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ABSTRACT 

This paper presents the first entirely open-source and cross-

platform software called Open3DGen for reconstructing 

photorealistic textured 3D models from RGB-D images. The 

proposed software pipeline consists of nine main stages: 1) RGB-

D acquisition; 2) 2D feature extraction; 3) camera pose 

estimation; 4) point cloud generation; 5) coarse mesh 

reconstruction; 6) optional loop closure; 7) fine mesh 

reconstruction; 8) UV unwrapping; and 9) texture projection. This 

end-to-end scheme combines multiple state-of-the-art techniques 

and provides an easy-to-use software package for real-time 3D 

model reconstruction and offline texture mapping. The main 

innovation lies in various Structure-from-Motion (SfM) 

techniques that are used with additional depth data to yield high-

quality 3D models in real-time and at low cost. The functionality 

of Open3DGen has been validated on AMD Ryzen 3900X CPU 

and Nvidia GTX1080 GPU. This proof-of-concept setup attains 

an average processing speed of 15 fps for 720p (1280×720) RGB-

D input without the offline backend. Our solution is shown to 

provide competitive 3D mesh quality and execution performance 

with the state-of-the-art commercial and academic solutions.  

CCS CONCEPTS 

• Software and its engineering → Open-source model • 

Computing methodologies → Mesh models 

KEYWORDS 

3D model reconstruction, texture mapping, RGB-D acquisition, 

feature extraction, camera pose estimation, point cloud generation, 

mesh reconstruction 

1 Introduction 

The recent advances in computer vision techniques and 

graphics hardware technology have led to a proliferation of high-

fidelity photorealistic 3D models in various computer graphics 

applications. In photorealistic 3D imaging, a 3D surface of 

interest is translated into a precise textured 3D digital twin that 

can represent, e.g., lifelike avatars, realistic-looking objects, or 

immersive digital environments.  

3D photorealism is increasingly gaining ground across a broad 

range of industries and businesses including video games, 

visualization, rendering, 3D printing, medical imaging, computer-

aided design, architectural planning, history preservation, and 

marketing. Furthermore, real-time photorealistic reconstruction 

opens up various opportunities to exploit immersive Extended 

Reality (XR) technologies in interactive communication and 

collaboration platforms, live broadcasting, online social media, 

autonomous vehicles, robotics, and smart manufacturing. 

Photogrammetry is a well-known technique for 3D 

reconstruction. The state-of-the-art photogrammetry applications 

like commercial Agisoft Metashape [1] and open-source 

AliceVision Meshroom [2] use various Structure-from-Motion 

(SfM) algorithms [3] to generate a textured 3D mesh from a set of 

RGB images. This type of 3D reconstruction software has the 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full 

citation on the first page. Copyrights for components of this work owned by others 

than the author(s) must be honored. Abstracting with credit is permitted. To copy 

otherwise, or republish, to post on servers or to redistribute to lists, requires prior 

specific permission and/or a fee. Request permissions from Permissions@acm.org. 

MMSys'21, September 28–October 1, 2021, Istanbul, Turkey 

© 2021 Copyright is held by the owner/author(s). Publication rights licensed to 

ACM. 

ACM ISBN 978-1-4503-8434-6/21/09…$15.00 

https://doi.org/10.1145/3458305.3463374 

 

Figure 1: Main processing stages of the Open3DGen pipeline. 
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lowest barrier of entry as it only needs a normal color camera. 

However, photogrammetry is computationally extremely intensive 

and thereby not feasible for real-time or rapid-prototyping 

applications. 

The landscape of 3D reconstruction technology also includes 

less-compute-intensive systems like Simultaneous Localization 

and Mapping (SLAM) [4]-[13] of which the fastest 

implementations are able to achieve real-time processing speed. 

However, SLAM solutions rarely provide a high-quality textured 

3D model output since they are designed for robotic navigation 

and sparse room/area mapping.  

In recent years, depth-sensing RGB-D cameras have come 

down to consumer-friendly price point. The high-resolution depth 

data can allow for more accurate and faster representation of the 

final 3D model or aid in the camera pose estimation. The existing 

RGB-D based approaches for 3D reconstruction, such as open-

source BundleFusion [14] and VoxelHashing [15], are able to 

produce high-quality 3D meshes in real-time. However, they are 

both mainly designed for larger scale environmental 3D 

reconstruction, distributed under non-commercial licenses, and 

dedicated to Windows operating system only. 

This paper proposes an end-to-end 3D reconstruction software 

called Open3DGen that adopts features from both SLAM and 

photogrammetry schemes in order to generate accurate 

photorealistic textured 3D models quickly from RGB-D images. 

To the best of our knowledge, it is the first fully open-source and 

cross-platform software implementation for 1) real-time 3D mesh 

reconstruction and 2) associated offline texture mapping.  

Figure 1 depicts an overview of the proposed Open3DGen 

pipeline that incorporates all stages of the 3D capturing process in 

a modular and flexible way. The adopted image processing 

algorithms tend to be comprehensively studied and documented in 

the literature, but their implementations are often lacking in 

features, usability, or licensing. This work particularly addresses 

the implementation aspects of these algorithms and seeks to 

provide an open, accurate, and easy-to-use software package that 

works conveniently with consumer-grade RGB-D cameras. 

The source code of this high-performance software package is 

available online on GitHub at 

 

https://github.com/ultravideo/Open3DGen 

It is being developed by Ultra Video Group at Tampere 

University. The source code is written in modern C++ and it is 

distributed under the permissive MIT open-source license. This 

cross-platform software can be run on all major platforms such as 

Windows and Linux, using its own command line interface (CLI). 

The remainder of this paper is organized as follows. Section 2 

investigates the feasibility and readiness of the existing 

approaches for 3D model capture, reconstruction, and texture 

mapping. Section 3 provides an overview of the proposed 

Open3DGen pipeline that is decomposed into a real-time frontend 

described in Section 4 and a non-real-time backend detailed in 

Section 5. In Section 6, the performance and quality evaluations 

of a proof-of-concept Open3DGen implementation are conducted, 

and the obtained results are benchmarked against the state-of-the-

art photogrammetry software. Finally, Section 7 gives the 

conclusions and directions for future research. 

2 Existing Software Implementations 

Table 1 characterizes the most prominent software frameworks for 

3D capture, reconstruction, and texture mapping. They can be 

classified into photogrammetry, SLAM, and RGB-D based 3D 

scanning approaches.  

2.1 Photogrammetry Frameworks 

The state-of-the-art photogrammetry approaches provide high-

quality 3D meshes from a sequence of RGB images. Agisoft 

Metashape [1] is a commercial photogrammetry application 

accelerated with a graphics processing unit (GPU) for faster 

processing times. Its predecessor, Agisoft Photoscan, was 

probably the first fully-fledged photogrammetry software to reach 

wider adoption and it has also been considered the de-facto 

industry standard for years. AliceVision Meshroom [2] is a 

relatively new open-source photogrammetry software. It has been 

shown to have comparable quality with Metashape.  

These frameworks only accept RGB images without 

additional depth data. Inferring accurate and high-resolution depth 

maps from image correspondences can be a very compute-

intensive operation. Hence, their processing times are counted in 

hours or days, making their use in real-time or rapid-prototyping 

infeasible or even impossible with sparsely situated cameras.  

 

Table 1: The main characteristics of prior art and our proposal. 
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2.2 SLAM Frameworks  

A series of closed-source SLAM frameworks have been 

announced since early 1990s for indoor [4], [5] and outdoor 

mapping [6]-[8]. 

There are also a plenty of open-source frameworks out of 

which LSD-SLAM [9] is designed for large-scale mapping, ORB-

SLAM [10] offers output with mono RGB input, ORB-SLAM2 

[11] adds a stereo RGB and RGB-D support on top of ORB-

SLAM, and ORB-SLAM3 [12] is the latest iteration of ORB-

SLAM with support for additional inertial data input. They are all 

distributed under the GPL 3.0 license. However, none of them 

output actual 3D models but only location information. 

BSD-licensed Kimera [13] is currently one of the few SLAM 

solutions with a 3D model output. However, it does not 

implement the texture mapping step and its reconstruction quality 

has not been evaluated on small scale models, where high 

precision is required. 

2.3 RGB-D Based 3D Scanning Frameworks 

Most of the existing RGB-D 3D reconstruction frameworks are 

commercial solutions like Peel 3D Peel 2 [16] or Artec Eva [17] 

that tend to need a proprietary hand-held 3D scanner.  

The most popular open-source solutions, BundleFusion [14] 

and VoxelHashing [15], are provided under non-commercial 

licenses and for Windows platform only. In addition, both of them 

are designed for larger scale and environmental 3D reconstruction 

rather than for high-fidelity reconstruction of very small and 

textured objects. 

3 Open3DGen Reconstruction Pipeline 

The proposed Open3DGen pipeline is dedicated for reconstructing 

high-quality photorealistic textured 3D models quickly and 

efficiently. The generated 3D models are ready to use as-is in 

various computer graphics and other 3D applications.  

The proposed 9-stage pipeline can be divided into two main 

parts: 1) the real-time frontend for an RGB-D capture and a coarse 

3D model reconstruction with vertex colors; and 2) the offline 

backend for the model refinement and texture mapping. The first 

five stages up to coarse mesh generation can be done in real-time 

to immediately provide the user with approximation of the 

reconstructed model. Figure 2 visualizes the operation of the 

pipeline with a test RGB-D image sequence of a teddy bear. The 

breakdown of the adopted algorithms and their implementations is 

listed in Table 2. 

4 Open3DGen: Real-time Frontend 

The real-time frontend of the pipeline consists of the following 

five main stages: 1) RGB-D acquisition; 2) 2D feature extraction; 

3) camera pose estimation; 4) point cloud generation; and 5) 

coarse mesh reconstruction. These stages are detailed next. 

4.1 RGB-D Acquisition 

Our system uses 2D image features for camera pose estimation. 

Therefore, the input RGB-D images must be of high quality to be 

able to infer the camera movement trajectory correctly and with a 

needed accuracy. In practice, the images must be free of any 

significant motion blur and other unwanted artifacts, such as noise 

caused by low-light conditions. 

Variance of Laplacian [18] can be used to preliminarily filter 

out images with high motion blur and the functions for that can be 

found in OpenCV [19]. However, this filtering step is not 

necessary if the camera is moving slowly in space and scale-

invariant feature transform (SIFT) [20] features are used. Our 

experiments were conducted with the Intel RealSense D435 

camera, which was already calibrated and undistorted. 

 

Figure 2: Visualization of the proposed Open3DGen pipeline processing with a test RGB-D image sequence. 
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Filtering noise from images is a less trivial task, so it advised 

to maintain good and uniform lighting conditions in the captured 

scene. This way, the end result also looks better and input images 

can be used without further manual work or texture adjustments.  

4.2 2D Feature Extraction 

For 2D feature detection, either AKAZE [21] or SIFT [20] 

features can be used as they proved to be robust with low-quality 

and noisy images. They also yielded the most stable temporal 

feature points with SIFT offering slightly more stable feature 

locations. In our testing, with better quality and higher resolution 

RGB images ORB features [22] were significantly faster while 

yielding only slightly less robust features. Features were matched 

with a brute force matcher with crosscheck enabled. The feature 

detecting and matching was done with OpenCV.  

4.3 Camera Pose Estimation 

Camera pose estimation in the 3D world can be further divided 

into the following six substages: 1) feature-landmark matching; 2) 

camera pose estimation; 3) initial camera pose estimation; 4) pose 

verification and invalid pose rejection; 5) landmark tracking; and 

6) tracking new landmark-candidates. 

 

4.3.1 Feature-Landmark Matching. The first substage is to 

find 3D points or landmarks in the scene, which correspond to the 

2D features in the most recently acquired RGB-D image. 

Matching all frames pair-wise against each other is 

computationally intensive and cannot be implemented in real 

time, so a faster feature tracking method is adopted to obtain these 

feature-landmark pairs. 

First, the system iterates over the current landmarks in the 

scene and collects the most recent 2D feature descriptors from 

them. Using these descriptors in feature matching guarantees the 

smallest possible difference in pixels between the frames, and thus 

increases the probability of good-quality matches. Secondly, these 

“landmarks descriptors” are matched against the feature 

descriptors of the new frame. From these matches, the 

corresponding 2D feature locations and 3D landmark points are 

collected for pose estimation.  

The homography matrix [23] is used to filter the feature 

matches for outliers to guarantee the best possible camera pose 

accuracy and reconstruction quality. Because the homography 

matrix must be calculated between the current RGB-D frame and 

all frames corresponding to the matched landmarks, this step adds 

more delay than, e.g., radius outlier rejection, where matches 

would be rejected based on the Euclidean distance in screen 

coordinates. In practice, the delay introduced by the homography 

calculations was 1-30 ms per frame depending on the number of 

landmark matches. In most cases, this quality-performance 

tradeoff resulted in considerably more robust camera poses.  

 

4.3.2 Camera Pose Estimation.  The second substage is to 

estimate the camera pose using Efficient Perspective-n-Point 

(EPnP) [24] Random sample consensus (RANSAC) with the 

previously obtained 2D features and 3D points. This stage is 

standard for most SfM applications.  

The recovered camera position and rotation are used to 

construct the camera projection matrix P as 

 

𝐏 = 𝐤  [𝐑T|(−𝐑T  𝐭)] (1) 

 

where k is the camera intrinsic matrix, R the rotation matrix, and t 

the position vector. 

However, PnP cannot be used for the first two frames due to 

the absence of landmarks. Therefore, initial camera pose 

estimation is computed with the essential matrix [25]  

 

𝐄 = 𝐑 × 𝐭  (2) 

 

It can be decomposed using singular value decomposition 

(SVD) to yield a relative rotation matrix and a relative translation 

vector with unit length between the two views. The essential 

matrix can be approximated using the 5-point algorithm detailed 

in [25].  

Table 2: Adopted algorithms and their implementations. 
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After the camera translation and rotation have been resolved, 

the 2D features can be triangulated into the first landmarks. 

 

4.3.3 Initial Camera Pose Estimation. The selected 

frames must be far enough apart in 3D space to achieve successful 

and accurate triangulation; if the Euclidean distance between the 

features is too small, the triangulation would produce an 

inaccurate point. On the other hand, the frames cannot be too far 

apart either since the number of trackable features decreases as the 

distance between the frames increases.  

  

4.3.4 Pose Verification and Invalid Pose Rejection. The 

pose obtained using EPnP can sometimes be invalid or inaccurate, 

if the number of feature-landmark matches is not significant or if 

the distribution of the 3D landmarks is cluttered around a small 

area. Rejecting these poor-quality poses is important to maintain a 

high accuracy in the resulting 3D model and texture projection. 

Additionally, low-quality poses affect the subsequent camera 

poses and further decrease the quality of the end result.  

A small time step between the frames can be assumed if the 

input is a real-time video feed with small camera movement and a 

reasonably high frame rate. This allows the next pose to be 

approximated by using velocity and acceleration obtained from 

the previous successful frames. The position and rotation of the 

next frame is approximated as  

 

𝐭approx = 𝐭prev + 𝐯prev 𝜟𝑡 +
𝟏

𝟐
𝐚prev𝛥𝑡𝟐 (3) 

 

𝐑approx = 𝐑prev + 𝝎𝑝𝑟𝑒𝑣 𝜟𝑡 +
𝟏

𝟐
𝛂prev𝛥𝑡2 (4) 

 

where 𝐭approx  and 𝐑approx  are the approximated location and 

rotation of the next frame, 𝐯prev  and 𝝎𝑝𝑟𝑒𝑣  are the linear and 

angular velocity of the previous frame, 𝐚prev  and 𝛂prev  are the 

linear and angular acceleration of the previous frame and Δ𝑡 is the 

timestep between the frames. This approximation is extremely 

lightweight and reasonably accurate if Δ𝑡 is small.  

The obtained approximation is then used to calculate the 

Euclidean distance between the PnP location and approximated 

location, and the angular distance between the rotations. These 

distances are used to assign a quality score to every PnP pose, and 

any pose below a threshold is rejected.  

 

4.3.5 Landmark Tracking. If the pose was verified to be of 

good quality, the inlier features and landmarks are collected from 

the result of the PnP algorithm. The inlier features are then 

appended to the corresponding landmarks.  

 

4.3.6 Tracking New Landmark-Candidates. For longer 

sequences, new landmarks must be created continuously. The 

features that cannot be matched against landmarks are collected 

and matched against “candidate-landmarks”, which have yet to be 

seen from the viewport of enough cameras in order to obtain a 

robust triangulation. All successful feature candidate matches are 

appended into the candidate track. The left-over features that were 

not able to be matched against either landmarks or candidates are 

converted into new one-frame-long candidates.  

After every frame, the candidates are iterated over and all 

tracks meeting a certain length requirement are triangulated into 

landmarks. The number of candidates are kept low for higher 

performance by removing candidates that have lost tracking and 

are not able to be triangulated.  

4.4 Point Cloud Generation 

The camera intrinsic parameters are used to project point clouds 

pixel by pixel from the depth images to 3D points 

[𝑥𝑙𝑜𝑐𝑎𝑙 , 𝑦𝑙𝑜𝑐𝑎𝑙 , 𝑧𝑙𝑜𝑐𝑎𝑙] in the local space as 

 

𝑥𝑙𝑜𝑐𝑎𝑙 = (𝑢 − 𝑐𝑥) ×
𝑧𝑙𝑜𝑐𝑎𝑙

𝑓𝑥
 (5) 

 

 𝑦𝑙𝑜𝑐𝑎𝑙 = (𝑣 − 𝑐𝑦) ×
𝑧𝑙𝑜𝑐𝑎𝑙

𝑓𝑦
 (6) 

 

where 𝑐𝑥 and 𝑐𝑦 are the camera principal points, 𝑓𝑥 and 𝑓𝑦 are the 

camera focal lengths, 𝑢 and 𝑣 are the image 2D coordinates, and 

𝑧𝑙𝑜𝑐𝑎𝑙  is the depth value [26].  

The resulting point cloud is origin-centered with identity-

rotation. It is then transformed into the correct world position by 

matrix multiplication as 

 

𝐩 = 𝐓  𝐩𝑙𝑜𝑐𝑎𝑙 (7) 

 

where 𝐩𝑙𝑜𝑐𝑎𝑙 = [𝑥𝑙𝑜𝑐𝑎𝑙 , 𝑦𝑙𝑜𝑐𝑎𝑙 , 𝑧𝑙𝑜𝑐𝑎𝑙 , 1] is a point from the point 

cloud and 𝐩 = [𝑥𝑤𝑜𝑟𝑙𝑑 , 𝑦𝑤𝑜𝑟𝑙𝑑 , 𝑧𝑤𝑜𝑟𝑙𝑑 , 1] is the newly transformed 

world point. 𝐓  is the corresponding camera’s transformation 

matrix 𝐓 = 𝐑|𝐭, where 𝐑 is the camera’s rotation matrix and 𝐭 is 

the camera’s 3D position in world coordinates. 

4.5 Coarse Mesh Reconstruction 

A coarse and low-detail version of the mesh can be reconstructed 

with only vertex colors serving as texture data. The reconstruction 

is implemented with the Poisson algorithm [27] with a relatively 

low k-d search tree depth of 4 or 5 to save on performance. 

However, using the point cloud as feedback is often enough, and 

this step can be omitted.  

5 Open3DGen: Offline Backend 

The offline backend of the pipeline is made up of four stages: 1) 

loop closure and camera pose refinement; 2) mesh reconstruction; 

3) UV unwrapping; and 4) texture projection. However, loop 

closure and camera pose refinement is an optional stage which 

was omitted in our testing and thereby excluded, e.g., from Figure 

2 and Figure 4. 

Between these four stages, the generated point cloud or 3D 

mesh can be exported for manual processing. Optimizing the 

mesh topology manually or using automated solutions, such as 
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InstantMeshes [28], can lead to better results. The edited mesh can 

then be re-imported back into the pipeline for texture projection.  

Editing the raw mesh or point cloud data before texture 

projection is also beneficial if the depth data is particularly noisy 

and has a lot of outliers. This is typical with reflective or highly 

light-absorbent surfaces.  

5.1 Loop Closure & Camera Pose Refinement 

Detecting and solving for loop closure is often a mandatory step 

in traditional SLAM applications but it was omitted from the real-

time frontend of our system for better performance. Instead, our 

system can optionally refine the entire graph before mesh 

generation if the scene requires it. The real-time camera track is 

used to visualize the already reconstructed 3D scene to the user, 

and give feedback about what parts of the 3D model might still 

need to be scanned. In addition, the RGB-D sequences are usually 

quite short so the error cannot often accumulate enough to become 

noticeable. 

The full graph optimization with bundle adjustment can be the 

most time-consuming step, especially if the camera track is long 

and noisy, but it is only necessary when dealing with very long 

capture sequences or particularly difficult indoor scenes with a 

small number of trackable features. As is, in typical 3D capturing 

scenarios the workflow includes orbiting the camera around the 

object-of-interest. Usually, this is not enough for the error to 

accumulate enough to be noticeable. Additionally, since the 

movement is uniform, it can easily be compensated for. 

If the later frames do not contribute to the pose of earlier 

frames, the camera poses can start to drift. Bundle adjustment can 

combat this to a certain degree, but re-computing the camera 

poses pair-wise against all other cameras can give substantial 

accuracy improvements. This is especially accentuated in longer 

sequences, where the camera movement is not orbital around the 

object of interest. On average, this step takes as long as the real-

time part of the system, but it is optional and can be omitted in 

most cases. Re-computing the camera poses is often preferred 

over running bundle adjustment, as it can be computationally 

lighter and correctly parametrizing the bundle adjustment can be a 

non-trivial task. 

Georgia Tech Smoothing and Mapping Library (GTSAM) [29] 

was used to solve for loop closure and bundle adjustment.  

5.2 Fine Mesh Reconstruction 

The final high-detail 3D mesh is reconstructed using the Poisson 

algorithm [27] obtained from Intel Open3D [30]. This algorithm 

was chosen over others, such as ball pivoting [31], because of its 

speed and robustness when using point clouds with variable 

density of points. The Poisson surface reconstruction algorithm 

also yielded more smooth and organic looking meshes, resulting 

in considerably better texture projection results.  

In order to capture small details of the 3D model, the mesh 

has to have a very high resolution. A typical output mesh can be 

seen in Figure 3 (a), consisting of 23972 individual triangles. To 

speed up the UV unwrapping and texture projection stages, the 

mesh can be decimated and brought down to a lower resolution, as 

in Figure 3 (b). The decimated resolution is 2126 triangles, and 

this step was done automatically. It can be desired to optimize the 

topology at this point of the reconstruction pipeline in order to 

create a better-looking 3D mesh and make texture projection 

results be more uniform. To achieve this, the high-resolution mesh 

was exported and optimized using InstantMeshes [28]. The result 

can be seen in Figure 3 (c), consisting of 4432 triangles.  

Most automatic triangle count reducing algorithms are based 

on decimating or collapsing the mesh vertices. These are easy to 

implement and in nearly all cases the result is sufficient, but the 

output might suffer in its quality and smaller details can be lost in 

the process of decimation. In the case of geometry with complex 

holes and cavities, exporting the high-resolution mesh and 

manually retopologizing the result can often produce better results 

than relying on automatic solutions.  

5.3 UV Unwrapping 

The texture coordiantes of the reconstructed mesh, a.k.a. the UV -

coordinates, can be unwrapped using two different 

implementations: a naive brute force approach where all of the 

 

Figure 3: The mesh triangle topology of a teapot. (a) Before decimation. (b) After decimating. (c) After optimizing with 

InstantMeshes. 
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Algorithm 1 Texture Projection Compute Shader 
 

global CX, CY, FX, FY, VP 

global TRIANGLES, ORIGIN, INVALID, LARGE_NUM 
 

 

function pixel_to_world(coord, depth) 

        return ( 

                 (coord.x – CX) * depth / FX, 

                 (coord.y – CY) * depth / FY, 

                  depth) 

end function 
 

function intersect(origin, dir, v0, v1, v2) 

        // triangle normal tr_n 

        tr_n = normalize(cross(v1 - v0, v2 - v0)) 

        t = (dot(tr_n, origin) + dot(tr_n, v0)) / dot(tr_n, dir) 

        if t < 0 then 

                return INVALID 

        end if 

        p = ORIGIN + (t * dir) 

        perpendicular = cross(v1 - v0, p - v0) 

        if dot(tr_n, perpendicular) < 0 then 

                return INVALID 

        end if 

        perpendicular = cross(v2 - v1, p - v1) 

        if dot(tr_n, perpendicular) < 0 then 

                return INVALID 

        end if 

        perpendicular = cross(v0 - v2, p - v2) 

        if dot(tr_n, perpendicular) < 0 then 

                return INVALID 

        end if 

        return p 

end function 
 

function project_pixel(i_id, RGBD) 

        // shader invocation index i_id 

        xy = (i_id % WIDTH, i_id / WIDTH) 

        // world point world_p 

        world_p = pixel_to_world(xy, RGBD[xy].depth) 

        // view-projection inverse matrix vpi 

        vpi = inverse(VP) 

        ray_dir = normalize(world_p – ORIGIN) 

        point = (0, 0, 0) 

        length = LARGE_NUM 

        for tr in TRIANGLES 

                // triangle vertices v0, v1, v2 

                v0 = vpi ⋅ tr .v0 

                v1 = vpi ⋅ tr .v1 

                v2 = vpi ⋅ tr .v2 

                // hit point p 
                p = intersect(ORIGIN, ray_dir, v0, v1, v2) 

 if p != INVALID and len(p) < length then 

         point = p 

                       length = len(p) 

 end if 

        end for 

        return point 

end function 

 

UVs are packed individually into a tight grid, or a smarter 

unwrapping algorithm using Xatlas [32]. 

5.4 Texture Projection 

The textures are raytraced from the viewpoint of every camera 

using custom compute shaders. To avoid overlap, all views are 

projected onto separate textures. Afterwards, all textures are 

blended together to avoid invalid pixels and distortion due to 

parallel perspectives.  

OpenGL compute shaders were chosen for projecting the 

textures due to their excellent performance in highly parallelized 

tasks and their cross-platform usability. 

 

5.4.1 Texture Projecting Algorithm. The texture projection 

compute shader is dispatched per-pixel of the depth image. The 

shader uses the depth image and the UV -unwrapped 3D mesh for 

the projection. Additionally, the shader requires the camera 

intrinsic and extrinsic matrices as well.  

Due to the difficult nature of the texture projection, the 

pseudocode for the algorithms can be found in Algorithm 1, 

where CX, CY, FX, FY are the camera intrinsic parameters, VP 

is the cameras view-projection matrix, and TRIANGLES 

contains the vertices and the edges of the reconstructed 3D mesh. 

The function project_pixel will be called for every pixel in the 

RGB image, in the OpenGL shader. 

First, the shader verifies the depth pixel is valid. All invalid 

depth pixels have a value of zero. Next, the XY -coordinates of 

the depth pixel are used with the depth value to project the point 

into 3D space as point p. The principle is the same as was used in 

point cloud projection in section 4.4. Then, every triangle of the 

3D mesh is multiplied with the camera’s inverse transform matrix, 

which brings the triangle into the projection camera’s view. The 

projection camera is situated in the world origin. Finally, the 

triangle is intersected with a ray which goes from the world 

origin, as the camera uses pinhole camera model, into the 

previously obtained point p. If the intersection was successful and 

closer than any previous intersection of this triangle, the point 

intersection point can be set to be the closest. 

After the triangles have been iterated over, the texture space 

UV -coordinate corresponding to the intersected triangle and the 

intersection point can be obtained using the distances from the 

triangle’s corner vertices, projected on the triangle’s normal. As 

the normal vectors of the mesh are not passed on to the shader, 

this step is done on the CPU after the projection is completed.  
 

5.4.2 Texture Stacking. At this point, there are n-number of 

individual textures, corresponding to every frame’s projection in 

3D space. These textures must then be stacked properly. The two 

methods producing the best results are per-pixel average stacking 

and non-zero stacking. 

In per-pixel average stacking, all valid pixels in the individual 

projection textures are averaged to form a coherent texture. 

Usually, this gave overall the best-looking results, as the effect of 

imprecisions in the camera positions was negated due to the 

averaging. The downside of averaging with inaccuracies is the 

slight blurriness of the texture.  

In non-zero stacking, the projection textures’ pixels are 

stacked only if the pixel in the destination texture is not yet valid. 

All subsequent pixels to that position are rejected. This yields the 

sharpest looking textures, but even the slightest amount of 
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fluctuation in the pose or the reconstructed 3D surface will result 

in un-usable textures. 

The best-looking results were achieved by overlaying the non-

zero texture over the per-pixel average texture and using a 

sharpening filter on the averaged texture.  

6 Performance and Quality Analysis 

In our experiments, the execution speed and camera pose accuracy 

of the proposed Open3DGen software was benchmarked with the 

first half (1500 frames) of the Vicon Room 2 “easy” [33] and 

Machine Hall MH01-03 [33] datasets. These datasets are 

composed of 1280×720 black-and-white stereo images. 

Furthermore, the subjective quality of the resulting textured 3D 

model was evaluated with our own RGB-D test sequences. 

The execution speed and reconstruction quality of 

Open3DGen were also compared with those of Metashape [1] and 

Meshroom [2] photogrammetry software. Instead, BundleFusion 

[14] and VoxelHashing [15] frameworks were excluded from the 

evaluation as compiling their source code was found unsuccessful 

due to unresolved CUDA compatibility issues with newer Nvidia 

graphics cards and the latest installation of Windows 10. All 

SLAM implementations were also omitted because none of them 

[6]-[13] is able to output textured 3D models. 

6.1  Experimental Setup 

The input RGB-D images for our experiments were taken with the 

Intel RealSense D435 camera. The benchmarking was conducted 

on a desktop workstation equipped with AMD Ryzen 3900X 

processor and Nvidia GTX1080 graphics card. The operating 

system was Ubuntu Linux 20.04.  

6.2 Execution Speed Evaluation 

Processing the first half of the “Vicon Room 2” and “Machine 

Hall” datasets with Open3DGen took 89 ms  per frame on 

average, resulting in a frame rate of 11 frames per second (fps). 

These test runs were conducted with unlimited number of feature 

points, so the frame times were not consistent but content 

dependent.  

In most cases, detecting 1000 features per frame guarantees a 

good camera pose. Setting the number of features per frame 

accordingly to 1000 resulted in the consistent frame time of 

67 ms, i.e., the frame rate increased to 15 𝑓𝑝𝑠. However, keeping 

the number of features unlimited results in a more robust pose due 

to the increased number of points for the PnP algorithm.  

6.3 Camera Pose Accuracy Assessment 

With these same two datasets, the per-frame average camera pose 

estimation accuracies were ≈ 17 𝑐𝑚  and ≈ 24 𝑐𝑚,  respectively. 

These results were achieved without camera pose refinement, loop 

closure, and bundle adjustment.  

It is worthwhile noting that Open3DGen is not designed for 

large-scale reconstruction as these two datasets but shorter 

sequences with usually uniform movement around the object of 

interest. In these cases, the error is usually less than 1 cm. For 

example, the models depicted in Figure 2 and Figure 4 had an 

average error of 4 mm.  

6.4 Subjective Quality Assessment 

The subjective quality of Open3DGen was illustrated with the 

three test scenes depicted in Figure 4. They are called Mossy rock 

(249 frames), Living room (193 frames), and Teapot (261 frames). 

Mossy rock is a typical outdoor scene. It took 87 s to reconstruct, 

consisting of 24 s for the real-time part and 63 s for the texture 

projection. Living room is an indoor scene whose reconstruction 

took 88 s (15 s + 73 s). Teapot is a 3D model with a slightly 

reflective surface and a handle. The respective 3D mesh topology 

of the teapot can be seen in Figure 3 (b). Reconstruction time of a 

Teapot was 96 s (29 s + 67 s). The inconsistencies in the recorded 

times are due to the varying number of detected features in the 

real-time part and the triangle count of the mesh in the texture 

projection phase. 

6.5 Comparison with Prior-Art 

Figure 4 also illustrates 3D reconstruction quality obtained with 

Metashape and Meshroom frameworks that were adjusted for the 

highest available quality settings. Table 3 tabulates the respective 

processing times of these three benchmarked software and 

speedup of our Open3DGen over Metashape and Meshroom. 

With Mossy rock and Living room scenes, the output quality 

of Open3DGen is equal to those of Metashape and Meshroom. 

The teapot scene illustrates well the shortcomings of traditional 

SfM methods; the models are not reconstructed correctly where 

the physical object had highly specular and reflective surfaces. 

Meshroom, and to a lesser degree Metashape, have a hole on the 

right side of the teapot. Meshroom also struggled with the floor in 

the living room scene. 

Using calibrated depth data allows us not only to average the 

per-view point clouds, thus overcoming the issue of reflective 

surfaces, but to automatically compute the correct real-life scale 

of the 3D model as well. The photogrammetry software require 

trackable points to be able to compute a depth map; if the surface 

is reflective the reflection moves with the camera and therefore 

making depth map creation difficult. They cannot compute the 

scale automatically either, Metashape only allowing the user to 

manually set the size of an object and scale the output 

accordingly.  

Neither Metashape nor Meshroom allow the direct editing of 

the results between all the sub-stages, supporting only removing 

unwanted points from the sparse and dense point clouds before 

generating the 3D mesh. Ours supports exporting, editing and re-

import the edited results between all stages, after the real-time 

part of the system.  

7 Conclusions and Future Work 

This paper presented a fully open-source and cross-platform 

software called Open3DGen for reconstructing high-quality 

textured 3D models from RGB-D images. The proposed nine-

stage Open3DGen pipeline is composed of a real-time frontend 
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for a coarse 3D model reconstruction and an offline backend for 

model refinement and texture mapping. The system is shown to be 

robust with multifaceted inputs and in different operating 

conditions. The generated 3D models are ready to use as-is in 

various computer graphics and other 3D applications. 

The proof-of-concept setup of Open3DGen was able to 

reconstruct a coarse 3D model from 720p RGB-D input at an 

average processing speed of 15 fps on AMD Ryzen 3900X CPU 

and Nvidia GTX1080 GPU. It was shown to achieve quality either 

comparable to or exceeding the state-of-the-art photogrammetry 

software in a fraction of the processing time.  

In the future, the Open3DGen CLI will be upgraded to an 

intuitive graphical user interface (GUI) and the backend of the 

Open3DGen pipeline will be optimized for real-time processing. 

A completely real-time Open3DGen software could be used to 

take the user experience of the next-generation interactive and live 

applications to the next level of immersion. 
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Figure 4: A comparison of reconstruction quality with three test scenes. (a) Metashape. (b) Meshroom. (c) Open3DGen.  

Table 3: Performance comparison between Metashape, Meshroom, and Open3DGen. 
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