generate building

blocks for the address mapping. An example of the mapping commands used in the

packaging script is shown in the program 4 below.

30

 ##
2 # Bus definition commands for interfaces
 ##
4
 #### SLAVE INTERFACES ####
6
 # Busdef(s) for slave interface prefix
8 <cmd_lib>::automapBusInterface -name <prefix>_<protocol>_Slave -mode slave

10 #### MASTER INTERFACES ####

12 # Busdef(s) for master interface prefix
 <cmd_lib>::automapBusInterface -name <prefix>_<protocol>_Master -mode master
14
 # Add BusIf mapping for Clock
16 <cmd_lib>::automapBusInterface -name Clock -mode slave

18 # Add BusIf mapping for Reset
 <cmd_lib>::automapBusInterface -name RESETn -mode slave
20
 ##
22 # Memory map commands
 ##
24
 # Base address and range for master interface prefix
26 <cmd_lib>::setBaseAddr <prefix>_<protocol>_Master <base address> <range>

28 # Bridges for slave interface prefix
 <cmd_lib>::addBridge <prefix>_<protocol>_Slave <prefix>_<protocol>_Master

Program 4. An example of the address mapping commands used

There are three building blocks in the transparent mapping which can be seen in the

program 4. The first building block is the bus definitions for the masters and slaves. The

second is setting the base address and range for the master bus interfaces which are

taken and calculated from the spreadsheet. If there are multiple address regions

assigned to a single master, the lowest address is the base address, and the range is

calculated during the generation as the accumulation of the assigned address region

lengths. Lastly the third building block is making the connection between the masters

and slaves with a transparent bridge. In the current interconnect tool implementation, all

the slaves are connected to each master.

The last functions executed in the generation workflow generate a testbench wrapper of

the interconnect wrapper and a setup file for the testbench environment. The sanity

testbench wrapper generated in the function 12 of the table 9 instantiates the earlier

generated interconnect wrapper and adds testbench related signals. The generation

structure and the principle follow the same structure as in the previous functions for every

protocol. A SystemVerilog setup file is generated in the function 13 and its purpose is to

be the connection between the VHDL and SystemVerilog. The function generates a

waveform script for the EDA (Electronic Design Automation) tool used as well. A

31

testbench environment and tests are not generated in the interconnect tool. A sanity test,

which tests that the protocol is working correctly when exchanging data between the

masters and slaves, is simple and same regardless of different user parameters. Thus,

a universal test and testbench made for the interconnects are used instead.

After every function in every task is generated successfully the user is informed about

the completion and the files can be found in the folder containing the spreadsheet. As a

summary of the files generated, the interconnect tool generates the interconnect VHDL

wrapper, the packaging scripts and lastly the sanity testbench files.

32

4. IMPROVEMENTS

This chapter introduces the limitations surfaced during the investigation and then

explains the progress done to improve the interconnect tool during the thesis work. The

limitations are listed while giving insight to their cause and the benefits of improvement.

Then the improvements done during the thesis are described thoroughly. The methods

used and the steps of the implementation process are explained, and insight is given to

the questions and decisions made during the implementation.

4.1 Limitations

The limitations discussed in this chapter are the base for the improvements of the

interconnect tool implementation. They are limitations in a way which limit the use cases

for the tool. For example, extra work must be done to get the interconnect which is

needed since the tool can only provide interconnects with certain settings or which follow

certain rules. The extra work could be for example, modifying the generated interconnect

to be suitable or generate additional interconnects as a workaround. Both examples are

not practical in the long run; thus, the interconnect tool improvements are essential. The

limitations were scouted by requesting improvement ideas from other employees which

were familiar with using the tool in projects. This kind of approach for the improvements

was used to get more generic improvement ideas. Thus, the improvements would be

beneficial in larger number of projects. Multiple improvement requests were received,

and the most prominent requests are collected in the table 10 below.

Table 10. Interconnect tool improvement requests

Improvement Limitation
Scale (major,

minor)

multiple non-continuous address spaces
for master interfaces

only continuous address
space supported

major

add support for master-slave visibility
all slaves connected to all

masters by default
major

add flexibility for address region range
definition

range must be 2^N minor

improve generic features
variables are set during

generation
minor

add self-documenting features
self-documentation not

implemented
major

add default master interface
masters must be set by the

user
major

33

As can be seen from the table 10, most of the improvement requests are based on

missing features in the interconnect tool. The design choices made for the interconnect

tool do not allow generating preferred designs or doing useful modifications. The

improvement requests were also given a scale at the start of the improvement planning

phase which was determined by the amount of expected work hours for possible

implementation phase.

The first request in the table 10 is to allow non-continuous address mapping for masters.

The address space for the master could then contain empty spaces or possibly address

regions of other masters inside the address space. This is currently not supported due

to a constraint for the address mapping which defines that the address mapping must be

continuous in the case when multiple address regions are assigned to the same master.

The constraint is due to design choices for the generation related to the packaging. The

non-continuous address mapping would be useful for example in designs where there

would be a master for debugging in the middle of some other master’s address space.

With the current implementation non-continuous address space could be implemented

by using a workaround interconnect design which combines masters from another

interconnect. This way there would be a single master which can access multiple address

spaces which are not continuous. Workaround would be always present which is not

preferrable since it always adds extra work for the designers and complexity in the

systems. The workaround would also increase the logic needed and thus increase the

area of the interconnect and decrease the performance.

The second request is improving the visibility of masters and slaves. Visibility in this case

means the accesses from slaves to masters. The request is thus to allow the user to

decide which slaves have access to which masters. With the current implementation

every slave has access to every master. This limitation is due to the interconnect RTL

design and the packaging. The RTL for the AXI4 and AXI4-Lite protocols include only a

single crossbar component which connects every slave to every master. The packaging

script also adds bridges similarly. User defined accesses could then reduce the routing

logic since often the slaves need to have access only to certain masters. The reduction

in routing logic could possibly increase the maximum operating frequency of the

interconnect as well.

The address region range definition improvement is to remove the limitation which is that

the range must be inputted in the power of 2. Often the address region widths do not

follow this rule, thus the interconnect tool supports assigning multiple address regions to

a single master. This way the address region range for the master can be variable if the

range can be divided to sections which are in the power of 2. This limitation forces the

34

designs to only have suitable address spaces and causes extra manual work for the tool

user. Removing the limitation all together or even easing it would improve the usability

of the tool and the interconnect development.

The rest of the requests in the table 10 are more akin to quality-of-life improvements.

They are not crucial but would be helpful in the future or when making more generic

interconnects. The generic features are currently limited to adding queue and pipeline

sizes. The parameters set in the interface of the tool cannot be altered as generics after

the generation. The parameters are either constants or fixed values in the generated

RTL code. The generic features improvement would be to change the RTL to add the

parameters such as datasize, address size or the extra signals for example ID size as

modifiable generics. This would be useful in situations where there are multiple similar

interconnects which differ mostly in the signal widths. With the improvement the signal

widths could be altered with generic values rather than using the tool multiple times for

every similar interconnect. The tool could be used only once, thus reducing the workload

and waiting time of the generation.

Another helpful feature would be to add self-documentation for the interconnect tool. The

proposed feature in the request is to add a visual representation of the generated

interconnect. Currently the user must use another tool to visually see what was

generated with the tool. For example, run the packaging scripts to get the XML file of the

generated interconnect and then import the XML to an EDA tool. The EDA tool could

then present a block diagram of the interconnect. A visual representation of the

interconnect would be useful especially for the ring interconnect where the order of the

nodes might need changing after the generation. If the tool could represent a block

diagram of the interconnect straight after the generation workflow, the extra steps would

not be needed and the dependency in other tools would reduce.

The last improvement request in the table 10 is to alter the interconnects to have a default

master interface. Default interface in this case would be a master interface which is

automatically generated. With the current implementation, every master must be inputted

by the user in the address mapping section of the tool interface. The default master

interface improvement would be useful in designs which have one or more masters with

smaller sections of the full address space and the rest of the address space would always

be assigned for a single master. For example, the full address space available would be

4 gigabytes and there are three masters. Two of the masters are assigned 1-megabyte

sections and the rest of the address space is for the third master. The default master

interface would be in this example the third master. The usability of the tool would

improve since the user could set the total address space width and the smaller sections

35

for the masters. The tool would then generate another master interface automatically

with the rest of the address space.

The improvement requests discussed in this chapter were tackled in no specific order

during this thesis work. The workflow for the improvement followed a simple template.

First the feasibility of the improvement was studied. Then the possible solutions were

investigated. The decision to implement the solution was based on multiple constraints

such as skill level, time and severity of the changes. The following chapters discuss

thoroughly the progress done for the improvement requests during the thesis work.

4.2 Non-continuous address space improvement

As stated above, the improvement process started with a feasibility study. The current

implementation and the work principle were studied for the continuous address mapping

while figuring out the root cause for the limitation. During the study, the root cause was

found which was a design choice made for the packaging. The packaging script used

the IP-XACT transparent bridges. This limited the address space to be continuous since

the transparent bridges do not support non-continuous address space defines for a

single master. The RTL of the interconnect was studied, and it already supported non-

continuous address mapping, thus the IP-XACT restriction was the only root cause. The

choice to use the transparent bridges was made during the making of the interconnect

tool, and it was then deemed to be a simple and efficient method for most of the

interconnect requirements. There were in-house commands based on the TGI API

already available as well, which used the transparent bridges. The result for the feasibility

study was that the improvement is feasible using available tools and resources, and the

new feature would be worth the effort. The next step in the improvement process was

finding out the possible solutions for the limitation.

While investigating the improvement possibilities, there were some restrictions present.

The solution should not need the modification of the RTL components used in the

wrapper design. Modification in the components would then most likely affect many other

designs which use the same components. Thus, the component changes would need to

support the other designs as well. The restriction was set to avoid the possible problems

arising from the changes. Keeping the restriction in mind, the solutions were investigated

based on whether the packaging would use the same transparent bridges or some other

method. One solution for each case was found for the AXI4 and AXI4-Lite protocols. Both

would have their own pros and cons. During the investigation, it was decided that the

improvement will not be made for the ring interconnect as the request was directed at

the AXI4 and AXI4-Lite protocols, and there were no foreseeable use cases in which the

36

improvement would be useful with ring interconnects. The solutions found for AXI4 and

AXI4-Lite protocols are presented in the figure 11 below.

Figure 11. Possible solutions for non-continuous address space mapping

The solutions in the figure 11 are shown as block diagrams of an example interconnect

which contains two master interfaces, master and debug, and two slaves. The address

mapping for the master interface is non-continuous where it contains an empty space

inside its address space reserved for the debug interface.

The solution 1 is based on the case where transparent bridges are still used. As the

transparent bridges do not directly support the non-continuous addressing, the solution

is to change the RTL of the interconnect to be suitable. The RTL would then allow

transparent mapping while still having the non-continuous address space inside the

interconnect. As shown in solution 1 in the figure 11, the RTL change is like the

workaround previously mentioned. The basic principle is to add a second layer of

crossbar component instances, which combine the separate address spaces into a

single master interface. In the example the second layer crossbar, named crossbar2,

would combine the address spaces of the master0 and the master1 interfaces from the

crossbar1. The address space for the master0 is 0x0-0xF0000000, and the address

space for the master1 is 0xF2000000-0xFFFFFFFF. The address mapping of the second

layer crossbars would be set continuous and thus the packaging is possible with the

transparent bridges. A benefit of keeping the transparent mapping would be reliability as

37

the method is well known and much used in the company. There would be less problems

for example due to compatibility with tools and the arising problems would be faster to

debug as the transparent mapping is a simple method. The drawback of transparent

mapping would be the extra layer of RTL code solely due to the method used for

packaging. As mentioned earlier, the RTL of the interconnect already supports non-

continuous mapping as well, thus the extra layer might not be needed with other

methods. The extra logic needed for the second layer would possibly induce latency and

performance issues which are not preferrable. The scalability of the tool could also suffer

when there would be multiple non-continuous master interfaces as they would need their

own crossbar instances for the combining. The issues with latency or performance

arising from the second layer could then grow large enough where the amount of non-

continuous address spaces must be restricted.

The solution 2 shown in the figure 11 was found by seeking alternate methods to define

the address mapping for the packaging script. The basic idea was to find a way to keep

the RTL unchanged and only the contents of the packaging script would be changed.

With the help of colleagues, the IP-XACT opaque bridges were proposed for the address

mapping. With opaque address mapping the address regions assigned for a master

could be defined as segments, thus the address space of a master would be a collection

of segments instead of a continuous address block like in transparent mapping. The

segments could be in any order, thus allowing the occupation of the empty address

spaces by other masters. In the example shown in the figure 11 the address ranges are

each defined as a segment which has its own start address and range. These segments

are then assigned to the respective master. The order of the segments would then in this

example be according to the start addresses. With opaque address mapping the RTL

could remain the same as it already supports non-continuous address spaces which is

a major benefit. Another benefit would be the adaptiveness of the mapping since it is not

restricted as much as transparent mapping. The opaque bridges could be used with

continuous address spaces as well which would possibly allow better features for the

interconnect tool in the future development and better support for fine tuning the

interconnect if necessary. Drawbacks of using opaque bridges would be related to

compatibility with tools since the opaque mapping is less often used currently. The

problems due to opaque bridges would then be more time consuming. The tools and

resources used in the company would perhaps also need updates or modification to

support the opaque mapping. These drawbacks fortunately would reduce in significance

the more the method is used and the experience with it would accumulate.

38

The solutions found were then evaluated in terms of approximated effort, complexity and

time needed for the improvement. They were compared to each other since the better

would be chosen for implementation. The solution 1 would be mostly programming the

second stage into the RTL and adding logic to the generation functions. The logic would

need to be more complex than it is currently, but there probably would not be logic

structures which are too complex or time consuming to implement. The solution 2 would

be a more experimental approach since the opaque bridges are less known in the

company. The working principle would need to be studied and then figure out their

correct usage. The programming would be possibly trial and error as there would only

be a few examples to study from or no examples at all. The approximated overall effort

would be smaller for the solution 1 due to simpler nature even though the amount of

programming would be much larger than with the solution 2. The complexity of the

solutions would be on par with each other as the solution 1 would have logic structures

based on the input values and the solution 2 would have more complex packaging

command structures. The approximated time needed would be smaller for the solution 1

as the implementation would be rather straightforward. With these evaluations, the

implementation decision leaned towards the solution 1 and the decision was finalized

after comparing the pros and cons of each solution. The solution 1 would be the option

less prone to deadlock as there would be better support in case of problems which cannot

be solved without help of colleagues. The solution 1 would also have better reliability in

the future due to high usage levels. Therefore, the implementation would be based on

the solution 1 at first.

4.2.1 Non-continuous address space with transparent bridges

The implementation process can be categorized into three sections: the RTL related, the

packaging related and the verification related modifications. The implementation process

started with the RTL modification as the other sections are dependent on it. Before any

modifications could be made, the exact operation of the interconnect tool functions was

studied for the AXI4 protocol. The modifications could be replicated to the AXI4-Lite

protocol easily, thus the AXI4 protocol was worked on first. The study of the functions

was to investigate the interactions with the spreadsheet interface and the interactions

between the functions themselves. Thus, pinpointing which functions need modification

and if there is a need to alter the operation of the current functions or even create new

functions with new tasks.

For the RTL section, the modifications were done mostly to the following functions:

PrintVHDL_wrapper_AXI and GenVectors. The first function is responsible for the

39

wrapper generation and the latter generates the address mapping vectors. The wrapper

modification started with designing the basic VHDL structure which contains the second

layer crossbar instances. The resulting design is based on the original design, depicted

previously in the program 2, with the necessary additions and alterations to the RTL to

support the second layer. The planned changes to the original RTL code were modifying

the wrapper ports, adding the second stage signals and instances, and modifying the

signal mappings to the second stage instances and wrapper ports. A major design choice

was done regarding the VHDL coding style. With the original RTL design, the code is

static as it is generated with templates in the generation functions. The additional code

from the second stage could be programmed to utilize the VHDL generate statements.

The code would have better clarity and the ports, signals, instances and mappings would

not have to be programmed separately. However, the programming was deemed to be

more complex, thus the generate statements were not utilized in the new RTL design.

After the non-continuous address space design was planned, the interconnect tool

functions modification was started. The basic generation principle was preserved, thus

new templates were created for the additional second layer code parts. The first

modification was the wrapper port definition when there are non-continuous address

spaces present. The port definition should consist of the second stage ports and the

uncombined ports. The first stage ports which are combined in the second stage

crossbars should not be included in the wrapper ports. The logic to use the templates for

VHDL generation is based on simple loops. The user interface prefix cells are looped in

order and the modified templates are used for each port. This kind of approach would

not work as the combined ports should not be generated. The non-continuous address

space is also an additional feature and the tool should preserve the previous features.

Therefore, the new templates utilized to create the new design should only be used when

wanted by the user. From these requirements, it was apparent that there is a need to

add logical structures to the generation function. To make the logic simple while

preserving the previous features, a new interface area was added to the user interface.

The added interface is an extension to the existing interface area. The updated interface

is shown in the figure 12 below.

40

Figure 12. Updated user interface for non-continuous address space feature

As can be seen from the figure 12, the continuous address space feature was added into

the interface as an opt-in feature. The user must enable the feature by setting the enable

combining cell to value 1. The number of combined masters must be assigned which in

this case means the amount separate combined master ports. In the figure 12 for

example there are three combined masters which can be seen from the combine column

and the prefix column for combined masters. The combining is done by assigning the

same number to the combine cell next to the first stage master prefix cell. Those masters

which have the same number are combined to the same second stage crossbar. The

blank cells will be uncombined and will be in the port definition as is. The prefix for the

second stage crossbar master port can be assigned in the prefix column for combined

masters. The numbering must be continuous starting from zero to the maximum number

of combined masters minus 1. This restriction is set to make the logic needed in the

functions simple. The name of the combined masters can be anything with the same

ruleset as the first stage prefixes.

With the added interface inputs, the modification of the generation function continued.

The new input values were pulled from the interface to the macro as new variables in the

SetVariables function. To preserve the previous features the port definition was modified

from the sequential loop structure to branching loop structures. The major branch division

was set to continuous branch and the non-continuous branch. The continuous branch

contains the previous templates, and the non-continuous branch contains the new

templates. The enable combining setting works as the value for the branch division. In

41

the non-continuous branch, there is another branching loop structure. The task for the

loop is to create the combined master ports or the uncombined master ports. The logic

for creating the ports is as follows. The combine column is looped in order and the value

of the cell is checked. If the cell is blank, a first stage port is created. In other cases, on

the first appearance of a number starting from zero, a combined port is created. When

coming across an already created port, the port is not duplicated, and the next iteration

of the loop is started. The names of the ports are pulled from the interface during the

execution. For example, the order of the ports created with settings in the figure 12 is

masterif02, masterif148, masterif3, masterif57 and lastly masterif6.

The next modification in the RTL was to add the second stage signals and crossbar

instances. These are added only if there are combined masters set in the user interface.

The second stage signals differ from the first stage signals which contain all the slave

and master port slices. For every combined master, slave signals are created which

contain only the assigned slave port slices. The number of slaves connected to a single

second stage crossbar is calculated from the combine column. The master signals for

the combined master only contain one master port slice as there is always only one

master port in the second stage crossbars. After the additional signals are created, a

crossbar instance is created for every combined master. The port map for the instances

links their respective additional master and slave signals.

The last modification was the signal mapping. The signal mapping shares the similar

continuous and non-continuous branches described previously. The signal mapping

differs from the continuous case where the signals are mapped one-to-one from the

wrapper slave ports through the crossbar to the wrapper master ports. With non-

continuous case, the signal mapping differs after the first stage crossbar. The first stage

master signals which are set to combine are mapped to the respective second stage

crossbar slave signals. After the second stage crossbar inputs are mapped, the wrapper

master ports are mapped. The mapping is like the port definition as the logic for the

mapping is the same. The second stage master signals are mapped to the respective

combined master ports and the uncombined master ports are mapped from the first stage

master signals.

The other function which needed modification due to the second stage crossbars was

the GenVectors function. Like the first stage crossbar, the address mapping vectors must

be generated for the added crossbars as well. There are three different mapping vectors:

address, mask and target vectors. The address vector contains all the address region

start addresses combined into a single vector. The mask vector contains the ranges of

the regions, modified into a format which can be used as a mask for incoming addresses.

42

And lastly the target vector contains the destination masters for the regions. All the

values set in the spreadsheet are converted to binary format and the order of the regions

is preserved in the vectors. These vectors are then used for routing incoming

transactions to the correct master based on the address of the transaction. The

generation of the first stage vectors follows the same simple approach in which the

regions are looped through while doing the necessary conversions and formatting. The

addition of the second stage vectors follows the same principle with modification to the

contents of the vectors.

Before the modification was started, there were some planning and information sharing

regarding the second stage vector contents. The address mapping could be done

multiple different ways which would be functionally the same. Would there be only one

address region which starts from the first combined master and has wide enough range

for all the combined masters. Or perhaps the address mapping would be duplicated from

the starting master to the last master. Another major question was if the address regions

between the combined masters would be included in the second stage address mapping.

If so, the second stage mapping would contain regions which are not mapped in the RTL.

This could cause problems in a case where addresses not belonging to the master are

used. Another way could be to remove the middle regions and shift the combined regions

together. This could cause problems in the first stage addressing and there could be a

need to add offsets to the address regions. After discussion, it was decided that the

duplication method was the simplest and the least prone to error.

The logic for the second stage vector generation is as follows. Firstly, the starting point

and the ending point of the combined master is determined utilizing the combine column

of the interface. The logic includes the possibilities that the combined masters are not in

the same order as in the first stage address mapping. For example, the combined master

could be the masters 3 and 7, but the address mapping could have the opposite order.

The duplication is from the starting address region to the last address region regardless

of the order of the masters. The vectors are then generated using the same principle as

with the first stage vectors. The difference is the regions which are looped through. As

there can be multiple second stage crossbars, the same generation is done for every

crossbar. The generated vectors are kept in a container from which the respective

vectors are mapped to the second stage address mapping signals in the generation

function.

The RTL related modifications were verified during and after the programming by running

trial runs of the interconnect tool. Multiple different designs were tested including known

edge cases. The operation of the tool and the resulting files were verified with internal

43

checks and code review. The functionality of the interconnect would be verified later with

the sanity testbench after verification related modifications.

The next part of the improvement was the packaging related modifications. The

modification would be solely to the Print_axi_packager_tcl function. Broadly the

modification would be to modify the script commands in the program 4 to mirror the new

wrapper design. The bus definitions would be changed to add the new combined ports

and remove the old ports. The slave bridge definition would also follow the same

procedure. However, the base address and range definition would be problematic even

with the new RTL design. The second stage master ports would have a range which

includes all the regions and thus the resulting IP-XACT description would have overlaps

in the address mapping. The overlap would be caused by the limitation of the transparent

bridges. The overlaps could cause problems in the usage of the interconnect after the

packaging. This problem would not be present in a workaround since it would be a

separate component with its own IP-XACT description.

A fix for the packaging script was not found in a timely manner, therefore the further

investigation of the solution 2 was started and the solution 1 implementation was put on

hold. The solution 2 could avoid the problems in the packaging script and could be the

overall better solution if the opaque bridges are suitable. The remaining modifications for

the solution 1 would have been to mirror the RTL modification to the verification related

functions and add checks for the new interface options. After modification, the

interconnect tool functionality would be checked with the sanity testbench. The same

procedure would be replicated for the AXI4-Lite protocol as well.

4.2.2 Non-continuous address space with opaque bridges

The goal of the further investigation was to find certainty that the opaque address

mapping could be used like proposed in the solution 2. The main question was if the

mapping could be done in a script like the transparent mapping. By inquiring colleagues,

opaque bridges had been used before, but not with a script. Instead, the opaque bridges

had been done only in an EDA tool GUI (Graphical User Interface). As the transparent

bridge scripting was based on TGI commands, the command reference was checked to

find out if opaque bridges are supported. TGI based scripting would be beneficial since

the scripting environment already supports it. At first glance, the reference had at least

some commands for segments. Thus, a further study on the IP-XACT standard and the

exact working principle of the opaque bridges was carried out to figure out the building

blocks. The exact commands for the building blocks would then be figured out later. The

44

further investigation ascertained the feasibility of the solution 2 and the implementation

process was started.

As a script had not been used in the company for opaque bridges, an experimental

approach was chosen for the implementation. The implementation plan was to try to

replicate the process of using the opaque bridges with a GUI within a script. An example

design done with a GUI, which was provided from a colleague, acted as the reference.

The example was a simple design which had two masters. The first master had a non-

continuous address map with two segments. The second master had one segment

between the first master’s segments. After the necessary commands to replicate the

example would be figured out, a generic flow of the commands would be created for the

interconnect tool functions.

With trial and error -based approach, the script commands were figured out to make the

necessary building blocks for the example. The basic principle was to try different TGI

commands within an already generated script. Then running the script to generate the

IP-XACT description which was imported to the EDA tool GUI. In the GUI, the block

created from the IP-XACT description was placed into a design and its address map was

checked. The address map was then compared to the reference and the differences

were checked. This cycle was repeated until the generated file and the reference were

the same. After the successful replication, the necessary commands for the building

blocks were known. The next part of the implementation process was to modify the

building blocks to be generic in the tool generation functions.

Before the programming started, some design choices were made regarding the

implementation. The opaque bridges would be only used with non-continuous address

space even though they could be used in all cases. This was to avoid changing the

interconnect tool too much in one go. The non-continuous feature would be a great trial

run for the opaque bridges. Another design choice was made for the script

implementation itself. The earlier used abstracted TGI based functions could not be

utilized fully with opaque bridges. The choices would have been to add abstracted

functions to the imported function library or use the new TGI commands as is in the

script. The latter was decided to be the approach as the commands would be used only

in the interconnect tool specific feature.

For the opaque bridge approach, only the packaging script functions needed

modification. The modifications were done first again for the AXI4 protocol and replicated

for the AXI4-Lite protocol later. The functions modified were Print_axi_packager_tcl and

Print_axl_packager_tcl. The generic approach in the function follows the same principle

45

of using the combination of logic and templates. The templates created are the generic

version of the previous building blocks. Similar with the solution 1 implementation, the

generation in the function was separated into the continuous branch and the non-

continuous branch. The non-continuous branch is executed only when the address

mapping in the spreadsheet contains at least one non-continuous master. An example

of the used address mapping commands with opaque bridges is shown in the program

5 below.

46

 ###
2 # Bus definition commands for interfaces
 ###
4
 #### Same as previous script ####
6
 ###
8 # Memory map commands
 ###
10
 # Create memory map and variable containing its ID
12 <cmd_lib>::addComponentMemoryMap $<cmd_lib>::ID MemMap
 set MemMapIDs [<cmd_lib>::getComponentMemoryMapIDs $<cmd_lib>::ID]
14
 # Segments and subspace maps for master interface prefix
16 set busifIDs [<cmd_lib>::getComponentBusInterfaceIDs $<cmd_lib>::ID]
 set master_if <prefix>_<protocol>_Master
18 foreach busifID $busifIDs {
 if { $master_if == [<cmd_lib>::getName $busifID] } {
20 <cmd_lib>::setBusInterfaceMasterBaseAddress $busifID 0x0
 <cmd_lib>::addComponentAddressSpace $<cmd_lib>::ID $master_if_addrSpace 0x400000
22 <cmd_lib>::setBusInterfaceMasterAddressSpaceName $busifID $master_if_addrSpace
 set addspaceID [<cmd_lib>::getBusInterfaceMasterAddressSpaceID $busifID]
24 <cmd_lib>::addAddressSpaceSegment $addspaceID <prefix>_seg0 0x100000 0x80000
 <cmd_lib>::addAddressSpaceSegment $addspaceID <prefix>_seg1 0x300000 0x100000
26 }
 }
28
 # Variables for subspacemap segment references
30 set <prefix>_submap0 <prefix>_subspacemap0
 set <prefix>_submap1 <prefix>_subspacemap1
32
 # Add subspacemaps to the memorymap
34 foreach MemMapID $MemMapIDs {
 <cmd_lib>::addMemoryMapSubspaceMap $MemMapID $<prefix>_submap0 $master_if 0x100000
36 <cmd_lib>::addMemoryMapSubspaceMap $MemMapID $<prefix>_submap1 $master_if 0x300000
 set submapIDs [<cmd_lib>::getMemoryMapElementIDs $MemMapID]
38 }

40 # Set segment references for the subspacemaps
 foreach submapID $submapIDs {
42 if { $<prefix>_submap0 == [<cmd_lib>::getName $submapID] } {
 <cmd_lib>::setSubspaceMapSegmentRef $submapID <prefix>_seg0
44 }
 if { $<prefix>_submap1 == [<cmd_lib>::getName $submapID] } {
46 <cmd_lib>::setSubspaceMapSegmentRef $submapID <prefix>_seg1
 }
48 }

50 # Bridges for slave interface prefix
 set busifIDs [<cmd_lib>::getComponentBusInterfaceIDs $<cmd_lib>::ID]
52 set slave_if <prefix>_<protocol>_Slave
 set master_if <prefix>_<protocol>_Master
54
 foreach busifID $busifIDs {
56 if { $slave_if == [<cmd_lib>::getName $busifID] } {
 <cmd_lib>::addBusInterfaceSlaveBridge $busifID $master_if true
58 # Memorymap reference for the slave interface, done once per slave
 <cmd_lib>::setBusInterfaceSlaveMemoryMapName $busifID MemMap
60 }
 }

Program 5. Address mapping commands used for a non-continuous example design

The example in the program 5 shows the command flow for a single master. The master

has a non-continuous address space which consists of two address regions. The

implementation for the address mapping has the same three general building blocks as

47

the non-continuous script. The first building block is for the bus interface definitions. The

commands were reused from the continuous implementation since there are no

differences in the bus definitions with different bridges. The second building block is the

address mapping data for the master. The address mapping structure for the

implementation is as follows. Each master has an address space containing segments.

The segments are the address regions assigned for the master in the spreadsheet. The

slave has a reference to a separate memory map consisting of subspace maps. There

is a subspace map for every segment in a master’s address space. The subspace maps

are linked to the segments using a segment reference. The logic and the templates used

to generate such a structure are opaque bridge specific and they use the TGI commands

straight without abstraction to functions. The first step in the memory map commands of

the program 5 is to create the memory map. The next step is defining the address map

of the master. The address map for the master always starts from the address 0x0 and

must be wide enough to contain every assigned address region. The width is calculated

from the spreadsheet utilizing the destination column. In the example, the width of the

master address space is 0x400000. Segments are then created from the address regions

with their own base address and range. These segments are added to the address space

of the master. The next step is to create the subspace maps. For every segment, a

subspace map starting from the same base address is created. The subspace maps are

added to the earlier created memory map. Lastly the corresponding segments are linked

to the subspace maps with a reference. To complete the address mapping, the last

building block is to create the bridges between the masters and the slaves. Like in the

continuous script, every slave is connected to every master. The bridge definition creates

an opaque bridge to the master. The last step is to add a reference to the memory map,

which is the address map seen by the slave, containing every master’s segments in a

particular order. The address mapping structure generated by running the script in the

program 5 is illustrated in figure 13 below.

48

Figure 13. The address mapping structure of the example design

As seen from the figure 13, the basic structure of the mapping is simple even though the

command flow was more complex than with the transparent bridges. With multiple

masters, the building blocks are executed for every master sequentially before moving

onto the next building block. The memory map remains the same with multiple masters

as well. Thus, the basic structure remains similar as in the memory map will be just wider

due to increasing number of subspace maps referencing the segments of every master.

With the modification for the script generation function being ready, the correct

functionality of the function was verified similarly as the experimental approach for the

script commands. The interconnect tool was run with multiple different non-continuous

address mappings and the resulting script was first checked visually by code review. The

script was then run to generate the IP-XACT description of the design which was

imported to an EDA tool GUI. In the GUI, the structure of the address mapping was

checked. The interconnect block was then again inserted to a design, where the address

map seen at the slave was verified. After the verification, the modifications were

replicated for the AXI4-Lite protocol and the same verification approach was used.

After the feature was finalized for both protocols, the non-continuous address space

feature was deemed to be ready. The implementation based on the solution 2 was much

better in the end. The only modification necessary were for the packaging functions and

the rest of the functions could be kept as is. The implementation based on opaque

bridges had more complex packaging command structure which required a substantial

study and experimenting on the subject. The overall programming effort was less

cumbersome though than with the solution 1. Even if the solution 1 implementation was

put on hold, it will be kept as the backup implementation. This is due to the possible

unforeseen problems with opaque bridges which could appear in the usage of the

generated interconnect.

49

4.3 Progress on the rest of the improvement requests

After the non-continuous address space improvement was ready, the improvement

process for the next improvement from the requests was started. This chapter sums up

the progress made for the rest of the requests during the thesis. Since the non-

continuous address space improvement turned out to be more time consuming than

anticipated, the implementation was not started for some of the requests. It was decided

that the feasibility of every request is investigated. If feasible, then suggest solutions and

decide the most promising solution for possible future implementation.

4.3.1 Master-slave visibility improvement

The improvement started again with studying the cause for the limitation, which was

quickly confirmed to be from the RTL implementation for the crossbar component as

earlier discussed. The feasibility of the improvement would then depend on the solution.

The priority to keep the utilized components unchanged was present, thus the

improvement would have to be made elsewhere.

Two different approaches were discussed. The first approach was to change the

packaging for the interconnect to generate the connecting bridges based on user inputs.

The required change in the tool would be trivial as in adding visibility options to the user

interface and making the bridge commands based on those. The second approach was

to modify the wrapper design to adapt to the user designated connections. The design

would then have multiple crossbars which connect to each other forming only certain

slave-master connections. The packaging would also reflect this. The first approach

would be simple, but there could be major problems caused by it. If only the packaging

is changed, the generated IP-XACT description would not reflect the internal connections

in the RTL. The RTL would have connections from every slave to every master and the

IP-XACT description only the ones chosen. This could cause problems in verification as

the RTL and the IP-XACT description would clearly describe different designs. Thus, the

second approach was chosen as the feasible solution. An example of the solution is

introduced in the figure 14 below.

50

Figure 14. An example design for visibility improvement

As shown in the figure 14, the connections are formed by using a certain structure of

crossbar instances. The structure is tailored for the user inputs. The basic structure is

that there are crossbars which route shared connections and crossbars which form the

collection of routes for the specific master. In the example, the slave1 and the slave2

interfaces are routed to both master interfaces and the rest are routed only to a single

master interface. Similar structure would be used with each routing.

The main challenge in the implementation would be to add the logic which determines

the optimal structure and the connections. The goal would be to have no restrictions for

the routing which can be seen from the example as the number of inputs in the crossbars

are not limited to multiples of twos. However, the logic increases with the scale of the

interconnect. There would possibly be a tipping point where the structure would simply

be too large or complex to generate automatically. The benefit gained from the reduced

routing would also suffer from the sheer number of crossbar instances. Thus, there would

probably be restrictions in the routing. The upper limit would possibly be determined from

the usage needs. For example, the visibility feature is tailored towards the common

routing structures used in the company. The implementation based on the solution was

not started during the thesis.

51

4.3.2 Range definition improvement

For the improvement, an excessive study of the used RTL components was carried out.

This was to determine the root cause for the limitation which was deemed to be from a

core design property for an address mapping component. The limitation of the power of

2 ranges stems from the binary address mapping. The mapping vectors must be binary

and the ranges in the power of 2 for the mapping component to work properly.

One suggestion was to round up the range to the next power of 2 value for the vector

generation. However, this would cause a problem where an incoming address would

possibly map to two different regions causing a possible destination error. The error

would be caused in a case where the rounded range overlaps with another address

region. It was concluded that the range definition improvement is not possible without a

major change in the mapping component’s functionality. Thus, the improvement is not

feasible currently since the component redesign would be out of the scope of this thesis.

4.3.3 Generic features improvement

The generic features improvement request was at first directed to the interconnect tool.

The improvement process for the generic features was fast and clear since the design

was well known at the point of improving. Generics were added for the various signal

widths and the design was changed to use generics instead of constants.

The request was later expanded to more of a project tailored request after the generic

address signal width was found out to be unfeasible due to the address mapping vectors.

The address mapping for the RTL is generated from the spreadsheet and thus it cannot

be changed afterwards to reflect a change in the address width generic. The address

mapping vectors would have to be created in the RTL instead of during the generation.

The vectors would have to be generated based on the address width generic which

would also mean that the address mapping in the spreadsheet could not be static. The

start addresses and ranges would need to change accordingly based on the address

signal width to avoid out-of-bounds or overlapping.

It was decided that the address width would not be changed to a generic for the

interconnects generated with the tool. Generic address width would be better for a

separate generic interconnect which has a fixed address space. The further improvement

of the generic features was then also forwarded to the requesting project instead.

52

4.3.4 Self-documentation improvement

As the request was directed towards the ring interconnect generation and the feature

would be more useful for it, the feasibility of the improvement was studied with the ring

interconnect as the priority. The investigation’s main goal was to determine if the Visual

Basic for Applications -programming language could be used to create a block diagram

based on the input data from the spreadsheet.

The investigation led to a possible solution. At first glance, every action performed in the

Excel spreadsheet can be replicated with VBA code. The proposed solution would be to

program a macro which automatically generates the block diagram to a separate sheet.

The implementation process could be to record the actions for making a simple block

diagram. Then modifying the actions to take data from the spreadsheet and using them

to generate the necessary blocks and connections. The macro execution would be on-

demand to avoid the possible decrease in performance caused by the block diagram

generation. For the same reason, the macro should be separated from the interconnect

generation macro.

Even though the implementation was not started during the thesis, some priorities were

discussed for it. The macro needs to be efficient. The execution should not be tens of

minutes since the point of the feature is to save the time from the current process of

visually representing the generated interconnect. Other priority is complexity. If the

implementation turns out to be more complex than anticipated, the implementation of the

feature should be re-evaluated. Other options than VBA, for example Python

programming language, should be evaluated when the complexity of VBA code would

increase to a certain threshold.

4.3.5 Default master interface improvement

The improvement was quickly determined feasible as the limitation was simply a design

choice in the interconnect tool. The example given earlier would also be the proposed

solution. The user sets the total address space by the address space width parameter,

then defines smaller address regions in the address mapping. The unoccupied address

space is calculated and assigned for the default master interface. The user interface

would be modified to show the default master interface and the calculated range for it.

The solution is simple, but the implementation would have complications.

The major complication would be the range for the default master interface. As earlier

discussed in the range definition improvement, values not in the power of 2 are not

feasible without a major change in the mapping functionality. This would cause a

53

restriction for the smaller regions. The user added regions must be also in the power of

2 and their range summed up must be suitable. The range assigned to the default master

interface must be in the power of 2 or the range can be divided to multiple address

regions which follow the same rule. There would be a need to automatically determine

the suitable combination of address region ranges which are assigned to the default

master interface. An example of the proposed solution in the user interface is shown in

the figure 15 below.

Figure 15. An example of the proposed solution

In the figure 15, the default master interface would be the master interface indicated by

the number 0 in the Destination column. The smaller regions would be the address

regions 4 and 5. The address regions from 0 to 3 would be the combination of suitable

ranges for the default master interface. The combination would be calculated

automatically and assigned to the address mapping interface. The interface would be

modified to clarify the user added smaller regions from the default master interface.

This kind of calculation must be already done manually by the user if the wanted address

space for a single master is not in the power of 2. Therefore, the logic needed for the

calculation could also be utilized in the regular usage. While implementing the default

master interface, the feature could be added as opt-in feature and the automatic range

calculation as a basic feature. Both would have restrictions for the suitable ranges

though. The restriction would be the amount of address regions needed for the automatic

calculation. With some ranges, the number of address regions needed to form the

wanted address space would be too large for the current implementation of the

interconnect tool. This emphasizes the idea of redesigning the address mapping

functionality since it would affect multiple parts of the tool and would allow easier

improvements to the address mapping. Due to this, it was decided that the solution would

not be implemented during the thesis.

54

5. CONCLUSION

As the number and complexity of the interconnects increases in the SoC devices, the

effort required to generate these interconnects becomes larger as well. To reduce the

manual effort, automation of interconnect generation is utilized. Currently in the

company, the automation is provided in the form of an RTL generator. The generator is

built on an Excel spreadsheet which is used to provide the input parameters for the

generation. The output files are generated by the spreadsheet as well. The generation

is implemented as a macro utilizing Visual Basic for Applications -programming

language. The supported communication protocols are the AXI4 protocols introduced in

the AMBA 4 specification and the tool can generate crossbars and ring interconnects.

The purpose of this thesis was to improve the interconnect automation tool to provide a

more fluid and flexible implementation of the tool. The improvement started with an

investigation on the current implementation to define the baseline for the improvements.

During the investigation, the limitations of the tool were defined which worked as the

improvement proposals. Most of the limitations were regarding the usage of the tool and

the possible options provided. The feature worked on the most during the thesis was to

add support for non-continuous address spaces. The improvement process followed a

simple structure in which the feasibility of the improvement was defined first, and then

possible solutions were proposed. The most prominent solution was decided for the

implementation depending on multiple factors. One major factor being the decision not

to modify the sub-components of the interconnect since the modifications could

compromise operation in more places than wanted. Modifications were done in the

interface and the generation macro depending on the improvement.

Even though only the non-continuous address space improvement could be

implemented, due to it taking much longer than anticipated, the goals of the thesis were

met. The feasibility of each improvement proposal was examined and many of them were

deemed unfeasible. Proposed solutions for feasible improvements were also

investigated even if the implementation for them could not be started. The unfeasible

improvements showed an underlying restriction for the tool which affects multiple areas.

The implementation for the non-continuous address space provided the possibility to

improve the tool further as well which is to move from transparent bridges to opaque

bridges in every interconnect in the future. The thesis work clarified the wider scope for

the interconnect automation tool and the improvement will continue moving forwards.

55

REFERENCES

[1] José L. Ayala. Communication Architectures for Systems-on-Chip. CRC Press;
2018.

[2] Pasricha S, Dutt N. On-Chip Communication Architectures: System on Chip
Interconnect. San Francisco: Elsevier Science & Technology; 2008.

[3] Jun M, Woo D, Chung E-Y. Partial Connection-Aware Topology Synthesis for
On-Chip Cascaded Crossbar Network. IEEE transactions on computers.
2012;61(1):73–86.

[4] Schaumont P. Practical Introduction to Hardware/Software Codesign. Boston:
Springer; 2012.

[5] Jerraya A, Wolf W. Multiprocessor Systems-On-Chips. Saint Louis: Elsevier
Science & Technology; 2004.

[6] Flynn MJ, Luk W. Computer System Design System-on-Chip. 1st edition.
Hoboken: Wiley; 2011.

[7] AMBA 4 Overview. Available: https://developer.arm.com/architectures/system-
architectures/amba/amba-4 Accessed on 24.09.2021

[8] Shrivastav A, Tomar GS, Singh AK. Performance Comparison of AMBA Bus-
Based System-On-Chip Communication Protocol. In: 2011 International
Conference on Communication Systems and Network Technologies. IEEE;
2011. p. 449–54.

[9] Math SS, Manjula RB, Manvi SS, Kaunds P. Data transactions on system-on-
chip bus using AXI4 protocol. In: 2011 International conference on recent
advancements in electrical, electronics and control engineering. IEEE; 2011. p.
423–7.

[10] AMBA AXI and ACE Protocol Specification. Available:
https://developer.arm.com/documentation/ihi0022/hc/?lang=en Accessed on
27.09.2021

[11] An introduction to AMBA AXI. Available:
https://developer.arm.com/documentation/102202/0200/AXI-protocol-overview
Accessed on 27.09.2021

[12] AMBA AXI-Stream Protocol Specification. Available:
https://developer.arm.com/documentation/ihi0051/b/?lang=en Accessed on
28.09.2021

[13] IP-XACT User Guide. Available:
https://www.accellera.org/images/downloads/standards/ip-xact/IP-
XACT_User_Guide_2018-02-16.pdf Accessed on 30.09.2021

[14] IEEE Standard for IP-XACT, Standard Structure for Packaging, Integrating, and
Reusing IP within Tool Flows. IEEE; 2014. 1-510 p.

56

[15] Shin C, Grun P, Romdhane N, Lennard C, Madl G, Pasricha S, et al. Enabling
heterogeneous cycle-based and event-driven simulation in a design flow
integrated using the SPIRIT consortium specifications. Design automation for
embedded systems. 2007;11(2):119–40.

[16] Kruijtzer W, Vaumorin E, van der Wolf P, de Kock E, Stuyt J, Ecker W, et al.
Industrial IP integration flows based on IP-XACT standards. In: 2008 Design,
Automation and Test in Europe. IEEE; 2008. p. 32–7.

[17] Morgado F. Programming Excel with VBA: A Practical Real-World Guide.
Berkeley, CA: Apress L. P; 2016.

[18] Office VBA Reference. Available: https://docs.microsoft.com/en-
us/office/vba/api/overview/ Accessed on 04.08.2021

[19] The Value of High Quality IP-XACT XML. Available: https://www.design-
reuse.com/articles/19895/ip-xact-xml.html Accessed on 24.08.2021

[20] TGI API Documentation. Available:
http://www.accellera.org/XMLSchema/SPIRIT/1.4/TGI/TGI.html Accessed on
24.08.2021

