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ABSTRACT 

Sami Marin: Interconnect automation tool improvement 

Master of Science Thesis 

Tampere University 

Master’s Degree Programme in Electrical Engineering 

November 2021 
 

Communication between IP components in System on Chip systems is crucial for providing 
complex functionalities. The components are connected to each other with interconnects which 
are responsible of handling the data exchange effortlessly. The interconnects are built to follow a 
communication architecture which consists of a physical structure and a communication protocol. 
As the interconnects are often simple and the number of interconnects necessary in a system is 
large, the generation of the interconnects can be automated to reduce the work effort. 

In this thesis, an existing interconnect automation tool is introduced and investigated in order 
to improve it in various areas. The current implementation of the tool creates an interconnect RTL 
and files for IP-XACT packaging and verification. The generated interconnect is based on 
parameters, such as the communication protocol (for example AXI4 protocol) and the number of 
IPs (slaves/masters), which are inserted into a spreadsheet working as the interface of the tool. 
The generation itself is done by utilizing a macro in the spreadsheet. Multiple improvement ideas 
were collected, and the progress done for them during the thesis is explained. The improvement 
process followed a simple workflow of a feasibility study followed with an implementation of the 
solution deemed the best. 

Only one improvement, support for non-continuous address space for a single master, was 
finished during the thesis due to an implementation change. However, the feasibility of multiple 
improvements, such as master-slave visibility and flexible range for address regions, was 
investigated. Some were unfeasible due to an underlying major restriction. For feasible 
improvements, possible solutions are provided for future implementation. 
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Tiedonvälitys IP komponenttien välillä on keskeisessä asemassa monimutkaisten 
toiminnallisuuksien tarjoamisessa System on Chip -järjestelmissä. Komponentit kytketään 
toisiinsa väyläkomponenteilla, joiden vastuu on hallita tiedonvaihtoa tehokkaasti. 
Väyläkomponentit suunnitellaan pohjautuen kommunikaatioarkkitehtuuriin, mikä koostuu 
fyysisestä rakenteesta sekä tiedonvälitysprotokollasta. Usein väyläkomponentit ovat 
yksinkertaisia ja niiden määrä on suuri järjestelmissä. Täten väyläkomponenttien generointi 
voidaan automatisoida työmäärän vähentämiseksi. 

Tässä diplomityössä esitellään olemassa oleva työkalu väyläkomponenttien luomiseen. 
Työkalua myös tutkitaan tavoitteena sen parantaminen useasta näkökulmasta. Nykyinen työkalun 
toteutus luo väyläkomponentin RTL -tiedoston sekä muita tiedostoja IP-XACT -paketointia ja 
verifiointia varten. Väyläkomponentit generoidaan parametrien perusteella, mitkä voidaan asettaa 
työkalun laskentataulukkoon perustuvaan käyttöliittymään. Asetettavia parametreja ovat 
esimerkiksi tiedonvälitysprotokollana AXI4 -protokolla sekä yhdistettyjen komponenttien määrä ja 
niiden rooli. Generointi tapahtuu laskentataulukkoon tehdyn makron avulla. Useita 
parannusehdotuksia kerättiin diplomityön aikana ja edistys niitä kohtaan selitetään. 
Parannusprosessi oli yksinkertainen, missä aluksi parannuksen soveltuvuus selvitettiin. Tätä 
seurasi parhaimmaksi todetun ratkaisun implementointi. 

Vain yksi parannus saatiin päätökseen diplomityön aikana implementointiratkaisun muutoksen 
vuoksi. Tämä parannus oli epäjatkuvien osoiteavaruuksien tukeminen, kun ne asetetaan samalle 
isäntäkomponentille. Tästä huolimatta useiden parannusehdotuksien soveltuvuus selvitettiin. 
Näitä parannuksia olivat muun muassa isäntä-orja liitosten näkyvyyden parannus sekä 
osoitealueiden leveyksien joustavuuden parannus. Osa parannusehdotuksista todettiin 
toteuttamiskelvottomiksi rajoitteen vuoksi, minkä korjaus vaatisi suuremman muutoksen 
väyläkomponentin toimintaperiaatteeseen. Toteuttamiskelpoisille parannuksille selvitettiin 
mahdollinen ratkaisu, mikä voidaan implementoida tulevaisuudessa. 

 
Avainsanat: väyläkomponentti, automaatio, tiedonvälitysprotokolla, AXI4, IP-XACT 
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1. INTRODUCTION 

Modern SoC (System on Chip) devices are complex systems with dozens of separate 

components. These components are often IP (Intellectual Property) blocks with their own 

functionality and purpose. The combination of the individual functionalities allows 

complex applications on a single SoC device. [1] The key factor in enabling the complex 

features is communication between the separate components. Communication is 

enabled by using interconnects which are often components themselves. Interconnects 

based on some communication architectures are the commonly used method. 

As the system complexity increases, so does the requirements for the interconnects. 

Flexibility for the number of IPs and their address spaces requires an effortlessly 

modifiable interconnect. Manually writing interconnects with VHDL (VHSIC Hardware 

Description Language) for every system is slow and cumbersome since the 

interconnects themselves are in practice often just wiring between the IPs while allowing 

communication with some communication protocol. Therefore, the interconnect 

generation should be automated to reduce the manual work effort which could be used 

elsewhere. 

In this thesis, one implementation of an interconnect automation tool is introduced. The 

tool can generate interconnects based on certain communication architectures which 

determine the physical structure and the communication protocol of the interconnect [2]. 

The implementation is an all-in-one solution based on Excel spreadsheet. As an output, 

the tool generates the necessary files for the interconnect and various extra files to aid 

in integration and verification. Flexibility and ease-of-use is enabled by a simple interface, 

which can be used to determine the parameters of the interconnect. These parameters 

work as the input data for the generation. 

The main goals of the thesis are to determine the current state of the automation tool 

and improve it in various areas. The need and possibilities for improvement are 

investigated during the thesis to determine the baseline of the current state. Then the 

feasibility of the possible improvements is defined. Depending on the feasibility, as many 

improvements as possible are implemented in the given timeframe of the thesis. 

The outline of the thesis is the following. First, the basics of interconnects and 

communication protocols related to the automation tool are explained in the chapter 2. 
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Then in chapter 3, the current implementation of the automation tool is introduced in 

detail. Next the improvement process and the progress done during the thesis are 

explained in the chapter 4. Lastly the overall improvement of the automation tool is 

concluded in the chapter 5. 

 

 



3 
 

 

2. INTERCONNECT THEORY 

To automate interconnect generation within the scope of this thesis, the required 

knowledge can be divided into three categories: interconnect principles, communication 

protocol principles and IP packaging. This chapter introduces these categories and starts 

with the interconnect principles. Then the communication protocol principles are 

explained. Next the standardized protocols used in the interconnect tool are introduced. 

Lastly the IP-XACT packaging methods are explained. 

2.1 Interconnect principles 

As the communication is the critical factor in performance [3], the used interconnect 

topology and architecture are important properties of the SoC design. The simple 

approach for the physical implementation of the interconnect is using buses which could 

be implemented with single wires. Multiple buses would then form a parallel bus 

implementation which has been the typical approach for SoC applications. [2] However 

with increasing complexity in the SoC designs, the simple parallel bus implementation 

reaches its data transfer limits and most likely bottlenecks the performance [3]. To reduce 

the effect of the bottlenecks due to the interconnect architecture, various approaches for 

the physical implementation have been developed. One of the promising architectures, 

which is also one of the two architectures relevant in this thesis, is a bus-matrix or 

commonly known as a crossbar. The physical implementation of the crossbar 

architecture is shown in the figure 1 below. 

 

Figure 1. Crossbar architecture [2] 

In the figure 1, there are blocks which represent components for example the IPs in the 

SoC design. Every block also has a role of a master or a slave. They are distinguished 
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from each other by their functionality in regards of the communication. Master blocks 

start and control the communication between the other blocks. Slave blocks can only 

respond to the communication attempts from the master blocks. [4] As seen in the figure 

1, there are buses from each master to each slave. Communication between the blocks 

is packet switched as in the data transfer contents determine the destination. The 

destination information is decoded from the packet and then multiplexed to the correct 

end point. In a case where multiple data transfers occur to the same end point; arbitration 

is present to decide the order of receival. [2] The crossbar architecture thus allows high 

parallelism where multiple data transfers can occur simultaneously between different 

slaves and masters [2,4]. The benefit of high data throughput has increased the 

popularity of the architecture even though the implementation comes with high costs in 

terms of area, power consumption and manufacturing [2,3,4]. The other relevant and 

popular architecture is the ring bus architecture, which is introduced in the figure 2 below. 

 

Figure 2. Ring bus architecture [2]  

As shown in the figure 2, the ring bus architecture is quite different from the crossbar 

architecture. Instead of having buses for every connection, there is a single ring bus 

connection. The ring consists of nodes which operate as the end point for the 

components and are connected serially to each other. The communication in a ring bus 

is often token based [5]. The data transfer is passed to the ring and the nodes check the 

contents of the transfer. If the destination information points to the component connected 

to the node, the data transfer is appointed to component. Otherwise, the data transfer 

continues through the ring until the current destination is reached. [2] The major benefit 

of the ring interconnect is the great performance to area ratio. High performance is 

achieved due to the short length between the nodes in the ring which allows higher 
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operating frequency. [5] The benefit stems from the location of the nodes. If the data 

transfer is between adjacent nodes, the transfer is fast. The locations of the nodes are 

however the drawback of the ring architecture as well. In worst case the data transfer 

goes through the whole ring before it reaches its destination. This drawback can be 

reduced by supporting transfers to both directions depending on for example distance 

[2]. The nodes can also be allocated in proper locations where additional latency due to 

distance is less crucial. 

Both architectures have their own uses. Crossbars are used in applications, for example 

high end processors, where data throughput and parallel operation are the most 

important factors. Ring bus interconnects are used in applications which are cost 

effective while allowing moderate performance. 

2.2 Protocol principles 

Now that the architecture for the physical implementation is clear, one important factor 

missing are the common rules for communication. Often the interconnected components 

are not new components. Some of the components are reused IPs or components 

provided by external component sources. To ease the communication between the 

components, communication protocol standards have emerged. 

Communication protocol standards define two major features for the interconnected 

components. First defined feature is the interface for the components which is the 

physical pins on the device. A set number of pins are defined with their own functionalities 

and purposes. [2] The second feature defined are the data transaction rules. The rules 

define the properties for the data transmission such as the correct way to start and end 

the transmission, order of the possibly multiple data packets, transaction and receival 

acknowledgements and arbitration rules. [6] Following the features defined in the 

protocol standard increases the flexibility of the system and decreases the complexity of 

the interconnect designs as they are responsible of the data transmission between the 

components. Simpler interconnect designs are possible due to the common interface 

pins for the connections and the logic needed for the data transactions are not dependent 

on the receiving components as they share the data transaction rules. 

2.3 AXI protocols 

In the scope of this thesis the communication protocol standards relevant are bus based 

AXI (Advanced eXtensible Interface) protocols from AMBA (Advanced Microcontroller 

Bus Architecture) 4 specification by ARM [7]. Three protocols are introduced in the 
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specification and each of them are focused on high performance systems. The protocols 

are AXI4 protocol, AXI4-Lite protocol and AXI4-Stream protocol. These protocols have 

slightly different features and use-cases, but they share the underlying basics for 

communication. The combination of features makes these protocols a preferred choice 

for SoC interconnect designs. 

The first shared feature is the principle for interface definition. The protocols define only 

master and slave interfaces. These interfaces are symmetrical between each slave and 

master respectively [8]. This allows simple connections and data transmissions, thus 

reducing the logic necessary in the interconnects. The second shared feature is allowing 

independent topology [8]. In other words, the physical structure of the interconnect does 

not have restrictions caused by the protocol. This allows the optimization of the 

interconnect by choosing a suitable topology. Another feature is the interface signal 

principles. Even though the interface signals are specific for each protocol, the principle 

for them are to support high parallelism. This is achieved by having own channels for 

address, read, write and response signals. The channels are independent from each 

other. Thus, the operation is largely asynchronous and parallel. [8] The channels also 

have their own purpose as in the address channels are only meant for the addresses 

and so forth. Independent channels open the option to optimize the signal widths for 

each of the channels since for example the addresses often require less bits than the 

data blocks. 

The protocols share similar data transaction rules as well. Firstly, the data transaction is 

burst based. Each transaction consists of control information and the data itself. The 

control information contains the address of the destination and a description of the data 

which are relayed using the address channels. The data is relayed using either the write 

channel or the read channel depending on the direction such as from the master to the 

slave or vice versa. In both cases, the master starts the transfer by assigning the control 

information on the respective address channel for either read or write operation. Then 

the data is transferred in bursts until every burst is transferred. Indication for the last burst 

is relayed though a separate channel. Throughout the transaction, handshake channels 

are utilized. A response is given after the full transfer as well indicating a successful 

transaction or certain error occurring. [9] The parallelism of the channels enables the 

transactions for different IP blocks to occur out-of-order which is implemented in the 

protocols by assigning an ID for each occurring transaction. The only restriction is that a 

transaction with the same ID must be completed in order. [8] Out-of-order transactions 

are highly beneficial in interconnects as the IP blocks connected most likely have 

different response times. 
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The following sub-chapters introduce the protocol specific features and the interface 

signals relevant for the thesis. 

2.3.1 AXI4 protocol 

As mentioned earlier, the AXI protocols have separate channels for write and read 

transactions. The channels present in AXI4 protocol are the following: read address, read 

data, write address, write data and write response channels [10]. The data transaction 

procedures are visualized in the figure 3 below. 

 

Figure 3. Write and read transaction procedure for AXI4 protocol [10] 

As can be seen from the figure 3, the write and read transactions follow the basic 

principles as earlier mentioned. The write transaction starts with the master sending the 

control information and then the data is transferred. After every burst is transferred, a 

separate response channel is used by the slave to send the status of the transaction. 
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The read transaction follows the same procedure with the difference being the channels 

used and a separate response channel is not used. The separate channels consist of 

interface signals which are listed in the table 1 below for each channel. 

Table 1. AXI4 protocol interface signals [10] 

Global signals 

Name Description 

ACLK clock signal, synchronous signals sampled on rising edge 

ARESETn reset signal, active-LOW 

Channel signals 

Write/Read address channel Write/Read data channel Write response channel 

Name 
(x=W/R) 

Description 
Name 

(x=W/R) 
Description Name Description 

AxID ID tag xID ID tag BID ID tag 

AxADDR address xDATA data BRESP response 

AxLEN burst length xLAST 
last burst 
indicator 

BUSER 
user 

extension 

AxSIZE burst size xUSER user extension BVALID 
valid 

handshake 

AxBURST burst type xVALID valid handshake BREADY 
ready 

handshake 

AxLOCK atomic type xREADY ready handshake   

AxCACHE memory type RRESP read response   

AxPROT 
access 

permission 
WSTRB 

valid write 
datalanes 

  

AxQOS QoS identifier     

AxREGION region indicator     

AxUSER user extension     

AxVALID 
valid 

handshake 
    

AxREADY 
ready 

handshake 
    

 

The first signals in the table 1 are the global clock and reset signals. All the channel 

signals are sampled on the rising edge of the clock signal [11]. Then there are the 

channel specific signals. The write and read address channels have similar interface 

signals. There are the ID and the address signals. Then the transaction settings such as 

burst length, size and type signals. Additional settings include atomic operations, 

memory types, access permissions, QoS (Quality of Service) and region interface 

settings. There is also the user extension signal which the user can define for example 

to add extra information about the transaction. The last signals in the read and write 

address channels are the handshake signals. The data channels also share similar 

signal interfaces with some differences. There are the ID and the data signals. The signal 

used to indicate the last burst of the transaction. Similarly, there are the user and the 

handshake signals. The differences between the data channels are the last two signals 

which are specific for the read or the write channel. The read data channel has a 
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response signal, and the write data channel has an indicator signal for valid data lanes. 

The last channel in the table 1 is the separate write response channel. The channel is 

only used for write responses thus the channel consists of ID, response, user and the 

handshake signals. 

As indicated in the table 1, every transaction channel has the handshake signals. These 

are utilized throughout the transactions and they are a crucial part of organizing the 

communication. The channels have slightly different rules for handshaking which must 

be followed. However, they follow the same process for handshaking. The process starts 

with the source setting the VALID signal to a HIGH state. The source can be the master 

or the slave as both can control the flow of information. The HIGH state for the VALID 

signal indicates that the channel appropriate information is available for transferring. 

Then the destination sets the READY signal to a HIGH state which indicates the 

readiness for receival of information. The transfer is completed on the rising edge of the 

clock signal when both handshake signals are in the HIGH state. [10,11] There are three 

different allowed handshake cases which are introduced in the figure 4 below. 

 

Figure 4. Allowed handshakes for AXI4 protocol channels [10] 

The first handshake in the figure 4 is the basic process where the VALID signal is set to 

HIGH before the READY signal. The other cases are also possible due to the READY 
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signal being allowed to be HIGH before the VALID is set. The benefit of doing so is to 

reduce the time the transaction takes. In the second handshake the READY signal is 

HIGH before the VALID signal. Thus, the transfer is done in one clock cycle instead of 

the information being held in the channel until both signals are HIGH like in the first case. 

In the last case, both handshake signals are set to HIGH at the same time. Therefore, 

the transfer is completed at the next rising edge. [10,11] 

In addition, there are channel specific rules for the handshakes and dependencies 

between the handshake signals for the channels as well. These are present to avoid 

deadlock and they must be followed. [10] 

2.3.2 AXI4-Lite protocol 

The next relevant AXI protocol is the AXI4-Lite protocol which is a simplified version of 

the AXI4 protocol in the previous sub-chapter. Some of the features regarding the burst 

based transfers are fixed instead of user-defined. The major settings being the burst 

length fixed to value 1 and the usage of full width of the data channel for all accesses. 

The simplified protocol is intended for simple control interfaces which do not need the 

full capabilities of the AXI4 protocol. [10] The protocol has the same channels and follows 

the same transaction processes as the AXI4 protocol. The simplified interface signals 

are collected in the table 2 below. 

Table 2. AXI4-Lite protocol interface signals [10] 

Global signals 

Name Description 

ACLK clock signal, synchronous signals sampled on rising edge 

ARESETn reset signal, active-low 

Channel signals 

Write/Read address channel Write/Read data channel Write response channel 

Name 
(x=W/R) 

Description 
Name 

(x=W/R) 
Description Name Description 

AxADDR address xDATA data BRESP response 

AxPROT 
access 

permission 
xUSER user extension BUSER 

user 
extension 

AxQOS QoS identifier xVALID valid handshake BVALID 
valid 

handshake 

AxREGION region indicator xREADY ready handshake BREADY 
ready 

handshake 

AxUSER user extension RRESP read response   

AxVALID 
valid 

handshake 
WSTRB 

valid write 
datalanes 

  

AxREADY 
ready 

handshake 
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The interface for the AXI4-Lite protocol is much simpler due to the fixed burst length as 

shown in the table 2. The signals for the transactions such as the address, data and 

handshake signals have the same functionality. The additional signals are also present. 

One major difference is the missing ID signals which means that the transactions must 

be in order. The handshake process with the AXI4-Lite protocol is the same, and the 

same rules and dependencies are present like in the AXI4 protocol. 

2.3.3 AXI4-Stream protocol 

The last protocol from the AMBA 4 specification is the AXI4-Stream protocol which is for 

streaming data between the masters and the slaves. The protocol has a single interface 

which is used for the streaming. The interface is similar with the AXI4 protocol write data 

channel [8]. Data is transferred in data streams which are a series of transfers or 

transfers grouped up as packets. Multiple data stream types are supported such as byte 

streams or continuous streams. Byte stream is a collection of data bytes and null bytes. 

The null bytes can be whenever in the byte stream and the data bytes are transferred 

only on valid handshake. The continuous stream contains only data bytes. The stream 

can be aligned or unaligned. In aligned stream, there are no extra bytes between the 

packets. Unaligned stream is the opposite. [12] The interface signals used for the data 

streaming are introduced in the table 3 below. 

Table 3. AXI4-Stream protocol interface signals [12] 

Protocol interface signals 

Name Description 

ACLK clock signal, synchronous signals sampled on rising edge 

ARESETn reset signal, active-low 

TVALID valid handshake 

TREADY ready handshake 

TDATA data 

TSTRB data description 

TKEEP data qualifier 

TLAST transaction boundary 

TID data stream ID 

TDEST destination 

TUSER user extension 

 

As shown in the table 3, there are the necessary signals for the handshakes and the 

data. Additionally, there are extra signals to add extra information about the data. The 

TSTRB signal describes the type of the data and the TKEEP signal informs about the 

null bytes. The TLAST signal is used to indicate the end of the packet. The multiple 
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masters and slaves are handled with the ID signal which separates the different data 

streams. The destinations for the packets are determined with the TDEST signal. The 

protocol has the optional user extension signal like in the other AXI protocols as well. 

Like in the AXI4-Lite protocol, the handshake process is identical with the previous AXI4 

protocol. [12] 

2.4 IP-XACT packaging 

As mentioned earlier, modern SoC devices can contain IPs from different sources. The 

IPs and the interconnects could have different principles for designing which could hinder 

the design process of the complete system. To improve the reusability of IPs and 

compatibility with tools, IP-XACT standard can be used to describe IPs in a manner 

which is consistent and machine readable [13]. The separate designs in the system using 

the common documentation style enables less problematic integration which is a key 

factor in the design of modern SoC devices [16]. 

The level of detail in the IP-XACT descriptions can be chosen for example only top-level 

details such as ports are presented. For interconnects, the useful details to describe with 

IP-XACT could be the top-level ports, bus definitions and internal memory maps. To 

describe the necessary structures in the IP, the standard provides document types. 

These types have their own purpose as they are used to describe certain details of the 

IP. The document types important for interconnect designs are listed below. 

• Component 

• Design 

• Design configuration 

• Bus definition 

• Abstraction definition 

The first document type in the list is component which is the top-level type. It is used to 

describe for example IP blocks. In this case, the component type describes the 

interconnect and its top-level details. The necessary top-level information would be the 

master and slave ports, buses and address mapping information. The next document 

type is design which describes the hierarchy of the component. The design could contain 

the information on the used internal sub-components and their properties. The 

information about the hierarchy can be extended with the design configuration document 

type which can be used to detail exact information about the sub-component instances. 

[13,14,15] The first three document types are for describing the structure of the IP from 
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top-level to internal structure. The level of detail can then be chosen by using only the 

component and not the other two types as they are extensions for the component. The 

last two document types in the list are for describing the communication properties of the 

interconnect. The bus definition type can be used to describe the direct connections in 

the design. For interconnects these could be the connections between the masters and 

the slaves. The bus definition contains also the protocol used for the connection and 

ports. The bus definition can be extended by using the abstraction definition type which 

defines the exact information about the buses such as logical ports and their properties. 

Like with the structure, the level of detail for the communication properties can be 

chosen. [13,14] The combination of the different document types enables the IP-XACT 

description to have the preferred amount of detail. 

One of the important features enabled by using IP-XACT for interconnects is the 

possibility to include address mapping information. In the IP-XACT description, the 

address mapping is enabled with using bridges in the component. The bridge works as 

a connection between the master and the slave bus interfaces. In IP-XACT, there are 

two different types of bridges and they define how the address mapping is linked between 

the master and the slave. [14] The following sub-chapters explain the two bridge types: 

transparent bridge and opaque bridge. 

2.4.1 Transparent bridge properties 

Transparent bridging utilizes direct mapping. This means that the address space of the 

bridges master interface is one-to-one mapped to the address space of the slave 

interface. An example with a connected component is shown in the figure 5 below. 
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Figure 5. An example of the address mapping with transparent bridges [14] 

As shown in the figure 5, the address spaces of the master and the slave interfaces start 

from the same position (0x0000). The master address space range is also mirrored to 

the slave interfaces address space. When a component with its own address block 

(0x0000-0x07FF) is connected to the master interface, the address block can be offset 

into the master address space. However, the offset does not change the direct mapping 

and only offsets the location in the master address space. The offsetting can be done in 

both directions. Multiple bridges to different masters can be made for the same slave in 

which multiple master address spaces are mapped to the same slave interface. The 

transparent bridging does however have a restriction regarding the master interface 

address spaces. The address spaces are declared with only a base address and a range. 

Therefore, the address space must be continuous. [14] In some systems, this restriction 

could cause overlap which might cause errors in the functionality. The transparent 

mapping is simple and efficient in most interconnect designs. 

2.4.2 Opaque bridge properties 

Opaque bridging is used when the address maps should not be directly mapped. Using 

the opaque bridges requires the usage of subspace maps in the slave interface. The 

subspace maps are a way to divide the slave interface address map into smaller 

sections. The subspace maps are then used to determine how the master address space 

is mapped to the slave interface. An example with a connected component is shown in 

the figure 6 below. 
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Figure 6.  An example of the address mapping with opaque bridges [14] 

In addition of the requirement for subspace maps, the master interface address space is 

often divided to address space segments as shown in the figure 6. The opaque bridging 

then maps the segment of the master address space to the subspace map of the slave 

address space. The location of the segment does not affect the location of the subspace 

map; thus, the segment offset can be freely changed. Only the range of the segment is 

mirrored to the subspace map. For example, if the segments offset in the figure 6 would 

be changed from 0x1000 to 0x3000, the segment would still be mapped to the subspace 

map starting from 0x1000. This enables the option to choose which segment is mapped 

to which subspace map. With multiple segments and subspace maps, the address 

mapping is flexible and can be for example shuffled if necessary. Connected address 

blocks are mapped like with transparent mapping in which the address block can be 

offset. [14] Care must be taken when connecting components to ensure that the address 

block is connected inside some segment in the master address space. 

With the ever-increasing complexity of systems, the interconnects will become more 

complex as well. Utilizing the opaque bridging offers the tools to modify the interconnect 

address mapping rather freely in the later steps of the design process. 
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3. INTERCONNECT TOOL 

This chapter introduces the interconnect automation tool used in the company. First the 

current features of the implementation are listed. The features are separated to generator 

and protocol specific features. Lastly the working principle and the flow of the tool is 

explained thoroughly. 

3.1 Current features 

The interconnect automation tool is an RTL (Register Transfer Level) generator which 

can be used to generate three different interconnect designs. These designs are 

generated based on communication protocols which can be chosen by the user. The tool 

includes an interface for setting various design parameters and information sharing. 

Interface inserted data is then used for the generation of the interconnect RTL and 

necessary files for later work steps such as packaging and verification. The following 

subchapters introduce the generator specific and the protocol specific features. 

3.1.1 Generator specific features 

The generator features a single interface for everything to allow easy and fast usage. 

The interface is used for setting the protocol for the generation and there are three 

protocols to choose from. The protocols supported are AXI4, AXI4-Lite and modified 

AXI4-Stream protocol. The design parameters for the interconnect can be set after the 

protocol is chosen. There are universal parameters such as the number of masters and 

slaves. Protocol specific parameters such as protocol signal widths can be set as well. 

The generator supports the addition of address mapping for the interconnect RTL and 

the packaging. The address mapping is inserted as address regions. Multiple address 

regions can be assigned for the same master. The slave and master interfaces can be 

named by the user. The generation is started from the interface and the generation is 

done locally without the need for separate setup for the tool. The tool includes a status 

window and the ability to point out the erroneous inputs from the user. The shared 

features for every protocol are shown in the table 4 below. 
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Table 4. Shared generator specific features 

Feature Options Constraints Limit 

Protocol 
AXI4, AXI4-Lite, 
modified AXI4-

Stream 
- - 

Slaves - - max=32 

Masters - - max=32 

Address 
regions 

multiple regions 
can be assigned to 

single master 

start address<=given address size, 
no overlap, 

continuous space for a single master, 
alignment, range, destination 

max=32 

Port names - 
no duplicates, 

one word, 
first character=letter 

- 

 

As can be seen from the table 4, there are constraints and limits for the shared features. 

Multiple constraints are placed for the address regions since the address mapping is 

affected by the interconnect RTL implementation heavily. The limits are present due to 

the implementation of the interconnect tool interface thus they are not RTL specific 

limitations. 

3.1.2 AXI4/AXI4-Lite specific features 

The protocol specific features for the AXI4 and AXI4-Lite protocols in the generator are 

the possibility to modify the signal widths of the data and address bus sizes as well as 

the protocol specific signal widths. The modifiable signal widths for the protocols are 

collected in the table 5 below. 

Table 5. Modifiable signal widths for AXI4 and AXI4-Lite protocols 

Protocol parameter AXI4 AXI4-Lite Constraint 

Datasize supported supported log2 format of bytes 

Address bus size supported supported max=39bits 

ID size supported not supported - 

Len size supported not supported max=8bits 

User size supported supported - 

 

From the table 5, the datasize and the address bus size are the same in both protocols 

and they have the same constraints. The constraint for the datasize indicates that the 

data size must be given as binary logarithm of bytes. For example, value 2 would indicate 



18 
 

 

32 bits wide data bus. The maximum address bus size is 39 bits which depends on the 

current RTL implementation. The protocol specific signals available for modification for 

the AXI4 protocol are ID, Len and User signals. Only the user signal width is modifiable 

in the AXI4-Lite protocol since the ID signals are not supported and the Len signals are 

defined to be 1. 

3.1.3 Ring interconnect specific features 

When generating a ring interconnect, the datasize and the address bus size can be set 

same as with the other protocols. The modified AXI4-Stream protocol does not however 

have the same signals. Ring interconnect generation also has extra features for the 

individual nodes regarding for example CDC (Clock Domain Crossing). The modifiable 

signals and extra features are collected in the table 6 below. 

Table 6. Ring interconnect specific features 

Protocol parameter Options Restriction Constraint 

Datasize - 
value=2 only 

supported (32bit 
datasize) 

log2 format 

Address bus size - - max=39bits 

Source and 
destination signal 

size 
- - - 

Protocol for 
individual node 

AXI4-Lite, 
modified AXI4-

Stream 
- - 

Clock bridge 
addition 

full bridge, 
half bridge 

- - 

Node sequence - no duplicates 
must be a running 

number from 0 

 

As seen from the table 6, the only supported datasize with modified AXI4-Stream 

currently is 32 bits. The modifiable signal widths are the source and the destination signal 

widths, which are not present in the other protocols. The extra features shown in the 

table 6 are the ability to set individual properties for the nodes. Firstly, the input signal 

interface can be chosen between two protocols for the node which are the AXI4-Lite and 

the modified AXI4-Stream. Then CDC components, as in full or half clock bridges, can 

be added into the design for the desired nodes. Lastly, the node sequence for the ring 

can be changed to be preferred while following the constraints and restrictions. 
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3.2 Working principles 

The current implementation of the interconnect automation tool is based on Microsoft 

Excel -spreadsheet software. Excel is a suitable software for the interconnect tool since 

the tool should be easy and informative to use. Often multiple different interconnects are 

needed thus the modification of the settings or the parameters should be fast while also 

allowing the separation between the interconnects. Fast modification is possible since 

the interface of the tool is a predesigned spreadsheet in which the user can alter various 

settings for the generation and the parameters for the generated interconnect. 

Separation, for example different input files, is also possible since the spreadsheet acts 

as the input file for the generation. The generation itself is behind a macro which contains 

multiple different functions such as checking functions or VHDL generation functions. 

The macro uses Microsoft Visual Basic for Applications (VBA) -programming language. 

VBA is suitable as the programming language for the generation since it has the 

necessary functionalities [17,18]. With VBA, a separate tool or environment is not needed 

for the generation. By using the spreadsheet as the interface and the macro for the 

generation, the complexity of using the tool is reduced since the user does not need the 

knowledge on how to setup multiple tools. 

There are two workflows which are executed in the normal operation of the interconnect 

automation tool. The first workflow is for the user and the second is for the generation. 

Both workflows have been designed to be straightforward and fast. The user operates 

only with the interface of the tool and there should be no reason to do otherwise. The 

predesigned user interface consists of 4 different areas, which are introduced in the 

following figures. The user workflow starts by setting the parameters in the interface area 

shown in figure 7 below. 
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Figure 7. Modifiable parameters for the interconnect tool 

As seen from the figure 7, the user can alter various parameters such as the interconnect 

protocol used, the number of I/O ports, and the properties of the interconnect signal 

widths. The blackened cells in the figure 7 indicate parameters which cannot be modified 

with the current interconnect type. The same indicator is used in other parts of the 

interface as well. The next step in the workflow is setting up the memory address 

mapping for the interconnect which’s interface area is introduced in the figure 8 below. 

 

Figure 8. Interconnect memory address mapping interface 

The memory address mapping consists of address regions which are indicated by a start 

address and a length as shown in figure 8. The routing for the address region is indicated 

with a number belonging to the destination which in this interconnect tool is the master. 

The amount of address regions visually available to modify is carried over from the value 

set in the parameters area. Regarding the possible start addresses and ranges, some 

rules and restrictions have been made for the address mapping which are checked in 

the second workflow later. The next step in the user workflow is defining the master and 

slave interface names. In the case of ring interconnect generation, the properties of the 



21 
 

 

nodes are also defined in this step. The interface for defining the individual properties for 

the slaves and masters is shown in the figure 9 below. 

 

Figure 9.  The individual properties of the slaves and masters 

As seen from the figure 9, the number of slaves and masters visually available is carried 

over from the user set parameters similarly like in the address mapping. For the ring 

interconnect type, there are various settings for the user to individually set for each of 

the slave and master nodes. As shown in the figure 9, the user can alter the protocol 

adaptation used for the node input side. The protocols supported are the AXI4-Lite 

protocol or the modified AXI4-Stream protocol. The addition of clock domain crossing 

components can also be set by the user. There can be full clock bridges indicated by CB 

(Clock Bridge) or half bridges indicated as CBR (Clock Bridge Receiver) and CBT (Clock 

Bridge Transmitter). Lastly for the ring interconnect, the user must set the order in which 

the nodes are connected in the generated component. The tool interface is designed to 

be less prone to user error, thus only the names can be modified if the interconnect type 

is for crossbar generation. All Excel cells affiliated with the ring interconnect generation 

are blackened to indicate that they are not used if it is not used as the interconnect type. 

The last step in the user workflow is to start the generation workflow by using the ROUHI! 

button of the interface. The last area of the user interface includes some quality-of-life 

features as well which are shown in the figure 10 below. 

 

Figure 10.  Info and status interface 

The button seen in the figure 10 starts the Excel macro which is responsible for the 

generation flow. The generation flow includes checks for input errors which are then 
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indicated for the user using various visual methods such as coloring the cells and 

message windows. The user must correct the possible errors and run the generation flow 

again until a successful generation is indicated by the tool. As seen in the figure 10, the 

user interface also includes some info bars for the parameters and a status bar about 

the current progress of the generation workflow. 

In a similar way to the user workflow division into different input areas, the generation 

workflow can be divided into different tasks. These tasks consist of a series of functions 

inside the Excel macro. Like a usual simple software program, the macro also includes 

a main function which works as the task manager for the generation flow. The main 

function called Generate is introduced in the program 1 below. 

 Sub Generate() 
2   ErrFound = 0 
   IncMemMap = 1 
4    
   Do While True 
6    SetVariables 
     If ErrFound <> 0 Then Exit Do 
8    CheckAddresses 
     If ErrFound <> 0 Then Exit Do 
10   CheckOverlap 
    If ErrFound <> 0 Then Exit Do 
12   GenVectors 
    If ErrFound <> 0 Then Exit Do 
14   CheckPrefix 
    If ErrFound <> 0 Then Exit Do 
16   If NodeMode <> 0 Then 
    CheckNodeSequence_and_protoc 
18   End If 
   Exit Do 
20  Loop 
    
22  If ErrFound = 0 Then 
   MakeDirectory 
24   PrintTBSV 
   Print_packager_csh 
26    
   If ICTypeValue = 0 Then 
28    PrintVHDL_wrapper 
    Print_axl_packager_tcl 
30    Print_sanity_tb_wrapper 
    Print_dut_sv_wrapper 
32   ElseIf ICTypeValue = 1 Then 
    PrintVHDL_wrapper_node 
34    Print_node_packager_tcl 
    Print_sanity_tb_wrapper_node 
36    Print_dut_sv_wrapper 
   ElseIf ICTypeValue = 2 Then 
38    PrintVHDL_wrapper_AXI 
    Print_axi_packager_tcl 
40    Print_sanity_tb_wrapper_AXI 
    Print_dut_sv_wrapper_AXI 
42   End If 
    
44   Cells(StatusRow, StatusCol).Value = "Generating... DONE!." 
   MsgBox "Generation completed w/o errors!" 
46  Else 
   Cells(StatusRow, StatusCol).Value = "Generating... ERRORS FOUND!." 
48   MsgBox "Generation completed w/ errors!" 
  End If  
50 End Sub 

Program 1. The main function Generate of the generation workflow 
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There are three tasks in the generation workflow which can be seen in the code structure 

of the main function in the program 1. The first task is responsible for checking the values 

inputted in the Excel spreadsheet and generating the necessary variables and vectors 

used later in the other tasks. If there are any errors made by the user, the error 

information is relayed by notifications and the generation workflow is terminated. The 

functions included in the first task are listed in the table 7 below. 

Table 7. Functions and properties of the first task in the generation flow 

Order of 
execution 

Function name Main feature Error check 

1 SetVariables 
generate variables from user 

inputs 
- 

2 CheckAddresses 
check if the addresses are inside 

the inputted address size 
start address 

3 CheckOverlap 
check if the address regions 

overlap 
overlap 

4 GenVectors generate mapping vectors 
address region 

parameters 

5 CheckPrefix 
check if the master and slave 
names are according to rules 

master and 
slave name 

6 
CheckNodeSequen-

ce_and_protoc 
check if the node sequence and 
protocol settings follow the rules 

sequence and 
protocol 

 

As seen from the table 7, the order of execution follows the user workflow order of input 

data since the address mapping and the interface inputs are dependent in the same 

order. Five of the functions are executed always and the sixth function is protocol specific 

which is when ring interconnect is generated. With every protocol the functions 2-4 in the 

table 7 are responsible for checking the address mapping of the interconnect. The 

checking logic structure is bottom up which is starting from the start addresses and 

working towards the destination inputs. The checks include bit lengths, any kind of region 

overlap, alignment to region range and destination checks. When the address mapping 

checks are passed, the GenVectors function generates mapping vectors for a mapper 

component used in the RTL design. The mapping vectors include the mapping data in 

binary format which is then used to determine the destination for input addresses. The 

last part of the first task is the checks for individual master and slave parameters. The 

function 5 in the table 7 checks the names inputted and if ring interconnect is generated 

the function 6 checks the node sequence and protocols for the nodes. After the first task, 

the input data is valid, and everything is ready for the generation of various files. 

The second task in the program 1 is focused on generating the files which are not 

dependent on the protocol used for the interconnect. These files are necessary setup 
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files for the IP-XACT packaging and the sanity testbench. The functions in the second 

task are listed in the table 8 below. 

Table 8. Functions and properties of the second task in the generation flow 

Order of 
execution 

Function name Main feature Other feature 

7 MakeDirectory 
generate necessary directory 

structure 
- 

8 PrintTBSV 
generate parameter and definition 

files for sanity testbench 

find a free address 
segment for error 
response testing 

9 Print_packager_csh generate setup packaging script - 

 

The necessary files for the sanity testbench in the second task are parameter and 

definition files which are generated in the function 8 seen in the table 8. These files 

contain the same input values for the parameter section and the memory mapping 

section from the spreadsheet. They are needed in the testbench environment thus they 

are exported from the spreadsheet as SystemVerilog -files. An error response area is 

also generated within the memory mapping for the error response testing. The other part 

of the second task is the generation of the setup script file for the packaging flow. The 

script file is an existing setup script used by the company and its main purpose is to setup 

the packaging environment and running the packaging flow. Automating the packaging 

with scripts allows better clarity and less complicated approach for the IP-XACT 

description generation [19]. The function 9 in the table 8 is responsible for modifying the 

necessary parts of the script for the entity generated later in the third task. 

The last task shown in the program 1 is the generation of protocol specific files. The 

functions are responsible for the generation of the interconnect itself and the packaging 

script for it. The required testbench files are generated as well after the interconnect 

generation. Each protocol has its own functions for RTL, packaging and testbench files 

which are listed in the table 9 below. 
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Table 9. Functions and properties of the third task in the generation flow 

Order of 
execution 

Function name Main feature 

10 
PrintVHDL_wrapper 

PrintVHDL_wrapper_node 
PrintVHDL_wrapper_AXI 

generate top-level VHDL wrapper 

11 
Print_axl_packager_tcl 

Print_node_packager_tcl 
Print_axi_packager_tcl 

generate IP-XACT packaging script 

12 
Print_sanity_tb_wrapper 

Print_sanity_tb_wrapper_node 
Print_sanity_tb_wrapper_AXI 

generate sanity testbench wrapper 

13 
Print_dut_sv_wrapper 

Print_dut_sv_wrapper_AXI 
generate setup files for sanity testbench 

 

Appropriate function for the specific protocol is executed from the table 9 which can be 

also seen in the program 1. The first function in the third task generates the top-level 

VHDL wrapper which is the interconnect design. Even though there are three different 

protocols and therefore the wrapper designs are different, for example in the components 

used or interface, the basic principle and structure for the generation is similar. The 

pseudo code for the AXI4 and AXI4-Lite protocol VHDL wrappers are shown in the 

program 2 below. 
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 entity xbar_entity is 
2   generic ( 
   ---------------------------------------------------------------------- 
4    -- Various generics 
   ---------------------------------------------------------------------- 
6    ); 
  port ( 
8    ---------------------------------------------------------------------- 
   -- Clock and reset 
10   ---------------------------------------------------------------------- 
    Asynchronous clock input 
12    Asynchronous reset input 
   ---------------------------------------------------------------------- 
14   -- Status output 
   ---------------------------------------------------------------------- 
16    Pipeline status output 
    Mapping error output 
18   ---------------------------------------------------------------------- 
   -- Priority, arbitration quantum 
20   ---------------------------------------------------------------------- 
    Priority input port 
22   ---------------------------------------------------------------------- 
   -- AXI4/AXI4-Lite SLAVE/MASTER interfaces 
24   ---------------------------------------------------------------------- 
    Slave/Master interface #X to #Y, PREFIX = spreadsheet input  
26    Slave/Master interface ports for different channels 
    for every slave/master interface ); 
28 end xbar_entity; 
 
30 architecture rtl of xbar_entity is 
  ---------------------------------------------------------------------- 
32  -- Constants 
  ---------------------------------------------------------------------- 
34   Constants from the inputted spreadsheet parameters 
  ---------------------------------------------------------------------- 
36  -- Components 
  ---------------------------------------------------------------------- 
38  component crossbar_component 
   generic ( 
40    Input parameter generics 
    Generics from top entity ); 
42   port ( 
    Protocol specific ports ); 
44  end component; 
  ---------------------------------------------------------------------- 
46  -- Signals 
  ---------------------------------------------------------------------- 
48   Internal signals for address mapping 
   Internal input/output signals for the crossbar instance   
50 begin 
  ---------------------------------------------------------------------- 
52  -- Crossbar instance 
  ---------------------------------------------------------------------- 
54  I_Crossbar : crossbar_component 
   generic map ( 
56    Generic mapping ) 
   port map ( 
58    Port mapping to internal signals ); 
  ---------------------------------------------------------------------- 
60  -- Mapping vectors 
  ---------------------------------------------------------------------- 
62  ---------------------------------------------------------------------- 
  -- Slave/Master IF mapping 
64  ---------------------------------------------------------------------- 
   Slave/Master interface #X to #Y, PREFIX = spreadsheet input 
66   Slave/Master interface ports are mapped to respective 
   internal slave/master signals for every slave/master interface 
68 end rtl; 

Program 2. Pseudo code of the generated AXI4/AXI4-Lite wrapper 
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The VHDL wrapper in the program 2 is generated using VHDL template structures which 

occur regardless of the set parameters. These templates are modified according to the 

parameters and the calculated variables during the earlier stages in the generation. The 

modification is done by inserting Visual Basic variables into the template which is then 

written to the output file. As seen from the program 2, the wrapper structure is as follows. 

First there is the entity declaration in which there are various generics and ports. The 

ports of the entity are dependent on the protocol used and the number of masters and 

slaves. These ports are generated using the respective protocol templates for the master 

and slave interfaces. User set number of ports are generated, and the port declarations 

are separated from other masters/slaves using the user set port names as a prefix in the 

port declaration. Then in the wrapper structure there are the constants which are a 

combination of user set and calculated variables. The constants are used later in the 

component instantiation which’s component declaration is under the constants. Then 

there are the internal signals which are used to contain the address mapping vectors and 

the data from the masters and the slaves. Next in the wrapper structure, there is the 

component instantiation. With AXI4 and AXI4-Lite protocols only a single crossbar 

instance is used. The single crossbar is responsible for the operation of all the masters 

and slaves. Lastly in the structure the internal signals are mapped to the crossbar 

instance and the wrapper input/output ports. The mapping is done by slicing the 

individual master and slave wrapper ports into the internal signals using the prefixes set 

by the user. 

When generating a ring interconnect there are differences in the function used for the 

generation compared to the AXI4 or AXI4-Lite functions. The differences are due to the 

nature of the interconnect. The master and slave nodes are in a ring as the name 

suggests. There is also the feature for the user to modify these individual nodes. These 

alter both the structure of the VHDL wrapper and the generation logic of the function. 

The pseudo code of the wrapper for the ring interconnect is shown in the program 3 

below.  
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 entity example_entity is 
2   generic ( 
   Storage size generics 
4    Clock bridge fifo size if used 
   Various generics for the slave and master node instances ); 
6   port ( 
   ---------------------------------------------------------------------- 
8    -- Clock and reset 
   ---------------------------------------------------------------------- 
10   ---------------------------------------------------------------------- 
   -- SLAVE/MASTER INTERFACES 
12   ---------------------------------------------------------------------- 
    Slave and master interface ports for the set protocol 
14    Generated interface depends on the user set parameters 
    For example if the protocol for the node is set to 
16    node or AXI4-Lite. The inclusion of half or full clock 
    bridges also adds port. 
18   ---------------------------------------------------------------------- 
   -- Status outputs 
20   ---------------------------------------------------------------------- 
  ); 
22 end example_entity; 
 
24 architecture rtl of example_entity is 
  ---------------------------------------------------------------------- 
26  -- Constants 
  ---------------------------------------------------------------------- 
28  ---------------------------------------------------------------------- 
  -- Components 
30  ---------------------------------------------------------------------- 
   Components declared is a separate package 
32   These include the node component, clock bridges, 
   protocol converters and queue components. 
34  ---------------------------------------------------------------------- 
  -- Signals 
36  ---------------------------------------------------------------------- 
   Mapping signals 
38   Node specific signals for every node instance 
   Slave/master signals for AXI4Lite/modified AXI4-Stream protocol 
40   Status signals 
 begin 
42  ---------------------------------------------------------------------- 
  -- Delta balancing. 
44  -- Domain clock mapping. 
  ---------------------------------------------------------------------- 
46  ---------------------------------------------------------------------- 
  -- Mapping vectors 
48  -- Values imported from Excel. 
  ---------------------------------------------------------------------- 
50  ---------------------------------------------------------------------- 
  -- Node instances 
52  ---------------------------------------------------------------------- 
   Node ID vector used for user set sequence 
54   Separate node instance for every slave and master 
  ---------------------------------------------------------------------- 
56  -- Slave/master interfaces 
  ---------------------------------------------------------------------- 
58   Clock bridge and converter instantiations if necessary 
   Slave/master interface mapping to signals and nodes 
60  ---------------------------------------------------------------------- 
  -- Status output retiming 
62  ---------------------------------------------------------------------- 
 end rtl; 

Program 3. Pseudo code of the generated ring interconnect wrapper 
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As seen from the program 3, the structure of the ring interconnect wrapper is like the 

other protocols. The user set parameters for the nodes are the varying parameters which 

must be considered in the generation. These parameters are the chosen protocol for the 

node, inclusion of clock bridges and the node sequence. First difference seen in the 

program 3 is the wrapper port declarations. These are dependent on the individual 

settings for the node. Different templates are used according to the settings for the 

generation. In AXI4 and AXI4-Lite protocols the templates were always the same for 

each of the master and slave ports. The second major difference is the usage of VHDL 

package for the component declarations. This is due to the number of necessary 

components. The package allows better clarity for the wrapper and the generation logic. 

As in the logic for deciding the necessary component declarations is not needed. Due to 

the nature of the ring interconnect, the signals and the instantiations are the third major 

difference. The signal declarations are separate for every node and not like in AXI4 and 

AXI4-Lite protocols where a single signal was used for every master and slave. This is 

seen also in the instantiations where every master and slave have its own node instance 

instead of a single instance for them all. The user set parameters also add signals and 

instantiations for the added clock bridges and the necessary protocol converters between 

the nodes. Lastly the signal and the component mappings are different since the nodes 

must be connected in the user set sequence. 

After the VHDL wrapper is generated the next function executed in the third task is the 

second script for the packaging. This script is generated in the appropriate function for 

the protocol from the table 9. The second script for the packaging is launched from the 

setup script and is responsible for running the actual packaging commands in the 

packaging environment. The script is generated by modifying a template script used in 

the company and adding the user inserted memory address mapping data in the script. 

The resulting XML (Extensible Markup Language) file from the execution of the 

packaging script follows the IP-XACT standard. Thus, the memory mapping commands 

are generated in the script by using the IP-XACT transparent mapping which is simple 

for the current implementation of the interconnect tool. The commands used in the 

packaging environment depend on the packaging tool used. The current packaging 

approach uses commands from the TGI (Tight Generator Interface) API (Application 

Programming Interface) [20]. The commands used in the script are abstracted even 

further into functions containing the necessary TGI commands to generate building 

blocks for the address mapping. An example of the mapping commands used in the 

packaging script is shown in the program 4 below. 
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 ############################################################################## 
2  # Bus definition commands for interfaces 
  ############################################################################## 
4  
  #### SLAVE INTERFACES #### 
6  
  # Busdef(s) for slave interface prefix 
8  <cmd_lib>::automapBusInterface -name <prefix>_<protocol>_Slave -mode slave 
  
10 #### MASTER INTERFACES #### 
 
12 # Busdef(s) for master interface prefix 
 <cmd_lib>::automapBusInterface -name <prefix>_<protocol>_Master -mode master 
14 
 # Add BusIf mapping for Clock 
16 <cmd_lib>::automapBusInterface -name Clock -mode slave 
 
18 # Add BusIf mapping for Reset 
 <cmd_lib>::automapBusInterface -name RESETn -mode slave 
20 
 ############################################################################## 
22 # Memory map commands 
 ############################################################################## 
24 
 # Base address and range for master interface prefix 
26 <cmd_lib>::setBaseAddr <prefix>_<protocol>_Master <base address> <range> 
 
28 # Bridges for slave interface prefix 
 <cmd_lib>::addBridge <prefix>_<protocol>_Slave <prefix>_<protocol>_Master 

Program 4. An example of the address mapping commands used 

There are three building blocks in the transparent mapping which can be seen in the 

program 4. The first building block is the bus definitions for the masters and slaves. The 

second is setting the base address and range for the master bus interfaces which are 

taken and calculated from the spreadsheet. If there are multiple address regions 

assigned to a single master, the lowest address is the base address, and the range is 

calculated during the generation as the accumulation of the assigned address region 

lengths. Lastly the third building block is making the connection between the masters 

and slaves with a transparent bridge. In the current interconnect tool implementation, all 

the slaves are connected to each master. 

The last functions executed in the generation workflow generate a testbench wrapper of 

the interconnect wrapper and a setup file for the testbench environment. The sanity 

testbench wrapper generated in the function 12 of the table 9 instantiates the earlier 

generated interconnect wrapper and adds testbench related signals. The generation 

structure and the principle follow the same structure as in the previous functions for every 

protocol. A SystemVerilog setup file is generated in the function 13 and its purpose is to 

be the connection between the VHDL and SystemVerilog. The function generates a 

waveform script for the EDA (Electronic Design Automation) tool used as well. A 
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testbench environment and tests are not generated in the interconnect tool. A sanity test, 

which tests that the protocol is working correctly when exchanging data between the 

masters and slaves, is simple and same regardless of different user parameters. Thus, 

a universal test and testbench made for the interconnects are used instead. 

After every function in every task is generated successfully the user is informed about 

the completion and the files can be found in the folder containing the spreadsheet. As a 

summary of the files generated, the interconnect tool generates the interconnect VHDL 

wrapper, the packaging scripts and lastly the sanity testbench files. 
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4. IMPROVEMENTS 

This chapter introduces the limitations surfaced during the investigation and then 

explains the progress done to improve the interconnect tool during the thesis work. The 

limitations are listed while giving insight to their cause and the benefits of improvement. 

Then the improvements done during the thesis are described thoroughly. The methods 

used and the steps of the implementation process are explained, and insight is given to 

the questions and decisions made during the implementation. 

4.1 Limitations 

The limitations discussed in this chapter are the base for the improvements of the 

interconnect tool implementation. They are limitations in a way which limit the use cases 

for the tool. For example, extra work must be done to get the interconnect which is 

needed since the tool can only provide interconnects with certain settings or which follow 

certain rules. The extra work could be for example, modifying the generated interconnect 

to be suitable or generate additional interconnects as a workaround. Both examples are 

not practical in the long run; thus, the interconnect tool improvements are essential. The 

limitations were scouted by requesting improvement ideas from other employees which 

were familiar with using the tool in projects. This kind of approach for the improvements 

was used to get more generic improvement ideas. Thus, the improvements would be 

beneficial in larger number of projects. Multiple improvement requests were received, 

and the most prominent requests are collected in the table 10 below. 

Table 10. Interconnect tool improvement requests 

Improvement Limitation 
Scale (major, 

minor) 

multiple non-continuous address spaces 
for master interfaces 

only continuous address 
space supported 

major 

add support for master-slave visibility 
all slaves connected to all 

masters by default 
major 

add flexibility for address region range 
definition 

range must be 2^N minor 

improve generic features 
variables are set during 

generation 
minor 

add self-documenting features 
self-documentation not 

implemented 
major 

add default master interface 
masters must be set by the 

user 
major 
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As can be seen from the table 10, most of the improvement requests are based on 

missing features in the interconnect tool. The design choices made for the interconnect 

tool do not allow generating preferred designs or doing useful modifications. The 

improvement requests were also given a scale at the start of the improvement planning 

phase which was determined by the amount of expected work hours for possible 

implementation phase. 

The first request in the table 10 is to allow non-continuous address mapping for masters. 

The address space for the master could then contain empty spaces or possibly address 

regions of other masters inside the address space. This is currently not supported due 

to a constraint for the address mapping which defines that the address mapping must be 

continuous in the case when multiple address regions are assigned to the same master. 

The constraint is due to design choices for the generation related to the packaging. The 

non-continuous address mapping would be useful for example in designs where there 

would be a master for debugging in the middle of some other master’s address space. 

With the current implementation non-continuous address space could be implemented 

by using a workaround interconnect design which combines masters from another 

interconnect. This way there would be a single master which can access multiple address 

spaces which are not continuous. Workaround would be always present which is not 

preferrable since it always adds extra work for the designers and complexity in the 

systems. The workaround would also increase the logic needed and thus increase the 

area of the interconnect and decrease the performance. 

The second request is improving the visibility of masters and slaves. Visibility in this case 

means the accesses from slaves to masters. The request is thus to allow the user to 

decide which slaves have access to which masters. With the current implementation 

every slave has access to every master. This limitation is due to the interconnect RTL 

design and the packaging. The RTL for the AXI4 and AXI4-Lite protocols include only a 

single crossbar component which connects every slave to every master. The packaging 

script also adds bridges similarly. User defined accesses could then reduce the routing 

logic since often the slaves need to have access only to certain masters. The reduction 

in routing logic could possibly increase the maximum operating frequency of the 

interconnect as well. 

The address region range definition improvement is to remove the limitation which is that 

the range must be inputted in the power of 2. Often the address region widths do not 

follow this rule, thus the interconnect tool supports assigning multiple address regions to 

a single master. This way the address region range for the master can be variable if the 

range can be divided to sections which are in the power of 2. This limitation forces the 
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designs to only have suitable address spaces and causes extra manual work for the tool 

user. Removing the limitation all together or even easing it would improve the usability 

of the tool and the interconnect development. 

The rest of the requests in the table 10 are more akin to quality-of-life improvements. 

They are not crucial but would be helpful in the future or when making more generic 

interconnects. The generic features are currently limited to adding queue and pipeline 

sizes. The parameters set in the interface of the tool cannot be altered as generics after 

the generation. The parameters are either constants or fixed values in the generated 

RTL code. The generic features improvement would be to change the RTL to add the 

parameters such as datasize, address size or the extra signals for example ID size as 

modifiable generics. This would be useful in situations where there are multiple similar 

interconnects which differ mostly in the signal widths. With the improvement the signal 

widths could be altered with generic values rather than using the tool multiple times for 

every similar interconnect. The tool could be used only once, thus reducing the workload 

and waiting time of the generation. 

Another helpful feature would be to add self-documentation for the interconnect tool. The 

proposed feature in the request is to add a visual representation of the generated 

interconnect. Currently the user must use another tool to visually see what was 

generated with the tool. For example, run the packaging scripts to get the XML file of the 

generated interconnect and then import the XML to an EDA tool. The EDA tool could 

then present a block diagram of the interconnect. A visual representation of the 

interconnect would be useful especially for the ring interconnect where the order of the 

nodes might need changing after the generation. If the tool could represent a block 

diagram of the interconnect straight after the generation workflow, the extra steps would 

not be needed and the dependency in other tools would reduce. 

The last improvement request in the table 10 is to alter the interconnects to have a default 

master interface. Default interface in this case would be a master interface which is 

automatically generated. With the current implementation, every master must be inputted 

by the user in the address mapping section of the tool interface. The default master 

interface improvement would be useful in designs which have one or more masters with 

smaller sections of the full address space and the rest of the address space would always 

be assigned for a single master. For example, the full address space available would be 

4 gigabytes and there are three masters. Two of the masters are assigned 1-megabyte 

sections and the rest of the address space is for the third master. The default master 

interface would be in this example the third master. The usability of the tool would 

improve since the user could set the total address space width and the smaller sections 
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for the masters. The tool would then generate another master interface automatically 

with the rest of the address space. 

The improvement requests discussed in this chapter were tackled in no specific order 

during this thesis work. The workflow for the improvement followed a simple template. 

First the feasibility of the improvement was studied. Then the possible solutions were 

investigated. The decision to implement the solution was based on multiple constraints 

such as skill level, time and severity of the changes. The following chapters discuss 

thoroughly the progress done for the improvement requests during the thesis work. 

4.2 Non-continuous address space improvement 

As stated above, the improvement process started with a feasibility study. The current 

implementation and the work principle were studied for the continuous address mapping 

while figuring out the root cause for the limitation. During the study, the root cause was 

found which was a design choice made for the packaging. The packaging script used 

the IP-XACT transparent bridges. This limited the address space to be continuous since 

the transparent bridges do not support non-continuous address space defines for a 

single master. The RTL of the interconnect was studied, and it already supported non-

continuous address mapping, thus the IP-XACT restriction was the only root cause. The 

choice to use the transparent bridges was made during the making of the interconnect 

tool, and it was then deemed to be a simple and efficient method for most of the 

interconnect requirements. There were in-house commands based on the TGI API 

already available as well, which used the transparent bridges. The result for the feasibility 

study was that the improvement is feasible using available tools and resources, and the 

new feature would be worth the effort. The next step in the improvement process was 

finding out the possible solutions for the limitation. 

While investigating the improvement possibilities, there were some restrictions present. 

The solution should not need the modification of the RTL components used in the 

wrapper design. Modification in the components would then most likely affect many other 

designs which use the same components. Thus, the component changes would need to 

support the other designs as well. The restriction was set to avoid the possible problems 

arising from the changes. Keeping the restriction in mind, the solutions were investigated 

based on whether the packaging would use the same transparent bridges or some other 

method. One solution for each case was found for the AXI4 and AXI4-Lite protocols. Both 

would have their own pros and cons. During the investigation, it was decided that the 

improvement will not be made for the ring interconnect as the request was directed at 

the AXI4 and AXI4-Lite protocols, and there were no foreseeable use cases in which the 
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improvement would be useful with ring interconnects. The solutions found for AXI4 and 

AXI4-Lite protocols are presented in the figure 11 below. 

 

Figure 11. Possible solutions for non-continuous address space mapping 

The solutions in the figure 11 are shown as block diagrams of an example interconnect 

which contains two master interfaces, master and debug, and two slaves. The address 

mapping for the master interface is non-continuous where it contains an empty space 

inside its address space reserved for the debug interface. 

The solution 1 is based on the case where transparent bridges are still used. As the 

transparent bridges do not directly support the non-continuous addressing, the solution 

is to change the RTL of the interconnect to be suitable. The RTL would then allow 

transparent mapping while still having the non-continuous address space inside the 

interconnect. As shown in solution 1 in the figure 11, the RTL change is like the 

workaround previously mentioned. The basic principle is to add a second layer of 

crossbar component instances, which combine the separate address spaces into a 

single master interface. In the example the second layer crossbar, named crossbar2, 

would combine the address spaces of the master0 and the master1 interfaces from the 

crossbar1. The address space for the master0 is 0x0-0xF0000000, and the address 

space for the master1 is 0xF2000000-0xFFFFFFFF. The address mapping of the second 

layer crossbars would be set continuous and thus the packaging is possible with the 

transparent bridges. A benefit of keeping the transparent mapping would be reliability as 
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the method is well known and much used in the company. There would be less problems 

for example due to compatibility with tools and the arising problems would be faster to 

debug as the transparent mapping is a simple method. The drawback of transparent 

mapping would be the extra layer of RTL code solely due to the method used for 

packaging. As mentioned earlier, the RTL of the interconnect already supports non-

continuous mapping as well, thus the extra layer might not be needed with other 

methods. The extra logic needed for the second layer would possibly induce latency and 

performance issues which are not preferrable. The scalability of the tool could also suffer 

when there would be multiple non-continuous master interfaces as they would need their 

own crossbar instances for the combining. The issues with latency or performance 

arising from the second layer could then grow large enough where the amount of non-

continuous address spaces must be restricted. 

The solution 2 shown in the figure 11 was found by seeking alternate methods to define 

the address mapping for the packaging script. The basic idea was to find a way to keep 

the RTL unchanged and only the contents of the packaging script would be changed. 

With the help of colleagues, the IP-XACT opaque bridges were proposed for the address 

mapping. With opaque address mapping the address regions assigned for a master 

could be defined as segments, thus the address space of a master would be a collection 

of segments instead of a continuous address block like in transparent mapping. The 

segments could be in any order, thus allowing the occupation of the empty address 

spaces by other masters. In the example shown in the figure 11 the address ranges are 

each defined as a segment which has its own start address and range. These segments 

are then assigned to the respective master. The order of the segments would then in this 

example be according to the start addresses. With opaque address mapping the RTL 

could remain the same as it already supports non-continuous address spaces which is 

a major benefit. Another benefit would be the adaptiveness of the mapping since it is not 

restricted as much as transparent mapping. The opaque bridges could be used with 

continuous address spaces as well which would possibly allow better features for the 

interconnect tool in the future development and better support for fine tuning the 

interconnect if necessary. Drawbacks of using opaque bridges would be related to 

compatibility with tools since the opaque mapping is less often used currently. The 

problems due to opaque bridges would then be more time consuming. The tools and 

resources used in the company would perhaps also need updates or modification to 

support the opaque mapping. These drawbacks fortunately would reduce in significance 

the more the method is used and the experience with it would accumulate. 
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The solutions found were then evaluated in terms of approximated effort, complexity and 

time needed for the improvement. They were compared to each other since the better 

would be chosen for implementation. The solution 1 would be mostly programming the 

second stage into the RTL and adding logic to the generation functions. The logic would 

need to be more complex than it is currently, but there probably would not be logic 

structures which are too complex or time consuming to implement. The solution 2 would 

be a more experimental approach since the opaque bridges are less known in the 

company. The working principle would need to be studied and then figure out their 

correct usage. The programming would be possibly trial and error as there would only 

be a few examples to study from or no examples at all. The approximated overall effort 

would be smaller for the solution 1 due to simpler nature even though the amount of 

programming would be much larger than with the solution 2. The complexity of the 

solutions would be on par with each other as the solution 1 would have logic structures 

based on the input values and the solution 2 would have more complex packaging 

command structures. The approximated time needed would be smaller for the solution 1 

as the implementation would be rather straightforward. With these evaluations, the 

implementation decision leaned towards the solution 1 and the decision was finalized 

after comparing the pros and cons of each solution. The solution 1 would be the option 

less prone to deadlock as there would be better support in case of problems which cannot 

be solved without help of colleagues. The solution 1 would also have better reliability in 

the future due to high usage levels. Therefore, the implementation would be based on 

the solution 1 at first. 

4.2.1 Non-continuous address space with transparent bridges 

The implementation process can be categorized into three sections: the RTL related, the 

packaging related and the verification related modifications. The implementation process 

started with the RTL modification as the other sections are dependent on it. Before any 

modifications could be made, the exact operation of the interconnect tool functions was 

studied for the AXI4 protocol. The modifications could be replicated to the AXI4-Lite 

protocol easily, thus the AXI4 protocol was worked on first. The study of the functions 

was to investigate the interactions with the spreadsheet interface and the interactions 

between the functions themselves. Thus, pinpointing which functions need modification 

and if there is a need to alter the operation of the current functions or even create new 

functions with new tasks. 

For the RTL section, the modifications were done mostly to the following functions: 

PrintVHDL_wrapper_AXI and GenVectors. The first function is responsible for the 
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wrapper generation and the latter generates the address mapping vectors. The wrapper 

modification started with designing the basic VHDL structure which contains the second 

layer crossbar instances. The resulting design is based on the original design, depicted 

previously in the program 2, with the necessary additions and alterations to the RTL to 

support the second layer. The planned changes to the original RTL code were modifying 

the wrapper ports, adding the second stage signals and instances, and modifying the 

signal mappings to the second stage instances and wrapper ports. A major design choice 

was done regarding the VHDL coding style. With the original RTL design, the code is 

static as it is generated with templates in the generation functions. The additional code 

from the second stage could be programmed to utilize the VHDL generate statements. 

The code would have better clarity and the ports, signals, instances and mappings would 

not have to be programmed separately. However, the programming was deemed to be 

more complex, thus the generate statements were not utilized in the new RTL design. 

After the non-continuous address space design was planned, the interconnect tool 

functions modification was started. The basic generation principle was preserved, thus 

new templates were created for the additional second layer code parts. The first 

modification was the wrapper port definition when there are non-continuous address 

spaces present. The port definition should consist of the second stage ports and the 

uncombined ports. The first stage ports which are combined in the second stage 

crossbars should not be included in the wrapper ports. The logic to use the templates for 

VHDL generation is based on simple loops. The user interface prefix cells are looped in 

order and the modified templates are used for each port. This kind of approach would 

not work as the combined ports should not be generated. The non-continuous address 

space is also an additional feature and the tool should preserve the previous features. 

Therefore, the new templates utilized to create the new design should only be used when 

wanted by the user. From these requirements, it was apparent that there is a need to 

add logical structures to the generation function. To make the logic simple while 

preserving the previous features, a new interface area was added to the user interface. 

The added interface is an extension to the existing interface area. The updated interface 

is shown in the figure 12 below. 
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Figure 12. Updated user interface for non-continuous address space feature 

As can be seen from the figure 12, the continuous address space feature was added into 

the interface as an opt-in feature. The user must enable the feature by setting the enable 

combining cell to value 1. The number of combined masters must be assigned which in 

this case means the amount separate combined master ports. In the figure 12 for 

example there are three combined masters which can be seen from the combine column 

and the prefix column for combined masters. The combining is done by assigning the 

same number to the combine cell next to the first stage master prefix cell. Those masters 

which have the same number are combined to the same second stage crossbar. The 

blank cells will be uncombined and will be in the port definition as is. The prefix for the 

second stage crossbar master port can be assigned in the prefix column for combined 

masters. The numbering must be continuous starting from zero to the maximum number 

of combined masters minus 1. This restriction is set to make the logic needed in the 

functions simple. The name of the combined masters can be anything with the same 

ruleset as the first stage prefixes. 

With the added interface inputs, the modification of the generation function continued. 

The new input values were pulled from the interface to the macro as new variables in the 

SetVariables function. To preserve the previous features the port definition was modified 

from the sequential loop structure to branching loop structures. The major branch division 

was set to continuous branch and the non-continuous branch. The continuous branch 

contains the previous templates, and the non-continuous branch contains the new 

templates. The enable combining setting works as the value for the branch division. In 
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the non-continuous branch, there is another branching loop structure. The task for the 

loop is to create the combined master ports or the uncombined master ports. The logic 

for creating the ports is as follows. The combine column is looped in order and the value 

of the cell is checked. If the cell is blank, a first stage port is created. In other cases, on 

the first appearance of a number starting from zero, a combined port is created. When 

coming across an already created port, the port is not duplicated, and the next iteration 

of the loop is started. The names of the ports are pulled from the interface during the 

execution. For example, the order of the ports created with settings in the figure 12 is 

masterif02, masterif148, masterif3, masterif57 and lastly masterif6. 

The next modification in the RTL was to add the second stage signals and crossbar 

instances. These are added only if there are combined masters set in the user interface. 

The second stage signals differ from the first stage signals which contain all the slave 

and master port slices. For every combined master, slave signals are created which 

contain only the assigned slave port slices. The number of slaves connected to a single 

second stage crossbar is calculated from the combine column. The master signals for 

the combined master only contain one master port slice as there is always only one 

master port in the second stage crossbars. After the additional signals are created, a 

crossbar instance is created for every combined master. The port map for the instances 

links their respective additional master and slave signals. 

The last modification was the signal mapping. The signal mapping shares the similar 

continuous and non-continuous branches described previously. The signal mapping 

differs from the continuous case where the signals are mapped one-to-one from the 

wrapper slave ports through the crossbar to the wrapper master ports. With non-

continuous case, the signal mapping differs after the first stage crossbar. The first stage 

master signals which are set to combine are mapped to the respective second stage 

crossbar slave signals. After the second stage crossbar inputs are mapped, the wrapper 

master ports are mapped. The mapping is like the port definition as the logic for the 

mapping is the same. The second stage master signals are mapped to the respective 

combined master ports and the uncombined master ports are mapped from the first stage 

master signals. 

The other function which needed modification due to the second stage crossbars was 

the GenVectors function. Like the first stage crossbar, the address mapping vectors must 

be generated for the added crossbars as well. There are three different mapping vectors: 

address, mask and target vectors. The address vector contains all the address region 

start addresses combined into a single vector. The mask vector contains the ranges of 

the regions, modified into a format which can be used as a mask for incoming addresses. 
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And lastly the target vector contains the destination masters for the regions. All the 

values set in the spreadsheet are converted to binary format and the order of the regions 

is preserved in the vectors. These vectors are then used for routing incoming 

transactions to the correct master based on the address of the transaction. The 

generation of the first stage vectors follows the same simple approach in which the 

regions are looped through while doing the necessary conversions and formatting. The 

addition of the second stage vectors follows the same principle with modification to the 

contents of the vectors. 

Before the modification was started, there were some planning and information sharing 

regarding the second stage vector contents. The address mapping could be done 

multiple different ways which would be functionally the same. Would there be only one 

address region which starts from the first combined master and has wide enough range 

for all the combined masters. Or perhaps the address mapping would be duplicated from 

the starting master to the last master. Another major question was if the address regions 

between the combined masters would be included in the second stage address mapping. 

If so, the second stage mapping would contain regions which are not mapped in the RTL. 

This could cause problems in a case where addresses not belonging to the master are 

used. Another way could be to remove the middle regions and shift the combined regions 

together. This could cause problems in the first stage addressing and there could be a 

need to add offsets to the address regions. After discussion, it was decided that the 

duplication method was the simplest and the least prone to error. 

The logic for the second stage vector generation is as follows. Firstly, the starting point 

and the ending point of the combined master is determined utilizing the combine column 

of the interface. The logic includes the possibilities that the combined masters are not in 

the same order as in the first stage address mapping. For example, the combined master 

could be the masters 3 and 7, but the address mapping could have the opposite order. 

The duplication is from the starting address region to the last address region regardless 

of the order of the masters. The vectors are then generated using the same principle as 

with the first stage vectors. The difference is the regions which are looped through. As 

there can be multiple second stage crossbars, the same generation is done for every 

crossbar. The generated vectors are kept in a container from which the respective 

vectors are mapped to the second stage address mapping signals in the generation 

function. 

The RTL related modifications were verified during and after the programming by running 

trial runs of the interconnect tool. Multiple different designs were tested including known 

edge cases. The operation of the tool and the resulting files were verified with internal 
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checks and code review. The functionality of the interconnect would be verified later with 

the sanity testbench after verification related modifications. 

The next part of the improvement was the packaging related modifications. The 

modification would be solely to the Print_axi_packager_tcl function. Broadly the 

modification would be to modify the script commands in the program 4 to mirror the new 

wrapper design. The bus definitions would be changed to add the new combined ports 

and remove the old ports. The slave bridge definition would also follow the same 

procedure. However, the base address and range definition would be problematic even 

with the new RTL design. The second stage master ports would have a range which 

includes all the regions and thus the resulting IP-XACT description would have overlaps 

in the address mapping. The overlap would be caused by the limitation of the transparent 

bridges. The overlaps could cause problems in the usage of the interconnect after the 

packaging. This problem would not be present in a workaround since it would be a 

separate component with its own IP-XACT description. 

A fix for the packaging script was not found in a timely manner, therefore the further 

investigation of the solution 2 was started and the solution 1 implementation was put on 

hold. The solution 2 could avoid the problems in the packaging script and could be the 

overall better solution if the opaque bridges are suitable. The remaining modifications for 

the solution 1 would have been to mirror the RTL modification to the verification related 

functions and add checks for the new interface options. After modification, the 

interconnect tool functionality would be checked with the sanity testbench. The same 

procedure would be replicated for the AXI4-Lite protocol as well. 

4.2.2 Non-continuous address space with opaque bridges 

The goal of the further investigation was to find certainty that the opaque address 

mapping could be used like proposed in the solution 2. The main question was if the 

mapping could be done in a script like the transparent mapping. By inquiring colleagues, 

opaque bridges had been used before, but not with a script. Instead, the opaque bridges 

had been done only in an EDA tool GUI (Graphical User Interface). As the transparent 

bridge scripting was based on TGI commands, the command reference was checked to 

find out if opaque bridges are supported. TGI based scripting would be beneficial since 

the scripting environment already supports it. At first glance, the reference had at least 

some commands for segments. Thus, a further study on the IP-XACT standard and the 

exact working principle of the opaque bridges was carried out to figure out the building 

blocks. The exact commands for the building blocks would then be figured out later. The 
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further investigation ascertained the feasibility of the solution 2 and the implementation 

process was started. 

As a script had not been used in the company for opaque bridges, an experimental 

approach was chosen for the implementation. The implementation plan was to try to 

replicate the process of using the opaque bridges with a GUI within a script. An example 

design done with a GUI, which was provided from a colleague, acted as the reference. 

The example was a simple design which had two masters. The first master had a non-

continuous address map with two segments. The second master had one segment 

between the first master’s segments. After the necessary commands to replicate the 

example would be figured out, a generic flow of the commands would be created for the 

interconnect tool functions. 

With trial and error -based approach, the script commands were figured out to make the 

necessary building blocks for the example. The basic principle was to try different TGI 

commands within an already generated script. Then running the script to generate the 

IP-XACT description which was imported to the EDA tool GUI. In the GUI, the block 

created from the IP-XACT description was placed into a design and its address map was 

checked. The address map was then compared to the reference and the differences 

were checked. This cycle was repeated until the generated file and the reference were 

the same. After the successful replication, the necessary commands for the building 

blocks were known. The next part of the implementation process was to modify the 

building blocks to be generic in the tool generation functions. 

Before the programming started, some design choices were made regarding the 

implementation. The opaque bridges would be only used with non-continuous address 

space even though they could be used in all cases. This was to avoid changing the 

interconnect tool too much in one go. The non-continuous feature would be a great trial 

run for the opaque bridges. Another design choice was made for the script 

implementation itself. The earlier used abstracted TGI based functions could not be 

utilized fully with opaque bridges. The choices would have been to add abstracted 

functions to the imported function library or use the new TGI commands as is in the 

script. The latter was decided to be the approach as the commands would be used only 

in the interconnect tool specific feature. 

For the opaque bridge approach, only the packaging script functions needed 

modification. The modifications were done first again for the AXI4 protocol and replicated 

for the AXI4-Lite protocol later. The functions modified were Print_axi_packager_tcl and 

Print_axl_packager_tcl. The generic approach in the function follows the same principle 
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of using the combination of logic and templates. The templates created are the generic 

version of the previous building blocks. Similar with the solution 1 implementation, the 

generation in the function was separated into the continuous branch and the non-

continuous branch. The non-continuous branch is executed only when the address 

mapping in the spreadsheet contains at least one non-continuous master. An example 

of the used address mapping commands with opaque bridges is shown in the program 

5 below. 
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 ######################################################################################### 
2  # Bus definition commands for interfaces 
  ######################################################################################### 
4  
  #### Same as previous script #### 
6  
 ######################################################################################### 
8  # Memory map commands 
 ######################################################################################### 
10 
 # Create memory map and variable containing its ID 
12 <cmd_lib>::addComponentMemoryMap $<cmd_lib>::ID MemMap 
 set MemMapIDs [<cmd_lib>::getComponentMemoryMapIDs $<cmd_lib>::ID] 
14 
 # Segments and subspace maps for master interface prefix 
16 set busifIDs [<cmd_lib>::getComponentBusInterfaceIDs $<cmd_lib>::ID ] 
 set master_if <prefix>_<protocol>_Master 
18 foreach busifID $busifIDs { 
  if { $master_if == [<cmd_lib>::getName $busifID] } { 
20  <cmd_lib>::setBusInterfaceMasterBaseAddress $busifID 0x0 
  <cmd_lib>::addComponentAddressSpace $<cmd_lib>::ID $master_if\_addrSpace 0x400000 
22  <cmd_lib>::setBusInterfaceMasterAddressSpaceName $busifID $master_if\_addrSpace 
  set addspaceID [<cmd_lib>::getBusInterfaceMasterAddressSpaceID $busifID] 
24  <cmd_lib>::addAddressSpaceSegment $addspaceID <prefix>_seg0 0x100000 0x80000 
  <cmd_lib>::addAddressSpaceSegment $addspaceID <prefix>_seg1 0x300000 0x100000 
26  } 
 } 
28 
 # Variables for subspacemap segment references 
30 set <prefix>_submap0 <prefix>_subspacemap0 
 set <prefix>_submap1 <prefix>_subspacemap1 
32 
 # Add subspacemaps to the memorymap 
34 foreach MemMapID $MemMapIDs { 
  <cmd_lib>::addMemoryMapSubspaceMap $MemMapID $<prefix>_submap0 $master_if 0x100000 
36  <cmd_lib>::addMemoryMapSubspaceMap $MemMapID $<prefix>_submap1 $master_if 0x300000 
  set submapIDs [<cmd_lib>::getMemoryMapElementIDs $MemMapID] 
38 } 
 
40 # Set segment references for the subspacemaps 
 foreach submapID $submapIDs { 
42  if { $<prefix>_submap0 == [<cmd_lib>::getName $submapID] } {   
  <cmd_lib>::setSubspaceMapSegmentRef $submapID <prefix>_seg0 
44  } 
  if { $<prefix>_submap1 == [<cmd_lib>::getName $submapID] } {   
46  <cmd_lib>::setSubspaceMapSegmentRef $submapID <prefix>_seg1 
  } 
48 } 
 
50 # Bridges for slave interface prefix 
 set busifIDs [<cmd_lib>::getComponentBusInterfaceIDs $<cmd_lib>::ID ] 
52 set slave_if <prefix>_<protocol>_Slave 
 set master_if <prefix>_<protocol>_Master 
54 
 foreach busifID $busifIDs { 
56  if { $slave_if == [<cmd_lib>::getName $busifID] } { 
  <cmd_lib>::addBusInterfaceSlaveBridge $busifID $master_if true 
58  # Memorymap reference for the slave interface, done once per slave 
  <cmd_lib>::setBusInterfaceSlaveMemoryMapName $busifID MemMap 
60  } 
 } 

Program 5. Address mapping commands used for a non-continuous example design 

The example in the program 5 shows the command flow for a single master. The master 

has a non-continuous address space which consists of two address regions. The 

implementation for the address mapping has the same three general building blocks as 
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the non-continuous script. The first building block is for the bus interface definitions. The 

commands were reused from the continuous implementation since there are no 

differences in the bus definitions with different bridges. The second building block is the 

address mapping data for the master. The address mapping structure for the 

implementation is as follows. Each master has an address space containing segments. 

The segments are the address regions assigned for the master in the spreadsheet. The 

slave has a reference to a separate memory map consisting of subspace maps. There 

is a subspace map for every segment in a master’s address space. The subspace maps 

are linked to the segments using a segment reference. The logic and the templates used 

to generate such a structure are opaque bridge specific and they use the TGI commands 

straight without abstraction to functions. The first step in the memory map commands of 

the program 5 is to create the memory map. The next step is defining the address map 

of the master. The address map for the master always starts from the address 0x0 and 

must be wide enough to contain every assigned address region. The width is calculated 

from the spreadsheet utilizing the destination column. In the example, the width of the 

master address space is 0x400000. Segments are then created from the address regions 

with their own base address and range. These segments are added to the address space 

of the master. The next step is to create the subspace maps. For every segment, a 

subspace map starting from the same base address is created. The subspace maps are 

added to the earlier created memory map. Lastly the corresponding segments are linked 

to the subspace maps with a reference. To complete the address mapping, the last 

building block is to create the bridges between the masters and the slaves. Like in the 

continuous script, every slave is connected to every master. The bridge definition creates 

an opaque bridge to the master. The last step is to add a reference to the memory map, 

which is the address map seen by the slave, containing every master’s segments in a 

particular order. The address mapping structure generated by running the script in the 

program 5 is illustrated in figure 13 below. 
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Figure 13. The address mapping structure of the example design 

As seen from the figure 13, the basic structure of the mapping is simple even though the 

command flow was more complex than with the transparent bridges. With multiple 

masters, the building blocks are executed for every master sequentially before moving 

onto the next building block. The memory map remains the same with multiple masters 

as well. Thus, the basic structure remains similar as in the memory map will be just wider 

due to increasing number of subspace maps referencing the segments of every master. 

With the modification for the script generation function being ready, the correct 

functionality of the function was verified similarly as the experimental approach for the 

script commands. The interconnect tool was run with multiple different non-continuous 

address mappings and the resulting script was first checked visually by code review. The 

script was then run to generate the IP-XACT description of the design which was 

imported to an EDA tool GUI. In the GUI, the structure of the address mapping was 

checked. The interconnect block was then again inserted to a design, where the address 

map seen at the slave was verified. After the verification, the modifications were 

replicated for the AXI4-Lite protocol and the same verification approach was used. 

After the feature was finalized for both protocols, the non-continuous address space 

feature was deemed to be ready. The implementation based on the solution 2 was much 

better in the end. The only modification necessary were for the packaging functions and 

the rest of the functions could be kept as is. The implementation based on opaque 

bridges had more complex packaging command structure which required a substantial 

study and experimenting on the subject. The overall programming effort was less 

cumbersome though than with the solution 1. Even if the solution 1 implementation was 

put on hold, it will be kept as the backup implementation. This is due to the possible 

unforeseen problems with opaque bridges which could appear in the usage of the 

generated interconnect. 
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4.3 Progress on the rest of the improvement requests 

After the non-continuous address space improvement was ready, the improvement 

process for the next improvement from the requests was started. This chapter sums up 

the progress made for the rest of the requests during the thesis. Since the non-

continuous address space improvement turned out to be more time consuming than 

anticipated, the implementation was not started for some of the requests. It was decided 

that the feasibility of every request is investigated. If feasible, then suggest solutions and 

decide the most promising solution for possible future implementation. 

4.3.1 Master-slave visibility improvement 

The improvement started again with studying the cause for the limitation, which was 

quickly confirmed to be from the RTL implementation for the crossbar component as 

earlier discussed. The feasibility of the improvement would then depend on the solution. 

The priority to keep the utilized components unchanged was present, thus the 

improvement would have to be made elsewhere. 

Two different approaches were discussed. The first approach was to change the 

packaging for the interconnect to generate the connecting bridges based on user inputs. 

The required change in the tool would be trivial as in adding visibility options to the user 

interface and making the bridge commands based on those. The second approach was 

to modify the wrapper design to adapt to the user designated connections. The design 

would then have multiple crossbars which connect to each other forming only certain 

slave-master connections. The packaging would also reflect this. The first approach 

would be simple, but there could be major problems caused by it. If only the packaging 

is changed, the generated IP-XACT description would not reflect the internal connections 

in the RTL. The RTL would have connections from every slave to every master and the 

IP-XACT description only the ones chosen. This could cause problems in verification as 

the RTL and the IP-XACT description would clearly describe different designs. Thus, the 

second approach was chosen as the feasible solution. An example of the solution is 

introduced in the figure 14 below. 
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Figure 14.  An example design for visibility improvement 

As shown in the figure 14, the connections are formed by using a certain structure of 

crossbar instances. The structure is tailored for the user inputs. The basic structure is 

that there are crossbars which route shared connections and crossbars which form the 

collection of routes for the specific master. In the example, the slave1 and the slave2 

interfaces are routed to both master interfaces and the rest are routed only to a single 

master interface. Similar structure would be used with each routing. 

The main challenge in the implementation would be to add the logic which determines 

the optimal structure and the connections. The goal would be to have no restrictions for 

the routing which can be seen from the example as the number of inputs in the crossbars 

are not limited to multiples of twos. However, the logic increases with the scale of the 

interconnect. There would possibly be a tipping point where the structure would simply 

be too large or complex to generate automatically. The benefit gained from the reduced 

routing would also suffer from the sheer number of crossbar instances. Thus, there would 

probably be restrictions in the routing. The upper limit would possibly be determined from 

the usage needs. For example, the visibility feature is tailored towards the common 

routing structures used in the company. The implementation based on the solution was 

not started during the thesis. 
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4.3.2 Range definition improvement 

For the improvement, an excessive study of the used RTL components was carried out. 

This was to determine the root cause for the limitation which was deemed to be from a 

core design property for an address mapping component. The limitation of the power of 

2 ranges stems from the binary address mapping. The mapping vectors must be binary 

and the ranges in the power of 2 for the mapping component to work properly. 

One suggestion was to round up the range to the next power of 2 value for the vector 

generation. However, this would cause a problem where an incoming address would 

possibly map to two different regions causing a possible destination error. The error 

would be caused in a case where the rounded range overlaps with another address 

region. It was concluded that the range definition improvement is not possible without a 

major change in the mapping component’s functionality. Thus, the improvement is not 

feasible currently since the component redesign would be out of the scope of this thesis. 

4.3.3 Generic features improvement 

The generic features improvement request was at first directed to the interconnect tool. 

The improvement process for the generic features was fast and clear since the design 

was well known at the point of improving. Generics were added for the various signal 

widths and the design was changed to use generics instead of constants. 

The request was later expanded to more of a project tailored request after the generic 

address signal width was found out to be unfeasible due to the address mapping vectors. 

The address mapping for the RTL is generated from the spreadsheet and thus it cannot 

be changed afterwards to reflect a change in the address width generic. The address 

mapping vectors would have to be created in the RTL instead of during the generation. 

The vectors would have to be generated based on the address width generic which 

would also mean that the address mapping in the spreadsheet could not be static. The 

start addresses and ranges would need to change accordingly based on the address 

signal width to avoid out-of-bounds or overlapping. 

It was decided that the address width would not be changed to a generic for the 

interconnects generated with the tool. Generic address width would be better for a 

separate generic interconnect which has a fixed address space. The further improvement 

of the generic features was then also forwarded to the requesting project instead. 
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4.3.4 Self-documentation improvement 

As the request was directed towards the ring interconnect generation and the feature 

would be more useful for it, the feasibility of the improvement was studied with the ring 

interconnect as the priority. The investigation’s main goal was to determine if the Visual 

Basic for Applications -programming language could be used to create a block diagram 

based on the input data from the spreadsheet. 

The investigation led to a possible solution. At first glance, every action performed in the 

Excel spreadsheet can be replicated with VBA code. The proposed solution would be to 

program a macro which automatically generates the block diagram to a separate sheet. 

The implementation process could be to record the actions for making a simple block 

diagram. Then modifying the actions to take data from the spreadsheet and using them 

to generate the necessary blocks and connections. The macro execution would be on-

demand to avoid the possible decrease in performance caused by the block diagram 

generation. For the same reason, the macro should be separated from the interconnect 

generation macro. 

Even though the implementation was not started during the thesis, some priorities were 

discussed for it. The macro needs to be efficient. The execution should not be tens of 

minutes since the point of the feature is to save the time from the current process of 

visually representing the generated interconnect. Other priority is complexity. If the 

implementation turns out to be more complex than anticipated, the implementation of the 

feature should be re-evaluated. Other options than VBA, for example Python 

programming language, should be evaluated when the complexity of VBA code would 

increase to a certain threshold. 

4.3.5 Default master interface improvement 

The improvement was quickly determined feasible as the limitation was simply a design 

choice in the interconnect tool. The example given earlier would also be the proposed 

solution. The user sets the total address space by the address space width parameter, 

then defines smaller address regions in the address mapping. The unoccupied address 

space is calculated and assigned for the default master interface. The user interface 

would be modified to show the default master interface and the calculated range for it. 

The solution is simple, but the implementation would have complications. 

The major complication would be the range for the default master interface. As earlier 

discussed in the range definition improvement, values not in the power of 2 are not 

feasible without a major change in the mapping functionality. This would cause a 
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restriction for the smaller regions. The user added regions must be also in the power of 

2 and their range summed up must be suitable. The range assigned to the default master 

interface must be in the power of 2 or the range can be divided to multiple address 

regions which follow the same rule. There would be a need to automatically determine 

the suitable combination of address region ranges which are assigned to the default 

master interface. An example of the proposed solution in the user interface is shown in 

the figure 15 below. 

 

Figure 15.  An example of the proposed solution 

In the figure 15, the default master interface would be the master interface indicated by 

the number 0 in the Destination column. The smaller regions would be the address 

regions 4 and 5. The address regions from 0 to 3 would be the combination of suitable 

ranges for the default master interface. The combination would be calculated 

automatically and assigned to the address mapping interface. The interface would be 

modified to clarify the user added smaller regions from the default master interface. 

This kind of calculation must be already done manually by the user if the wanted address 

space for a single master is not in the power of 2. Therefore, the logic needed for the 

calculation could also be utilized in the regular usage. While implementing the default 

master interface, the feature could be added as opt-in feature and the automatic range 

calculation as a basic feature. Both would have restrictions for the suitable ranges 

though. The restriction would be the amount of address regions needed for the automatic 

calculation. With some ranges, the number of address regions needed to form the 

wanted address space would be too large for the current implementation of the 

interconnect tool. This emphasizes the idea of redesigning the address mapping 

functionality since it would affect multiple parts of the tool and would allow easier 

improvements to the address mapping. Due to this, it was decided that the solution would 

not be implemented during the thesis. 
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5. CONCLUSION 

As the number and complexity of the interconnects increases in the SoC devices, the 

effort required to generate these interconnects becomes larger as well. To reduce the 

manual effort, automation of interconnect generation is utilized. Currently in the 

company, the automation is provided in the form of an RTL generator. The generator is 

built on an Excel spreadsheet which is used to provide the input parameters for the 

generation. The output files are generated by the spreadsheet as well. The generation 

is implemented as a macro utilizing Visual Basic for Applications -programming 

language. The supported communication protocols are the AXI4 protocols introduced in 

the AMBA 4 specification and the tool can generate crossbars and ring interconnects. 

The purpose of this thesis was to improve the interconnect automation tool to provide a 

more fluid and flexible implementation of the tool. The improvement started with an 

investigation on the current implementation to define the baseline for the improvements. 

During the investigation, the limitations of the tool were defined which worked as the 

improvement proposals. Most of the limitations were regarding the usage of the tool and 

the possible options provided. The feature worked on the most during the thesis was to 

add support for non-continuous address spaces. The improvement process followed a 

simple structure in which the feasibility of the improvement was defined first, and then 

possible solutions were proposed. The most prominent solution was decided for the 

implementation depending on multiple factors. One major factor being the decision not 

to modify the sub-components of the interconnect since the modifications could 

compromise operation in more places than wanted. Modifications were done in the 

interface and the generation macro depending on the improvement. 

Even though only the non-continuous address space improvement could be 

implemented, due to it taking much longer than anticipated, the goals of the thesis were 

met. The feasibility of each improvement proposal was examined and many of them were 

deemed unfeasible. Proposed solutions for feasible improvements were also 

investigated even if the implementation for them could not be started. The unfeasible 

improvements showed an underlying restriction for the tool which affects multiple areas. 

The implementation for the non-continuous address space provided the possibility to 

improve the tool further as well which is to move from transparent bridges to opaque 

bridges in every interconnect in the future. The thesis work clarified the wider scope for 

the interconnect automation tool and the improvement will continue moving forwards. 
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