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Abstract: Electrocardiographic (ECG) and electromyographic (EMG) signals are inevitably 

and simultaneously recorded from the same electrodes and are respectively useful signal and 

noise in electrocardiography, and vice versa in electromyography. The frequency domains of 

the two signals overlap, making it difficult to filter the noise without distortion of the useful 

signal. 

 

An original ‘dynamic method’ for separation of the two signals was created. In a series of 

publications that began in 1999 with filtering of EMG noise from ECG signal, we have 

described the method and have made a number of improvements such as noise analysis and 

automatic on/off triggering in presence/absence of noise, online application, and tuning the 

parameters, to fulfill the last filtering recommendations of the American Heart Association.  

 

No matter if the Dynamic procedure is to be used in electrocardiography or in 

electromyography, the method contains the following: (i) Evaluation of the frequency bands 

of the ECG signal; (ii) filtering (suppression) of the EMG signal by dynamic change of the 

size of the filtering window for maximal preservation of the morphology of the ECG waves. 

The cutoff frequency is individual for any signal sample and varies from 13 Hz at the linear 

segments of the ECG signal, trough 25 Hz for the T-waves of high amplitude, and up to 

400 Hz for the QRS-complexes; (iii) EMG signal separation by subtraction of the filtered 

ECG signal from ECG + EMG initial signal. 

 

With the current review, we are attempting to summarize all done over the years on the 

Dynamic procedure. 

 

Keywords: Electrocardiography, Electromyography, Dynamic filtration, High frequency 

noise, Wings function. 
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Introduction 
Electrocardiographic (ECG) and electromyographic (EMG) signals are simultaneously and 

inevitably recorded from the same electrodes and are respectively useful signal and noise in 

electrocardiography, and vice versa in electromyography.  

 

In electromyography, ECG noise superimposes the EMG signal when some of the 

investigated muscles are trunk muscles and especially for those ones placed on the left. 

The noise obstructs the EMG analysis and makes impossible the control of technical devices 

as ortheses, exoskeletons, prosthesis, etc. [1, 2]. 

 

The frequency domains of the ECG and EMG signals overlap, making it difficult to filter the 

noise without distortion of the useful signal. The energy of the EMG signals is in the 

frequency range from 0 to 500 Hz [3], and the useful information is contained within the 

range 10-400 Hz [4]. For that reason, the 30 Hz high-pass 4th order Butterworth filter 

recommended in [5] will cut useful information between 10 and 30 Hz and will not filter the 

high-frequency components of the ECG signal thus destroying the EMG signal. 

 

Considering the fact that ECG and EMG signals superimpose linearly, Sbrollini at al. [6] 

applied their Segmented-Beat Modulation Method for signal separation providing first the 

ECG signal, and then the EMG signal by subtraction. 

 

The success of ECG signal removing from the mixed EMG + ECG signals depends on the 

amplitude ratio between these two signals. Butterworth high-pass filter with cut-off frequency 

of 30 Hz and order of 4 will not be successful, when these two amplitudes are equal or when 

the amplitude of the ECG signal is higher than the amplitude of the EMG signal [7].  

Lu et al. [8] used adaptive filter in removing ECG interference from surface EMG signal 

recorded from the trapezius muscles of patients with cervical dystonia. The efficiency of their 

method decreased with reducing the signal-to-noise ratio (SNR), but it still achieved 

respectable performance even when the SNR is below −5 dB. 

 

Zhou et al. [9] aimed to remove ECG artifacts in real time for myoelectric prosthesis control, 

a clinical application that demanded speed and time-linearity of the used methods. 

The authors investigated the removal of ECG artifacts by high frequency pass filters and by 

adaptive spike clipping, with no specific quantification of the ECG removal. 

 

Abbaspour and Fallah [10] removed ECG noise from EMG signal by adaptive subtraction, 

with a low pass filtering of an averaged ECG template. 

 

Christov et al. suggested ECG-noise removal from EMG-signal to be done by subtraction of 

hybrid template of averaged PQRS-T [11]. Special care is taken, the ectopic beats to be 

excluded from the averaging.  

 

In electrocardiography, EMG noise in resting ECG signal is quite common in subjects with 

uncontrollable tremor, in disabled persons having to exert effort in maintaining a position of 

their extremities or a body posture, in children, etc. The EMG noise can make it difficult to 

localize automatically the ECG waves and obstructs the visual analysis. 

 

Most of the ECG diagnostic information is contained below 100 Hz in adults, although low-

amplitude, high-frequency components as high as 500 Hz had been detected and studied [12]. 

Setting the low-pass filter of the ECG signal to a low cutoff level eliminates not only the 
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muscle EMG noise but also the clinically significant high-frequency components of the 

signals inside the QRS complex [13, 14], J-waves [15] and pacemaker spikes [14].  

For that reason, the American Heart Association (AHA) changed its low-pass filter 

recommendation from 35 Hz cutoff in 1967 [16], to 150 Hz for adolescents and adults, and to 

250 Hz for children in 2007 [12].  

 

Low-pass filtering with 35 Hz cut-off frequency is presented in Fig. 1. The filter distorts the 

high-frequency components of the QRS (shown by arrows). This is expressed by strong 

reduction of the QRS amplitude, in the first example, and almost full suppression of the QRS 

fragmentation (essential predictor of mortality and sudden cardiac death [17]), in the second 

example. 

 

  
Fig. 1 Two ECG signals filtered with a cutoff frequency of 35 Hz 

 

In the clinical practice, little attention tends to be paid to the filter setting of the ECG 

instruments, resulting in inappropriate filter application. In fact, Kligfield and Okin [18] 

found that the low-pass filter setting was 100 Hz and above in 25% of the ECG devices and 

less than 100 Hz (most commonly 40 Hz) in 75% of the ECG devices obtained within an 

American medical community. 

 

The tendency of maximal preservation of the QRS high-frequency components and filtering 

with a cutoff frequency of higher than 50 Hz [18] leads to a high level of residual noise. 

This is shown in Fig. 2, where an original ECG signal containing EMG noise is filtered with 

35 Hz, 150 Hz and 250 Hz cutoff frequencies respectively. 

 

The presence of EMG noise could cause serious problems to the analysis of the signal out of 

QRS and will worsen the T-end localization, detection of ischemia (in the ST interval), atrial 

fibrillation and flutter (in the PQ interval), detection of T-wave alternans, etc.  

 

Sayyad and Mundada [19] were using extended Kalman filter and extended Kalman 

smoother. Priority was given to the smoother, but in both methods, a great signal distortion 

was observed in the QRS. 

 

Rakshit and Das [20] proposed, an efficient ECG denoising method using combined empirical 

mode decomposition and adaptive switching mean filter. Minimum distortion was achieved 

by restoration of the R-peaks, attenuated by the mean filter.  
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Fig. 2 An ECG signal containing EMG noise,  

filtered with 35 Hz, 150 Hz and 250 Hz cutoff frequencies 

 

Dotsinsky and Mihov [21] were filtering the noise in three steps: (i) Moving averaging with 

first zero set at 50 Hz to suppress tremor and powerline interference simultaneously;  

(ii) The reduced peaks of QRS complexes were restored by a procedure called linearly-

angular; (iii) Finally, a Savitzky-Golay smoothing filter was applied for supplementary tremor 

suppression outside the QRS complexes. In another study they aimed to develop simple 

approach for tremor suppression using heuristic relations between the ECG waves and 

parameters of some types of comb filters applied specifically on selected parts of the signal 

[22]. The heuristic relations are performed with appropriate criteria that determine comb 

filters. 

 

Joy and Manimegalai [23] were using wavelet transform to remove the EMG noise. 

The proposed method selected the best suitable wavelet function based at the  

5th decomposition level. The authors claimed that the method retains the distinctive features of 

the ECG signal. 

 

Myriad filters are known to perform well with Gaussian and impulsive noise. Tulyakova [24, 

25] presented good results with locally-adaptive, low-pass Myriad filters for ECG processing. 

 

An example of dynamic filtering is present in De Pinto [26], where a time-varying low pass 

filter was used , maximizing (minimizing) the bandwidth inside (outside) the QRS complex. 

 

It is difficult to identify comparable review papers in the literature on EMG noise filtration 

from ECG signal. Kalra et al. [27] and Luo and Johnston [28] consider the problem to 

minimize the EMG noise from ECG signal with different methods: Wavelets, Principal 

Component Analysis, Independent Component Analysis, Low-pass filters. Both materials 

give common and basic knowledge about existing filters and the topic of suppression of 

muscle noise is not deeply treated.  

 

‘Dynamic’ procedure for separation of the two signals – ECG and EMG was developed [29] 

and build up further [30-37]. The considered procedure produces specific individual filtering 

coefficients for every single sample of the signal, in an attempt to satisfy in the best possible 

way the conflicting requirements for a strong suppression of noise, and at the same time for a 

maximal preservation of the useful signal. 
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Methods 

Electrocardiography 
Dynamic control 

The dynamic control was evaluated in two ways: by the frequency bands of the ECG waves 

and by the amount of filtered noise inside and outside the QRS-complex. 

 

Evaluation of the frequency bands of the ECG waves 
Evaluation of the frequency bands of the ECG elements was on the basic of the Dynamic 

filtration. A so-called ‘Wings’ function criterion was created [29], which allowed a dynamic 

application with different filtering rate of the approximation procedure of Savitzky and Golay 

[41]. Evaluation of the frequency spectra of the ECG waves is shown in Fig. 3. It consists of: 

 filtering of the initial ECG signal (Fig. 3a) to eliminate/suppress power-line 

interference and EMG noise. The goal is a complete suppression of the noises,  

no matter of the high frequency distortion occurring in amplitude reduction of the 

QRS, as shown in subplot (b) of Fig. 3; 

 performing of the ‘Wings’ function (details are given later on), which reacts with 

sharp peaks to the steep slopes of the QRS and high amplitude T-waves  

(Fig. 3c – traced with thin line); 

 filtering of the ‘Wings’ to smooth the peaks (Fig. 3c – traced with thick line); 

 transfer of the particular values of the ‘Wings’ function to a window length ‘wl’ 

(Fig. 3d), over which the final Savitzky-Golay filter (SGF) will be applied. 
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Fig. 3 Evaluation of the frequency response of ECG waves:  

(a) ECG signal; (b) filtered ECG signal; (c) ‘Wings’ function;  

(d) transfer the ‘Wings’ into dynamic window length ‘wl = -n:n’ of the SGF. 
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Block diagrams describing two methods for evaluation of the frequency spectra of the  

ECG waves [29 and 33] are shown in Fig. 4 and Fig. 5, respectively. 

 

 
Fig. 4 Block diagram of the evaluation of window length of SGF filer  

through frequency bands of the ECG signal [29]  

 

 
Fig. 5 Block diagram of the evaluation of window length of SGF filer  

through frequency bands of the ECG [33] 

 

Worsening of the EMG suppression at high EMG noise and high baseline drift was observed 

during the years, using the method described in the first publication ([29], Fig. 4).  

For that reason the method of Christov et al. [33] was with increased filtering ability in the 

pre-‘Wings’ stage (Fig. 5). 

 

Three filters were used in evaluation of the frequency bands of the ECG [33].  

SGF (block 1 of Fig. 5) will be described in a special chapter. Moving averaging filter,  

(MAF – block 4 of Fig. 5) has first zero at 20 Hz for a window of 50 ms. First difference filter 

(FDF – block 2 of Fig. 5) has a transfer function of 
 

2
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m
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 , (1) 

 

where FDF is a comb filter with first zero frequency f = 1/(mTS). We selected m to be 
 

S

PL

T

T
m

2
 , (2) 

 

where TPL is the period of the power line interference, and TS is the sampling interval. 

The high-pass FDF of 3 dB is set at about 6 Hz frequency, and the higher frequency notches 

reject all harmonics of power-line interference.  
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The cut-off frequency of SGF for a window of 60 ms is Fc = 12 Hz. By a window of 40 ms 

(difference between two samples, 40 ms apart), FDF is tuned to pass at the same frequency 

bandwidth of 6-18 Hz.  

 

Power-line frequency instability (not precise 50 Hz but 49 Hz, for example, see Eq. (2)) 

would slightly worsen the FDF functionality, but with no effect to the final result, since the 

power-line interference is filtered twice: by SGF and by FDF. 

 

A so-called ‘Wings’ function was found by multiplying the slopes of two adjacent segments 

of 10 ms length having a common central point. The product absolute value was then taken 

and inverted (block 3 of Fig. 3). For a 1000 Hz sampling rate the ‘Wings’ function is: 

 

    10 10i i i i iWings abs S S S S      , for i > 10. (3) 

 

The segment length of 10 ms was chosen in order to obtain a certain level of signal smoothing 

in the process of frequency response evaluation. We have found that this value was not 

particularly critical, as a smaller interval results in more varying ‘Wings’ function and thus 

stronger additional smoothing is needed, and vice versa [29]. Sliding this function along the 

signal, it reflects the variations of the angle between the two segments. The movement of the 

segments resemble the wings of a butterfly, hence the name ‘Wings’. 

 

Well-shaped negative peaks of ‘Wings’ corresponded to every Q, R and S wave of the  

ECG signal. Negative peaks appeared also at the maximum slew rate of QR and RS segments. 

This is demonstrated in Fig. 4c, where the ‘Wings’ function is shown as a thin line.  

 

‘Wings’ is further smoothed by two-pass moving-averaging with a window of 50 ms  

(block 4 of Fig. 3). The ‘two-pass’ moving-averaging is performed twice in the same forward 

direction. The result is a negative wave (shown by a thick line in Fig. 4c), that responds to the 

wave frequency of the ECG signal. 

 

Block 5 of Fig. 3 transfers the particular values of the ‘Wings’ function into a window length 

‘wl’, over which the final Savitzky-Golay filter is applied. If W is the smoothed ‘Wings’ and 

Wmax, Wmin are its maximum and minimum values, the transfer formula to ‘wl’, varying from 

wlmin to wlmax, is: 
 

minmax

minminmax
min

))((

WW

WWwlwl
wlwl




   (4) 

 

The values wlmin = 5 ms to wlmax = 75 ms in our first publications [29-31] were chosen to 

fulfill the 35 Hz cutoff filtering recommendations [16]. In order to keep undistorted the 

diagnostic high-frequency components of the ECG signal, and complying with  

the 2007 recommendations of the American Heart Association [12], we expanded ‘wl’ from 

wlmin = -40 ms (to force negative values in QRS interval, in order not to filter the signal if  

wl < 2 ms) to wlmax = 100 ms [34], reaching wlmax = 200 ms, when used in electromyography 

[35, 36].  

 

The ‘Wings’ function and its transfer to ‘wl’ is presented in Fig. 6. The thin line in the  

2nd subplot of Fig. 6 is represented for the method of Christov and Daskalov, 1999 [29] and 

complies with the old recommendations for a 35 Hz cutoff of the low-pass filter [16]. 
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The thicker trace of the subplot is illustration of the method of Christov et al. [34], and 

complies with the new recommendations for a higher than 150 Hz cutoff frequency of the 

low-pass filter [12]. No filtration is performed if ‘wl’ < 2 ms, and this is the case for the whole 

QRS interval as shown with vertical dashed lines in Fig. 6. The upper boundary wlmax = 100 

means that at low frequency ECG spectra the cutoff frequency is around Fc = 17 Hz. 

 

 
Fig. 6 ‘Wings’ function and its transfer to window length ‘wl’.  

Thin line is from Christov et al. [29]; thicker line is from Christov et al. [34]. 

 

Evaluation by the amount of filtered noise inside and outside the QRS-complex 

The dynamic control was obtained by evaluation of the amount of filtered noise inside and 

outside the QRS-complex [31]. The method was not intended to work online since it needs 

preliminary location of the QRSon and QRSoff, performed by [40].  

 

The retrieval of the Dynamic control, as well as the final filtering was based on the Savitzky 

and Golay [41] approximation procedure. The initial signal Xi was filtered n times with 

different lengths wl of the filtering window, to obtain n filtered signals Yi
n. Analysis of the 

difference between the original ECG signal Xi and the filtered one Yi
n is made for every n by 

the standard deviation of residual noise inside QRS (std_RN_QRS) and outside QRS 

(std_RN_out):  

 

Std_RN_out(n) = std{Yi
n – Xi}  for i outside QRS interval, 

Std_RN_QRS(n) = std{Yin – Xi}  for i inside QRS interval. (5) 

 

The ratio: 

 

r_in_out (n) = std_RN_out(n) / std_RN_QRS(n) (6) 

 

is calculated n times, and the maximal value of n for which r_in_out(n) > 1 is considered as 

good value for filtering inside the QRS interval. 

 

Inside the QRS interval, wl assumes its minimum value wlmin in the range from 8 ms to 24 ms, 

with a smooth transition towards outside the QRS, where it takes the maximum value of  

wl = 30 ms. The filtering algorithm modifies wlmin with decreasing values until the ratio 

r_in_out is > 1. The critical point of this kind of filter is the distortion inside the  
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QRS interval, and this is evident mainly with ECG signal with a low presence of high 

frequency noise. 

 

Dynamic filtration 

Ones the dynamic control has been evaluated, the actual filtering is done by:  

 one-pass Savitzky-Golay filter [29, 31, 32, 35, 36],  

 two-passes Savitzky-Golay filter [32, 33], or 

 hybrid filtering – one-pass Savitzky-Golay filter at the QRSs intervals and 

transform-domain filtering elsewhere [30].  

 

Approximation procedure of Savitzky-Golay 

A smoothing procedure was adopted from Savitzky-Golay [41], a very general family of low 

pass filters, well-adapted for data smoothing. It performs an approximation by polynomial of 

grade m, and makes use of the least squares approximation method, for defining the weighting 

coefficients. The mathematical description of the process is: 

 

1 j nL

j -nR

Y C X
i j i jN






 , (7) 

 

where Y and X represent the signal after and before approximation respectively, nL and  

nR – number of samples before and after the data point i-th, Cj – weighted approximation 

coefficients, and N – a normalization coefficient, and both are depending on m. The properties 

of SF family of low pass filetrs are discussed in Shafer [37]. The conditions for the optimal 

choice of SG filter are studied in Krishnan and Seelamantula [38].  

 

The adopted smoothing procedure considers a quadratic polynomial approximation  

(m = 2), and a symmetric approximation interval (nL = nR = n) for preserving the temporal 

structure of the time-varying signal. In this case, the procedure is applied on a window length 

wl of 2n + 1 samples, and the approximation and normalization coefficients are given by: 

 
22 5133 jnnc j  , (8) 

2(2 1)(4 4 3)

3

n n n
N

  
 .

 
(9) 

 

Transform-domain method 

We also used an EMG denoising by hybrid application of transform-domain method outside 

the QRS, and approximation methods in the QRS [29].  

 

The ECG signal and the EMG noise were considered as vectors in a N-dimensional signal 

space, namely s and e, mixed additively to obtain the noisy signal, i.e.: 

 

x = s + e  for  x, s, e  RN. (10) 

 

The EMG contamination can be assumed a short-term zero-mean Gaussian noise with 

variance σ2.  

 

The idea was based on a temporal discrimination of the QRS-complexes (of higher-frequency 

and containing most of the signal energy) from areas outside the QRSs, characterized by 
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lower-energy and lower-frequencies. The discrimination rule is depending on the ECG signal 

slew rate. Different denoising techniques were applied on the two areas. In the segments 

outside the QRSs we aimed at an efficient EMG artifact suppression together with a 

preservation of some important small-amplitude details. This can be done by applying a 

transform domain denoising involving an appropriately selected transform domain coefficient 

shrinking threshold.  

 

Applying a linear orthogonal transform T on Eq. (10), we get:  

 

T(x) = T(s + e) = c + ε = y. (11) 

 

An appropriately chosen transform should compact the signal features into a small number of 

significant coefficients in y, while the noise would remain spread over all coefficients, being 

zero-mean Gaussian with variance σ2 in ε. An estimate of the noise-free signal can be 

obtained, applying a transform-domain filtering, in a form of a diagonal matrix  

 

H = diag[h(1), h(2), …, h(N)], (12) 

 

followed by the inverse transform,  

 

s = T–1HTx. (13) 

 

The idea of signal denoising by transform domain processing was popularized in a series of 

papers by Donoho and Johnstone developing an assortment of methods, summarized as 

wavelet shrinkage [42]. In their approaches, the considered transform T is the orthogonal 

wavelet transform and the operator H is a thresholding operator, realizing a hard or soft 

thresholding: 

 

1 ( )
( )

0

if | y i |
h i

otherwise


 


, (14a) 

 

1 ( )
( )( )

0

if | y i |
| y ih i

otherwise





 

 



. (14b) 

 

Most often the threshold τ is determined according to the universal threshold rule 

 

Mln2  , (15) 

 

where M is the signal length. 

 

The wavelet shrinkage has shown good performance as asymptotically optimal in a minimax 

mean-squared-error sense. However, the decimation in the orthogonal decomposition causes 

shift-variance of the wavelet transform coefficients. This effect, combined with the 

coefficients thresholding, leads to some artifacts appearance. They can be avoided by 

applying a translation-invariant wavelet transform: an over-complete decomposition 

combining the decompositions of all shifted signal versions [43]. The inverse of this 

decomposition leads to multiple estimations of each signal sample to be averaged.  
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As an alternative to the neoteric wavelet transform, a discrete cosine transform (DCT) can be 

chosen. It possesses good energy compaction properties and has shown good performance, 

especially in processing highly correlated signals [44]. Some recent investigations have found 

DCT being superior in denoising of ECG signal and magnetic cardiogram signals [45, 46]. 

The translation-invariant paradigm can be realized by a sliding window DCT one sample at a 

time. The window size has to compromise between the requirements of sufficient temporal 

and frequency resolution.  

 

Several forms of definition of the DCT exist [44]. One of most popular is the DCT type II that 

can be defined as:  

 

1
0 0 1

( ) 2
(2 1)

1 1 0 0 1
2

k n N
N

c k , n
cos n k

N
k N , n N

N




   


 


       


, (16) 

 

where c(k, n) is the k-th and the n-th element of the transform matrix C of size NN. 

The sliding DCT yields an over-complete decomposition y = Tx, where x is the input signal 

vector of length M, T is the block transform matrix, formed by the shifted versions of C, and  

y is the output vector containing MN transform coefficients (Fig. 7a). Actually, in order to 

place the transform window in the middle of the current sample and to have exactly  

M windows, we have to extend the signal with N samples around the borders. 

 

 
Fig. 7 (a) Decomposition block-matrix T; (b) Reconstruction block matrix TT. 

 

Hence, every N successive samples in y represent the spectral coefficients for a given time 

instant. The decomposition can also be interpreted as an output of an N-channel filter bank 

where the filters are formed by the reversed rows of the matrix C. After some coefficient 

shrinkage, the inverse transform can be performed just by using the transposition of the 

matrix T (Fig. 7b) with some proper normalization (averaging), formally represented  

by a matrix D:  

 

x = DTTHy. (17) 

 

Thus, we get for each sample an average of N estimations. Disadvantage of the transform-

domain procedure is the significant consumption of time and computing resources.  
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Automatic on/off triggering of the filter 

The EMG noise is not consistently present in the ECG signal. It may be absent entirely or be 

intermittent with different magnitude of the noise. For that reason, an automatic  

on/off triggering of the filter is an essential option. EMG noise has been successfully detected 

by Raphisak et al. [47], using morphological filters followed by QRS suppression. Automatic 

on/off triggering was applied and described in Christov et al. [33]. 

 

The block diagram of the automatic on/off triggering by Christov is presented in Fig. 8. 

 

 
Fig. 8 Block diagram of automatic on/off triggering 

 

The ECG signal was filtered initially by Savitzky-Golay within a fixed window of 60 ms. 

(block 1 of Fig. 8). This would suppress the high-frequency EMG noise, if it accompanies the 

ECG. Next few steps were to assess the presence/absence of noise: the raw ECG signal and 

the filtered one are subtracted (block 2 of the Fig. 8), S is the sum of all absolute values in a 

window of 50 ms which was calculated (block 3 of the Fig. 8), and then S was compared to a 

threshold value (block 4 of the Fig. 8). The result of this comparison controlled the  

on/off triggering of the filter. In order to avoid frequent switching, the turning-on was done 

after consecutive groups of noise indications in a period of 50 ms. In opposite, the turning-off 

was performed after consecutive noise-free indications in 100 ms. The turning-off condition 

was made more difficult because the ECG signal is usually accompanied by small EMG 

noise.  

 

The above sequence would not work properly because the result of subtracting ECG – 

ECGfiltered was strongly influenced by the filtering of the high frequency QRS components of 

the signal (Fig. 9c, see the dashed ellipse). Therefore, on/off triggering decision was made 

outside QRS, the indication of which is given by the decrease of ‘wl’ with more than  

wlmax – 11 (block 5 of Fig. 8). 

 

Real-time implementation 

The final filtering in [33] is performed applying 2 times (2 passes) the time-linear smoothing 

procedure of Savitzky-Golay. Taking into account the maximal of wl = 65 ms, the actual 

filtering time is 2 × 65 ms = 130 ms. 

 

The dynamic control of Fig. 5 is carried out over 220 ms: 60 ms for SGF, block 1 + 40 ms for 

FDF, block 2 + 20 ms for ‘Wings’, block 3 + 100 ms for two-pass MAF, block 4.  

 

The final filtering can be performed online with a delay of 350 ms.  
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Fig. 9 (a) Raw ECG signal; (b) Filtered ECG signal; (c) ECGraw – ECGfiltered. 

 

Electromyography 
Dynamic separation of ECG noise from EMG 

Method of Dynamic separation of ECG from EMG was created to be used in 

electromyography [35]. We thought that once we successfully filtered the ECG, we would get 

a clean EMG only by subtracting this filtered the ECG from the input signal. Basically this 

was true, but with electrodes placed on the examined surface muscle, the amplitudes of the 

EMG signals, were equal or exceeding the amplitude of the ECG signal. Changes in the 

signal-to-noise ratio of the input ECG + EMG did not allow the direct use of the Dynamic 

filtration of ECG signal from EMG noise. Low filtration level of dynamic filtering window 

with wl < 15 ms at muscle load allowed not only ECG signal but also EMG signal to pass.  

On the other hand, low filtration during muscle rest would be good to be done throughout 

QRS complexes. This made us to add a new dynamic control obtained through the 

“Estimation of the EMG level”. 

 

The block diagram of the Dynamic separation of ECG from EMG as presented in [40] 

consists of five linear procedures: 

1. Maximal suppression of power-line interference and EMG signal; 

2. Assessment of ‘Wings’ for evaluation of the frequency spectra of the ECG signal; 

3. Estimation of the ‘EMG level’ used further for control of the minimal level of the 

dynamic filtration; 

4. Dynamic filtration of the EMG signal from the initial signal with regard to the 

‘Wings’ and ‘EMG level’ aiming to achieve maximal preservation of the  

ECG signal; 

5. Subtraction of the ECG signal from the input signal. 
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Estimation of the EMG level 

The role of the EMG level estimation in the control of the ECG signal and EMG separation is 

shown in Fig. 10. Estimation of the EMG level was performed with the following equation:  

 







msij

msij

i jInabsL
17

17

))(( , i >17 ms, (16) 

 

where In = ECG + EMG signal is the input signal presented at the first subplot of Fig. 10. 

The ‘L’ estimator is controlling the window length ‘wl’ of the Savitzky-Golay filter [41] only 

during QRS, not allowing wl < L (see Fig. 10c). The choice of 17 ms at equation 16 has been 

done empirically, aiming the ‘L’ estimator to vary between 7 and 15 during rest and between 

17 and 25 during muscle load.  

 

Real-time implementation 

Four of the five procedures of the method have a constant time execution window: power-line 

suppression (20 ms); EMG signal suppression (60 ms); evaluation by ‘Wings’ of the number 

of samples in the filtering window (20 ms); estimation of the EMG level and subtraction of 

the ECG signal from the input signal (34 ms). Dynamic filtration is the only procedure having 

variable execution time, depending on the length of the filtering window ‘wl’. Taking into 

account that wlmax = 200 ms, the total execution window is less than 340 ms, which 

determines the time-delay of the pseudo-real-time mode. 

 

Results 

Electrocardiography 
Databases 

For the ECG projects [29-33] we used our digital ECG database of patients with renal 

disease [48] The ECGs (1- minute duration, 12-standard leads, 500 Hz sampling rate) were 

recorded before, and 3 minutes after a hemodialysis session. 

 

EMG noise was obtained from two ECG electrodes placed on one forearm. ECG amplifier 

was used and the recordings (400 Hz sampling rate) were made during sustained voluntary 

effort. Both ECGs and EMGs signals were resampled to 1000 Hz. The artifacts were weighted 

and additively mixed with the different ECG signals subjected to processing. 

 

Noise-free ECGs were obtained from the CTS ECG Test Atlas [49]. It contains artificially 

simulated ECG-like signals of different shapes. The so-called “analytical ECGs” are with 

shapes very close to the biological shapes, with QRS morphology like in real, normal  

ECG signals. 

 

Noise suppression 

The EMG noise suppression is demonstrated in Fig. 11. ECG signal with superimposed  

EMG noise with maximal value of around 0.1 mV is shown in the first subplot. The second 

subplot is a noise-free ECG signal as a result of the filtering procedure. It can be seen that the 

processed ECG signal has diagnostic capabilities even in the low-frequency zones such as  

P-waves, ST-segments, and T-waves. The difference between subplot 1 and subplot 2 (shown 

in subplot 3) is representing the EMG noise that has been suppressed. 
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Fig. 10 Separation of ECG from EMG signal 
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Fig. 11 Noise suppression: (a) Noisy ECG signal; (b) Filtered ECG signal;  

(c) Suppressed EMG noise (first subplot minus second subplots). 

 

As a result of the filtering, Fig. 11c contains not only the suppressed EMG signal but also 

ECG distortions. They are dozens of times less than the suppressed EMG noise, invisible to  

a naked eye and will be subject of attention later on. 

 

Another example of EMG noise suppression is demonstrated in Fig. 12, where the 1st plot is 

real EMG signal, and the 2nd plot is the filtered EMG signal. 

 

 
Fig. 12 Noise suppression:  

(a) Real EMG noise recorded during sustained muscle effort;  

(b) Filtered EMG signal. 

 

Signal distortion  

A noise-free ECG signal is shown in the first subplot of Fig. 13. Due to the fact that  

a noise-free ECG signal cannot be recorded in practice, simulated ECG-like signal obtained 

from the CTS ECG Test Atlas [48] was considered. The processed ECG signal is shown in 
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the second subplot. No distortions can be seen with naked eyes. However, at the enlarged 

scale of the third subplot, which presents the difference between the noise-free ECG signal 

and the processed one, distortion of around 0.06 mV, manifested as decrease of the  

QRS amplitude, can be observed. 

 
Fig. 13 Signal distortion: (a) Noise-free ECG signal, file ANE20000. IEC of the CTS ECG 

Test Atlas; (b) Processed ECG signal; (c) Signal distortion, ECG – ECG. 

 
This decrease of QRS is around 6% of its amplitude. The root-mean-square error of distortion 

is RMS = 7.7 µV. 
 

Quantitative assessment of the filtering efficiency  

The filtering efficiency was quantitatively evaluated using conditionally clean ECG signals 

and typical disturbances to calculate the level of noise suppression NS by the initial 

disturbance inin  mixed with the clean ECG signal and the residual disturbance resn  after 

filtering the contaminated signal 

 

res

ini

n

n
NS  . (18) 

 

Noise suppression is computed from root-mean-square (rms) values. 

 

The quantitative assessment of the filtering efficiency was performed using the noise 

presented in Fig. 12a, mixed with the noise-free ECG signal of Fig. 13a.  

 

Two values for noise suppression are calculated because of the non-homogeneous (dynamic) 

procedure: strong filtration of the low frequency components of the ECG signal as P-wave, 

PQ-interval, ST-interval, T-wave and TP-interval, and mild filtration of the high frequency 

QRS components. 

 

NSin QRS = 3.3 dB, NSout QRS = 9.3 dB.  (19) 
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On/off triggering 

The distortion shown in Fig. 13 is theoretical, and will not be obtained in practice, due to 

switching-off of the filtering procedure in case of noise-free ECG signal. The block diagram 

and the on/off triggering algorithm were discussed in the previous chapter.  

 

The triggering is demonstrated in Fig. 14. The first subplot is an ECG signal accompanied 

with bursts of EMG noise of different amplitudes within the intervals 1.0-4.0 sec,  

8.0-12.0 sec, and 14.0-18.2 sec. The lower trace in subplot 1 is for the check whether  

wl > wlmax – 11 (block 5 of Fig. 8). It is a peculiar indication of the occurrence of natural 

high-frequency signal as QRS and prevents erroneous decision for the presence of EMG noise 

and corresponding switching-on of the filter. The dashed line in subplot 1 of Fig. 8 indicates 

the on/off triggering. 

 

 
Fig. 14 On/off triggering: (a) Upper trace – ECG signal with bursts of noise,  

lower trace – indication of the occurrence of HF signal as QRS,  

dashed trace – on/off switching of the filter; (b) Processed signal. 

 
The combined effect of filtering in case of noise, and no filtering in case of noise-free  

ECG signal, is shown in Fig. 14b. 

 

Electromyography 
Databases 

For the EMG projects we used our digital database, fully described in [35]. The following 

muscles on the left side of the trunk were examined and recorded (1500 Hz, 1 min): 

deltoideus pars acromialis, pectoralis major and latisimus dorsi. Seven motor tasks were 

performed, aiming to register 3 different cases: low EMG signal to high ECG signal,  

low ECG signal to high EMG signal and an EMG and an ECG signal with almost equal 

amplitude.  
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Dynamic separation of ECG from EMG 

The efficiency of the method was tested by comparison of:  

 initial to final ECG signal (Fig. 15B and Fig. 15E), and  

 initial to final EMG signal (Fig. 15A and Fig. 15F) using as a benchmark the 

power spectra obtained by Fast Fourier Transform (FFT).  

 

 
Fig. 15 Left: Successive steps of the algorithm in case when the amplitudes  

of the ECG signal and EMG signal were similar. Right: power spectra of the pure EMG signal 

and ECG signal as well as of the filtered EMG signal. Vertical dashed lines on the left mark 

the time interval where the FFT was performed. 
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Clear EMG signal of muscle DELacr (Fig. 15A) and clear ECG signal recorded at a place of 

the body with no muscle activity (Fig. 15B) were summed, and the signal presented in 

Fig. 15C was the object of the Dynamic separation. First, EMG signal was suppressed, then 

‘Wings’ function was developed and transferred to window length ‘wl’ (Fig. 15D). As it can 

be seen, ‘wl’ has low values at the high-frequency QRS components of the ECG signal, 

providing almost no filtration and, therefore minimal signal distortion. Outside QRS, maximal 

filtration was performed resulting in maximal suppression of the EMG signal. The signal L 

obtained by Eq. (16) limits the too low filtration at a high level of the EMG signal. L was 

considered only in cases of wl < L. Savitzky and Golay approximation with dynamic change 

of the window length was applied to obtain a clear ECG signal (Fig. 15E). The ECG signal 

closely resembles the initial one shown in Fig. 15B. The final EMG signal was obtained by 

subtracting the filtered ECG signal (Fig. 15E) from the mixed signal (ECG + EMG) 

(Fig. 15C). 

 

In order to test the efficacy of the method, we measured the RMS error between the initial and 

the estimated EMG signal. Two separate measurements were performed: in active muscle 

(where peak-to-peak of the EMG signal is equal to 2 mV) and in muscle rest (where the 

muscle was supposed to be inactive, so peak-to-peak of the EMG signal is equal to 0.2 mV). 

To test the effect of the SNR on the RMS error we added the ECG noise of five different  

QRS peak-to-peak amplitudes: 0.1 mV, 0.5 mV, 1 mV, 2 mV, 4 mV. The results can be seen 

in Table 1.  

 

Table 1. Effect of ECG amplitude on RMS error during muscle rest and active muscle 

ECG peak-to-peak, [mV] 0.1 0.5 1 2 4 

RMS in active muscle, [mV] 0.0187 0.0161 0.0161 0.0160 0.0159 

RMS in rest muscle, [mV] 0.0110 0.0119 0.0120 0.0120 0.0120 

 

We observed an interesting phenomenon: in active muscle the RMS error between the initial 

and the estimated EMG signal was greatest at the lowest values of ECG noise. This was due 

to the fact that the method relies on good detection of cardiac activity which, at very low 

amplitudes, was difficult to achieve in the presence of an EMG signal, which was dozens of 

times stronger. 

 

The closer the initial ECG signal and the filtered one are, the more successful the final result 

is. The initial and the filtered EMG signal (Fig. 15A and Fig. 15F) appear similar, but in order 

to prove that the EMG signal was not distorted by the procedure, we did a FFT. The power 

spectra from FFT using 4096 points (2.7 s) is shown on the right column of Fig. 15. The 2.7 s 

segment was depicted on Fig. 15A and 15B with vertical dashed lines. The great degree of 

convergence in the power spectra of the clear EMG signal (Fig. 15G) and the one obtained by 

dynamic filtration (Fig. 15I) was a proof for the good performance of the method. 

 

Three parameters characterizing the power/frequency function were calculated: sum of the 

normalized power (S), mean frequency (MNF) and median frequency (MDF) [50].  

For the power/frequency functions shown in Fig. 15G and Fig. 15I, these parameters were as 

follows: S = 44.96 arbitrary units, MNF = 90.10 Hz and MDF = 79.47 Hz for the original 

signal and S = 48.01 arbitrary units, MNF = 87.55 Hz and MDF = 76.54 Hz for the filtered 

signal. It has to be mentioned that the EMG signal was first normalized to the maximal values 

of its amplitude, recorded during maximal isometric tasks [39]. Both MNF and MDF 
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decreased after the filtration but the values were similar. It meant that the filtering did not 

destroy the signal, which is also visible in Fig. 15A and Fig. 15F. 

 

Discussion 

Electrocardiography 
In the introduction, it was mentioned that the old (1967) recommendations for a low-pass 

filter of the American Heart Association was 35 Hz cutoff frequency [16], while the new 

(2007) recommendations were 150 Hz for adolescents and adults, and 250 Hz for children 

[12]. The effect of the filtering with cutoffs frequency of 35 Hz, 150 Нz and 250 Hz were 

shown in Fig. 1 and Fig. 2. No suppression of EMG was observed with low-pass filtering with 

cutoff frequencies of 150 Hz and 250 Hz, however there was no signal distortion in the 

HF band of the ECG (the QRS). Certain suppressions of the EMG signal could be seen with 

filtration with a cutoff frequency of 35 Hz. At the same time, there is a distortion, manifested 

as reduction of the QRS amplitude with 15% for the 1st, and 17% for the 2nd ECG signal 

of Fig. 1. Distortions were getting bigger with increase of the frequency spectrum.  

 

The QRS segmentation, shown in the 2nd example of Fig. 1, which is indicative for an 

increased risk of sudden cardiac death decrease with > 300% in amplitude when processed 

with a cutoff frequency of 35 Hz. Frequency response of the dynamic filter is shown in 

Fig. 16. The cutoff frequency varies with the dynamic change of the window length of the 

Savitzky-Golay filter. As can be seen from Fig. 16c, the cutoffs are: from 13 Hz at the linear 

segments of the ECG signal, trough 25 Hz for the T-waves of high amplitude, and up to 

400 Hz for the QRS-complexes. 

 

 
Fig. 16 Frequency response of the dynamic filter: (a) ECG signal; (b) Dynamic window 

length ‘wl’ of the Savitzky-Golay filter; (c) Instantaneous cutoff frequency of the filter. 
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Electromyography 
Removing the ECG signal is very important for injured people who may need orthesis 

controlled by EMG signals. Drake and Callaghan [5] conclude that a Butterworth high-pass 

filter with a 30 Hz cut-off frequency is the optimal balance between ease of implementation, 

time investment, and performance. 

 

For that reason, we processed the experimental data of Fig. 17a with a 4th order, high-pass 

Butterworth filter with cut-off frequency of 30 Hz. The suggested method based on dynamic 

filtration is separating the EMG signal from the ECG signal without EMG signal distortion 

across its entire frequency range regardless of the ECG signal amplitude (Fig. 17b). 

The Butterworth filter suppresses signals in the 0-30 Hz range, thus preventing the  

low-frequency analysis of the EMG signal. 

 

 

Fig. 17 Comparison of dynamic separation and Butterworth filtering 

 
An additional disadvantage is that it passes high-frequency ECG signal components, which is 

apparent at equal and higher amplitudes of the ECG signal as compared to the EMG signal. 

This can be seen in the filtered by Butterworth signal (Fig. 17c) during muscle silence periods 

0.4-4.5 s and 12.5-16 s. 

 

It should be noted that the dynamics of ‘wl’ is determined not by whether the muscle is in a 

period of EMG burst or in a silence. The dynamics is determined by the frequency spectra of 

the ECG, as can be seen in Fig. 16. 

 

The method can be applied to cases of abnormal, arrhythmic ECG signal. It can also work 

with ECG signals shifted to higher frequency range higher than 200 Hz, for example in 

individuals with symptomatic QRS fragmentation, ECG signals of children, etc. An example 

is given in Fig. 18. The ECG recording shown in Fig. 19a were taken from the Physionet 2017 

Challenge Database (https://physionet.org/challenge/2017/) and was superimposed with our 

recorded pure EMG signal (Fig. 18b). As can be seen from Fig. 18d, the algorithm works very 

well and removes ECG signal. 
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Muscle-rest periods are difficult to be detected by most known methods because of the high-

amplitude ECG and the low signal-to-noise ratio. The processed by 30 Hz cutoff, 4th order, 

high-pass Butterworth filter, passes residual QRS of higher amplitudes (Fig 17c). 

Willigenburg et al. [7] and Lu et al. [8] mention that the effectiveness of their algorithms also 

depends on the signal-to-noise ratio. 

 

 

Fig. 18 Dynamic filtration of EMG signal from ECG noise  

in case of ectopic beats in ECG 

 

Contrary to filters in scientific literature, the suggested method shows better results at lower 

signal-to-noise ratio and vice versa (Table 1), due to the fact that it relies on good detection of 

cardiac activity which, at very low amplitudes, was difficult to achieve in the presence of an 

EMG signal, that was dozens of times stronger. 

 

Investigating the EMG activities of the muscles of the upper limbs, Raikova et al. [39] found 

strong contamination of the EMG recordings by ECG noise. Fig. 19 is a visual presentation 

that an on/off control of an exoskeleton is impossible without elimination of the ECG noise, 

achieved by Dynamic separation of the two signals. 
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Fig. 19 Effects of filtration of the EMG signal:  

A, up – EMG signal accompanied by strong ECG noise of the muscle pectoralis major;  

A, down – Dynamic separation and subtraction of the ECG noise;  

B – on/off control of an exoskeleton: up – improper, down – proper. 

 

Conclusions 
The conflicting requirements for a strong suppression of EMG noise in electrocardiography, 

and at the same time a maximal preservation of the ECG high-frequency components, 

prompted us to create in 1999 a Dynamic procedure, self-adjustable to the frequency spectra 

of the waves. The method allows the low-frequency components of the ECG signal as  

P-wave, PQ-interval, ST-interval, T-wave and TP-interval to be strongly filtered with a cutoff 

frequency of 14-40 Hz, while the high-frequency QRSs are mildly filtered with cutoff 

frequency of 100-500 Hz. The strong preservation of the signal’s morphology improves the 

diagnostic capabilities of the ECG signal in the presence of EMG noise in both high- and  

low-frequency components. The method has been improved over the years with the ability to 

work online, and with automatic on/off triggering on whether or not there was 

electromyographic noise. The last revision of the method are consistent with the new  

AHA requirements (2007) for low-pass filtering of ECG with a cutoff frequencies of 150 Hz 

for adolescents and adults, and to 250 Hz for children. 

 

The Dynamic procedure was modified to be used in electromyography, where the removal of 

ECG noise is imperative. The method consists in accepting that EMG is noise in the original 

ECG + EMG signal. Noise-free ECG is obtained by the Dynamic procedure and subtracted 

from the original signal to get a noise-free EMG. 
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