
Final author version of manuscript submitted to Journal of Manufacturing Systems

Implementation of capability matchmaking software facilitating faster

production system design and reconfiguration planning

Eeva Järvenpää1

Faculty of Engineering and Natural Sciences, Tampere University

Korkeakoulunkatu 6, 33720 Tampere, Finland

eeva.jarvenpaa@tuni.fi

Tel. +358-40-8490869

ORCID 0000-0001-6513-135X

Niko Siltala

Faculty of Engineering and Natural Sciences, Tampere University

Korkeakoulunkatu 6, 33720 Tampere, Finland

niko.siltala@tuni.fi

ORCID 0000-0001-6456-1251

Otto Hylli

Faculty of Information Technology and Communication Sciences, Tampere University

Korkeakoulunkatu 6, 33720 Tampere, Finland

otto.hylli@tuni.fi

Minna Lanz

Faculty of Engineering and Natural Sciences, Tampere University

Korkeakoulunkatu 6, 33720 Tampere, Finland

minna.lanz@tuni.fi

ORCID 0000-0003-2182-4669

1 Corresponding author

mailto:eeva.jarvenpaa@tuni.fi
http://orcid.org/0000-0001-6513-135X
mailto:niko.siltala@tuni.fi
mailto:otto.hylli@tuni.fi
mailto:minna.lanz@tuni.fi

Abstract

Smart manufacturing calls for rapidly responding production systems which help the manufacturing

companies to operate efficiently in a highly dynamic environment. Currently, the system design and

reconfiguration planning are manual processes which rely heavily on the designers’ expertise and tacit

knowledge to find feasible system configuration solutions by comparing the characteristics of the

product to the technical properties of the available resources. Rapid responsiveness requires new

computer-aided intelligent design and planning solutions that would reduce the time and effort put into

system design, both in brownfield and greenfield scenarios. This article describes the implementation

of a capability matchmaking approach and software which automatizes the matchmaking between

product requirements and resource capabilities. The interaction of the matchmaking system with

external design and planning tools, through its web service interface, is explained and illustrated with a

case example. The proposed matchmaking approach supports production system design and

reconfiguration planning by providing automatic means for checking if the existing system already

fulfils the new product requirements, and/or for finding alternative resources and resource combinations

for specific product requirements from large search spaces, e.g. from global resource catalogues.

Keywords: Production system design, Production system reconfiguration, Resource representation,

Capability modelling, Capability matchmaking, Matchmaking software, Matchmaking Web Service

1. Introduction

Future smart manufacturing calls for rapidly responding production systems that can adapt to the

required changes in processing functions, production capacity, and the dispatching of orders. This is due

to the ever-increasing requirements for highly flexible production of individualized products in small

batches [1,2]. Currently, production system design and reconfiguration planning are manual processes

and are heavily dependent on the designers’ expertise and tacit knowledge to find feasible system

solutions by comparing the characteristics of the product to the technical properties of the available

resources. This slow process sets limitations on the number of potential system configuration

alternatives that can be considered. Meeting the requirements of fast adaptation calls for new computer-

aided intelligent planning and decision support solutions that would reduce the time and effort put into

system design, both in brownfield (reconfiguration) and greenfield (new system design) scenarios.

A key enabler of smart manufacturing is the virtualization of the physical assets of the manufacturing,

namely resources and products [2,3,4]. There is a need for formal, structured representation of resources

and products that allow the resource vendors to describe the functionality of their offerings in a

comparable manner, and system designers to make a match between the product requirements and

resource capabilities. A similar matchmaking concept, but on a wider network scale, is Cloud

Manufacturing. It is a service-oriented business model, with the idea being to share manufacturing

capabilities and resources through a cloud platform and to form temporary, reconfigurable supply chains

on demand [5,6,7]. An essential enabler for the Cloud Manufacturing concept is the virtualization of the

resource capabilities and especially the services they can offer to the clients of the platform, as well as

service searching and matching against the task requirements [7,8,9].

Formal engineering ontologies and other Semantic Web technologies have become popular solutions

for addressing the semantic interoperability issue in heterogeneous distributed environments

[10,11,12,13,14]. In the context of distributed intelligent systems, such as agent-based or service-

oriented systems, ontologies play a key role as they provide a shared, machine-understandable

vocabulary for information representation and exchange among dispersed actors [10,14]. Several

different semantic ontology-based descriptions have been proposed for the description of the services

in the Cloud Manufacturing context (e.g. [15,16,17]). Lu and Xu [6] presented a service composition

and mapping approach based on ontological description of the services and Jena rules to compare the

service request with the offering. Manufacturing Service Description Language (MSDL) was developed

as a formal domain ontology for representing the capabilities of manufacturing services, focusing on

mechanical machining and metal casting services [10], and used for a matchmaking methodology which

aims to connect buyers and sellers of manufacturing services in distributed digital manufacturing

environments [18]. Ameri and McArthur [19] utilized SWRL (Semantic Web Rule Language) for

intelligent supplier discovery based on the services they provide. In the ManuCloud project, an XML-

based manufacturing service description was developed to enable the Manufacturing-as-a-Service

operation principle in production networks [20].

Despite there being several approaches to service description and resource virtualization, the current

research around service and capability matching has concentrated more on the theory and framework,

rather than comprehensive descriptions of the resources and services, and practical implementations of

the matchmaking. In addition, the previous research efforts to describe manufacturing resource

capabilities have not considered the combined capabilities of multiple co-operating resources, and

consequently have not included mechanisms to infer the aggregated parameters of combined

capabilities. Thus, the existing approaches cannot provide a solution for capability matchmaking in the

context of production system design and reconfiguration planning.

The European Union-funded project ReCaM [21] developed computerized support for the system

design and reconfiguration planning process. The goal of our research was to develop a concept and

technical implementation of a capability matchmaking system which should support production system

designers and reconfiguration planners in finding feasible resources for specific product requirements

from large search spaces. The matchmaking system should provide an easy interface to the other design

and planning software utilized by the designers for the actual system design and optimization tasks. In

our earlier works, we presented the formal models for representing the resources and products [22,23,24]

which provide a foundation for the capability-based matchmaking of product requirements and resource

offerings [25,26]. In this article, we will describe the implementation of the matchmaking software and

how it can be utilized by external design and planning tools.

The article is organized as follows. In Section 2 we will introduce the capability matchmaking

approach and its associated concepts and information models. In Section 3 we will explain the

implementation of the matchmaking software and its architecture, and its interaction with other design

and planning systems. In Section 4 we will illustrate, through a case example, how external design and

planning tools can utilize the matchmaking software through its Web Service interface and show test

results obtained from running different matchmaking scenarios. Finally, we will end with discussion

and conclusions in Sections 5 and 6.

2. Capability matchmaking concept and information models involved

The matchmaking system intends to make the system design and reconfiguration planning procedure

easier by automatically suggesting alternative resource combinations for specific product requirements.

The matchmaking system utilizes formal representation of product requirements as well as resources

and their capabilities and interfaces as an input, and tries to make a match between these by using rule-

based reasoning. We will briefly explain these aspects in the following sub-sections.

2.1. Information models involved

The foundation of the capability matchmaking is the formal information models representing the

product requirements and available manufacturing resources. We have developed OWL-based (Web

Ontology Language) information models to represent the information that is needed, and introduced

them in our earlier publications [22-27]. Figure 1 illustrates these models and their import structure.

The models are available to download at [29]. The Ontology Engineering Methodology [28] was

followed during the development of the models.

Figure 1. Information models used for the capability matchmaking.

The capability matchmaking is performed with the Matchmaking Ontology Model, which imports

the Product Model and Resource Model, as shown in Figure 1. Figure 2 illustrates the main classes and

relations of the Matchmaking Ontology, including the inherited classes and relations from the imported

models, discussed in the following paragraphs. It also includes some additional classes and properties

used by the matchmaking rules, discussed in the following section. Similar colours and patterns are

used in the figures to indicate the model (Figure 1) to which the classes (boxes in Figure 2) belong. For

instance, “Activity” is a class in the Product Model.

Process Taxonomy
Model

Capability
Model

Resource
Interface Model

Resource
Model

imports

importsimports

Matchmaking
ontology

imports imports

Product Model

imports

Figure 2. Simplified view of the Matchmaking Ontology (for readability does not include all classes

and relations).

The Resource Model ontology [22] is used to describe the available manufacturing resources,

including their capabilities, interfaces and other characteristics, as well as systems composed of multiple

resources. Class “Device” (Figure 2) is used to model machine and tooling resources, while humans

should be modelled with another class, not visible in the figure. The Resource Model imports two other

ontologies, namely the Resource Interface Model and Capability Model. The Resource Interface Model

[24] is used to give a formal description of the resource interfaces. Similarly to the design of modular

products [30], considering interfaces plays an important role in enabling the interchangeability and

independence of resource elements. This information helps to identify whether two or more resources

can be connected together from their interface perspective.

The Capability Model [22] formalizes the functionalities of the resources and parameters related to

these functionalities. It also defines the relations between simple (atomic) and combined capabilities

through the hasInputCapability object property. For instance, a robot can have the simple capability

“Moving” and a gripper can have the simple capabilities “Grasping” and “Releasing”. These relations

are modelled through the hasCapability object property between instances of the “Device” and

“Capability” classes. Together, the robot and gripper can have the combined capabilities “Pick and

Place” and “Transporting”. On the basis of the formalized relations, the potential resource combinations

that have a certain combined capability can be identified programmatically by utilizing the information

provided by SPARQL queries. The parameters of the combined capabilities can be inferred on the basis

of the rules discussed in the next section and linked to the specific device combination through the

hasCalculatedCapability object property.

The Capability Model imports another ontology called the Process Taxonomy Model. This model

categorizes different manufacturing and assembly processes in a hierarchical structure. The

“Capability” classes are linked to the “ProcessTaxonomyElement” classes according to what kind of

process they can provide. This linkage is implemented as a direct is-a (sub-class) relationship between

Device

Individual
Device

Device
Blueprint

Device
Combination

Capability

Simple
Capability

Combined
Capability

isaisa

hasCapability
hasCapabilityUpdated

hasCalculated
Capability

hasDeviceOr
DeviceCombination

hasDeviceOr
DeviceCombination

hasDevice
Blueprint

isa isahasInput
Capability

pt:ProcessTaxonomyElement

pt:Fasteningpt:Screwing isa

isa

Screwing

isa

isa

hasCapabilityMatch

canBeImplementdWith

Performance
evaluation rules

Performance
hasPerformance ProductElement

Activity

Process

isa

isPerformedOn
ProductElement

requiresActivity

requiresProcess
Capability

combination
PerformanceRule

match
PerformanceRule

Match
Performance hasMatchPerformance

hasMatchPerformance
hasPerformance

hasMatchPerformance

Capability
matchmaking

rules

capabilityName
LevelRule

implementRule

rm:InterfaceDefinition

hasInterface

the “Capability” class and “ProcessTaxonomyElement” Class. For instance, “Screwing” is a sub-class

of the “Fastening” class.

The Product Model ontology [23] can be used to describe the product requirements for the

matchmaking. The Product Model describes the parts and their basic characteristics, sub-assemblies

and the parts they contain, the processes related to the parts and sub-assemblies, the capability

requirements related to the processes, and the sequence of the processes. The Product Model imports

the same Process Taxonomy as the Capability Model. This allows a link to be built between the

requirements and capabilities during the matchmaking. This link is established through the

requiresProcessCapability object property between the instances of the “Process” class and the

instances of the “ProcessTaxonomyElement” class. The parametric requirements related to a specific

process capability, e.g. the required torque for screwing, are defined as properties of the

“ProcessTaxonomyElement” sub-classes.

2.2. Matchmaking stages and rules

The overall matchmaking process [25] has three stages, all of which require specific algorithms and

rules: 1) defining the combined capabilities and calculating their parameters when new resource

combinations are formed; 2) checking the interface compatibility of the resources when new resource

combinations are formed; 3) matching the product requirements against the capabilities of the combined

resources. We have discussed the combined capabilities and their parameter calculation in [26], interface

matchmaking in [24], and capability matchmaking in [23]. All three of these stages are included into

the operational chain of the capability matchmaking software.

For the rule implementation we use SPIN (SPARQL Inferencing Notation). SPIN is a W3C Member

Submission that has become the de facto industry standard to represent SPARQL rules and constraints

on Semantic Web models [31]. SPIN can be used to link class definitions with SPARQL queries to

capture constraints and rules that formalize the expected behaviour of those classes. A suitable reasoner

tool such as SPIN API can then infer the extra information created by the rules and use it, for example,

in SPARQL query execution [32]. We use SPIN in both the combined capability parameter inference

[26] and capability matchmaking [23]. The capability matchmaking rules are attached to the sub-classes

of the “ProcessTaxonomyElement” in the Matchmaking Ontology, as shown in Figure 2. The properties

hasCapabilityMatch and canBeImplementedWith link the capability requirements (i.e. instances of

“ProcessTaxonomyElement” sub-classes) with the “Capability” instances, as illustrated in Figure 2. The

property hasCapabilityMatch indicates that the capability matches the requirement on the capability

concept name level, while the property canBeImplementedWith indicates that the capability parameters

also match the requirement. These linkages are established as part of the matchmaking process when

the matchmaking rules find the matches. First, the resource combinations with required capabilities are

formed. Secondly, the interface compatibility of the resources is checked and incompatible

combinations are filtered out. Thirdly, the capability parameters for the remaining combinations are

calculated with the combined capability rules. Fourthly, these capability parameters are compared

against the parameters of the requirements with capability matchmaking rules to find detailed matches.

For the detailed matches also estimated performance is calculated with performance evaluation rules.

This contains the estimated duration of the specific process step with the suggested resource or resource

combination.

3. Implementation of the capability matchmaking software

The capability matchmaking software follows the principles of client-server architecture. It is

constructed from three main components: the capability matchmaking web service, the software

packages for executing the capability matchmaking process, and the formal information models,

discussed in the previous section. The web service and associated software modules are deployed and

hosted on an Apache Tomcat server [33]. This section introduces the matchmaking system architecture

and interactions with the external client systems.

3.1. Matchmaking system architecture and technologies used

The capability matchmaking system follows a layered architecture. Figure 3 outlines the various

layers and the interactions between them. It also illustrates the technologies and languages used for the

software implementation. The Data Model layer contains the ontology and other data models needed

for the matchmaking. The Data Layer represents the actual data, i.e. instances, used during the

matchmaking. The Business and Data Access layers run and execute the matchmaking procedures. The

topmost layer represents different client systems which interact with the web service component of the

system in order to trigger matchmaking or to obtain the matchmaking results.

The Web Service layer is implemented as a RESTful web service. This choice of interface allows

easy and loose coupling for client applications to connect with the matchmaking system. It was

developed with the help of JAX-RS API [34] and its open source reference implementation Jersey [35],

both of which ease and harmonise the development of the RESTful application. The Web Service layer

performs multiple tasks. It receives the various request messages from the client systems in the XML or

JSON formats, validates the inputs in the messages received, and produces the response messages. After

validation, the Web Service Layer gathers the input resources from different catalogue(s)/database(s)

and invokes the matchmaking process in the Business layer.

The most important packages in the architecture from the matchmaking reasoning perspective are the

Capability Query Library (CQL) and the Matchmaker. The Matchmaker is responsible for sequencing

and managing the matchmaking process and performing the actual capability matchmaking for the

incoming requests. It takes care of the execution of the various SPIN rules through the Java-based CQL

API (Application Programming Interface). It creates resource combination possibilities, calculates the

combined capability parameters for the resource combinations, checks the interface compatibility of the

resources, executes matchmaking rules from the Matchmaking Ontology, and constructs the

matchmaking result from the rule inferences. CQL uses the open source Jena semantic web framework

[36] and Openllet reasoner [37] for working with the ontology models. Jena and Openllet themselves

do not support SPIN, so another open source library that builds on top of Jena, called SPIN API [32], is

used to execute the SPIN rules.

Figure 3. Overall software architecture of the Capability Matchmaking System.

3.2. Interaction with external software

The Capability Matchmaking service can be utilized by any design and planning system to trigger

matchmaking requests and to receive the matchmaking results by following the specified message

schemas (Figure 4). The structure of the messages that are exchanged is defined by XML Schemas

(XSD), which are published for the use of the client application developers. The schemas are used

internally for generating data objects with the help of JAXB (Java Architecture for XML Binding).

These data objects enable the easy processing of input and output messages for the capability

matchmaking service in both accepted formats – XML and JSON.

The matchmaking process involves searching through the matchmaking search space to identify the

resources or resource combinations that match the required capabilities. As an input, the matchmaking

system needs to receive the search space to be considered. This includes the Product Requirement

Description (PRD) and the set of Resource Descriptions (resource pool) that ought to be considered

during the matchmaking process. The matchmaking request can specify which process steps (if not all)

in the PRD are included for the specific matchmaking run. Depending on the design scenario, the input

is different. In the case of a brownfield scenario, there is an existing system that could be reused for the

production of the new product. Thus, a description of the existing system layout should also be included

into the input. This contains information about the resources in the current layout and how they are

physically connected to each other. The inputs are provided to the matchmaking software by the client

application in the form of PRD IDs and RD IDs. The search space is then retrieved and read into the

Resource
Description

[XSD]

Web Service
Layer

Data
Layer

Application
Layer

Presentation
Layer

Capability Model
[OWL]

Resource
Catalogue

[XML]

Resource Description
(RD) API
[JAXB]

Capability Query
Library (CQL) API
[Openllet, Jena]

Product
Requirement

Description (PRD)
[OWL]

Resource Model
[OWL]

Resource
Combination

Possibil ities [OWL]

ResourcePool /
SystemLayout

[OWL]

r/wread

Matchmaker

Messages
[XSD]

Matchmaking Web Service
[HTTP, JAX-RS, Jersey]

read

r/w write

System
Engineering

Platform

ResourcePool &
System Layout

generator

Matchmaking
Ontology

[OWL, SPIN]

read

Parameter rules
[TTL, SPIN]

Production &
Reconfiguration

Planning Tool

[XML/
JSON]

Matchmaking
Msg Data
Models
[JAXB]

Data Access
Layer

Process Taxonomy
[OWL]

Product Model
[OWL]

Business
Layer

Data Model
Layer

...

[XML/
JSON]

Web Client

read

[XML/
JSON]

Matchmaking Ontology from various catalogues storing the actual information content. For instance,

the resource information is collected from the Resource Catalogue, where resource providers have

supplied descriptions of their offerings in the Resource Description format [27]. The PRD is represented

with the Product Model ontology format [23].

The matchmaking system provides the matchmaking result as an output. It contains the matches

found for each process step of the input PRD. A process step is marked with No Match if no matching

resources are found. On the other hand, a Match means a solvable process step and it contains a reference

to a resource or a resource combination which possesses capabilities matching the requirement. In

addition to resource identification and linking information, some information relating to business

properties, performance, and reliability is collected and delivered along with the resource record in the

matchmaking result. The results are provided to the external design tool, which can then be used to

make the decision about the resource selection and system configuration on the basis of the optimization

criteria that are valued, such as availability, performance, the smallest number of reconfigurations, or

costs.

The matchmaking is a time-consuming process, and therefore the interaction was implemented as

asynchronous calls. Figure 4 shows the interaction between an external application (client) with the

capability matchmaking system to create a matchmaking search space (sequences 1 and 2), to trigger

the matchmaking process with a matchmaking request (sequence 3), and to request the matchmaking

result (sequence 4).

Figure 4. Matchmaking interaction scenario.

4. Testing of the matchmaking system

The matchmaking software is designed to be used as a background service by other design and

planning applications. During the ReCaM project, interaction with two such client applications was

tested. These were the Flexible System Engineering Platform [38], meant for greenfield system design,

and the Integrated Production and Reconfiguration Planning tool [39], intended for brownfield system

design. In the following sections, we will first demonstrate the utilization of the matchmaking service

by the latter as part of larger integrated system design software chain. The second section focuses on

testing the functionality of the matchmaking software itself.

External Configuration and
Planning System (Client)

Capability Matchmaking
System Web Interface

Matchmaking
Algorithm

Resource Pool
Resource Pool Response

[respool_ID]

2. System Layout

[0...n]
System Layout

System Layout response
[syslayout_ID]

3. Matchmaking Request
Matchmaking Request

(respool_ID[0...n], syslayout_ID)

Matchmaking Request Response
[MMReq_ID]

run Matchmaking

Matchmaking Result

4. Matchmaking Response
Matchmaking Result Request

(MMReq_ID)
Result Not Ready Response

1. Resource Pool

[0...n]

Matchmaking Result Response
OR

4.1. Case study – interaction of the matchmaking system with an external reconfiguration planning

tool

The interaction of the matchmaking system with the Integrated Production and Reconfiguration

Planning tool (IPRP) follows the schema defined in Figure 4. The upper right part of Figure 5 shows an

HTML view of the partial matchmaking result for a specific case product (named “Bosch_DRE”),

including the resources and resource combinations found for each process step, and the estimated

process duration with the specific resource or resource combination. The other parts of Figure 5 illustrate

the user interface of the IRPP tool and how it utilizes these matchmaking results.

The search space of the matchmaking scenario shown in Figure 5 corresponds to the test #1 from

Table 3 discussed in the next section. It includes the PRD for the product “Bosch_DRE” and the full

resource catalogue with 67 resources. The suggested resource combinations column in the HTML view

shows the already matching resources and resource combinations, such as

“rd.Bosch.Press.Anvil.01.01”, and new resource combinations created dynamically by the

matchmaking software, such as “Screwing_possibility_14”. The number 14 indicates that the

matchmaking system has created multiple different resource combinations with the capability

“Screwing”, and the 14th of them matches the parametric requirements of the specific process step

“productModel_Bosch_DRE_step11”. Furthermore, the result shows that there are two other resource

combination possibilities, “Screwing_possibility_21” and “Screwing_possibility_29”, that can also

satisfy the requirements of the same process step. In other words, they are alternative combinations from

which the designer can choose. Figure 5 shows that other process steps, e.g. the fixturing step

“productModel_Bosch_DRE_step22”, also have multiple different resource options which match the

capability requirements.

The matchmaking result information is shown to the designer through the client application’s user

interface (bottom right of the figure, dashed arrows). The matchmaking result contains a reference to

the matching resources and the estimated processing time. The designer can use the data provided to

evaluate the feasibility of the suggested resource for a specific production task and system and to allocate

the resources to the tasks and workstations, as shown in the bottom right of the figure. The tree view

(Layouts) on the left side of the figure shows how the designer has allocated the proposed resources or

resource combinations into a specific layout (double arrows).

Figure 5. Matchmaking results (upper right part) read in and utilized by the Integrated Production and

Reconfiguration Planning Tool developed in Politecnico di Milano (POLIMI). Modified from [39].

The client application’s interaction with the matchmaking service is an iterative process. The client

application sends matchmaking requests, gets matchmaking results, and shows the results to the system

designer, who then makes the resource selections, builds layouts, and decides how the interaction with

the service should continue. The search space can differ between the matchmaking rounds. During a

typical reconfiguration scenario, the designer using the client application first builds the search space

by sending the ID of the new product (or products) and a description of the current system layout to the

matchmaking service (Figure 4/Sequence 2). After this, the designer creates and submits the first

matchmaking request (Figure 4/Sequence 3) to find out if the current production system can produce

the new product.

If not all the tasks in the PRD can be fulfilled by the current system, the designer can submit a second

request to the matchmaking service. In this case, the arguments are the PRD and the same system layout

as earlier, but now it is allowed for the layout to be broken down into individual resources, and those

resources can be re-organized into new combinations by the matchmaking service. If some production

tasks still cannot be solved after the re-organization, new production resources need to be added to the

system. The third matchmaking request could thus include the selected tasks from the PRD (which have

not yet been solved by any resource or resource combination), the system layout in a deconstructed way,

and an additional resource pool (Figure 4/Sequence 1). The resource pool may be extended throughout

the matchmaking rounds, e.g. starting from spares and free resources at the production site’s warehouse,

and ending with global resource catalogues containing resources from multiple resource providers. The

matchmaking process can be repeated, with different inputs, until all the tasks have a match or other

optimization criteria for resource selection are met, e.g. the smallest number of reconfigurations.

Production and Reconfiguration Planning Tool

4.2. Testing the system functionality and validating the results

We ran several matchmaking scenarios with different search spaces to test the functionality of the

software and validity of the results obtained. Six different case products and their assembly processes

were used: three different valve products from the process and agriculture industries, a manifold and

pitch trimmer from the aviation industry, and a simple laboratory product with a disc stacking process.

Table 1 lists those products, how many process steps are needed for their assembly, for how many

process steps a capability matchmaking requirement has been defined in the Product Requirement

Description (PRD), and what kind of capabilities are required. In some cases the resource to be used

(e.g. a human operator) has already been pre-defined by the designer. In such cases, there is no need to

model the requirement for those process steps in the PRD and no need to impose a load on the

matchmaking system.

Table 1. Products used for testing the matchmaking.

Product

(PRD)

Total number

of process steps

Number of process

steps which require

matchmaking

Required capabilities

DRE (valve) 25 12 Six different capabilities:

Fixturing, Pick&Place, Hammering,

Screwing, Pressing, Mounting O-ring

2-2_SW

(valve)

28 14 Seven different capabilities:

Fixturing, Pick&Place, Hammering,

BlindRiveting, Screwing, Pressing,

MountingO-ring

LFR (valve) 8 4 Five different capabilities:

Fixturing, Pick&Place, Hammering,

BlindRiveting, Screwing

Pitchtrimmer 29 29 Four different capabilities:

Fixturing, Pick&Place, Pressing,

ThreadTightening

Manifold 18 18 Five different capabilities:

Transporting, Fixturing, Pick&Place,

Pressing, ThreadTightening

LabDemo 4 4 Two different capabilities:

Pick&Place, Feeding

The resources and resource pools used as an input for the matchmaking are presented in Table 2.

Altogether, 67 different catalogue resources (“Device Blueprints”) and one existing resource

(“Individual Device”) were used. The resources included different robots, grippers, fixtures,

screwdrivers, drills and their associated bits, presses, O-ring mounting devices, and hammers, as well

as human operators. ResPool 1 contains all the catalogue resources, and SysLayout 1 is a description of

the existing production system layout for the product “DRE”. It includes the actual physically existing

resource instances (“Individual Devices”), their catalogue representation (“Device Blueprints”) and

combinations of these individual instances (“Device Combinations”) according to the production system

layout. The last column “Capabilities” indicate how many capabilities, either “Simple” or “Combined”

are modelled for these resources in their resource description.

Table 2. Resource pools used for testing the matchmaking.

 Resources Device Combinations Capabilities

Resource Pool Device

Blueprint

Individual

Device

Existing Test Simple Combined

ResPool 1 67 1 0 0 109 18

SysLayout 1 25 26 9 0 40 15

Table 3. Inputs (search space) and results of the matchmaking tests.

 Inputs for matchmaking test

(search space)

Matchmaking test results

P
R

D

R
es

o
u

rc
e
 P

o
o

l

L
a

y
o

u
t

F
ix

ed
?

C
re

a
te

d
 t

es
t

re
so

u
rc

e

co
m

b
in

a
ti

o
n

s

C
o

m
b

in
ed

ca
p

a
b

il
it

ie
s

F
o

u
n

d
 m

a
tc

h
es

P
ro

ce
ss

 s
te

p
s

w
it

h
o

u
t

fo
u

n
d

m
a

tc
h

es

P
ro

ce
ss

in
g

ti
m

e
(m

m
:s

s)

1 DRE ResPool 1 N/A 61 93 31 0 17:54

2 2-2_SW ResPool 1 N/A 44 76 24 1 12:33

3 LFR ResPool 1 N/A 40 72 7 0 11:22

4 Pitchtrim ResPool 1 N/A 8 46 77 3 11:18

5 Manifold ResPool 1 N/A 9 47 49 0 11:28

6 LabDemo ResPool 1 N/A 11 50 11 0 02:42

7 DRE SysLayout 1 T 0 26 17 0 00:58

8 DRE SysLayout 1 F 19 50 34 0 01:55

9 2-2_SW SysLayout 1 T 0 26 13 5 00:58

10 2-2_SW SysLayout 1 F 18 49 27 1 01:58

11 2-2_SW SysLayout 1

+ ResPool 1

F 44 87 31 1 15:12

Table 3 shows the test results from a few matchmaking rounds. Different search spaces were used as

inputs during different test rounds: 1) all catalogue resources (#1-#6); 2) only the existing layout and its

resource combinations (#7, #9); 3) individual resources in the existing layout (#8, #10); 4) existing

resources in the current layout supplemented with all catalogue resources (#11). The column “Layout

fixed?” indicates whether the designer has allowed the current layout to be broken down into individual

resources (true/false), which means that new combinations can be built from the same resources.

The first six rows (#1-#6) of Table 3 show the results obtained for each case product by using all the

available catalogue resources as an input. What can be observed is that matchmaking creates temporal

test resource combinations with required capabilities, and calculates combined capability parameters for

all these combinations. These calculated capabilities are then matched against the parametric

requirements of the process steps. The same resource combination or a single resource can provide a

solution for many different process steps when the required process parameters are close and/or the

resource is flexible (e.g. a offers a wide operating range). This characterizes especially the results of

tests #4 and #5, in which a small number of resource combinations provides a large number of matches.

A few process steps cannot be fulfilled with available resources, e.g. in tests #2 and #4. This is either

because none of the resources or resource combinations can provide the requested capability, or the

parameter range that is offered (e.g. gripper opening, payload, force applied) does not meet the product

requirement.

The rows from #7 to #11 show the matchmaking results against the existing System Layout 1. In the

case of tests #7 and #9, the layout is fixed, i.e. it is not allowed to be broken down into individual

resources. Thus, the matchmaking system does not create any new test resource combinations. Tests #8

and #10 use the same input, but in these cases the layout is not fixed and the matchmaking can split the

resource combinations into individual resources and re-organize them freely. New resource

combinations are created and more matches are found. For instance, the matchmaking does not find

matches for five process steps in case #9, because the system layout was originally built for product

“DRE”. After allowing re-organization in test #10 (fixed layout = false), four more process steps can be

solved with the available resources.

The last column of Table 3 indicates the duration of the matchmaking process with the given search

space. This is affected by the number of process steps which require matchmaking, the number of

different capabilities required, and the amount of resources in the search space. For instance, test #6 is

completed significantly faster than the others with the same resource pool, because the LabDemo case

product has only a few process steps, which require only two different capabilities (pick and place and

feeding). The resource combination creation has an impact on the matchmaking processing time, as the

creation of combinations and calculation of their combined capabilities is a computationally demanding

process. For instance, in the case of tests #7 and #9, which use a fixed layout and in which no new

combinations are created, the processing takes much less time compared to the non-fixed layout in tests

#8 and #10. In the last matchmaking test, #11, two pools – SysLayout 1 and ResPool 1 – are given as

the input search space. An increased amount of resources leads to more possible combinations, which

also increases the matchmaking processing time.

We analyzed each matchmaking result manually to check that the suggested resource combinations

for each process step were valid. The validity was evaluated on the basis of the expected result: if the

rules and the matchmaking system behaved as expected and produced the expected result, the result was

considered valid. This does not yet mean that the resource combination found would necessarily be

feasible in real life. The rules and information representations are simplifications of the real world. The

matchmaking does not take into account the different constraints imposed by the other factory facilities

and so on. For instance, if a process step was requesting the “Fixturing” capability, the matchmaking

system could suggest a press with an integrated fixture, as it has both “Pressing” and “Fixturing”

capabilities. However, this may not be a desirable choice for the application and needs to be evaluated

by the designer.

In the event of an invalid result, the rules, input data, and/or software code were checked to detect

the root cause of the problem. Two different types of invalid results were: 1) a found match which

should not be a match; 2) a known match not found. Type 1 errors were easy to detect, while in the case

of type 2 errors, some unexpected combinations may have been neglected as a result of being overlooked

during the analysis. The root causes were fixed iteratively until there were no invalid results with the

given search spaces.

5. Discussion

The test results we obtained show that the matchmaking concept and the system we implemented

work in practice. The matchmaking service is able to receive the inputs – product requirements and

resource pool – and to reason out the matches (if possible) for each process step. The software is able

to analyse the requirements of the process steps, look for the necessary capabilities, combine various

resources as device combinations, and infer the combined capabilities and their parameters for these

combinations. It is able to reason whether the proposed resources can be physically connected together.

Finally, it is able to analyse of which resources or resource combinations match the requirements of

each process step and supply this information back to the client who submitted the request. The test

results and their analysis show that the software that was developed is able to solve this work chain and

it provides valid matchmaking results.

Overall, the matchmaking is a time-consuming operation. In the test cases presented here the

processing time varied from 1.5 minutes to 18 minutes, but we have even observed processing times of

up to 135 minutes with the same server hardware. However, the project focused on proof of concept,

and the performance optimization was not a high priority. The performance could be improved by

optimizing the internal algorithms of the matchmaking procedure, for instance the order in which

different activities are performed.

The resource representation and capability matchmaking approach that we developed contributes to

the existing resource virtualization and matchmaking research by providing means for modelling and

reasoning about the combined capabilities of multiple cooperating resources. The resource combinations

can be dynamically created for certain requirements on the basis of resource descriptions of single

resources. In addition, the existing resource combinations can be decomposed into individual resources

to allow automatic reasoning methods to provide suggestions for reconfiguration measures.

Furthermore, our approach also describes the parameters relating to the capabilities and utilizes SPIN

rules to infer the parameters of combined capabilities from the parameters of the simple capabilities and

to insert them into the model. It is a unique approach and implementation that has not been presented

by other researchers. Similar conceptual ideas for capability matching have been presented, e.g. in [18].

The main difference, however, lies in the ability to manage combined capabilities automatically. First

of all, it allows the resources to be described on a lower level of granularity, and second, it eliminates

the need to describe the combined capabilities manually for each possible resource combination.

The capability matching reasoning actions discussed in this article can be performed automatically

on the basis of the defined SPIN rules. However, the results should be validated by a human designer,

as the information models and rules are always a simplified representation of the real world. For

example, the combined capability rules can provide only estimations of the capability parameters of

cooperating resources. In many cases, the properties of the combined capabilities emerge as a behaviour

of the machine or station as a whole in a certain context and environment, and they cannot be

decomposed into the properties of the various components (i.e. simple capabilities). Furthermore, some

of the capabilities depend on the physical locations of the combined resources. This information is not

currently handled with the Resource Model, and thus cannot be taken into consideration during the

matchmaking.

The matchmaking result delivered to the client does not consider the allocation of resources to the

process steps and workstations. It handles each process step individually, and thus it is the duty of the

client application (or the designer) to consider the optimum resource allocation and layout of the

production system. For example, if the designer allocates a specific resource instance to a specific

process step and a physical location (e.g. workstation), he/she cannot use the same resource for some

later process step in a different location without having more resource instances of the same kind. In

this sense, the matchmaking result delivers only potential possibilities from the perspectives of

capability parameters and physical interface connectivity, and the client application (or designer) needs

to ensure that the production system can actually be built from the available resources.

Currently, the matchmaking rules have been defined and especially tested only for the most common

process steps appearing within the case products. The testing of the matchmaking was limited to the six

case products and 67 resources mentioned above. Thus, more testing is needed with different products

with different process steps, and resources with different capabilities.

6. Conclusions

The goal of our research was to develop a capability matchmaking concept and software system that

can partly automatize the search for suitable resources and resource combinations to specific product

requirements. The aim was to support both greenfield and brownfield system design processes and their

associated design systems. In our previous works, we have presented the underlying concepts and

information models, while in this article, we presented our implementation of the capability

matchmaking software and its interaction with external design and planning tools through its web

service interface. Furthermore, we explained the information inputs and outputs that are expected

from/to the client systems utilizing the matchmaking service. We also presented matchmaking test cases

which validate the intended functionality of the system.

The matchmaking system utilizes formal OWL-based information representations of both products

and resources, and SPIN rules to infer new knowledge from those representations. These SPIN rules are

used to calculate the combined capabilities of combined resources and to compare the requirements of

the product with the capabilities of the resources in order to find matches and to save that information

back to the ontology. The matchmaking service and software takes inputs from different client systems,

executes the various rules needed during the matchmaking process, and delivers the results back to the

clients. The implementation of the service follows the RESTful architecture. Thus, it can couple easily

with external design and planning systems, and does not require any specific technical ability on the

client side to process the XML or JSON messages. Use of the service does not require any major

software development on the client side, which is expected to facilitate quick and easy adoption of the

service.

Information models and rules can never represent the real world perfectly, but are always a

simplification. Thus, a human designer should check the suggestions provided by the matchmaking

system and make the final decision about the resource selection. However, we believe that the approach

developed here can act as a valuable aid for the system designer and reconfiguration planner. It creates

the possibility of exploring large resource catalogues automatically and rapidly filtering out the

unsuitable resources, leaving only the possible resources and resource combinations for the given

requirement. Consequently, less manual time-consuming search and filtering effort is needed to find

and evaluate different alternative solutions, and more alternative configurations can be considered,

compared to a traditional design approach. It can also be used to check if the existing system already

fulfils the new product requirements. Thus, we expect the capability matchmaking approach and

software presented here to make the system design and reconfiguration planning process easier and

speed it up. The matchmaking can also find surprising configuration solutions which may have been

overlooked by a manual design approach, leading to potentially innovative system solutions. Reaching

the envisioned impact requires there to be large catalogues of resources described with the Resource

Description format [27] and those catalogues to be accessible to the matchmaking system. This means

that the resource providers should provide the descriptions of their resources in that format and publish

these through the resource catalogues.

In the future, new industrial projects should be established to test the matchmaking approach and

software in wider industrial settings covering larger numbers of different process capabilities.

Consequently, new capability classes and their associated properties should be implemented into the

Capability Model to increase the capability catalogue when needed. Also, the rule base needs to be

extended to cover the new capabilities. Furthermore, the reliability and information content of the

matchmaking result could be increased by extending the current approach with automatic layout

generation for feasibility checks and processing time estimations.

Acknowledgements

The authors would like to thank the team of Prof. Marcello Colledani from Politecnico di Milano for

providing screenshots of the Integrated Production and Reconfiguration Planning Tool for Figure 5.

This research has received funding from the European Union’s Horizon 2020 research and innovation

programme under grant agreement No. 680759 and project title ReCaM (Rapid Reconfiguration of

Flexible Production Systems through Capability-based Adaptation, Autoconfiguration and Integrated

Tools for Production Planning). (www.recam-project.eu).

References

1. M. Bortolini, F.G. Galizia, C. Mora, Reconfigurable manufacturing systems: Literature review and

research trend, J. Manuf. Syst. 49 (2018) 93–106. doi:10.1016/j.jmsy.2018.09.005.

2. Y. Lu, X. Xu, Resource virtualization: A core technology for developing cyber-physical production

systems, J. Manuf. Syst. 47 (2018) 128–140. doi:10.1016/j.jmsy.2018.05.003.

3. F. Tao, Q. Qi, A. Liu, A. Kusiak, Data-driven smart manufacturing, J. Manuf. Syst. 48 (2018) 157–

169. doi:https://doi.org/10.1016/j.jmsy.2018.01.006.

4. K.-D. Thoben, S. Wiesner, T. Wuest, “Industrie 4.0” and Smart Manufacturing – A Review of

Research Issues and Application Examples, Int. J. Autom. Technol. 11 (2017) 4–16.

doi:10.20965/ijat.2017.p0004.

5. O. Fisher, N. Watson, L. Porcu, D. Bacon, M. Rigley, R.L. Gomes, Cloud manufacturing as a

sustainable process manufacturing route, J. Manuf. Syst. 47 (2018) 53–68.

doi:10.1016/j.jmsy.2018.03.005.

6. Y. Lu, X. Xu, A semantic web-based framework for service composition in a cloud manufacturing

environment, J. Manuf. Syst. 42 (2017) 69–81. doi:10.1016/j.jmsy.2016.11.004.

7. F. Tao, L. Zhang, Y. Liu, Y. Cheng, L. Wang, X. Xu, Manufacturing Service Management in Cloud

Manufacturing: Overview and Future Research Directions, J. Manuf. Sci. Eng. 137 (2015) 040912.

doi:10.1115/1.4030510.

8. F. Tao, J. Cheng, Y. Cheng, S. Gu, T. Zheng, H. Yang, SDMSim: A manufacturing service supply-

demand matching simulator under cloud environment. Robot Comput Integr Manuf 2017;45:34–

46. doi:10.1016/j.rcim.2016.07.001.

9. Y. Cheng, F. Tao, D. Zhao, L. Zhang, Modeling of manufacturing service supply-demand matching

hypernetwork in service-oriented manufacturing systems. Robot Comput Integr Manuf

2017;45:59–72. doi:10.1016/j.rcim.2016.05.007.

10. F. Ameri, C. Urbanovsky, C. McArthur, A Systematic Approach to Developing Ontologies for

Manufacturing Service Modeling, Proc. Work. Ontol. Semant. Web Manuf. (2012) 1–14.

11. S. Borgo, P. Leitão, Foundations for a Core Ontology of Manufacturing, in: R. Sharman, R.

Kishore, R. Ramesh (Eds.), Ontologies, Springer US, 2007: pp. 751–775. doi:10.1007/978-0-387-

37022-4_27.

12. R. Jardim-Goncalves, A. Grilo, K. Popplewell, Novel strategies for global manufacturing systems

interoperability, J. Intell. Manuf. 27 (2016) 1–9. doi:10.1007/s10845-014-0948-x.

13. S. Strzelczak, Towards Ontology-Aided Manufacturing and Supply Chain Management – A

Literature Review, in: Adv. Prod. Manag. Syst. Innov. Prod. Manag. Towar. Sustain. Growth,

Springer, 2015: pp. 467–475. doi:10.1007/978-3-319-22759-7.

14. P. Leitão, A.W. Colombo, S. Karnouskos, Industrial automation based on cyber-physical systems

technologies: Prototype implementations and challenges, Comput. Ind. 81 (2016) 11–25.

doi:10.1016/j.compind.2015.08.004.

15. Y. Luo, L. Zhang, F. Tao, L. Ren, Y. Liu, Z. Zhang, A modeling and description method of

multidimensional information for manufacturing capability in cloud manufacturing system, Int. J.

Adv. Manuf. Technol. 69 (2013) 961–975. doi:10.1007/s00170-013-5076-9.

16. M. Yuan, K. Deng, W.A. Chaovalitwongse, Manufacturing Resource Modeling for Cloud

Manufacturing, Int. J. Intell. Syst. 32 (2017) 414–436. doi:10.1002/int.21867.

17. Y. Lu, H. Wang, X. Xu, ManuService ontology: a product data model for service-oriented business

interactions in a cloud manufacturing environment, J. Intell. Manuf. (2016) 1–18.

doi:10.1007/s10845-016-1250-x.

18. F. Ameri, L. Patil, Digital manufacturing market: a semantic web-based framework for agile supply

chain deployment, J. Intell. Manuf. 23 (2012) 1817–1832. doi:10.1007/s10845-010-0495-z.

19. F. Ameri, C. McArthur, Semantic rule modelling for intelligent supplier discovery, Int. J. Comput.

Integr. Manuf. 27 (2014) 570–590. doi:10.1080/0951192x.2013.834467.

20. U. Rauschecker, M. Stohr, Using manufacturing service descriptions for flexible integration of

production facilities to manufacturing clouds, 2012 18th Int. ICE Conf. Eng. Technol. Innov. (2012)

1–10. doi:10.1109/ICE.2012.6297693.

21. ReCaM consortium, ReCaM project web page, http://www.recam-project.eu. [Accessed

20.2.2019].

22. E. Järvenpää, N. Siltala, O. Hylli, M. Lanz, The development of an ontology for describing the

capabilities of manufacturing resources, J. Intell. Manuf. (2018) 1–20. doi:10.1007/s10845-018-

1427-6.

23. E. Järvenpää, N. Siltala, O. Hylli, M. Lanz, Product Model ontology and its use in capability-based

matchmaking, in: Procedia CIRP, 2018. doi:10.1016/j.procir.2018.03.211.

24. N. Siltala, E. Järvenpää, M. Lanz, Creating Resource Combinations Based on Formally Described

Hardware Interfaces, in: S. Ratchev (ed.) Precision Assembly in the Digital Age. IPAS 2018. IFIP

Advances in Information and Communication Technology, vol. 530, 29–39, Springer, Cham.

doi:10.1007/978-3-030-05931-6_3.

25. E. Järvenpää, N. Siltala, O. Hylli, M. Lanz, Capability Matchmaking Procedure to Support Rapid

Configuration and Re-configuration of Production Systems, Procedia Manuf. 11 (2017) 1053–

1060. doi:10.1016/j.promfg.2017.07.216.

26. E. Järvenpää, O. Hylli, N. Siltala, M. Lanz, Utilizing SPIN Rules to Infer the Parameters for

Combined Capabilities of Aggregated Manufacturing Resources, IFAC-PapersOnLine. 51 (2018)

84–89. doi:10.1016/j.ifacol.2018.08.239.

27. N. Siltala, E. Järvenpää, M. Lanz, Value Proposition of a Resource Description Concept in a

Production Automation Domain, in: Procedia CIRP, 2018. doi:10.1016/j.procir.2018.03.154.

28. Y. Sure, S. Staab, R. Studer, Ontology Engineering Methodology. In: S. Staab, R. Studer (Eds.),

Handbook on Ontologies, 2nd edition. (2009), 135–152.

29. E. Järvenpää, N. Siltala, O. Hylli, Product, Manufacturing Resource and Capability Ontologies.

(2019) Available at: http://urn.fi/urn:nbn:fi:csc-kata20190225154330611362

30. J. Pakkanen, T. Juuti, T. Lehtonen, Brownfield Process: A method for modular product family

development aiming for product configuration, DESIGN STUDIES, 2016, vol 45B, pp. 210–241.

DOI: 10.1016/j.destud.2016.04.004.

31. SPIN working group, SPIN – SPARQL Inferencing Notation. (2017). Available at:

http://spinrdf.org/. [Accessed 15.10.2017].

32. H. Knublauch, The TopBraid SPIN API. (2016). Available at: http://topbraid.org/spin/api/

[Accessed 1.4.2017].

http://www.recam-project.eu/
https://tutcris.tut.fi/portal/en/persons/jarkko-pakkanen(ff2b90b0-ecef-4a91-a077-abe282914822).html
https://tutcris.tut.fi/portal/en/persons/tero-juuti(c237205b-d3d8-4454-bead-ba59089933f6).html
https://tutcris.tut.fi/portal/en/persons/timo-lehtonen(e31a444c-56d9-43f1-bff2-5b04cb89f3df).html
https://tutcris.tut.fi/portal/en/publications/brownfield-process(0914b158-8cc9-4969-b291-8a7aa73797b4).html
https://tutcris.tut.fi/portal/en/publications/brownfield-process(0914b158-8cc9-4969-b291-8a7aa73797b4).html
https://doi.org/10.1016/j.destud.2016.04.004
http://spinrdf.org/

33. Apache Tomcat. Available at: http://tomcat.apache.org/. [Accessed 26.2.2019]

34. Java EE 6 Tutorial. Available at: https://docs.oracle.com/javaee/6/tutorial/doc/ (2013). [Accessed

26.2.2019]

35. Jersey – reference implementation of JAX-RS. Available at: https://jersey.github.io/. [Accessed

26.2.2019].

36. Apache Software Foundation, Apache Jena – A free and open source Java frawework for building

Semantic Web and Linked Data applications. (2017) Available at: https://jena.apache.org/

[Accessed 10.8.2017].

37. Openllet API. Available at: https://github.com/Galigator/openllet. [Accessed 26.2.2019]

38. M. Colledani, A. Yemane, G. Lugaresi, G. Borzi, D. Callegaro, A software platform for supporting

the design and reconfiguration of versatile assembly systems, in: Procedia CIRP. 72 (2018) 808–

813. doi:10.1016/j.procir.2018.03.082.

39. A. Angius, A. Yemane, M. Colledani, F. Micchetti, G. Borzi, D4.4: Reconfiguration Management

Platform: implementation and testing, ReCaM project deliverable (2018)

http://tomcat.apache.org/
https://jersey.github.io/

