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Abstract—In this paper, we study the performance of a 
complementary filter with adaptive weights in sensor fusion 
application for real-time localization of an omnidirectional field 
robot. The test-case robot is a large, four-wheel drive and steer 
(4WDS), construction vehicle with nonlinear internal dynamics 
and hydraulic driving and steering actuators. Our objective is 
to provide the real-time controller of the vehicle with a robust 
and smooth feedback that prevents unnecessary oscillations of 
steering, which can waste significant amount of energy. This is 
done by assigning weights for measurements based on their 
consistency with the robot’s motions. The calculations are based 
on two main data sources: (1) measured velocities vectors from 
wheel driving (odometer) and steering of the 4WDS test-case 
robot as well as (2) data obtained from a differential Global 
Navigation Satellite System (GNSS) for absolute pose of the 
robot.  We show that the fusion is robust to the noise and single 
point failures of the sensors while the maximum heading 
oscillations are reduced by 70–95% that preserves accuracy of 
the global positioning system. Moreover, we demonstrated 
feasibility and efficacy of the real-time implementation of this 
filtering method on the path-following control of the robot. 

Keywords—sensor fusion, motion estimation, path following, 
heavy-duty field robot, GNSS, GPS, wheel odometry 

I. INTRODUCTION 

Interests towards the study field of autonomous vehicles 
(AV) have grown considerably during the last decade. For 
autonomous driving on predefined paths, state-of-the-art path-
following controllers are able to control robots with accuracies 
measured in centimeters [1], [2]. However, in order to achieve 
these accuracies, controllers require the received positioning 
feedback to be precise, robust, and smooth but not delayed. 
Absolute positioning of a field robot is most of the times 
implemented using GNSS. To the best of the authors’ 
knowledge, even the high-cost GNSS-systems all alone are 
not able to produce positioning that is smooth and robust 
enough for accurate path-following control, without 
oscillations in the steering. With heavy-duty field robots, these 
oscillations will produce massive unnecessary forces between 
the tire and terrain, which waste energy and will eventually 
lead to premature wearing of the tires and moving structures. 

Comprehensive studies have been conducted on sensor 
fusion for vehicle positioning. In one of the latest ones [3], 
single automotive radar and a gyroscope was used to provide 

complete odometry estimation for the position. The study 
showed good results, especially for replacing wheel- or visual-
odometry with the suggested method during slippery ground 
and low visibility circumstances. However, including the 
absolute position was not considered; the GNSS was used as 
a ground truth reference. For fusion of GPS and odometry, the 
authors in [4] fuse a relative odometry with included 
gyroscope with an absolute GPS position to estimate robot 
localization. They proved that the fusion of odometry and 
gyroscope with Kalman filtering provided accurate indoor 
measurements, where the traveled distances were under 100 
m. However, the GNSS technology of the time had a constant 
localization error of 0.8 m, which is why the outdoor results 
obtained at the time cannot be compared to results gathered 
with the current existing GNSS technology. In [5], the authors 
used the extended Kalman filter to fuse differential-GPS and 
odometry to localize a mobile robot. Feasibility of the fused 
signal was evaluated in a mobile robot teleoperation 
experiment, where the fusion result showed that the deviation 
from the GPS-based ground truth was under of 20 cm even 
during the turning situation. In addition to the studies 
introduced, authors of this paper did not find any studies from 
the past 5 years, where the pure wheel odometry and GNSS 
had been used for smooth motion estimation of field robots. 

This paper focus on fusing a noisy, variable-delayed, but 
absolute GNSS position to a smooth and low latency wheel 
odometry feedback to form an accurate and robust feedback 
signal, which can be given in real-time to a control system as 
a localization feedback. The fusion is based on M-estimator 
application introduced in [6], where originally the absolute 
position was received based on vision. In this paper, we are 
using the GNSS to prove the high performance of the selected 
algorithm for alternative sensors. Furthermore, we are 
applying the fusion into a heavy-duty omnidirectional 
construction vehicle with nonlinear internal dynamics and 
high inertia. The experimental test-case robot, four-wheel 
drive and steer (4WDS) Haulotte, is shown in Fig. 1. 

This paper is organized as follows: in section II, the 
architecture and sensor configurations of the test-case robot 
are presented. Software and algorithms are introduced in 
section III. Results from the fusion and path-following control 
with the fused feedback are shown in section IV. Finally, we 
conclude the study in V and suggest the main key features to 
be focused on in the future research. 



II. ROBOT ARCHITECTURE 

A. Test-Case Robot: Haulotte 16 RTJ PRO 

Haulotte is a heavy-duty, four-wheel drive and steer 
(4WDS), articulated boom lift with hydraulic driving and 
steering actuators [7]. Usually these types of vehicles are used 
as mobile bases for aerial work platforms. The robot weights 
6650 kg and its boom can lift objects up to 15 m. The 
dimensions and parameters of the robot, relevant to the study, 
are presented in Table I and Fig. 2. 

A diesel engine, powers a variable-displacement hydraulic 
pump, which provides the oil flows to all the actuators. 
Robot’s wheels are driven by four fixed-displacement 
hydraulic motors. The motors’ revolution speeds are 
separately controlled with four hydraulic servo valves. The 
valve openings are controlled using velocity-based PI-
controllers with included feedforward terms. The wheels are 
steered using two symmetrical hydraulic cylinders, actuated 
by two proportional valves. These valves are proportionally 
controlled. [7] 

B. Sensor Configurations 

For autonomous driving, the robot has a Beckhoff CX2030 
real-time hardware platform, which has a wide modularity for 
interfacing with various sensors and actuators. The platform 
runs TwinCAT software system. The programming is 
executed in MATLAB Simulink environment and the 
developed modules are built for the target of TwinCAT 
system. The robot has a wireless communication between the 
real-time hardware and the host PC. 

Each wheel of the test-case robot has a metallic rotating 
disk with 150 equally distributed holes and two optical sensors 

for sensing the holes, see Fig. 3. The velocity of the wheel is 
derived from the sensed pulses. These types of robots are 
usually driven quite slow, by using speeds less than 5 km/h. 
For this reason, optical sensors were used instead of hall-effect 
sensors to improve pulses per round ratio and obtain a high 
resolution output. As it is presented in [8], while using hall-
effect sensors, the resolution of the encoder becomes large and 
during a low speed motion, limited amount of pulses are 
generated. This type of behavior causes problems for 
controller feedback. 

Low-cost incremental wire encoders are used for 
measuring the displacements of the steering cylinders. With 
the known dimensions of the steering structures, the measured 
cylinder displacement is mapped as a steering angle of the 
frame {k} with respect to the base frame {b}, see Fig. 2. 

For absolute outdoor positioning, the robot has a Novatron 
BX982 differential carrier-phase GNSS receiver benefited 
from online correction factors and with two Trimble LV59 
antennas, see Fig. 1. The locations of the antennas and their 
respective coordinate frames are illustrated in Fig. 2. The 
distance between the antennas is 2.6 m. The left antenna  
is used for receiving the position and right  to from the 
heading vector together with the left one. The GPS heading 
angle, mapped to the base frame {b} of the robot is to be 
further on marked as  . The GPS is using Real-time 
kinematic (RTK) correction reference, which is received from 
a commercial base station located 13 km from the experiment 
area. With the correction, accuracies for positioning and 
heading vector are ± 0.03 cm and 0.09 deg. Data rate of the 
GNSS is 50 Hz. The communication between the GNSS 
receiver and real-time hardware platform is conducted via 
Ethernet user datagram protocol (UDP). 

TABLE I 
General specifications of the test-case robot. 

Description Quantity 

Distance between front and rear wheel axle (L) 2.1 m 

Distance between wheel axle’s steering joints (l) 1.46 m 

Distance between steering joint and wheel center (c) 0.24 m 

Wheel diameter 0.854 m 

Mass of the robot 6650 kg 

Approximate maximum linear wheel velocity (4WS) 0.36 m/s 

Fig. 3. The optical sensors and metallic disk used for measuring wheel 
odometry. See the marked steering cylinder and joint of the frame {k} 
presented in Fig. 2. 

Fig. 2. Denoted coordinate frame and main dimensions of the test-case robot.

 
 

Fig. 1. Heavy-duty test-case robot Haulotte 16 RTJ PRO in the experimental 
environment. 



III. SOFTWARE AND ALGORITHMS 

A. Software 

Modular structure of the software running in the Beckhoff 
real-time hardware PC is illustrated in Fig. 4. The entire 
closed-loop control system together with the robot is 
thoroughly discussed in [7]. In this paper, the focus is in the 
highlighted modules and in the final output that is sent by 
them to the Controller module. 

Motion Estimation module includes the algorithms 
presented in the following subsection C. The nominal 
placement of the switch after Forward Kinematics illustrates 
that with the experimental cases 1 and 2 in section IV, the 
control loop was closed with pure wheel odometry feedback 
and the data was synchronously gathered in the Data Logging 
block. Results from closing the control loop through the 
Motion Estimation in real-time are shown in cases 3 and 4. 

B. Forward Kinematics 

Measured wheel velocities and steering angles of each 
wheel are mapped to a specific base frame {b} of the target 
robot. The mapping is based on the least-square solution 
presented in [9]. Linear- and angular-velocity components of 
the base frame {b} in planar motion are presented as follows 

, where ,  (1-2) 

 

1 0 … 1 0
0 1 … 0 1

…
, (3) 

… . (4) 

Elements of B represent the measured velocity components 
of the wheel frames. The elements of A represent vectors 
measured from the base frame {b} to the wheel frames {j}. 
Unlike in [9], in our solution the elements vary as functions 
of the measured steering angles and structural dimensions, 
see Fig. 2. Therefore, the pseudoinverse of A is calculated in 
each control cycle. Results shown in Fig. 7 of section IV from 
back propagating the base frame velocity components to 
linear wheel velocities and comparing them to their 
corresponding measured feedbacks proves our solution for 
the kinematic mapping to be accurate and robust. 

C. Motion Estimator 

Fusion between position-based GPS and incremental 
velocity-based odometry is conducted by adaptation of the 
complementary filtering approach presented in the 
application [6] for integration of visual feedback in a control 
loop. In our solution, the incrementally measured  and 
GPS-based  heading angles are fused by considering the 
differential (5) 

,

,
, (5) 

where,  
0 1
0 0

 and 1
0

. (6-7) 

In (5),  and  are the first derivatives of the fused heading 
angle and bias, and ,  and ,  are proportional and integral 
gains used for defining the dynamics of the filter. Term  is 
a phenomenal part of the algorithm, and it is separately 
presented later in this section. 

While using wheel odometry, the error in the heading 
angle, accumulated over time, will recursively affect to the 
accuracy of odometry-based x- and y-positions. For this 
reason, the fusion of the heading is conducted first and the 
fused signal  is used in fusion of the positions. For fusion 
of the x- and y-positions, consider (8) and (9) 

,

,
v cos , (8)

,

,
v sin , (9)

where v  is the incremental velocity measured along x-axis 
of the base frame {b}, and x  and y  represent the GPS 
positions, mapped to the base frame from the frame g  of 
the left GPS-antenna. 

Gain Adaptation 

Term  is used to adaptively manipulate the gains of  
and  in real-time. For  , , , consider (10) 

exp  
(10) 

where,  is a positive real number that determines 
sensitiveness of the exponential weight to the difference 
between the expected value and the measured value. For 
instance, if the measured value for  approaches to a close 
neighborhood of  , the coefficient ,  becomes fully 
effective. However, if the value goes farer, the coefficient 
asymptotically converges to zero. The value of  should be 
adjusted based on the scale of the acceptable errors and 
variance of the measurement noises. Larger constant values 
of  makes the system more conservative and smaller values 
can increase undesirable oscillations caused by the noise 
propagation. For a measurement instrument with systematic 
noise, the value of  is comparable to the standard deviation 
value in a Gaussian noise distribution.   

Fig. 4. Structure of the real-time control system with the new GPS (GNSS), 
Motion Estimation and Data Logging modules introduced in this study. 
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IV. RESULTS 

The test cases 1 and 2 were performed in Finnish winter 
conditions. The ground was covered with snow and some ice, 
which caused wheel slipping. It is notable that all the four test 
case results are conducted with identical tuning of the M-
estimator’s gain parameters and coefficient, such that for 
 , , : , 1, , 1, and 0.1. 

A. Cases 1 and 2: Synchronized Fusion 

Results from the performance evaluation of the fusion on 
triangle path are presented in Fig. 5. The path was 
intentionally selected first to challenge our path-following 
controller by changing the driving direction during the 
experiment, but for the same reason it was a demanding case 
for the fusion. Odometry, absolute-GPS, and fusion-based 
positions and their corresponding heading angles are shown 
in plots (a), (c), (d) and (e). Plot (b) presents the section 
marked with the red circle in (a), where the test-case robot 
changes the driving direction from forward drive to reverse. 
Results prove the solution robust to this type of behavior. 
Bias values of all the three fused signals are shown in (f). 

To highlight the performance of the fusion, a comparison 
between the first derivatives of the GPS- and fusion-based 
heading angles was conducted. The results are shown in 
Table II. Results show significant improvements, especially 
in the maximum value, which decreased 7-fold over the GPS. 

TABLE II.  
Rate of the heading angle based on GPS and fused signals (case 1). 

 

 
Norm Variance Maximum 

GPS 0.0978 3.2549    0.0143 
Fusion 0.0549 0.9526  0.0018 

Verifying the robustness to single point failures was 
conducted by manipulating the data by replacing some 
existing points with ones that clearly deviate from the 
expected path. In plots (a) and (b) it is shown that a single 
point deviation, 1.7 rad at the time point of 109.2 s, does not 
cause changes between the fused signals. As it is shown in (c) 
and (d), even a similar deviation that lasts for more than 1 s 
did not cause any unstable behavior, only a small deviation, 
which smoothly zeroed after receiving the GPS feedback 
again. This also proves the fusion robust to temporary GPS 
signal loss. With speeds less than 5 km/h, the path following 
can be continued multiple seconds before the recursive errors 
of the odometry start significantly increase the deviation from 
the true desired path. 

Results from backpropagation of the linear wheel 
velocities of the case 1 are presented in Fig. 7. Results prove 
that while our odometry estimations are based on pure 
kinematic calculations, the variance between the measured 
feedback and back propagated velocity is small. The rear left 
wheel had some failures while measuring the velocity 
between time points of 28 and 45 s. As shown by the 
backpropagation, our Forward Kinematics can handle these 
failures and the estimation has even smaller deviations. 
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Fig. 5. Results from sensor fusion on triangular path (case 1). 
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Fig. 6. Experimental results from proving the robustness of the fusion 
application to single point failures and temporary denial of GPS (case 1). 



 Experiments on different types of paths were conducted 
to highlight the feasibility of the fusion application under 
varying circumstances. Experimental results from a square 
type of path (case 2) are presented in Fig. 8. Plot (b) shows 
the smoothness of the fused signal while the GPS feedback 
had oscillations. While turning towards the same direction 
during the whole experiment, the recursive errors in the 
odometry signals (c-e) become visible. 

B. Cases 3 and 4: Real-Time Fusion and Closed-Loop 
Control 

Experimental results from closing the control loop with the 
real-time fusion feedback are illustrated in this section. In case 
3, the plots (a-b) in Fig. 9 represent the same properties as the 
ones in Fig. 5 and Fig. 8. Heading fusion and bias values are 
shown in (c-d). The reference path and localization (Fusion) 
feedback of the path-following controller are shown in (e). 
Performance of the fusion and our controller by the means of 
position errors are shown in (f). The x- and y-errors describe 
the longitudinal and lateral errors between the reference path 
and control point of the robot, respectively. The mean error in 
the lateral path-following accuracy was 2.84 cm, while the 
maximum error was 9.75 cm. 

Case 4 presents results from driving on a straight line using 
the closed-loop control with the fusion feedback. Plots (a-b) 
of Fig. 10 shows, how the fusion follows the absolute GPS-
position accurately while it is smooth enough for the 
controller, so that both of the mean errors are less than 1 cm 
on a 9 m long path. 

The results proved the fusion smooth and fast for the 
controller to drive the robot in a well-behaved manner. Due to 
time constraints, experiment cases 3 and 4 were the first one 
with the closed-loop fusion feedback, and, furthermore, none 
of the controller parameters were tuned yet for optimal control 

                                                           
1 See the YouTube playlist: https://goo.gl/Yj14zt 

performance. See the videos of our previous and future 
experiments conducted with the test-case robot1. 

Comparison between the key values of the first derivatives 
of GPS- and fusion-based heading angles are shown in Table 
III. The decreases in norm and variance were significant, even 
when comparing to the results of case 1 in Table II. Even the 
maximum value decreased 3-fold over the GPS on the harder 
test case 3. Due to the theoretical requirement of zero steering 
on a straight line, the fusion results of the case 4 were 
significantly better. 

TABLE III. 
Rate of the heading angle theta based on GPS and fused signals. 

Experiment cases 3 and 4. 

  
Case 3 Case 4 

 Norm Var. Max. Norm Var. Max. 
GPS 0.0922 0.4880  0.0050 0.0210 0.0636 0.0017 
Fusion 0.0222 0.0215  0.0015 0.0013 0.0002 0.0001 
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Fig. 7. Measured and back propagated wheel velocities of the case 1. 

Fig. 8. Results from sensor fusion on square path (case 2). 
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V. CONCLUSION

The study presents a fusion between two types of position 
feedback signals: wheel odometry, which is smooth and has 
low latency, but is relative, and GPS that is absolute, but has 
jumps, noise and variable delay. The pure fusion results are 
shown in cases 1 and 2 of section IV, where the resulting 
signals are proven to be smooth, accurate and robust to 
temporary denial of the GPS, without introducing any delay. 
In cases 3 and 4, the application is used in real-time control 
system to provide a path-following controller with 
localization feedback. Results prove that the current setup 
provides suitable position feedback and the controller is able 
to drive the test-case robot on the predefined paths with 
longitudinal (x) and lateral (y) mean errors of 0.50 and 2.84 
cm for case 3, and 0.74 and 0.94 cm for case 4. In these cases, 
the heading oscillations were reduced by 70 % and 95 %. 
These oscillations could cause unnecessary oscillations 
wasting energy in the steering actuators of the vehicle. 
Therefore, feedback smoothness plays a vital role in efficient 
and accurate control of the autonomous heavy-duty vehicle.  

It is to be highlighted, that all parameters of the fusion 
application were the same in all of the four cases. This 
continues to validate the performance and robustness of our 
system in various scenarios. In the future research, the authors 
will continue improving the performance of the complete 
modular autonomous system, especially the fusion.  
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Fig. 9. Results from closing control loop with the fused feedback (Case 3). 
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