

Open3DGen: Open-Source Software for Reconstructing Textured

3D Models from RGB-D Images

Teo T. Niemirepo, Marko Viitanen, and Jarno Vanne
Ultra Video Group, Tampere University, Tampere, Finland

 {teo.niemirepo, marko.viitanen, jarno.vanne}@tuni.fi

ABSTRACT

This paper presents the first entirely open-source and cross-

platform software called Open3DGen for reconstructing

photorealistic textured 3D models from RGB-D images. The

proposed software pipeline consists of nine main stages: 1) RGB-

D acquisition; 2) 2D feature extraction; 3) camera pose

estimation; 4) point cloud generation; 5) coarse mesh

reconstruction; 6) optional loop closure; 7) fine mesh

reconstruction; 8) UV unwrapping; and 9) texture projection. This

end-to-end scheme combines multiple state-of-the-art techniques

and provides an easy-to-use software package for real-time 3D

model reconstruction and offline texture mapping. The main

innovation lies in various Structure-from-Motion (SfM)

techniques that are used with additional depth data to yield high-

quality 3D models in real-time and at low cost. The functionality

of Open3DGen has been validated on AMD Ryzen 3900X CPU

and Nvidia GTX1080 GPU. This proof-of-concept setup attains

an average processing speed of 15 fps for 720p (1280×720) RGB-

D input without the offline backend. Our solution is shown to

provide competitive 3D mesh quality and execution performance

with the state-of-the-art commercial and academic solutions.

CCS CONCEPTS

• Software and its engineering → Open-source model •

Computing methodologies → Mesh models

KEYWORDS

3D model reconstruction, texture mapping, RGB-D acquisition,

feature extraction, camera pose estimation, point cloud generation,

mesh reconstruction

1 Introduction

The recent advances in computer vision techniques and

graphics hardware technology have led to a proliferation of high-

fidelity photorealistic 3D models in various computer graphics

applications. In photorealistic 3D imaging, a 3D surface of

interest is translated into a precise textured 3D digital twin that

can represent, e.g., lifelike avatars, realistic-looking objects, or

immersive digital environments.

3D photorealism is increasingly gaining ground across a broad

range of industries and businesses including video games,

visualization, rendering, 3D printing, medical imaging, computer-

aided design, architectural planning, history preservation, and

marketing. Furthermore, real-time photorealistic reconstruction

opens up various opportunities to exploit immersive Extended

Reality (XR) technologies in interactive communication and

collaboration platforms, live broadcasting, online social media,

autonomous vehicles, robotics, and smart manufacturing.

Photogrammetry is a well-known technique for 3D

reconstruction. The state-of-the-art photogrammetry applications

like commercial Agisoft Metashape [1] and open-source

AliceVision Meshroom [2] use various Structure-from-Motion

(SfM) algorithms [3] to generate a textured 3D mesh from a set of

RGB images. This type of 3D reconstruction software has the

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others

than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from Permissions@acm.org.

MMSys'21, September 28–October 1, 2021, Istanbul, Turkey

© 2021 Copyright is held by the owner/author(s). Publication rights licensed to

ACM.

ACM ISBN 978-1-4503-8434-6/21/09…$15.00

https://doi.org/10.1145/3458305.3463374

Figure 1: Main processing stages of the Open3DGen pipeline.

ACM Reference format:

Teo T. Niemirepo, Marko Viitanen, and Jarno Vanne. Open3DGen: Open-

Source Software for Reconstructing Textured 3D Models from RGB-D

Images. In Proceedings of ACM Multimedia Systems Conference
(MMSys’21). ACM, September 28-October 1, 2021, Istanbul, Turkey.

https://doi.org/10.1145/3458305.3463374

MMSys'21, Sept. 28 - Oct. 1, 2021, Istanbul, Turkey T. T. Niemirepo et al.

lowest barrier of entry as it only needs a normal color camera.

However, photogrammetry is computationally extremely intensive

and thereby not feasible for real-time or rapid-prototyping

applications.

The landscape of 3D reconstruction technology also includes

less-compute-intensive systems like Simultaneous Localization

and Mapping (SLAM) [4]-[13] of which the fastest

implementations are able to achieve real-time processing speed.

However, SLAM solutions rarely provide a high-quality textured

3D model output since they are designed for robotic navigation

and sparse room/area mapping.

In recent years, depth-sensing RGB-D cameras have come

down to consumer-friendly price point. The high-resolution depth

data can allow for more accurate and faster representation of the

final 3D model or aid in the camera pose estimation. The existing

RGB-D based approaches for 3D reconstruction, such as open-

source BundleFusion [14] and VoxelHashing [15], are able to

produce high-quality 3D meshes in real-time. However, they are

both mainly designed for larger scale environmental 3D

reconstruction, distributed under non-commercial licenses, and

dedicated to Windows operating system only.

This paper proposes an end-to-end 3D reconstruction software

called Open3DGen that adopts features from both SLAM and

photogrammetry schemes in order to generate accurate

photorealistic textured 3D models quickly from RGB-D images.

To the best of our knowledge, it is the first fully open-source and

cross-platform software implementation for 1) real-time 3D mesh

reconstruction and 2) associated offline texture mapping.

Figure 1 depicts an overview of the proposed Open3DGen

pipeline that incorporates all stages of the 3D capturing process in

a modular and flexible way. The adopted image processing

algorithms tend to be comprehensively studied and documented in

the literature, but their implementations are often lacking in

features, usability, or licensing. This work particularly addresses

the implementation aspects of these algorithms and seeks to

provide an open, accurate, and easy-to-use software package that

works conveniently with consumer-grade RGB-D cameras.

The source code of this high-performance software package is

available online on GitHub at

https://github.com/ultravideo/Open3DGen

It is being developed by Ultra Video Group at Tampere

University. The source code is written in modern C++ and it is

distributed under the permissive MIT open-source license. This

cross-platform software can be run on all major platforms such as

Windows and Linux, using its own command line interface (CLI).

The remainder of this paper is organized as follows. Section 2

investigates the feasibility and readiness of the existing

approaches for 3D model capture, reconstruction, and texture

mapping. Section 3 provides an overview of the proposed

Open3DGen pipeline that is decomposed into a real-time frontend

described in Section 4 and a non-real-time backend detailed in

Section 5. In Section 6, the performance and quality evaluations

of a proof-of-concept Open3DGen implementation are conducted,

and the obtained results are benchmarked against the state-of-the-

art photogrammetry software. Finally, Section 7 gives the

conclusions and directions for future research.

2 Existing Software Implementations

Table 1 characterizes the most prominent software frameworks for

3D capture, reconstruction, and texture mapping. They can be

classified into photogrammetry, SLAM, and RGB-D based 3D

scanning approaches.

2.1 Photogrammetry Frameworks

The state-of-the-art photogrammetry approaches provide high-

quality 3D meshes from a sequence of RGB images. Agisoft

Metashape [1] is a commercial photogrammetry application

accelerated with a graphics processing unit (GPU) for faster

processing times. Its predecessor, Agisoft Photoscan, was

probably the first fully-fledged photogrammetry software to reach

wider adoption and it has also been considered the de-facto

industry standard for years. AliceVision Meshroom [2] is a

relatively new open-source photogrammetry software. It has been

shown to have comparable quality with Metashape.

These frameworks only accept RGB images without

additional depth data. Inferring accurate and high-resolution depth

maps from image correspondences can be a very compute-

intensive operation. Hence, their processing times are counted in

hours or days, making their use in real-time or rapid-prototyping

infeasible or even impossible with sparsely situated cameras.

Table 1: The main characteristics of prior art and our proposal.

Open3DGen MMSys'21, Sept. 28 - Oct. 1, 2021, Istanbul, Turkey

2.2 SLAM Frameworks

A series of closed-source SLAM frameworks have been

announced since early 1990s for indoor [4], [5] and outdoor

mapping [6]-[8].

There are also a plenty of open-source frameworks out of

which LSD-SLAM [9] is designed for large-scale mapping, ORB-

SLAM [10] offers output with mono RGB input, ORB-SLAM2

[11] adds a stereo RGB and RGB-D support on top of ORB-

SLAM, and ORB-SLAM3 [12] is the latest iteration of ORB-

SLAM with support for additional inertial data input. They are all

distributed under the GPL 3.0 license. However, none of them

output actual 3D models but only location information.

BSD-licensed Kimera [13] is currently one of the few SLAM

solutions with a 3D model output. However, it does not

implement the texture mapping step and its reconstruction quality

has not been evaluated on small scale models, where high

precision is required.

2.3 RGB-D Based 3D Scanning Frameworks

Most of the existing RGB-D 3D reconstruction frameworks are

commercial solutions like Peel 3D Peel 2 [16] or Artec Eva [17]

that tend to need a proprietary hand-held 3D scanner.

The most popular open-source solutions, BundleFusion [14]

and VoxelHashing [15], are provided under non-commercial

licenses and for Windows platform only. In addition, both of them

are designed for larger scale and environmental 3D reconstruction

rather than for high-fidelity reconstruction of very small and

textured objects.

3 Open3DGen Reconstruction Pipeline

The proposed Open3DGen pipeline is dedicated for reconstructing

high-quality photorealistic textured 3D models quickly and

efficiently. The generated 3D models are ready to use as-is in

various computer graphics and other 3D applications.

The proposed 9-stage pipeline can be divided into two main

parts: 1) the real-time frontend for an RGB-D capture and a coarse

3D model reconstruction with vertex colors; and 2) the offline

backend for the model refinement and texture mapping. The first

five stages up to coarse mesh generation can be done in real-time

to immediately provide the user with approximation of the

reconstructed model. Figure 2 visualizes the operation of the

pipeline with a test RGB-D image sequence of a teddy bear. The

breakdown of the adopted algorithms and their implementations is

listed in Table 2.

4 Open3DGen: Real-time Frontend

The real-time frontend of the pipeline consists of the following

five main stages: 1) RGB-D acquisition; 2) 2D feature extraction;

3) camera pose estimation; 4) point cloud generation; and 5)

coarse mesh reconstruction. These stages are detailed next.

4.1 RGB-D Acquisition

Our system uses 2D image features for camera pose estimation.

Therefore, the input RGB-D images must be of high quality to be

able to infer the camera movement trajectory correctly and with a

needed accuracy. In practice, the images must be free of any

significant motion blur and other unwanted artifacts, such as noise

caused by low-light conditions.

Variance of Laplacian [18] can be used to preliminarily filter

out images with high motion blur and the functions for that can be

found in OpenCV [19]. However, this filtering step is not

necessary if the camera is moving slowly in space and scale-

invariant feature transform (SIFT) [20] features are used. Our

experiments were conducted with the Intel RealSense D435

camera, which was already calibrated and undistorted.

Figure 2: Visualization of the proposed Open3DGen pipeline processing with a test RGB-D image sequence.

MMSys'21, Sept. 28 - Oct. 1, 2021, Istanbul, Turkey T. T. Niemirepo et al.

Filtering noise from images is a less trivial task, so it advised

to maintain good and uniform lighting conditions in the captured

scene. This way, the end result also looks better and input images

can be used without further manual work or texture adjustments.

4.2 2D Feature Extraction

For 2D feature detection, either AKAZE [21] or SIFT [20]

features can be used as they proved to be robust with low-quality

and noisy images. They also yielded the most stable temporal

feature points with SIFT offering slightly more stable feature

locations. In our testing, with better quality and higher resolution

RGB images ORB features [22] were significantly faster while

yielding only slightly less robust features. Features were matched

with a brute force matcher with crosscheck enabled. The feature

detecting and matching was done with OpenCV.

4.3 Camera Pose Estimation

Camera pose estimation in the 3D world can be further divided

into the following six substages: 1) feature-landmark matching; 2)

camera pose estimation; 3) initial camera pose estimation; 4) pose

verification and invalid pose rejection; 5) landmark tracking; and

6) tracking new landmark-candidates.

4.3.1 Feature-Landmark Matching. The first substage is to

find 3D points or landmarks in the scene, which correspond to the

2D features in the most recently acquired RGB-D image.

Matching all frames pair-wise against each other is

computationally intensive and cannot be implemented in real

time, so a faster feature tracking method is adopted to obtain these

feature-landmark pairs.

First, the system iterates over the current landmarks in the

scene and collects the most recent 2D feature descriptors from

them. Using these descriptors in feature matching guarantees the

smallest possible difference in pixels between the frames, and thus

increases the probability of good-quality matches. Secondly, these

“landmarks descriptors” are matched against the feature

descriptors of the new frame. From these matches, the

corresponding 2D feature locations and 3D landmark points are

collected for pose estimation.

The homography matrix [23] is used to filter the feature

matches for outliers to guarantee the best possible camera pose

accuracy and reconstruction quality. Because the homography

matrix must be calculated between the current RGB-D frame and

all frames corresponding to the matched landmarks, this step adds

more delay than, e.g., radius outlier rejection, where matches

would be rejected based on the Euclidean distance in screen

coordinates. In practice, the delay introduced by the homography

calculations was 1-30 ms per frame depending on the number of

landmark matches. In most cases, this quality-performance

tradeoff resulted in considerably more robust camera poses.

4.3.2 Camera Pose Estimation. The second substage is to

estimate the camera pose using Efficient Perspective-n-Point

(EPnP) [24] Random sample consensus (RANSAC) with the

previously obtained 2D features and 3D points. This stage is

standard for most SfM applications.

The recovered camera position and rotation are used to

construct the camera projection matrix P as

𝐏 = 𝐤 [𝐑T|(−𝐑T 𝐭)] (1)

where k is the camera intrinsic matrix, R the rotation matrix, and t

the position vector.

However, PnP cannot be used for the first two frames due to

the absence of landmarks. Therefore, initial camera pose

estimation is computed with the essential matrix [25]

𝐄 = 𝐑 × 𝐭 (2)

It can be decomposed using singular value decomposition

(SVD) to yield a relative rotation matrix and a relative translation

vector with unit length between the two views. The essential

matrix can be approximated using the 5-point algorithm detailed

in [25].

Table 2: Adopted algorithms and their implementations.

Open3DGen MMSys'21, Sept. 28 - Oct. 1, 2021, Istanbul, Turkey

After the camera translation and rotation have been resolved,

the 2D features can be triangulated into the first landmarks.

4.3.3 Initial Camera Pose Estimation. The selected

frames must be far enough apart in 3D space to achieve successful

and accurate triangulation; if the Euclidean distance between the

features is too small, the triangulation would produce an

inaccurate point. On the other hand, the frames cannot be too far

apart either since the number of trackable features decreases as the

distance between the frames increases.

4.3.4 Pose Verification and Invalid Pose Rejection. The

pose obtained using EPnP can sometimes be invalid or inaccurate,

if the number of feature-landmark matches is not significant or if

the distribution of the 3D landmarks is cluttered around a small

area. Rejecting these poor-quality poses is important to maintain a

high accuracy in the resulting 3D model and texture projection.

Additionally, low-quality poses affect the subsequent camera

poses and further decrease the quality of the end result.

A small time step between the frames can be assumed if the

input is a real-time video feed with small camera movement and a

reasonably high frame rate. This allows the next pose to be

approximated by using velocity and acceleration obtained from

the previous successful frames. The position and rotation of the

next frame is approximated as

𝐭approx = 𝐭prev + 𝐯prev 𝜟𝑡 +
𝟏

𝟐
𝐚prev𝛥𝑡𝟐 (3)

𝐑approx = 𝐑prev + 𝝎𝑝𝑟𝑒𝑣 𝜟𝑡 +
𝟏

𝟐
𝛂prev𝛥𝑡2 (4)

where 𝐭approx and 𝐑approx are the approximated location and

rotation of the next frame, 𝐯prev and 𝝎𝑝𝑟𝑒𝑣 are the linear and

angular velocity of the previous frame, 𝐚prev and 𝛂prev are the

linear and angular acceleration of the previous frame and Δ𝑡 is the

timestep between the frames. This approximation is extremely

lightweight and reasonably accurate if Δ𝑡 is small.

The obtained approximation is then used to calculate the

Euclidean distance between the PnP location and approximated

location, and the angular distance between the rotations. These

distances are used to assign a quality score to every PnP pose, and

any pose below a threshold is rejected.

4.3.5 Landmark Tracking. If the pose was verified to be of

good quality, the inlier features and landmarks are collected from

the result of the PnP algorithm. The inlier features are then

appended to the corresponding landmarks.

4.3.6 Tracking New Landmark-Candidates. For longer

sequences, new landmarks must be created continuously. The

features that cannot be matched against landmarks are collected

and matched against “candidate-landmarks”, which have yet to be

seen from the viewport of enough cameras in order to obtain a

robust triangulation. All successful feature candidate matches are

appended into the candidate track. The left-over features that were

not able to be matched against either landmarks or candidates are

converted into new one-frame-long candidates.

After every frame, the candidates are iterated over and all

tracks meeting a certain length requirement are triangulated into

landmarks. The number of candidates are kept low for higher

performance by removing candidates that have lost tracking and

are not able to be triangulated.

4.4 Point Cloud Generation

The camera intrinsic parameters are used to project point clouds

pixel by pixel from the depth images to 3D points

[𝑥𝑙𝑜𝑐𝑎𝑙 , 𝑦𝑙𝑜𝑐𝑎𝑙 , 𝑧𝑙𝑜𝑐𝑎𝑙] in the local space as

𝑥𝑙𝑜𝑐𝑎𝑙 = (𝑢 − 𝑐𝑥) ×
𝑧𝑙𝑜𝑐𝑎𝑙

𝑓𝑥
 (5)

 𝑦𝑙𝑜𝑐𝑎𝑙 = (𝑣 − 𝑐𝑦) ×
𝑧𝑙𝑜𝑐𝑎𝑙

𝑓𝑦
 (6)

where 𝑐𝑥 and 𝑐𝑦 are the camera principal points, 𝑓𝑥 and 𝑓𝑦 are the

camera focal lengths, 𝑢 and 𝑣 are the image 2D coordinates, and

𝑧𝑙𝑜𝑐𝑎𝑙 is the depth value [26].

The resulting point cloud is origin-centered with identity-

rotation. It is then transformed into the correct world position by

matrix multiplication as

𝐩 = 𝐓 𝐩𝑙𝑜𝑐𝑎𝑙 (7)

where 𝐩𝑙𝑜𝑐𝑎𝑙 = [𝑥𝑙𝑜𝑐𝑎𝑙 , 𝑦𝑙𝑜𝑐𝑎𝑙 , 𝑧𝑙𝑜𝑐𝑎𝑙 , 1] is a point from the point

cloud and 𝐩 = [𝑥𝑤𝑜𝑟𝑙𝑑 , 𝑦𝑤𝑜𝑟𝑙𝑑 , 𝑧𝑤𝑜𝑟𝑙𝑑 , 1] is the newly transformed

world point. 𝐓 is the corresponding camera’s transformation

matrix 𝐓 = 𝐑|𝐭, where 𝐑 is the camera’s rotation matrix and 𝐭 is

the camera’s 3D position in world coordinates.

4.5 Coarse Mesh Reconstruction

A coarse and low-detail version of the mesh can be reconstructed

with only vertex colors serving as texture data. The reconstruction

is implemented with the Poisson algorithm [27] with a relatively

low k-d search tree depth of 4 or 5 to save on performance.

However, using the point cloud as feedback is often enough, and

this step can be omitted.

5 Open3DGen: Offline Backend

The offline backend of the pipeline is made up of four stages: 1)

loop closure and camera pose refinement; 2) mesh reconstruction;

3) UV unwrapping; and 4) texture projection. However, loop

closure and camera pose refinement is an optional stage which

was omitted in our testing and thereby excluded, e.g., from Figure

2 and Figure 4.

Between these four stages, the generated point cloud or 3D

mesh can be exported for manual processing. Optimizing the

mesh topology manually or using automated solutions, such as

MMSys'21, Sept. 28 - Oct. 1, 2021, Istanbul, Turkey T. T. Niemirepo et al.

InstantMeshes [28], can lead to better results. The edited mesh can

then be re-imported back into the pipeline for texture projection.

Editing the raw mesh or point cloud data before texture

projection is also beneficial if the depth data is particularly noisy

and has a lot of outliers. This is typical with reflective or highly

light-absorbent surfaces.

5.1 Loop Closure & Camera Pose Refinement

Detecting and solving for loop closure is often a mandatory step

in traditional SLAM applications but it was omitted from the real-

time frontend of our system for better performance. Instead, our

system can optionally refine the entire graph before mesh

generation if the scene requires it. The real-time camera track is

used to visualize the already reconstructed 3D scene to the user,

and give feedback about what parts of the 3D model might still

need to be scanned. In addition, the RGB-D sequences are usually

quite short so the error cannot often accumulate enough to become

noticeable.

The full graph optimization with bundle adjustment can be the

most time-consuming step, especially if the camera track is long

and noisy, but it is only necessary when dealing with very long

capture sequences or particularly difficult indoor scenes with a

small number of trackable features. As is, in typical 3D capturing

scenarios the workflow includes orbiting the camera around the

object-of-interest. Usually, this is not enough for the error to

accumulate enough to be noticeable. Additionally, since the

movement is uniform, it can easily be compensated for.

If the later frames do not contribute to the pose of earlier

frames, the camera poses can start to drift. Bundle adjustment can

combat this to a certain degree, but re-computing the camera

poses pair-wise against all other cameras can give substantial

accuracy improvements. This is especially accentuated in longer

sequences, where the camera movement is not orbital around the

object of interest. On average, this step takes as long as the real-

time part of the system, but it is optional and can be omitted in

most cases. Re-computing the camera poses is often preferred

over running bundle adjustment, as it can be computationally

lighter and correctly parametrizing the bundle adjustment can be a

non-trivial task.

Georgia Tech Smoothing and Mapping Library (GTSAM) [29]

was used to solve for loop closure and bundle adjustment.

5.2 Fine Mesh Reconstruction

The final high-detail 3D mesh is reconstructed using the Poisson

algorithm [27] obtained from Intel Open3D [30]. This algorithm

was chosen over others, such as ball pivoting [31], because of its

speed and robustness when using point clouds with variable

density of points. The Poisson surface reconstruction algorithm

also yielded more smooth and organic looking meshes, resulting

in considerably better texture projection results.

In order to capture small details of the 3D model, the mesh

has to have a very high resolution. A typical output mesh can be

seen in Figure 3 (a), consisting of 23972 individual triangles. To

speed up the UV unwrapping and texture projection stages, the

mesh can be decimated and brought down to a lower resolution, as

in Figure 3 (b). The decimated resolution is 2126 triangles, and

this step was done automatically. It can be desired to optimize the

topology at this point of the reconstruction pipeline in order to

create a better-looking 3D mesh and make texture projection

results be more uniform. To achieve this, the high-resolution mesh

was exported and optimized using InstantMeshes [28]. The result

can be seen in Figure 3 (c), consisting of 4432 triangles.

Most automatic triangle count reducing algorithms are based

on decimating or collapsing the mesh vertices. These are easy to

implement and in nearly all cases the result is sufficient, but the

output might suffer in its quality and smaller details can be lost in

the process of decimation. In the case of geometry with complex

holes and cavities, exporting the high-resolution mesh and

manually retopologizing the result can often produce better results

than relying on automatic solutions.

5.3 UV Unwrapping

The texture coordiantes of the reconstructed mesh, a.k.a. the UV -

coordinates, can be unwrapped using two different

implementations: a naive brute force approach where all of the

Figure 3: The mesh triangle topology of a teapot. (a) Before decimation. (b) After decimating. (c) After optimizing with

InstantMeshes.

Open3DGen MMSys'21, Sept. 28 - Oct. 1, 2021, Istanbul, Turkey

Algorithm 1 Texture Projection Compute Shader

global CX, CY, FX, FY, VP

global TRIANGLES, ORIGIN, INVALID, LARGE_NUM

function pixel_to_world(coord, depth)

 return (

 (coord.x – CX) * depth / FX,

 (coord.y – CY) * depth / FY,

 depth)

end function

function intersect(origin, dir, v0, v1, v2)

 // triangle normal tr_n

 tr_n = normalize(cross(v1 - v0, v2 - v0))

 t = (dot(tr_n, origin) + dot(tr_n, v0)) / dot(tr_n, dir)

 if t < 0 then

 return INVALID

 end if

 p = ORIGIN + (t * dir)

 perpendicular = cross(v1 - v0, p - v0)

 if dot(tr_n, perpendicular) < 0 then

 return INVALID

 end if

 perpendicular = cross(v2 - v1, p - v1)

 if dot(tr_n, perpendicular) < 0 then

 return INVALID

 end if

 perpendicular = cross(v0 - v2, p - v2)

 if dot(tr_n, perpendicular) < 0 then

 return INVALID

 end if

 return p

end function

function project_pixel(i_id, RGBD)

 // shader invocation index i_id

 xy = (i_id % WIDTH, i_id / WIDTH)

 // world point world_p

 world_p = pixel_to_world(xy, RGBD[xy].depth)

 // view-projection inverse matrix vpi

 vpi = inverse(VP)

 ray_dir = normalize(world_p – ORIGIN)

 point = (0, 0, 0)

 length = LARGE_NUM

 for tr in TRIANGLES

 // triangle vertices v0, v1, v2

 v0 = vpi ⋅ tr .v0

 v1 = vpi ⋅ tr .v1

 v2 = vpi ⋅ tr .v2

 // hit point p
 p = intersect(ORIGIN, ray_dir, v0, v1, v2)

 if p != INVALID and len(p) < length then

 point = p

 length = len(p)

 end if

 end for

 return point

end function

UVs are packed individually into a tight grid, or a smarter

unwrapping algorithm using Xatlas [32].

5.4 Texture Projection

The textures are raytraced from the viewpoint of every camera

using custom compute shaders. To avoid overlap, all views are

projected onto separate textures. Afterwards, all textures are

blended together to avoid invalid pixels and distortion due to

parallel perspectives.

OpenGL compute shaders were chosen for projecting the

textures due to their excellent performance in highly parallelized

tasks and their cross-platform usability.

5.4.1 Texture Projecting Algorithm. The texture projection

compute shader is dispatched per-pixel of the depth image. The

shader uses the depth image and the UV -unwrapped 3D mesh for

the projection. Additionally, the shader requires the camera

intrinsic and extrinsic matrices as well.

Due to the difficult nature of the texture projection, the

pseudocode for the algorithms can be found in Algorithm 1,

where CX, CY, FX, FY are the camera intrinsic parameters, VP

is the cameras view-projection matrix, and TRIANGLES

contains the vertices and the edges of the reconstructed 3D mesh.

The function project_pixel will be called for every pixel in the

RGB image, in the OpenGL shader.

First, the shader verifies the depth pixel is valid. All invalid

depth pixels have a value of zero. Next, the XY -coordinates of

the depth pixel are used with the depth value to project the point

into 3D space as point p. The principle is the same as was used in

point cloud projection in section 4.4. Then, every triangle of the

3D mesh is multiplied with the camera’s inverse transform matrix,

which brings the triangle into the projection camera’s view. The

projection camera is situated in the world origin. Finally, the

triangle is intersected with a ray which goes from the world

origin, as the camera uses pinhole camera model, into the

previously obtained point p. If the intersection was successful and

closer than any previous intersection of this triangle, the point

intersection point can be set to be the closest.

After the triangles have been iterated over, the texture space

UV -coordinate corresponding to the intersected triangle and the

intersection point can be obtained using the distances from the

triangle’s corner vertices, projected on the triangle’s normal. As

the normal vectors of the mesh are not passed on to the shader,

this step is done on the CPU after the projection is completed.

5.4.2 Texture Stacking. At this point, there are n-number of

individual textures, corresponding to every frame’s projection in

3D space. These textures must then be stacked properly. The two

methods producing the best results are per-pixel average stacking

and non-zero stacking.

In per-pixel average stacking, all valid pixels in the individual

projection textures are averaged to form a coherent texture.

Usually, this gave overall the best-looking results, as the effect of

imprecisions in the camera positions was negated due to the

averaging. The downside of averaging with inaccuracies is the

slight blurriness of the texture.

In non-zero stacking, the projection textures’ pixels are

stacked only if the pixel in the destination texture is not yet valid.

All subsequent pixels to that position are rejected. This yields the

sharpest looking textures, but even the slightest amount of

MMSys'21, Sept. 28 - Oct. 1, 2021, Istanbul, Turkey T. T. Niemirepo et al.

fluctuation in the pose or the reconstructed 3D surface will result

in un-usable textures.

The best-looking results were achieved by overlaying the non-

zero texture over the per-pixel average texture and using a

sharpening filter on the averaged texture.

6 Performance and Quality Analysis

In our experiments, the execution speed and camera pose accuracy

of the proposed Open3DGen software was benchmarked with the

first half (1500 frames) of the Vicon Room 2 “easy” [33] and

Machine Hall MH01-03 [33] datasets. These datasets are

composed of 1280×720 black-and-white stereo images.

Furthermore, the subjective quality of the resulting textured 3D

model was evaluated with our own RGB-D test sequences.

The execution speed and reconstruction quality of

Open3DGen were also compared with those of Metashape [1] and

Meshroom [2] photogrammetry software. Instead, BundleFusion

[14] and VoxelHashing [15] frameworks were excluded from the

evaluation as compiling their source code was found unsuccessful

due to unresolved CUDA compatibility issues with newer Nvidia

graphics cards and the latest installation of Windows 10. All

SLAM implementations were also omitted because none of them

[6]-[13] is able to output textured 3D models.

6.1 Experimental Setup

The input RGB-D images for our experiments were taken with the

Intel RealSense D435 camera. The benchmarking was conducted

on a desktop workstation equipped with AMD Ryzen 3900X

processor and Nvidia GTX1080 graphics card. The operating

system was Ubuntu Linux 20.04.

6.2 Execution Speed Evaluation

Processing the first half of the “Vicon Room 2” and “Machine

Hall” datasets with Open3DGen took 89 ms per frame on

average, resulting in a frame rate of 11 frames per second (fps).

These test runs were conducted with unlimited number of feature

points, so the frame times were not consistent but content

dependent.

In most cases, detecting 1000 features per frame guarantees a

good camera pose. Setting the number of features per frame

accordingly to 1000 resulted in the consistent frame time of

67 ms, i.e., the frame rate increased to 15 𝑓𝑝𝑠. However, keeping

the number of features unlimited results in a more robust pose due

to the increased number of points for the PnP algorithm.

6.3 Camera Pose Accuracy Assessment

With these same two datasets, the per-frame average camera pose

estimation accuracies were ≈ 17 𝑐𝑚 and ≈ 24 𝑐𝑚, respectively.

These results were achieved without camera pose refinement, loop

closure, and bundle adjustment.

It is worthwhile noting that Open3DGen is not designed for

large-scale reconstruction as these two datasets but shorter

sequences with usually uniform movement around the object of

interest. In these cases, the error is usually less than 1 cm. For

example, the models depicted in Figure 2 and Figure 4 had an

average error of 4 mm.

6.4 Subjective Quality Assessment

The subjective quality of Open3DGen was illustrated with the

three test scenes depicted in Figure 4. They are called Mossy rock

(249 frames), Living room (193 frames), and Teapot (261 frames).

Mossy rock is a typical outdoor scene. It took 87 s to reconstruct,

consisting of 24 s for the real-time part and 63 s for the texture

projection. Living room is an indoor scene whose reconstruction

took 88 s (15 s + 73 s). Teapot is a 3D model with a slightly

reflective surface and a handle. The respective 3D mesh topology

of the teapot can be seen in Figure 3 (b). Reconstruction time of a

Teapot was 96 s (29 s + 67 s). The inconsistencies in the recorded

times are due to the varying number of detected features in the

real-time part and the triangle count of the mesh in the texture

projection phase.

6.5 Comparison with Prior-Art

Figure 4 also illustrates 3D reconstruction quality obtained with

Metashape and Meshroom frameworks that were adjusted for the

highest available quality settings. Table 3 tabulates the respective

processing times of these three benchmarked software and

speedup of our Open3DGen over Metashape and Meshroom.

With Mossy rock and Living room scenes, the output quality

of Open3DGen is equal to those of Metashape and Meshroom.

The teapot scene illustrates well the shortcomings of traditional

SfM methods; the models are not reconstructed correctly where

the physical object had highly specular and reflective surfaces.

Meshroom, and to a lesser degree Metashape, have a hole on the

right side of the teapot. Meshroom also struggled with the floor in

the living room scene.

Using calibrated depth data allows us not only to average the

per-view point clouds, thus overcoming the issue of reflective

surfaces, but to automatically compute the correct real-life scale

of the 3D model as well. The photogrammetry software require

trackable points to be able to compute a depth map; if the surface

is reflective the reflection moves with the camera and therefore

making depth map creation difficult. They cannot compute the

scale automatically either, Metashape only allowing the user to

manually set the size of an object and scale the output

accordingly.

Neither Metashape nor Meshroom allow the direct editing of

the results between all the sub-stages, supporting only removing

unwanted points from the sparse and dense point clouds before

generating the 3D mesh. Ours supports exporting, editing and re-

import the edited results between all stages, after the real-time

part of the system.

7 Conclusions and Future Work

This paper presented a fully open-source and cross-platform

software called Open3DGen for reconstructing high-quality

textured 3D models from RGB-D images. The proposed nine-

stage Open3DGen pipeline is composed of a real-time frontend

Open3DGen MMSys'21, Sept. 28 - Oct. 1, 2021, Istanbul, Turkey

for a coarse 3D model reconstruction and an offline backend for

model refinement and texture mapping. The system is shown to be

robust with multifaceted inputs and in different operating

conditions. The generated 3D models are ready to use as-is in

various computer graphics and other 3D applications.

The proof-of-concept setup of Open3DGen was able to

reconstruct a coarse 3D model from 720p RGB-D input at an

average processing speed of 15 fps on AMD Ryzen 3900X CPU

and Nvidia GTX1080 GPU. It was shown to achieve quality either

comparable to or exceeding the state-of-the-art photogrammetry

software in a fraction of the processing time.

In the future, the Open3DGen CLI will be upgraded to an

intuitive graphical user interface (GUI) and the backend of the

Open3DGen pipeline will be optimized for real-time processing.

A completely real-time Open3DGen software could be used to

take the user experience of the next-generation interactive and live

applications to the next level of immersion.

ACKNOWLEDGMENTS

This paper is part of the NEWCONTROL project that has

received funding within the ECSEL JU in collaboration with the

European Union's H2020 Framework Programme (H2020/2014-

2020) and National Authorities, under grant agreement 826653.

Figure 4: A comparison of reconstruction quality with three test scenes. (a) Metashape. (b) Meshroom. (c) Open3DGen.

Table 3: Performance comparison between Metashape, Meshroom, and Open3DGen.

MMSys'21, Sept. 28 - Oct. 1, 2021, Istanbul, Turkey T. T. Niemirepo et al.

REFERENCES
[1] Agisoft Metashape. [Online]. Available: https://www.agisoft.com/.

[2] AliceVision Meshroom. [Online]. Available: https://alicevision.org#meshroom.

[3] S. Ullman, “The interpretation of structure from motion,” in Proc. R. Soc.

Lond., B203, Jan. 1979.

[4] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “RGB-D mapping: using

Kinect-style depth cameras for dense 3D modeling of indoor environments,” in

Proc. Int. Symp. on Experimental Robot., Dec. 2010, New Delhi and Agra,

India.

[5] D. R. dos Santos, M. A. Basso, K. Khoshelham, E. de Oliveira, N. L. Pavan,

and G. Vosselman, “Mapping indoor spaces by adaptive coarse-to-fine

registration of RGB-D data,” IEEE Geosci. Remote Sens. Lett., vol. 13, no. 2,

Feb. 2016, pp. 262–266.

[6] A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann, “6D SLAM—3D

mapping outdoor environments,” J. Field Robot., vol. 24, no. 8–9, Aug. 2007,

pp. 699–722.

[7] P. Newman, D. Cole, and K. Ho, “Outdoor SLAM using visual appearance and

laser ranging,” in Proc. IEEE Int. Conf. Robot. Autom., May 2006, Orlando,

Florida, USA.

[8] D. M. Cole and P. M. Newman, “Using laser range data for 3D SLAM in

outdoor environments,” in Proc. IEEE Int. Conf. Robot. Autom., May 2006,

Orlando, Florida, USA.

[9] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: large-scale direct

monocular SLAM,” in Proc. European Conf. Comp. Vision, Sept. 2014, Zürich,

Switzerland.

[10] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós, “ORB-SLAM: a versatile and

accurate monocular SLAM system,” IEEE Trans. on Robotics, vol. 31, no. 5,

Oct. 2015, pp. 1147–1163.

[11] R. Mur-Artal and J. D. Tardós. “ORB-SLAM2: an open-source SLAM system

for monocular, stereo and RGB-D cameras,” IEEE Trans. on Robotics, vol. 33,

no. 5, Oct. 2017, pp. 1255–1262.

[12] C. Campos, R. Elvira, J. J. Gómez, J. M. M. Montiel, and J. D. Tardós, “ORB-

SLAM3: an accurate open-source library for visual, visual-inertial and multi-

map SLAM,” arXiv preprint arXiv:2007.11898, July 2020.

[13] A. Rosinol, M. Abate, Y. Chang, and L. Carlone, “Kimera: an open-source

library for real-time metric-semantic localization and mapping,” in Proc. IEEE

Int. Conf. Robot. Autom., Aug. 2020, Paris, France.

[14] A. Dai, M. Niessner, M. Zollöfer, S. Izadi, and C. Theobalt, “BundleFusion:

real-time globally consistent 3D reconstruction using on-the-fly surface re-

integration,” ACM Trans. Graph., vol. 36, no. 3, June 2017, pp. 24:1–24:18.

[15] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger, “Real-time 3D

reconstruction at scale using voxel hashing,” ACM Trans. Graph., vol. 32, no.

6, Nov. 2013, pp. 169:1–169:11.

[16] peel 2 3D scanner. [Online]. available: https://peel-3d.com/products/peel-

2?variant=33046758522903.

[17] Artec Eva. [Online]. Available: https://www.artec3d.com/portable-3d-

scanners/artec-eva-v2.

[18] S. Pertuz and D. Puig, “Analysis of focus measure operators for shape-from-

focus,” Pattern Recognition, vol. 46, no. 5, May 2013, pp. 1415–1432.

[19] OpenCV: Open Computer Vision Library. [Online]. Available:

https://opencv.org/.

[20] D. Lowe, “Distinctive image features from scale invariant keypoints,” Int. J.

Comput. Vis., vol. 60, no. 2, Nov. 2004, pp. 91–110.

[21] P. F. Alcantarilla, J. Nuevo, and A. Bartoli, “Fast explicit diffusion for

accelerated features in nonlinear scale spaces,” in Proc. British Mach. Vis.

Conf., Sept. 2013, Bristol, United Kingdom.

[22] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: an efficient

alternative to SIFT or SURF,” in Proc. IEEE Int. Conf. Comp. Vis., Mar. 2011,

Barcelona, Spain.

[23] O. Chum, T. Pajdla, and P. Sturm, “The geometric error for homographies,”

Comput. Vis. Image Understanding, vol. 97, no. 1, Jan. 2005, pp. 86–102.

[24] V. Lepetit, M. Moreno-Noguer, and P. Fua, “EPnP: an accurate O(n) solution to

the PnP problem,” Int. J. Comput. Vis., vol. 81, no. 2, Feb. 2009, pp. 155–166.

[25] D. Nister, ”An efficient solution to the five-point relative pose problem,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 26, no. 6, June 2004, pp. 756–777.

[26] H. Aghajan and A. Cavallaro, “Multi-Camera Networks: Principles and

Applications,” Academic Press, Apr. 2009, Orlando, Florida, USA.

[27] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruction,” in

Proc. Eurographics Symp. on Geometry Process., June 2006, Cagliari, Sardinia,

Italy.

[28] J. Wenzel, M. Tarini, D. Panozzo, and O. Sorkine-Hornung, “Instant field-

aligned meshes,” ACM Trans. Graph., vol. 34, no. 6, Oct. 2015, pp. 189:1–

189:15.

[29] F. Dellaert, “Factor graphs and GTSAM: A hands-on introduction,” Georgia

Institute of Technology, Sept. 2012.

[30] Q. Zhou, J. Park, and V. Koltun, “Open3D: a modern library for 3D data

processing,” arxiv.org/abs/1801.09847, Jan. 2018.

[31] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin, “The ball-

pivoting algorithm for surface reconstruction,” IEEE Trans. Vis. Comput.

Graph., vol. 5, no. 4, Nov. 1999, pp. 349–359.

[32] Xatlas. [Online]. Available: https://github.com/jpcy/xatlas.

[33] EuRoC MAV Dataset. [Online]. Available:

https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets.

