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ABSTRACT

Zuhair ul Haq: Hybrid Spatial Interpolation
Master of Science Thesis
Tampere University
Data Engineering and Machine Learning
October 2021

GNSS is a constellation of satellites that provides global positioning, navigation, and tracking
in outdoor spaces. However, due to complex infrastructure, the satellite signals become weak
in the indoor environment, and therefore, GNSS cannot provide reliable positioning. The indoor
environment comes packed with radio signals generated by WIFI and Bluetooth access points.
The RSS of the radio signals in indoor spaces can be used to provide accurate indoor positioning.
Furthermore, radio access points deployment is increasing steadily in indoor spaces, which makes
it ideal for indoor positioning.

RSS-based indoor localization is a two-step process, the first step being RSS fingerprinting,
where RSS measurements are recorded along with reference location coordinates to generate
radio maps. The second step is the positioning step, where real-time RSS measurements are
collected and compared with radio maps to estimate the user’s location. However, fingerprinting
is an arduous task that requires time and workforce. This leads to the need for methods that can
generate radio maps from little recorded radio measurements.

The goal of the thesis was to analyze various interpolation and extrapolation methods in tradi-
tional RSS fingerprinting and investigate their effects on overall indoor positioning. The advantage
of these extrapolation and interpolation methods is to reduce the overhead of collecting data and
covering those areas which are not accessible to users. In addition, these methods can also help
automate the process of fingerprinting, leading to a much wider deployment of indoor positioning
services at a lower cost. The thesis evaluates three different interpolation and extrapolation meth-
ods based on five evaluation parameters: mean error, maximum error, building detection, floor
detection, and consistency of indoor positioning.

For evaluation purposes, actual RSS measurements were recorded using smartphones in an
indoor environment. The experimental building was a multistory office space consisting of com-
plex indoor infrastructure. The test RSS measurements were classified into edge and non-edge
measurements and studied separately. Out of three methods compared, a hybrid method that
combines Delaunay triangulation and RSS-based spatial interpolation performed the best.

The hybrid method harnesses the advantages of two interpolation and extrapolation method-
ologies; Delaunay triangulation with linear interpolation and spatial interpolation. The use of De-
launay triangulation makes the process simpler with very little computational complexity. The
RSS-based spatial interpolation uses a physical radio path loss model that makes it feasible for
deployment in diverse indoor environments.

Keywords: RSS, interpolation, extrapolation, spatial, delaunay
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1. INTRODUCTION

1.1 Background

The 21st century has brought a revolution in the field of wireless communication and

global connectivity. The latest wireless technologies allow us to use the existing ra-

dio signals to provide location-based services. Some of the famous use cases include

satellite-based and network-based location services, where the radio signals are used to

determine user location.

The GNSS implements a satellite-based localization methodology that includes groups of

satellites that are orbiting around the earth and transmitting radio signals that enable us

to determine the user position [1]. Initially, the GPS, a component of GNSS, was deployed

by the US Department of Defense for military use; however, after its civilian accessibility,

a vast number of global use cases have been observed, from global shipments tracking

to roads navigation [2]. Furthermore, with the increasing need for location-aware and

tracking applications on smartphones in the last decade, GNSS has become a multi-

billion-dollar industry. It is estimated that by the end of 2029, the GNSS industry revenue

will reach C 325 billion [3].

The GNSS satellites are continuously transmitting radio signals towards earth, which are

picked by receivers in electronic devices, and user location is determined with an average

accuracy of 5 meters [3]. However, near and in deep indoor environmental setups, the

radio signals reception becomes very weak, and it becomes impossible to determine

indoor location with reasonable accuracy [4, 5, 6]. For example, a positioning error of

greater than 2 meters in two-dimensional indoor space can guide a user to the wrong

hallway or room. Therefore, it is essential to have an accurate representation of the Indoor

position. Secondly, the GNSS does not perform well in congested urban environments,

and the indoor environment is full of such complex infrastructures [5]. Furthermore, the

GNSS system is not very energy efficient and requires a lot of battery power. Therefore, it

is evident that GNSS has some shortcomings, and multiple positioning technologies are

required to fulfill the need for accurate and seamless positioning in indoor and outdoor

environments.

The Indoor Location-based services market has seen a sudden increase in the last
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decade due to its increasing need [7]. The advance and smart infrastructures of big

shopping malls, airports, skyscrapers, hospitals, high technology parks, and offices have

led to the fast and increased implementation of indoor location services. Most indoor

location-based applications on Google’s Play Store and Apple’s App store provide indoor

tracking, assistance, and security surveillance. However, IPS use cases are not limited to

these only [8]. Nowadays, more and more businesses are adapting to indoor positioning

services and harnessing its advantages in their products [9, 10].

In the past few years, many indoor localization systems have been proposed [11]. These

Indoor localization systems can be classified into Ultrasonic, Infrared, and Radio based

systems [11, 12]. Among them, the radio-based system is most famous and is widely

used one [7]. In this latest era of wireless communication, we have widespread deploy-

ment of WLAN in offices, homes, and public places, and the low infrastructure cost of

BLE beacons has led to their increased deployment. Therefore, many location service

providers use RSS of the existing WLAN/BLE signals to provide indoor location services.

The main advantage is that no new infrastructure or special hardware is required to mea-

sure the RSS value of these signals on smartphones [7]. Secondly, the demand for

wireless communication infrastructure is constantly increasing, resulting in vast coverage

areas [10].

1.2 Thesis Objectives

A typical indoor positioning algorithm consists of two phases, the training phase, and

the positioning phase. In the training phase, radio data is collected, and radio maps

are generated. Then, real-time radio data is compared with radio maps in the positioning

phase, and user location is estimated. The collection of data is referred to as fingerprinting

and is an uphill task. Fingerprinting cannot be done on all areas of the experimental

site as some areas are inaccessible or covered with indoor structures like furniture. In

this thesis, the focus was to study the various forms of interpolation and extrapolation

methods used during the fingerprinting step. The advantage of these extrapolation and

interpolation methods is to reduce the overhead of collecting data and covering those

areas which are not accessible to users.

The thesis is organized as follow:

• Chapter 2 discusses the various technologies with which indoor positioning is per-

formed these days. It also discusses the various challenges and uses cases of

indoor positioning.

• Chapter 3 focuses on RSS-based indoor positioning methods. The second part of

this chapter explains how radio models are generated and how the positioning is

done during the estimation phase.
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• Chapter 4 mentions general interpolation and extrapolation methods used in the

fingerprinting stage of indoor positioning.

• Chapter 5 explains the process of data collection and analysis done for this thesis.

The second part of the chapter mentions some hybrid methods that can be used

for interpolation and extrapolation. In the last part, we compared the performance

of these hybrid methods based on five different evaluation parameters.
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2. INDOOR POSITIONING SYSTEMS

Indoor positioning system or IPS can be referred to as a service that provides accurate

location of a user or object in an indoor space, such as an office, apartments, and in-

door shopping areas [13]. IPS can be categorized based on the infrastructure they are

using. For example, IPS using radio infrastructure for localization are referred to as wire-

less technologies. However, some IPS also perform localization without the need for any

special infrastructure. This chapter focuses on various types of wireless and non-wireless

positioning technologies commonly used these days. Nowadays, various wireless tech-

nologies are used to perform indoor positioning. Some IPS try to leverage the existing

indoor wireless systems to perform indoor positioning, while others require specialized

hardware to position in an indoor environment. Usually, IPS which uses specialized de-

vices, provide a more accurate position.

The field of WIFI-based indoor positioning is relatively mature, and many real-time indoor

positioning systems use this technology. The reason for that is directly associated with the

ongoing popular demand for smartphones. Smartphones come with built-in WIFI modules

and, therefore, have a better built-in capability for WIFI-based positioning [14]. The main

advantage is that the user does not need to carry a separate WIFI receiving module. On

the service provider side, most indoor spaces have WIFI access points available, whose

signal measurements can be used for positioning. In some cases, WIFI-based positioning

is fused with sensors to further increase the accuracy [14]. In the next section, WIFI

positioning systems have been divided into range-based and range-free categories.

2.1 Range-Free WIFI Positioning Systems

Range-free indoor positioning involves the process of fingerprinting. Fingerprinting can

be categorized into offline and online modes. A wireless map is established in the offline

mode, which consists of the received signal strength of multiple WIFI access points and

the corresponding location coordinates [14]. In the online mode, real-time RSS is com-

pared with the wireless map collected in offline mode to estimate the location. Based

on how the wireless map is collected and the kind of model being used to compute the

position in online mode, range-based WIFI positioning can be categorized further based

on deterministic and probabilistic methods they are using.
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2.1.1 Deterministic

Deterministic algorithms stores the signal strength of WIFI access points as the location

fingerprint information in the Wireless map. The location fingerprint contains the RSS

value and the global latitude and longitude of that location. The location fingerprint is

given as

F = [x,y,RSS] (2.1)

In equation 2.1, x and y represent the global coordinates, RSS is the received signal

strength. The Indoor positioning system then uses a deciding algorithm to obtain the

location information by comparing the feature fingerprints received on mobile devices to

wireless maps in the database. The most common deterministic method to compute the

user location is euclidean distance.

The RSS value at a fixed location changes significantly with the change in the surround-

ing environment. A robust method has been introduced to update the wireless map in the

database through numerous hardware modules connected to the wireless network [15].

This method eliminated the need to update the RSS wireless maps with the change of en-

vironment. The WIFI receiver in smartphones varies highly, therefore, causing changes in

the RSS values. The procrustes method [16] can be used to change the fingerprints ob-

tained from different devices to a standard format. Using the Weighted k-nearest neighbor

method while estimating the positioning on these standard fingerprints can help to obtain

higher accuracy [16].

In the estimation or so-called online phase, any localization algorithm’s performance de-

pends on the collected fingerprints. However, fingerprinting is an demanding task, and

not all the spaces in indoor locations can be fingerprinted. In recent years, models have

been developed to control the overhead of fingerprinting in non-accessible indoor loca-

tions. A vector regression model was introduced, which can estimate the unmeasured

RSS based on the neighboring values [17, 18]. This model helps not only increases the

coverage area, but the performance accuracy is also increased.

2.1.2 Probabilistic

The probabilistic models provide a higher level of accuracy than the deterministic model

at the cost of high computational complexity. The idea behind probabilistic models is to

compute the joint probability distribution function of each WIFI access point. Once the

PDF for each access point is computed, they are joined together to obtain a combined

distribution function [14]. The combined distribution function acts as a fingerprint in the

database. In the online phase, the real-time received RSS value is compared to the
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values of the joint distribution function, and location is estimated.

Working with probabilistic models, one of the main issues faced is the size of the finger-

prints database. This problem restricted the use of probabilistic models to use in real-time

systems. A spectral compression system was introduced to eliminate this problem [19].

The methods got rid of noise from the fingerprints based on the correlation between the

nearby Fingerprints and saved the valid information.

2.1.3 Fusion Technologies

Fusion technologies in positioning refer to combining two or more sensors or modules

to achieve better positioning results [14]. Smart Devices these days combine various

sensors e:g Bluetooth, cameras, and inertial sensors. Data from these sensors can be

fused with WIFI modules which have proven to be very effective in increasing the accuracy

of Indoor Positioning. For the sake of discussing this topic in more detail, this topic is

discussed in the section 2.5.

2.2 Range-Based WIFI Positioning Systems

The idea behind range-based indoor positioning is to find the distances between the trans-

mitting and receiving device. The best case for finding the distance is the transmitter and

receiver being in direct LOS; however, due to complex indoor infrastructure, the radio

signals are prone to standard path loss phenomenon e:g, diffraction, reflection, etc. The

distance can be found in a number of ways, as discussed below:

2.2.1 Time of arrival:

In TOA, the distance between the transmitting module and receiving module is calculated

based on the signal’s propagation time transmitted from the sender [20]. The speed of

the signal transmitted is assumed to be equal to the speed of light. Figure 2.1 shows the

basic setup for TOA Setup. The distance is calculated based on the following equation:

distance = c ∗TOA (2.2)

In equation 2.2 c is the speed of light, and TOA is the time taken by the signal to reach

from transmitting device to receiving device. Multiple distances are calculated from each

access point to increase the accuracy of positioning. The algorithm requires a very stern

synchronization of time between the transmitter and receiver.
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Figure 2.1. Setting for indoor positioning based on TOA [20].

2.2.2 Time difference of arrival:

The accuracy of TOA is highly dependent on the time synchronization between the trans-

mitter and receiver. TOA requires absolute time synchronization between devices to pro-

vide good accuracy. However, in real-time systems, there are usually errors. In TDOA,

the receiver receives signals from multiple transmitters and calculates the time difference

of arrival of signals [20]. As a result, the distance difference between the transmitters is

obtained. This method requires simultaneity between the transmitters. Figure 2.2 shows

TDOA setup in a cellular system. The formula calculates TDOA in the equation 2.3:

(d1 − d2) = c ∗TDOA = c ∗ (TOA1−TOA2) (2.3)

Figure 2.2. Setting for indoor positioning based on TDOA [20].
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where d1 and d2 are the distance between the receiver and first and second transmitter,

respectively. c is the speed of light. TOA1 and TOA2 are the time of arrival of signals

from transmitter one and transmitter two, respectively.

2.2.3 Angle of arrival:

To implement AOA, signals are sent by a mobile station, and at least two access points

are required to receive those signals. Having two access points makes it easier to obtain

those incident lines between the access points and mobile station by the angle of the

transmitted signal. The intersection of these lines is used to measure the location of the

mobile station [14]. Figure 2.3 shows AOA algorithm scenario in mobile phone cases.

Figure 2.3. Setting for indoor positioning based on AOA.

A single AOA measurement combining with TOA or RSS measurement can also be used

to estimate the mobile station’s location [20]. This method requires complex and high-

cost hardware components to measure the angle of the signal transmitted by the mobile

station.

2.2.4 Frequency Difference of Arrival:

In the FDOA algorithm, the speed of the mobile station is used to calculate the location.

Due to speed changes between the base stations and mobile stations, the frequency of

the received signal by mobile stations changes with the Doppler effect [14]. FDOA is a

challenging algorithm since the user movements in the indoor environment are negligible.
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2.3 UWB Based Positioning

Ultra-wideband uses a higher bandwidth (>500 MHz) for transmitting information across

devices. In recent years, research has been focused on using the UWB range for indoor

positioning [21]. The difference between a traditional indoor positioning system and a

UWB is that UWB allows transmission of radio signals without interfering with other fre-

quencies in the same radio bandwidth. Moreover, the transmission speed is relatively fast,

making it ideal for a real-time positioning and tracking system. UWB based positioning

systems can provide cm-level accuracy [21]. The downside for UWB based indoor posi-

tioning is that special tags are to be placed on devices, and a particular UWB transmitter

should also be installed in an indoor location. However, many big smartphone companies

announced their latest mobile devices with preinstalled tags, e.g., Samsung and Apple.

Figure 2.4 shows UWB client-based setup in a cellular system.

Figure 2.4. Setting for indoor positioning based on UWB.

2.4 Bluetooth Low Energy

Bluetooth low energy is currently the hot topic in the field of indoor positioning. BLE is a

part of the Bluetooth 4.0 release [22]. The significant difference from its predecessors is

the power consumption, both at the transmitting and receiving end. BLE beacons have a

low range of transmission; however, they can last up to 100 times than standard Bluetooth

devices with their low power consumption [22]. For indoor positioning, several Bluetooth

beacons are installed in indoor premises, and their RSSI value is used for fingerprinting.

This thesis is based on BLE beacons for data collection, and this topic is discussed in

more detail in the following chapters. In BLE-based indoor positioning, the RSSI method

is used to develop fingerprints.

RSS value is the received power of the signal triggered by the receiving device. In RSSI,

the receiving device is the network adapter usually found in smartphones for receiving

WIFI and Bluetooth signals. Currently, the RSS-based positioning is famous because of
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its adaptability. It is usually used for tasks of human tracking and human detection [14].

The RSS value can either calculate the distance between the transmitter and receiver or

develop a fingerprint database. This thesis is based on RSS-based indoor positioning;

therefore, this topic will be discussed in more detail in the following chapters.

2.5 Fusion Technologies

This section describes the fusion of various positioning technologies. The fusion can

either be between wireless technologies or a combination of wireless and sensor data.

There are multiple ways to perform hybrid positioning; however, we will only mention

currently being discussed in the research.

2.5.1 Magnetic Positioning

The geomagnetic field is distributed in space all around the world. The flux value of the

geomagnetic field is different at different places, which makes it ideal for indoor positioning

[14]. In the outdoor environment, the magnetic field is relatively stable; however, in indoor

spaces, due to complex infrastructure, the magnetic field is constantly changing. These

changes are location-dependent and are highly affected based on the indoor environment.

The WIFI signals can be combined with continuously changing geomagnetic field values

for indoor positioning.

The advantages of magnetic field for indoor positioning include no deployment of extra

infrastructure; it is available everywhere. The magnetic field has three main components;

Inclination angle, declination angle, and the horizontal component [23]. However, mag-

netic positioning also has some downsides; only three elements can be used during fin-

gerprinting for data collection, making it a bit unreliable [24]. Multiple magnetic sensors

can be used to solve this problem. However, that adds complexity to the positioning

system. Further, the change in indoor infrastructure significantly affects the magnetic flux

values [24]. Most real-time indoor positioning systems that use magnetic technology often

combine it with some standard positioning technology e.g., WIFI, Bluetooth [14].

2.5.2 Inertial Measurements

Smartphones these days come packed with various sensors. In recent years, research

has been carried out to use these sensors to improve indoor positioning accuracy. For ex-

ample, accelerometers and gyroscopes can be used to provide indoor inertial navigation

[14]. However, using raw data from these sensors cannot provide accurate results. These

measurements often come with an error, and using these measurements as a function of

time leads to error accumulation. Therefore, often data from these sensors are combined

with standard WIFI-based positioning to improve its accuracy further.
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A hybrid positioning system can be developed by fusion of RSS-based indoor positioning

and acceleration sensor. The system uses WIFI positioning as a base combined with the

number of steps, speed for the accelerometer, and gyroscope to make point estimates

more precise [25].

Figure 2.5. KAFG setup for hybrid positioning using accelerometer and gyroscope [25].

The data from accelerometers and gyroscope contains errors, and these errors can ac-

cumulate over time, thus causing irregular paths and changes in trajectory. To solve this

problem, KAFG [26] used a Kalman filter and Grid filter after the fusion of data. The

research proved that such filters could improve the position estimate and reduce the er-

ror overhead from raw sensors. Figure 2.5 shows a hybrid positioning system based on

KAFG research.

2.5.3 Visual Positioning

Visual positioning refers to using a camera module for localization. A lot of research

and effort has been put into this positioning technology recently. The image data from

the camera can be used for localization and for creating 3D indoor maps [14]. Working

only with images can provide good positioning accuracy; however, it can only work in

Line of sight. Combing camera data with WIFI-based positioning can not only increase

the positioning accuracy but also the coverage area can be increased [14]. Creating

a database of images also creates a need for more significant memory segments, and

therefore, more processing power is required to extract features from images. As a result,

the computational cost of querying from an extensive database also increases.

WIFI-based indoor positioning and visual positioning can be fused in a parallel method

to get better tracking [27]. Such a system is shown in the figure 2.6. Contrary to this, a

camera sensor can also be used to create depth maps. These depth maps help identify

the human body and provide better positioning results [28].
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Figure 2.6. Hybrid positioning system based on WIFI and visual positioning [14].

2.6 Applications of Indoor Positioning

The applications of indoor positioning systems are increasing day by day. Especially with

the wide range of use of smartphones, indoor positioning applications increased. Some

of the applications are mentioned below.

2.6.1 Marketing and Customer support

The skyscrapers are getting higher each day, and the shopping malls are increasing in

size. This makes indoor positioning an essential part of the indoor customer experience.

Indoor positioning makes it easier to navigate to the right shops using mobile applications

[29]. On the other hand, the office spaces also benefit from indoor positioning. For exam-

ple, most of the major airports of the world use indoor positioning so that the passengers

can reach their flight gates in time. Usually, WIFI-based positioning is used in malls and

airports.

2.6.2 Health Sector

The health sector is highly benefiting from indoor positioning these days. The indoor

positioning system helps the medical staff to reach their patient and assist them in no

time [29]. For example, in an emergency, Indoor positioning makes it easier to navigate to

their patient’s rooms. Further, indoor positioning also keeps track of patients so that their

safety is not compromised.

2.6.3 Security

One of the vital use of indoor positioning these days is in the security domain. For exam-

ple, the access of employees in sensitive areas can be restricted with indoor positioning.

Indoor positioning systems can also help in the deployment of security officers in security-



13

sensitive areas [29].

2.7 Challenges in Indoor Positioning

This section discusses the common challenges in indoor positioning these days.

2.7.1 Multipath Effect

Multipath signal propagation poses a significant challenge in indoor positioning. The sig-

nal strength of radio signals changes over time at a fixed location due to physical phenom-

ena such as reflection, refraction, dispersion, complex indoor structure, and environment.

Figure 2.7 shows the concept of multipath. All of these phenomena cause the amplitude

and phase of radio signals to change and scatter [20].

Figure 2.7. Concept of multi path effect [20].

Therefore, it is impossible to obtain a single signal from a single radio transmitter. The

multipath effect can be taken into account by introducing proper stochastic models utiliz-

ing, for example, Rayleigh and Nakagami distribution [20]. These models can be used to

reduce the negative effects of multipath, but they make the IPS much more complex.

2.7.2 Security and Privacy

Privacy is also an essential challenge in indoor positioning. The current positioning sys-

tem does not care much about privacy since a global standard for indoor positioning is

not yet available [29]. However, not everyone wants to share their location, especially

the indoor location. As a result, smartphone manufacturers are putting more restrictions

on how third-party applications can use hardware modules such as WIFI and Bluetooth

modules in mobile phones.
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2.7.3 Cost

Cost is one of the most important factor in an indoor positioning system. The lower the

cost, the more the service provider will have leverage in the market. Some positioning

systems require additional modules to provide better accuracy [29]. Therefore, it is of

utmost importance for companies to keep the cost of hardware and software low in IPS.
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3. RSS BASED INDOOR POSITIONING

The scope of this thesis is in RSS-based indoor positioning; therefore, in this chapter,

we will discuss the RSS-based positioning in more detail. In the first part of the chapter,

the parametric and non-parametric models of RSS positioning are discussed. In the later

part, various access points and radio models are discussed. Further, we also analyze

how experimental RSS values look like on floors and buildings and how these RSS value

are used during estimation phase of indoor positioning.

3.1 Traditional Fingerprinting

In the previous chapter, we discussed range-based positioning methods that compute the

distance between transmitter and receivers; however, in fingerprinting, a dataset of RSS

value from each transmitter and their reference location is recorded, and radio maps are

generated. This process of generating the radio maps is often called the offline stage.

In the online stage, the real-time RSS value is compared to RSS values in radio maps

generated through the offline phase. The best match of RSS value is found, and its

reference location is returned as the mobile station’s location. This combined step of the

offline and online phase is called Fingerprinting. Fingerprinting consists of two steps,

Training Phase or Data Collection Phase and Positioning Phase. Figure 3.1 shows the

training and positioning phases in traditional fingerprinting.

3.1.1 Training Phase

The first phase in the process of fingerprinting is called the training phase. During this

phase, radio measurements are collected at various locations in the experimental site.

These radio measurements are collected more or less randomly at various locations. In

the post-processing step, these measurements are processed and map into grids format.

Often, there is more than one radio measurement at a single grid point, and hence the

mean of all radio values is used as the RSS measurement at that point. With the tradi-

tional fingerprinting, very few grid points are filled with radio measurements, and empty

grid points are filled in post-processing steps. The reference point consists of (x,y,z) - 3D

information, where x and y are the local x,y coordinate at a specific location, and z repre-

sents the floor level. The measurements at each reference grid point usually consist of an
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array of RSS values received from multiple access points [20]. The received array of RSS

values at a specific reference location is called its fingerprint. Thus, collecting fingerprints

at multiple reference points leads to a database of fingerprints and is referred to as a radio

map [20]. The radio map depicts the distribution of RSS value over the experimental site

along with the reference information.

The quality of a radio map is often determined by the number of RSS values heard at

a specific reference location. Thus, the higher the number of access points at an ex-

perimental site, the better the generated radio map will be [30]. Collecting a fingerprint

database is a laborious task that requires workforce and time. In recent years, work has

been put to automate this laborious task by using robots to perform fingerprinting. For

example, self guided robots with mobile devices have been used in the past [30]. Another

dynamic way of collecting fingerprints is through crowdsourcing. In crowdsourcing, in-

stead of having a dedicated site survey, users already at the experimental site contribute

to the collection of radio measurements. Later on, these collected radio measurements

are processing altogether and convert into radio grids [31, 32].

3.1.2 Positioning Phase

The second stage in traditional fingerprinting is called the positioning phase. In this phase,

the user’s position at an unknown location is estimated using a positioning algorithm. The

RSS values obtained at the unknown location are compared with the RSS values in the

radio map collected during the training phase. The closest matching fingerprint can be

found by finding the minimum difference of RSS values at the unknown location with the

one stored in the radio map. There are several ways to determine the difference, the most

common being the euclidean distance. In this method, Euclidean distance is found be-

tween the received RSS vector and the vectors stored in the RSS map for each reference

location [20]. The minimum difference fingerprint is returned as the user’s location. The

equation 3.1 shows the formula for computing the minimum difference.

locationx = argminrss

{︄
∞∑︂

n=1

(rssx − rssn∗m)2

}︄
(3.1)

where, x is the unknown location and n,m represents the local reference points in radio

maps. This method is also known as the 1-nearest neighbor estimation method. However,

this method is prone to produce significant errors [33]. If an error is found, the minimum

error is estimated to be equal to the distance between two consecutive reference locations

[33]. A way to minimize the error is to use the k-nearest neighbor averaging method.

The user location averages k neighboring reference points starting with the minimum

difference reference fingerprint as the base [20]. The distance from the base point to

the nearest K neighbors can be find with euclidean distance as in equation 3.1. The



17

Figure 3.1. Training and positioning in traditional fingerprinting [20].

average value of K points which have the minimum distance is used as the user location.

This method cannot provide good accuracy; however, it reduces the possibility of error

overhead to a low level. In addition, the RSS value is affected by fading and interference

with the environment and the k-nearest neighbor reduces the errors caused by these

phenomenons [33].

3.2 RSS based Path-loss Model

As mentioned in the previous section, traditional fingerprinting is a time-consuming uphill

task requiring a workforce to generate complete radio maps. To overcome these issues,

a parametric model can be used to generate radio maps. Since we are dealing with

radio signals, a natural choice is parametric path loss models. These path loss models

compute parameters for each access point based on the collected fingerprints; however,

they require fewer fingerprint samples than traditional fingerprinting methods. Instead of

directly comparing the received RSS measurements with actual ones in the radio map

database, path loss models used computed parameters during the data collection phase

and RSS vector to estimate the user’s location [20]. Just like traditional Fingerprinting,

this method also has a training and positioning phase. Figure 3.2 represents the training

and positioning phase of RSS based path loss models.
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3.2.1 Training Phase

The training phase of this method also requires collecting fingerprints. However, fewer

samples are required as a complete radio map is not generated covering all the areas

of the experimental site. After collecting fingerprints, specific parameters of the path loss

model are estimated based on collected samples. Based on these estimated parameters,

a path loss model is generated for each access point [20]. The path loss model connects

the distance value to RSS values. There are multiple path loss models available to be

used these days [33]; however, for the sake of simplicity, we are going to mention only

two of them. The RSS from n access point at unknown location z = (x,0) is given by

ψ∗
n(z) = C+ αlog10(||z− zAP

n )||)) (3.2)

Equation 3.2 is known as Hyperbolic model [33]. In equation 3.2, zAP
n is the location of

AP n to x in three dimensional space. Variable α is constant which is assumed to be

equal to 10. C is path loss at 1 reference point away from from zAP
n . Another pathloss

model is mixture model [33] given by equation 3.3 as follow:

ψ∗
n(z) = C+ αlog10(||z− zAP

n )||) + β(||z− zAP
n )||)) (3.3)

where, zAP
n is the location of AP n to x in three dimensional space. Variable α is constant

which is assumed to be equal to 10. C is path loss at 1 reference point away from

from zAP
n . The difference between the hyperbolic and mixture model is use of term β,

which takes care of effects caused by complex indoor architecture e:g walls and furniture.

The reference parameters are the (x,y,z) coordinates of the mobile station relating the

distance to transmitter. The parameters of path loss models can be computed by using

linear regression using the collected fingerprints. Furthermore, the location of the access

points can also be computed by averaging the highest RSS values [20].

3.2.2 Positioning Phase

During the positioning phase, complete RSS grids are generated using the parameters

and location of access points computed during the training phase [20]. In addition, the cre-

ation of radio maps can also be done during the offline phase to provide better throughput

by real-time systems. After creating a complete radio map, positioning is done similarly

to traditional fingerprinting methods. The received RSS of the user is directly compared

with the RSS stored in radio maps, and the user’s location is estimated. Another way is to

use various algorithms to compute the user location without generating the radio maps.

These methods usually involve methods likes the Bayesian approaches [20].
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Figure 3.2. Training and positioning in RSS based path loss models [20].

3.3 Non-parametric models

Contrary to parametric models that use environmental conditions to learn propagation

parameters, non-parametric models use the collected fingerprints to model the radio
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propagation behavior. Learning from the collected fingerprints makes it possible for non-

parametric models to adjust themselves to adjust to different environments and solve the

problems of temporal variation [34]. Non-parametric models can be implemented similar

to parametric models using radio propagation models; however, instead of pre-configuring

the parameters, they are configured from learned data. Non-parametric models can be

configured either using probabilistic or deterministic methods.

Just like parametric models, the non-parametric models also have training phase and es-

timation phase. In the training phase, radio maps are generated using non-parametric

methods. In position estimation phase, instead of using the distribution of data, determin-

istic models use the statistical mean of data resulting in a lesser need for data recording

and faster processing.

Contrary to deterministic models, probabilistic methods use the distribution of data to

locate the user. In the offline phase, the distribution is stored as radio maps. Gaussian

processes are an ideal way to generate radio maps probabilistically. There are many

advantages of using the Gaussian process as they are non-parametric. They do not need

the representation of space for generating radio maps, and they can ideally represent

the RSS likelihood models. The idea behind probabilistic models is to compute the joint

probability distribution function of each WIFI access point and join those joint distribution

functions to make a combined distribution function. In the location estimation phase,

there is one on one comparison of received RSS value with radio maps using maximum

likelihood estimators. During the estimation stage, the maximum likelihood estimator can

be used to compute the user location.

Similar to the radio model generated in parametric models, the user can be localized at

any location, even where no RSSI measurement is available, which is not possible with

traditional fingerprinting [34]. The probabilistic and deterministic models give more or less

the same accuracy when positioning a static object. However, the probabilistic models

tend to perform better than deterministic models to perform continuous positioning of

moving objects [34].

3.4 Access Points

In terms of indoor positioning, an access point is defined as a wireless device that can

transmit a signal to a specified range of areas. Most of the indoor positioning solution

these days relies on pre-deployed infrastructure and provide good accuracy. The two

most used access points are WIFI access points and Bluetooth beacons.

WIFI access points are the wireless device that transmits radio signals following a stan-

dard data protocol. For example, the RSS value of transmitted signals is used to create

radio maps in indoor positioning. The range of WIFI access points depends upon the
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transmitter module of access points. Most of the buildings have pre-installed WIFI access

points for internet access, which makes it the most common source of the access point in

indoor positioning technology [35]. Figure 3.3 shows an example of a Bluetooth beacon

commonly used these days.

Figure 3.3. Bluetooth beacon [36].

Another access point source is BLE beacons. The research in this thesis has used BLE

beacons for positioning. BLE beacons need to be installed once in a building, and a

Bluetooth-enabled smartphone is enough to carry out indoor positioning training and es-

timation phase [35]. BLE beacons are suitable for indoor positioning since many smart-

phone devices come with Bluetooth modules in them. The cost of BLE beacons is mea-

ger, and they go up to years due to their low battery power consumption [35]. BLE bea-

cons are small and are usually placed at a distance of 8 to 10 meters apart. Figure 3.3

shows a BLE beacon commonly used these days.

The positioning algorithm that has been discussed in this thesis majorly focus on Blue-

tooth based indoor positioning technology. The algorithm relies on the RSS values from

BLE beacons. They have many advantages over the other localization techniques men-

tioned as follow:

• Bluetooth technology is supported by all major smartphones.

• Bluetooth beacons are quite compact, cheap, and they can last for years with small

batteries.

• Bluetooth beacons deployment is rapidly increasing due to fast growing field of

“Internet of Things”.

• There is no special receiver required on smartphones to receive the RSS values

from these beacons.

• Major mobile phone companies are moving towards total wireless practices that

leads to continuous use of Bluetooth technology. For example, removal of head-

phone jacks and use of Bluetooth headphones leads to continuous usage of Blue-

tooth.

The Beacons used for this research projects have properties shown in table 3.1.
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Table 3.1. Bluetooth beacon properties.

Property Specification

Transmitted Power 0 dbm

Advertising Interval 852 milliseconds

Antenna Omnidirectional

Placement 8-10 meters apart

Environmental Protection P65

Security Authentication for modifying beacons configurations

3.4.1 Access Point Radio Model

Access point radio models contain information about what RSS can be found in different

points of the 3D space from a single access point. The information is usually stored in

a 2-dimensional data structure, generally a 2D matrix. Each matrix refers to a particular

floor of a building. The indexes of the matrix are mapped to the latitude and longitude

global coordinates. The elements of the matrix represent the RSS value of a particular

access point. Multiple floor matrix stacked together makes their arbitrary representation

in 3D space, making a radio model for a single access point. Figure 3.4 shows the scatter

plot of single AP radio model. The RSS values from the access point can be heard in two

different buildings on multiple floors. The highest RSS value is heard on 3rd floor of the

right building. The dimension of the plot are latitude, longitude and floor ID.

Figure 3.4. Access point radio model.
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3.4.2 Radio Map

The RSS measurements are prune to environmental factors; therefore, a single access

point cannot be used to obtain a satisfactory positioning. The reason for that is with one

access point we usually get one reference RSS value at a specific grid point. This RSS

value is not unique and therefore cannot depict a single location. Further, a single access

point in a big building is not enough to cover all the experimental area. Therefore, multiple

access points are needed to cover the area under consideration and perform satisfactory

positioning. A radio map typically consists of RSS values from various access points

placed on different floors. Each building has a single radio model associated with it.

Since saving access points models from various AP’s can take up a lot of memory, some

compression methodologies are also used to generate radio maps.

3.4.3 RSS Noise

RSS value varies in time, even at one physical location. There could be many factors

involved which cause the change in the RSS measurement. Therefore, RSS measure-

ments are assumed to contain noise and therefore given as

Ψt
n = fn(x) + nt

n (3.4)

where, fn(x) is noiseless signal and nt
n is the noise. The noise is normally distributed

with zero mean and standard distribution. The figure 3.5 shows the RSS noise with a

standard deviation equal to 4.73 dBm.

Figure 3.5. RSS noise distribution.
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3.5 Likelihood Estimation

There are many likelihood estimation methods available to compare the received RSS

value with the access point models; however, for the sake of this thesis and the fact that

RSS measurements follow a gaussian distribution. We will only discuss the maximum

likelihood estimator, which is a probabilistic method. The probability of observing a single

value x, that is generated from a normal distribution is given by:

P(x;µ, σ) =
1

σ
√
2π

∗ exp(− (x−µ)2

2σ2 ) (3.5)

where µ and σ is the mean and standard deviation of the distribution. In the following

sections, we will analyze the likelihood of single access point and total likelihood of the

radio model.

3.5.1 Single Access Point Likelihood

Given a single access point model and the RSS noise distribution, it is possible to calcu-

late the likelihood of detecting certain RSS of an AP at the points of the 3D space. For

example, given the AP’s model and RSS noise presented in the figure 3.4, the likelihood

of detecting RSS equal to -75 is shown in the figure 3.6.

Figure 3.6. Likelihood scatter plot for RSS = 75.

From the scatter plot above it is seen that likelihood is high in the points, where AP’s

model has RSS values close to -75 dBms, and likelihood is low where AP’s model has

RSS values that are varies considerably from -75 dBms. The formula for calculating single
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AP’s likelihood at each point for given measured RSS is:

li,j,k =
1√︁

2πσ2
rss

∗ e(−
rssi,j,k−rss

2σ2
rss

)
(3.6)

Where i, j,k are the spatial indexes of the point, rssi,j,k is the RSS value in the point that

is detected according to AP’s model, rss is the measured RSS. σ is used as equal to rss

noise defined in previous section.

3.5.2 Total Likelihood

As seen from the previous figure , single likelihood for one AP does not provide accurate

positioning information, since the likelihood is high in grid points that are spread on differ-

ent floors and occupy large area. In most of the cases, radio scan contains signals from

several AP’s, and positioning is based on several AP’s. Having more than one AP in the

scan, radio map likelihood over all AP’s can be calculated by multiplying element wise the

single likelihoods of the AP’s. The formula for calculating the radio map likelihood 3.7 is

given by

Li,j,k =
NAP∏︂
s=1

lsi,j,k (3.7)

where lsi,j,k is the likelihood of single access point at index s.
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4. INTERPOLATION AND EXTRAPOLATION OF AP

GRIDS

In the previous chapter, we analyzed the steps of fingerprinting to develop radio maps.

However, fingerprinting cannot be performed on all the locations, leading to holes in the

access points grids. This chapter will first analyze the need for interpolation and extrapo-

lation methodologies in access point grids. In the second part, we will go through various

interpolation and extrapolation techniques that can be used to fill holes in access point

grids.

4.1 Need of Interpolation and Extrapolation

When fingerprinting is performed, a user moves to the experimental site and records the

RSS values from WIFI access points or Bluetooth beacons. This task requires a lot of

workforce and time. In addition, all the locations in buildings are not accessible to users.

These non-accessible location leads to empty holes in the RSS grids. Further, All grids

from all access points should be equal to calculate the total likelihood as described in the

chapter 3. The radio grid, which contains the original data from fingerprinting without the

addition of interpolated or extrapolated grid points is called the synthetic grid. Figure 4.1

shows how a typical synthetic grid looks like. The colored dots shows the fingerprints

collected and the empty spaces among them depicts the holes.

Figure 4.1. Synthetic radio grid with empty holes.
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To calculate the total likelihood during the position estimation stage as shown in equation

3.7, all grids should be equal in size and have no empty holes left. The filling of empty

holes between synthetic fingerprints is referred to as the interpolation of radio grids. The

increase of the size of radio grids by creating empty grids and filling them is referred to as

the extrapolation of radio grids. Figure 4.2 shows how a typical radio grid looks like after

interpolation and extrapolation are performed on it. In the next section, we will analyze

various types of interpolation and extrapolation methods used in the thesis to process the

radio grids.

Figure 4.2. Interpolated and extrapolated radio grid.

4.2 Types of Interpolation and Extrapolation

Interpolation is an estimation method for calculating the value of unknown data points

based on known data points. Contrary to this, extrapolation estimates unknown data

points beyond the limit of known data points. In this section, we are going to analyze vari-

ous kinds of interpolation and extrapolation methodologies. The idea behind interpolation

and extrapolation is to find a function that can pass through the points to interpolate and

extrapolate the unknown data point [37].

4.2.1 Linear Interpolation

Linear interpolation is the process of fitting a curve using first degree polynomials. As

this is an interpolation methodology, the new data points can only be formed in the range

of known data points. Two data points (x0,y0) and (x1,y1) are given in the coordinate

frames. In order to find a function that passes between these data points, the straight-line

equation can be used [37]. Equation 4.1 shows the straight-line equation

f(x) = y = mx+ c (4.1)
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m is the gradient of a straight line and c is y-intercept. Here the y-intercept is the actual

value of y at x = 0. Variables m and c are given by the equations 4.2 and 4.3 respectively

m =
(y1 − y0)

(x1 − x0)
(4.2)

c = y1 −mx1 (4.3)

substituting value of m and c from equation 4.2 and 4.3 leads us to a linear interpolation

function given by equation 4.4

m =
(y1 − y0)

(x1 − x0)
(x1 − x0) + y0 (4.4)

Figure 4.3 shows the illustration of linear interpolation based on function given equation

4.4.

Figure 4.3. Illustration of 1-D linear interpolation [38].

This method performs linear interpolation in one dimension, leaving empty holes in radio

grids since they are two-dimensional. To overcome this issue, bilinear interpolation, an

extension of linear interpolation, can be used. Bilinear interpolation can be performed

by doing linear interpolation in one direction and then in the other one [39]. Each linear

interpolation performed in bilinear interpolation is linear, although bilinear interpolation as

a whole is quadratic.

4.2.2 Piecewise Interpolation

Piecewise interpolation is similar to linear interpolation, except it can have any number of

points. Piecewise interpolation can make a straight line passing through consecutive data
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points, contrary to linear interpolation, which makes a smooth curve. Linear interpolation

of estimate of y is given by equation 4.5.

y = fk(x) = yk +
(y − xk)

(xk+1 − xk)
(yk+1 − yk) (4.5)

where, N is the number of data points and k = N− 1. In piecewise interpolation, for

each successive interval of data points, a separate function is fitted which makes it a

continuous function. Figure 4.4 shows piecewise interpolation done by function equation

4.5.

Figure 4.4. Illustration of piecewise interpolation [38].

4.2.3 Nearest Neighbor Interpolation

The nearest neighbor interpolation uses the values of the nearest known data point as the

value of the unknown data point. In order to understand the concept of nearest-neighbor

interpolation consider two consecutive data points xk and xk+1. This methodology finds

the mid-value of these data points to use as reference. The values of x, which is smaller

than the reference value, leads to the value of yk and values that are larger than the

reference value lead to the value of yk+1. The function of nearest-neighbor interpolation

is given by equation 4.6. This methodology is faster then linear interpolation. Figure 4.5

shows interpolation(Red Dots) done using nearest neighbor method.

fk(x) =

⎧⎨⎩yk x ≤ 1
2
(xk + xk+1)

yk+1 x > 1
2
(xk + xk+1)

(4.6)
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Figure 4.5. Illustration of nearest neighbor interpolation [37].

4.2.4 Minimum and Maximum Value Extrapolation

Minimum and maximum value extrapolation use a given input’s minimum and maximum

values as the value of unknown data points. Thus, the method goes through all known

data points and finds the minimum and maximum values of x and y in the coordinates

plane. This method can use either interpolation or extrapolation since it uses a single

hard value for all unknown data points. Since a single hard value is used for unknown

data points, specific peaks and falls can be seen in the interpolated data points. Mini-

mum and maximum value interpolation or extrapolation is given by equation 4.7 and 4.8

respectively.

fk =

⎧⎨⎩xk = min(xn)

yk = min(yn)
(4.7)

fk =

⎧⎨⎩xk = max(xn)

yk = max(yn)
(4.8)

where, k is the index of unknown data points points and n is the number of known data

points. Similar to minimum and maximum value interpolation, a predefined value can be

used to fill the unknown data points. Minimum value interpolation and extrapolation is a

common way of filling RSS grids. The reason behind that is when we move away from

the access points; the RSS values start to go down, and eventually, there comes the

point where the RSS value from the specific access point is not heard. So there are two

possibilities on the points where we don’t hear the RSS value; either we are out of range

of the access point or the RSS values are minimal. So, filling those points with minimum

values fills up the empty holes, and their contribution to the overall radio grid remains

minimal.
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4.2.5 Delaunay triangulation and linear interpolation

Delaunay triangulation is a method for creating triangles given a set of D discrete data

points so that no point in D is inside the circumcircle of the triangles created. It is standard

to use Delaunay triangulation with linear interpolation, especially in a two-dimensional

grid format [40]. The algorithm creates triangles for an unknown data point by creating

lines between known and unknown data points. The triangle is created in such a way

that the edges of any triangle are not intersected with another triangle [40]. Thus, the

method results in triangular nodes over the grid data. Figure 4.6 shows triangulation with

the circumcircles. The black circles in the circumcircles created through the known data

points. The red dots are the center of the circumcircles.

Figure 4.6. The Delaunay triangulation with all the circumcircles and their centers [40].

The center of circles are joined with unknown data points through linear interpolation as

shown in figure 4.7.

Figure 4.7. Connecting the centers of the circumcircles [40].

This method works best when the data is distributed evenly in a grid format. Data grids

with extensive sparse areas lead to the distinct face of triangles.
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4.2.6 Spatial Interpolation

In RSS-based spatial interpolation, the first step is to estimate the trend based on the

data points collected through fingerprinting. To estimate the global trend of the RSS data,

a pathloss model can be used.

PL = A− 10 ∗ n ∗ log10(d)− Lf (4.9)

where,

A = RSS at 1m distance to the AP,

n = Pathloss exponent,

d = Distance to the AP,

Lf = Floor losses in total

Equation 4.9 shows the pathloss model used for characterizing the propagation of radio

waves as a distance function between the antennas of transmitter and receiver in spatial

interpolation. Since RSS values follow the trend of normal distribution, the mean value is

not zero. After the estimation of the trend function, the trend is removed from the synthetic

RSS values. This step normalizes the RSS values so that they have zero mean and one

standard deviation. The step makes the data points as standard normally distributed.

This residual obtained from removing the trend function can be considered as a zero-

mean Gaussian process with a specific spatial (inter-sample) correlation function.

Figure 4.8. 1-D kriging process [41].

Kriging is a process to predict the value of a random variable over a spatial region and is

governed by covariances of random variables. Given several measurements at a set of
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locations in the spatial region, Kriging creates values throughout the region. Since Kriging

can predict values in between known data points and beyond the last knows values, it can

take care of both interpolation and extrapolation of data points. In the case of RSS-based

Kriging or spatial interpolation, we use the residual RSS value for estimation.

Figure 4.8 shows one-dimensional spatial interpolation. The black dots show the actual

data points. The blue line passing through the data points depicts the kriging interpolation.

The gray area shows the confidence interval between two data points.

Since, Kriging is performed for the residual RSS values, the estimated trend value is

added on top of the interpolated values to obtain the final RSS estimate.
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5. DATA ANALYSIS

In this chapter, data collection, processing, and testing has been discussed.

5.1 Data Collection

To study the effects of interpolation and extrapolation methods described in the chapter

4 on the overall performance of indoor positioning, we study one reference venue: HERE

Tampere shown in figure 5.1. The venue had strong coverage of radio signals provided

by Bluetooth beacons installed 8 meters apart. HERE Tampere was a multistory office

space consisting of solid indoor infrastructure. The building consists of hallways, restau-

rants, and office spaces. For data collection, google pixel devices were used, which were

equipped with the latest android OS. HERE Indoor Radio map [42] was installed on the

device, which is available on play store. The app was used for collecting fingerprints and

test tracks.

Figure 5.1. HERE Tampere - Indoor office space [43].

5.1.1 Radio Mapping

As mentioned in the previous chapter, the positioning algorithm consists of two phases

training and testing phase. The training phase consists of collecting radio data in the

venue and producing a radio model. Radio Mapping was done for the mentioned venue,

and the maximum accessible area was covered to have uniform data collection on all the

floors. The radio data was collected through HERE Indoor Radio Mapper (HIRM), and

the collected data was inspected through the HERE admin portal. Figure 5.2 shows the

interface of HIRM while collecting radio data on the 3rd Floor in HERE Tampere office.

The process of collecting radio data using HIRM consists of following steps:
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• Choose a venue to collect data.

• Marking your location on the venue map.

• Pressing the start button and moving along a straight line.

• Pressing the stop button and marking your location on the venue map.

• If the collection goes as planned, pressing the save button and starting with another

collection.

• Once the whole area is covered, export the radio data in a .txt file that can later be

used to generate radio models.

Figure 5.2. Test track collection using HIRM.

It is essential to check the quality of radio data that has been collected. If the data col-

lected at a specific location is not good enough, the performance of positioning will be

significantly affected. The admin portal associated with HERE indoor radio mappers pro-

vides tools to access the quality of radio data.

Figure 5.3 shows the quality of radio data collected for HERE Tampere office. The black

lines on top of the venue depict the radio data collected by moving in straight lines. The

green color shows that the coverage and data collected are good enough. The yellow

coverage area represents that it is better to collect some more data in these areas. The

red coverage area (usually the end/edges of venue maps) depicts that it is strongly rec-

ommended to collect more data in these areas. Figure 5.3 clearly shows good amount of

data collected for the 4th floor of HERE Tampere. Similarly, radio data was collected for

other floors too.
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Figure 5.3. Quality of radio data collected indoors.

5.1.2 Test Track Collection

For the testing phase of the positioning algorithm, multiple test tracks were collected using

HIRM. The collection of test tracks in HIRMU is similar to the collection of radio data. The

dataset of test tracks consisted of 9 test tracks with a total of 278 measurements. The

collected tracks have been classified into Near-Edge and Non-Edge test tracks. The

radio tracks which are near the edges of the experimental site are categorized as edge

test tracks. Contrary to this, tracks in the middle of the experimental site are categorized

as non-edge test tracks. Table 5.1 below describes the classification of the number of test

tracks collected.

Table 5.1. Summary of collected test tracks.

Venue Description Edge Measurements Non-edge Measurements Total Measurements

HERE

Tampere Office Space 176 102 278

All of the data collected was later on exported in a .txt file so that test tracks can be used

to test the performance of the radio models in MATLAB.

5.2 Data Processing

As mentioned in chapter 3, indoor positioning includes two steps; training and positioning

phase. The processing of both steps takes place in MATLAB, which is an easy-to-use

programming language. The generated fingerprint logs are fed to the MATLAB simulator,

which generates a radio model that can be used for positioning later on. The training

phase also contains various data compression techniques that helps save data storage

and reduces the computational complexity. The radio model is generated with an exten-
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sion of .mat.

Figure 5.4. Block diagram of data collection and processing.
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Once the radio model is generated, the model can be tested with the test tracks collected

through the HERE indoor app. The radio model generated during the training phase and

the test tracks generated during data collection phase are fed to the MATLAB simulator

for the positioning phase. The positioning phase also consists of various filters to further

increase the overall positioning accuracy. The MATLAB simulator generates error statis-

tics and gives indoor location coordinates with floor and building information. Figure 5.4

shows the overall data processing steps.

5.3 Selected Interpolation and Extrapolation Techniques

In order to analyze the results of various interpolation and extrapolation methods on in-

door positioning accuracy, we chose three main techniques to make a comparison.

5.3.1 Default Method

The first technique is a combination of Delaunay triangulation and linear interpolation.

Since Delaunay triangulation can only be done for a given set of points, another extrapo-

lation method is needed to fill the remaining empty holes. Minimum value extrapolation is

used to fill the remaining empty grid points. This method also helps make the radio grids

in rectangles which can then be easily used for position estimation. The method involves

the following steps:

• Collect synthetic data through Fingerprinting.

• Perform Delaunay Triangulation with linear interpolation to fill the holes.

• Use a minimum value in dBs to fill the remaining holes that lead to rectangular radio

grids.

Figure 5.5. Interpolation with default method.

Figure 5.5 shows the interpolation done through default method. The dark blue data

points shows the grid points filled with minimum value extrapolation. The light blue and
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yellow data points shows linear interpolation done through Delaunay triangulation with

linear interpolation.

5.3.2 Hybrid Spatial Interpolation

Another method is the combination of Default method and Spatial Interpolation. The

idea behind hybrid interpolation is to interpolate the grids with Delaunay triangulation

with linear interpolation and fill the maximum grid points. Unlike the default method, fill-

ing remaining grid points with minimum value interpolation, we use spatial interpolation.

Therefore, all the grids points have radio data collected through fingerprinting or gen-

erated through a function based on the synthetic data. The hybrid spatial interpolation

involves the following steps:

• Spatially interpolate the synthetic grids.

• Perform Delaunay interpolation on synthetic data.

• Match the coordinates of Delaunay interpolated grids and spatially interpolated

grids, and wherever holes are found, fill them with the spatially interpolated data.

• The area for interpolation is chosen as the default size of radio grids generated by

the default method.

Figure 5.6. Hybrid spatial interpolation.

Figure 5.6 shows Delaunay interpolated grid (green) and spatially interpolated grid (red)

placed on top of each other. The holes in Delaunay interpolated grid are filled with RSS

values of matching spatially interpolated grid points.

5.3.3 Hybrid Spatial Interpolation and increase in grid size

Usually, the radio signals along the edges are weak that dramatically affects the accu-

racy of indoor positioning. In order to combat this issue, the size of radio grids can be
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increased, which will drag the point estimates more towards the edges when the position

is estimated. For this purpose, the same hybrid spatial interpolation method described

above is followed. In addition, extra empty holes are created on the edges of radio grids

to increase the size. These holes are filled with spatially interpolated data.

Figure 5.7. Surf plot - Hybrid spatial interpolation and increase in size of radio grid.

Figure 5.7 shows the radio grid spatially interpolation and the size increased by creating

holes on the edges.

5.4 Comparison and Results

In order to make a comparison of various interpolation and extrapolation methods, specific

evaluation parameters are used, which are explained below:

Mean error is the average MSE between the calculated position estimates and reference

estimates for a complete test track.

Maximum error is the maximum MSE between the calculated position estimates and

reference estimates for a complete test track.

Building detection measures how many estimates are correctly identified in a specific

building by the algorithm given the reference estimates in that building.

Floor detection measures how many estimates are correctly identified on a specific floor

by the algorithm given the reference estimates on that Floor.

Consistency is a measure of mean error and its standard deviation to calculate the sta-

bility of positioning. The higher the jumps between position estimates, the lower the

consistency will be and vice versa.
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Figure 5.8 shows a general reference plot and estimated plot. Figure 5.9 shows the CDF

of mean for the track for the corresponding figure.

Figure 5.8. Example estimates in a test track.

Figure 5.9. Error CDF of a test track.

In order to better understand the effects of interpolation and extrapolation on radio-based

indoor positioning, we evaluated the test tracks separating them as edge cases and non-

edge cases.

5.4.1 Near-Edge Cases

Near edge cases consist of radio test tracks collected near the wall of the experimen-

tal site. Often these areas have little to no radio coverage and are hard to cover during

fingerprinting. A total of 176 measurements were collected in HERE experimental sites

near edges. Table 5.2 shows the comparison of interpolation methods discussed above.

Floor detection and building detection remain unaffected by the change in interpolation
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methods. Mean error is also the same for all three methods, with a slight change in deci-

mal points that can be considered negligible to none. The maximum error remains lowest

with the default method and about one meter higher in Hybrid Spatial Interpolation and

Hybrid Spatial Interpolation with an increase in grid size. Consistency was also highest

in the default method and a little lower in Hybrid Spatial Interpolation with an increase in

the grid and default Hybrid Spatial Interpolation, respectively.

Table 5.2. Comparison for edge cases.

Method Building Detection(%) Floor Detection(%) Mean Error(m) Maximum Error(m) Consistency

Default 100 100 3.916 6.826 54.632

Hybrid Spatial

interpolation 100 100 3.945 7.261 52.624

Hybrid +

size increase 100 100 3.959 7.333 53.967

Figure 5.10 shows a comparison of near edge method for all three method discussed

above.

5.4.2 Non-Edge Cases

Non-edge cases consist of radio test tracks collected away from the walls of the experi-

mental site. These areas usually have strong radio coverage with the detection of multiple

access points. A total of 102 measurements were collected in HERE experimental sites

in non-edge areas. Table 5.3 shows the comparison of interpolation methods discussed

above for non-edge cases. Building detection remains good for default and hybrid method

with the increase in size. Although for Hybrid spatial interpolation, it falls to 99%, which

can still be considered good. Floor detection remains unaffected by the change in inter-

polation methods.

We see a significant change of one meter on average for mean error with the hybrid spatial

interpolation method. There is also a big reduction in maximum error with both spatially

interpolated methods compared to the default method. Following the trend, consistency

is also improved by almost 10% for the hybrid spatial interpolation method. There is also

an improvement in consistency for the spatial interpolation method with an increase in

grid size.

Table 5.3. Comparison for Non-edge cases.

Method Building Detection(%) Floor Detection(%) Mean Error(m) Maximum Error(m) Consistency

Default 100 100 3.725 11.130 55.135

Hybrid Spatial

interpolation 99.230 100 2.874 5.588 64.594

Hybrid +

size increase 100 100 3.411 7.884 59.002
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(a) Default method.

(b) Hybrid spatial interpolation.

(c) Hybrid method and increase in size.

Figure 5.10. Comparison of a test track in edge cases.
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(a) Default method.

(b) Hybrid spatial interpolation.

(c) Hybrid method and increase in size.

Figure 5.11. Comparison of a test track in non-Edge cases.
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6. CONCLUSION

GNSS is a satellite-based localization methodology that provides global navigation and

tracking with reliable positioning accuracy. However, satellite signal strength becomes

weak in the indoor environment due to complex infrastructure, and GNSS positioning

cannot be considered decisive. Therefore, the pre-existent radio signals in the indoor

environment can be used to obtain reliable indoor positioning. The thesis focuses on

using WIFI and Bluetooth signals in an indoor environment for accurate indoor positioning.

The typical indoor positioning algorithm consists of two steps, the training phase and the

positioning phase. RSS measurements are recorded along with reference location during

the training phase, and radio maps are generated. In the positioning phase, real-time

RSS measurements are compared with radio maps, and user location is estimated.

Collecting the RSS measurements, also known as the process of fingerprinting, is an

uphill task requiring time and workforce. Furthermore, not all areas in an indoor environ-

ment can be fingerprinted due to inaccessibility and complex indoor infrastructure. The

goal of the thesis was to analyze various interpolation and extrapolation methods in tra-

ditional RSS fingerprinting. The interpolation and extrapolation methods were evaluated

on Mean Error, Maximum Error, Floor Detection, Building Detection, and Consistency of

indoor positioning.

The RSS measurements were collected in Technopolis Tampere, which is a complex in-

door environment. The building had strong radio coverage provided with BLE beacons.

The building consists of multiple stories and is segmented into two blocks. Firstly, finger-

printing was performed on multiple floors, and the maximum accessible area was covered.

Next, the fingerprints were processed and converted into radio grids leading to holes in

areas where no radio measurements were collected. Furthermore, for evaluation pur-

poses, multiple test tracks were recorded in near-edge and non-edge cases. A near-edge

case is one where radio measurements are collected near the edges of the experimental

building. Contrary to this, a non-edge case is anywhere in the middle of the experimental

site.

For analysis of interpolation and extrapolation methods, three methods were chosen and

compared based on five different evaluation parameters. The first method was Delaunay

triangulation with linear interpolation, referred to as the default method in this thesis. The
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Table 6.1. Combined summary of edge and non-edge tracks.

Method Building Detection(%) Floor Detection(%) Mean Error(m) Maximum Error(m) Consistency

Default 100 100 3.874 7.783 54.744

Hybrid Spatial

interpolation 99.829 100 3.707 6.889 55.284

Hybrid +

size increase 100 100 3.832 7.455 55.086

second method combined the default method with RSS-based spatial interpolation, re-

ferred to as the Hybrid spatial interpolation in this thesis. The third method was similar

to the Hybrid method, with the only difference being the size of radio grid was increased

by creating empty holes on the edges. For the edge cases, the floor and building de-

tection remain perfect for all the three methods mentioned. The mean error remained

almost the same for the three methods with a slight difference in decimal figures. The

minimum max error and the highest consistency were given by the default method. For

the non-edge cases, the floor and building detection again remained perfect for all the

interpolation and extrapolation methods. The minimum mean and max error was given by

hybrid spatial interpolation. The maximum consistency was also generated by the hybrid

method. For the non-edge cases, the reduction in mean and maximum error by the hybrid

spatial interpolation was significant compared to the other two methods.

Table 6.1 shows the combined results of all three methods described above. For all

three methods, the building detection and floor detection remain reliable. All three meth-

ods generated almost the same results in terms of mean error. For maximum error, we

observe a significant change of one meter on average in hybrid spatial interpolation com-

pared to the other two methods. The highest consistency was also given by hybrid spatial

interpolation.

The current data was collected in a complex indoor office space. For future work, we

can test these methods in other indoor locations with different infrastructures, e.g., apart-

ments, parking spaces, shopping malls. A more extensive and diverse dataset will pow-

erfully depict the practicality of these methods in real indoor scenarios. Another addition

could be to make changes in the interpolations and extrapolation methods; for example,

a different path loss models that takes into account the indoor infrastructure can be used

while calculating the trend function in Hybrid spatial interpolation.
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