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Abstract—The amount of grid-connected three-phased invert-
ers is increasing rapidly. In a weak grid, the non-ideal grid
impedance decreases the control performance and can even
compromise the system stability through load effect. The stability
assessment of the inverter-grid interface has been assessed
extensively through state-space and impedance-based methods.
The current work presents stability analysis method based on
the load-affected loop gain of the innermost control loop, which
includes the effect of phase-locked loop and grid impedance.
The stability analysis is carried out by assessing modeled and
measured loop gains using the Nyquist criterion, step responses,
and system closed-loop poles. The stability issues originating from
grid impedance or too high phase-locked loop bandwidth are
accurately predicted by examining the innermost control loop.

Index Terms—Grid-connected inverter, Stability analysis, Con-
trol system analysis, Online measurement

I. INTRODUCTION

THREE-PHASE grid-connected inverters have been

widely adopted for power processing in modern power

systems. The share of grid-connected inverters has increased

rapidly over the past decade, mainly driven by tightened

requirements for more precise power processing and the rise

of renewable energy production [1], [2]. As the inverters have

fast and complex control dynamics and often exhibit non-

passive impedance characteristics, stability issues have become

an important design factor in power-electronic-based systems

[3]–[5]. Power quality and stability issues emerging from the

unintentional interactions between the inverters and the grid

have been studied extensively [6]–[8].

The grid impedance affects the operation of grid-connected

devices, and may deteriorate the control performance and

robustness. The most commonly used approaches for stability

assessment are the impedance-based methods [3], [9], [10] as

well as the conventional control-theory methods such as state-

space analysis [11]–[13]. However, the dq-domain impedance

measurements are often inaccurate or impractical [3], [14] and

the state-space analysis requires significant modeling effort

[15].

The transfer functions of the inverter control loops are used

to describe the dynamic behavior. The load effect imposed by

the grid impedance can be included in the transfer functions

through small-signal modeling [3]. The most practical control

loop for a stability assessment of the internal stability of an

inverter is the innermost control loop with highest control

bandwidth, which is typically the AC-current-control loop in

grid-feeding inverters. The effect of other control loops on the

current-control loop will take place through the load effect,

which consists of the ratio of inverter and grid impedances.

This paper presents a small-signal model of a load-affected

AC-current-control loop, which includes the grid impedance

and the impact of synchronous reference-frame phase-locked

loop (SRF-PLL). In addition, the loop gain is shown to

predict accurately the control performance of the inverter and

the stability margins related to the small-signal interactions.

The model is validated with simulation measurements, and

the performance and robustness indications are verified with

simulations and experiments on kW-scale three-phase inverter.

The remainder of this paper is organized as follows. Section

II presents the small-signal modeling of the load-affected

current-controller loop gain. Section III shows the simulation

validation of the modeled current controller loop and the effect

of grid impedance and PLL bandwidth on the stability margins.

In Section IV, experiments with power hardware-in-the-loop

setup show online measurements of the current loop, based

upon which the stability margin is indicated accurately. Section

V draws the conclusion.

II. DYNAMIC MODELING OF CF-CO INVERTER

In renewable energy systems, the inverter is typically in

grid-feeding mode, where a phase-locked loop is used to

synchronize the inverter to grid voltages. In photovoltaic (PV)

applications, the DC voltage must be controlled in order to

achieve maximum-power-point operation of the PV panels.

A single-stage PV inverter, which also controls the DC-

link voltage, has been widely adopted as it removes the

need for an additional DC-DC converter. The single-stage
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Fig. 1: Schematic of cascaded control system in CF-CO inverter.

inverter typically operates in cascaded control scheme, which

consists of outer DC voltage control loop, inner output current

control loop, and phase-locked loop for grid synchronization.

An inverter with this configuration is known as current-fed

current-output (CF-CO) inverter. Fig. 1 presents the simplified

block diagram of the control system.

A. Open-loop dynamics on dq-domain

A common approach for control theory and stability as-

sessment is small-signal analysis, where the system response

to a small-signal variation around steady-state operation point

is considered. Nonlinear systems can be approximated with

linear equations by linearizing the system around a steady-state

operation point. The small-signal approach is feasible when

the superimposed AC signal has significantly lower amplitude

than the steady-state DC signal.

In three-phase AC systems, the signals become matrices,

instead of scalars found in DC systems. In addition, no

small-signal equilibrium point exists as the variables fluctuate

with the fundamental frequency. The inherent complexity of

three-phase AC systems has led to introduction of advanced

modeling techniques, in order to reduce the complexity of

modeling and control design. The complexity can be decreased

by, for example, approaches based on sequence domain or

synchronous reference frame (dq domain). In the dq-domain

analysis, the three phases are described as direct, quadrature,

and zero components in rotating reference frame. As the

frame rotates with fundamental frequency, the fundamental

AC component is removed from the signals. Additionally,

the system is usually assumed to be balanced, so the zero

component can be neglected. The system is reduced to two DC

signals, which allows straightforward Jacobian linearization.

The modeling of CF-CO inverter in the dq domain has been

widely presented in previous work [3], [16]. The linearized

multi-input multi-output (MIMO) open-loop transfer matrices

can be given in the dq domain as
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B. Load effect of grid impedance

A non-ideal grid-connection of the inverter has grid

impedance, which results in load effect and alters the transfer

functions shown in (2). Fig. 2 presents the origin of load effect

as a two-port model. The inclusion of load impedance ZL

changes the dynamics, as the original ideal-load output voltage

is replaced by

v̂o = v̂L
o + ZL îo (3)

where superscript L denotes the load-affected variable. Sub-

stituting lower row of (2) to (3) yields

Fig. 2: Load-affected multivariable equivalent circuit of CF-CO in-
verter.

Fig. 3: Small-signal block diagram of output dynamics with current
control and PLL.

Fig. 4: Small-signal block diagram of PLL-affected output impedance.
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Substituting (3)-(4) into (4) yields the load-affected multi-

variable transfer functions shown in (1). In order to accurately

model the load effect, the impact of grid-synchronization by

PLL should be considered, as it affects the output admittance

of the inverter. Fig. 3 presents the small-signal block diagram

for the inverter output dynamics, where the PLL and current

controller are included. The PLL adds a parallel signal paths

from vo to io, which affects the total output admittance. Fig. 4

shows the PLL-affected output impedance derived from Fig. 3.

The small-signal modeling of the PLL has been considered in

[16]. The PLL-affected total output admittance is given by

Yo-c = Yo + Ypll (5)

where Ypll is the PLL-induced admittance component, which

can be given as

Ypll = GcoGccILGpll − GcoDGpll (6)

where

D =

[
0 −Dq

0 Dd

]
Gpll =

[
0 0

0
Lpll

Vod(1+Lpll)

]
(7)

IL =

[
0 ILq

0 −ILd

]
Gcc =

[
GPId 0
0 GPIq

]
(8)

Lpll = (KP-pll +KI-pll/s) ∗ Vod/s. (9)

Finally, the load affected control-to-output transfer function,

which is the plant for the current controller, is given by

GL
co = [I + Yo-cZL]

−1Gco (10)

In this analysis, the outer DC voltage controller is omitted, as

the impact can be considered negligible due to significantly

lower bandwidth.

C. Full-order current control loop

A typical controller choice for the AC current controller is

the PI-type compensator, which is usually identical for both

channels. The cross-couplings are often assumed to be small

and neglected, which results in simplified analysis as the d-

and q-channels can be separated. The reduced-order current

controller loop gain is

LRO
cc-d = GL

coddGPWMGPI-dHd (11)

where Gcodd-o is the open-loop control to output of d-

channel, GPWM is the pulse-width modulator, GPI-d is the

current controller, and Hd is the sensing gain. However,

ignoring the cross-couplings may lead to inaccurate models.

Fig. 5 shows the full-order control block diagram of the

current control loop gain, which includes the cross-couplings.

The dashed red lines indicate the interface where the loop is

calculated or measured. Based on the block diagram, the full-

order control loop can derived

Fig. 5: Control block diagram of the current control loops.

Fig. 6: Excitation injection diagram for d-channel loop measurement.

LFO
cc-d = GL
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GL
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coqq

(12)

where GPWM and Hd are incorporated into GPId and GPIq. The

system control characteristics can be predicted based on the

closed-loop transfer function from input to output, where the

control feedback loops are closed. The closed-loop transfer

function from d-current reference to output d-current of the

current controller can be given as

Gc-cod =
LFO

cc-d

1 + LFO
cc-d

(13)

and similarly for Gc-coq of the q-channel.

III. SIMULATIONS

The simulations are performed in MATLAB/Simulink en-

vironment with a three-phase grid-connected CF-CO inverter

shown in Fig. 1. The nominal output voltage is 120 V and the

output power is 2.7 kW, which match the parameters used in

the experimental setup. The output current measurements are

taken from the middle of the LCL-filter so that the CL-part

appears in grid impedance. Table I in Appendix presents the

controller parameters used in the simulation experiments.

A. Loop-gain measurements

Frequency-response measurements have been widely used

for model verification and assessment of system behavior.

In general, the measurements are performed by injecting an

excitation signal to the system and measuring the response

[17]. In this work, a broadband ternary pseudo-random exci-

tation was used to measure the current controller loop gains

in varying operation conditions. The system was perturbed

by a ternary sequence with length of N = 1999 generated

at fgen = 4 kHz. Thus, the frequency resolution and the

lowest obtainable frequency are 2 Hz [17]. The feasible highest

frequency of the measurement is approximately 2 kHz, due
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Fig. 7: Modeled and measured load-affected loop gain transfer func-
tion from the q-channel of current controller.
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Fig. 8: Modeled (grey) and measured (red) q-channel current response
to a step change in current reference (from 0 to -1 A at 0 s).

to decreasing power of the excitation. Fig. 6 schematically

presents the measurement implementation, supplementing the

full-order block diagram of the control loops shown in Fig. 5.

The ternary sequence is injected to the current controller loop,

and the input and output signals are measured and Fourier-

transformed, which yields the current-control-loop transfer

function. The presented load-affected current-controller loop

gain model was verified with measurements from the simu-

lation. Fig. 7 presents the measured and modeled loop gain

transfer function of the current controller q-channel for a grid

inductance of 10 mH.

The control performance can be predicted from the closed

loop transfer function derived in (13). To further verify the

presented modeling method and predictions of the system

behavior, a step-change to q-channel current reference was

performed in simulation and the current response was mea-

sured. Fig. 8 presents the current response predicted from the

modeled transfer function (grey) and the simulated current

response (red) for the system with 10 mH grid inductance.

The modeled transfer function predicts the system response to

the transient with high accuracy, as the overshoot, oscillation

frequency, and settling time are accurately captured.

B. Load-affected control performance

The sensitivity of the current controller loop gain to the

varying grid impedance is illustrated by measuring the load-

affected current loop with different grid inductance values.

Fig. 9 presents the measured q-channel loop gain with the grid

inductance ranging from 0 to 20 mH, which corresponds to a

-50

0

50

M
ag

 (
dB

)

101 102 103

Frequency (Hz)

-180

-90

0

P
ha

 (
de

g)

0 mH
2 mH
4 mH
6 mH
8 mH
10 mH
12 mH
14 mH
16 mH
18 mH
20 mH

Fig. 9: Measured load-affected loop gain from q-channel with varying grid
impedance.
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Fig. 10: Current q-component response to step change with varying grid
inductance values.

short-circuit ratio (SCR) decrease from 40 to 2. The increase

in grid inductance magnifies the load effect, which results in

decreased magnitude and phase margin. This decreases the

control bandwidth, thus reducing the stability margins and

control performance. Fig. 10 presents a set of step responses

showing the output current q-component when the reference

value is stepped from 0 to -1 A. Increasing the grid inductance

deteriorates the control performance, validating the hypothesis.

Thus, modeled load-affected control loop can be used to assess

the performance and stability of an inverter in a weak grid.

C. PLL impact on current loop robustness

A high control bandwidth of PLL is known to cause

stability issues in weak grids, due to the negative-resistance-

like behavior of the inverter output admittance q-component

[13], [18]. Previous research has mostly assessed the stability

impact of the PLL based on the impedance-based stability

criterion [18], [19]. The PLL affects the output admittance of

the inverter, which is included in the load-affected control-to-

output transfer function in (10). The proposed current-control-

loop model incorporates the load effect and, consequently, the

effect of the PLL.

Fig. 11 shows the q component of the PLL-affected current-

control loop when the PLL-controller settings are varied.

The phase margin reduces significantly when the PLL-control

bandwidth is increased. The Nyquist criterion can be applied

for the stability assessment of the control loop. Fig. 12

provides an overview of the Nyquist contour. Based on the

modeled loop, the open-loop transfer function has a RHP pole,
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Fig. 12: Nyquist contour of the q-channel current controller open-loop gain
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so the locus must encircle the critical point once counter-

clockwise in order for the closed-loop system to be stable.

Increasing the PLL bandwidth shifts the crossing point on

the real axis towards the critical point, as shown in Fig. 13.

With control bandwidths above 31 Hz, the open-loop locus no

longer encircles the critical point, indicating that the closed-

loop system would be unstable.

The prediction is verified by simulations. The PLL-induced

stability issues were tested by changing the PLL bandwidth

by adjusting the PI-controller gains during simulation. Three

cases were considered: the PLL bandwidth was changed from

20 Hz to 27, 31, or 35 Hz. Nyquist criterion (see Fig. 13)

predicts that the systems will be stable, marginally stable,

and unstable, respectively. Fig. 14 presents the time-domain

waveforms of the output current d-component for the three
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Fig. 13: Nyquist loci of the current controller loop for varying PLL band-
widths, where the unstable closed-loops are shown with dashed line.
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Fig. 14: Output current d-component when the PLL bandwidth is changed
from 20 Hz to 27 Hz (blue), 31 Hz (purple), or 35 Hz (red) at t = 0 s.

experiments. The response is dominated by the pole pair,

which causes oscillation at the main oscillatory frequency

around 70 Hz. When the PLL bandwidth is changed to 27

Hz, the stability margins are sufficient and no visible transient

occurs. When the bandwidth is changed to 31 Hz, the system

initially appears stable. However, after a few seconds the

oscillation has increased to the state of sustained resonance,

which indicates marginal stability. In the third scenario, the

PLL controller is changed to bandwidth of 35 Hz, which

instantly results in unstable oscillation and the system shuts

down at t = 0.6 s. Consequently, the Nyquist contours in Fig.

13 predicted the system stability with high accuracy.

Fig. 15: Experimental power hardware-in-the-loop setup.

IV. EXPERIMENTS

The experimental power hardware-in-the-loop setup consists

of a PV emulator (Spitzenberger Spies PVS 7000), a 10 kW

three-phase inverter (Myway Plus MWINV-9R144), and a volt-

age amplifier (Spitzenberger Spies PAC 15000). An isolation

transformer connects the inverter to the grid voltages, and

inductors (12 mH) are connected before the voltage amplifier

to emulate the grid impedance (see Fig. 1). The inverter control

system is implemented to a dSPACE real-time simulation.

Fig. 15 provides an overview of the experimental setup. The

parameters are shown in Table I in Appendix.
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A. Stability and performance analysis

Fig. 16 shows the measured current-controller loop q com-

ponents with PLL control bandwidths of 10, 20, 30, 32, and

33 Hz. As predicted from models and simulation, the phase

decreases significantly when the PLL bandwidth increases.

With 33 Hz control tuning, the measured loop indicates a

phase margin of only 1.0 degrees, and the high sensitivity

produces noise to the loop measurements. Fig. 17 shows the

q-current step tests with PLL tunings of 10 and 33 Hz, where

the highly oscillatory response validates the very low phase

margin. Fig. 18 shows the Nyquist loci calculated from the

measured loop gains, which clearly indicate that increasing

bandwidth shifts the contour closer to the critical point. Based

on 32 and 33 Hz contours, tuning the PLL to 34 Hz bandwidth

would result in marginal stability. Fig. 19 shows the phase A

output current waveforms in steady state for PLL tunings with

33 Hz and 34 Hz. As predicted from the current-controller loop

measurements and the Nyquist analysis, the 34 Hz PLL results

in marginal stability with highly distorted waveforms. Despite

the very low stability margins for 33 Hz PLL, the steady-state

current waveform shows no signs of stability issues. However,

the low margins manifest in system transients, such as the step

responses shown previously.

B. Discussion

The impedance-based stability criterion has been widely

applied for stability analysis of grid-connected inverters. How-

ever, measuring the grid and inverter impedances is not always

possible, as special hardware may be required. This work

Fig. 18: Nyquist loci of measured current-controller loops with different PLL
bandwidths.
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Fig. 19: Steady-state phase A currents with PLL tunings of 33 and 34 Hz.

presents a method to access the stability margins directly from

the online measurements of the AC current controller loop.

The implementation of the method is straightforward and can

be directly included in the current controllers of inverters. In

addition, the use of wideband-identification techniques makes

it possible to perform the required frequency-response mea-

surements, typically within few seconds. Thus, the proposed

method can be used for real-time stability assessment or

adaptive control of inverters.

V. CONCLUSION

The grid impedance affects the grid-connected inverters

through the load effect, which may deteriorate system per-

formance and robustness. This paper proposes a method for

assessing the stability of a grid-connected inverter based on

the current controller loop gain. The loop gain can be modeled

accurately to include the effect of the grid impedance and the

PLL, which are known to compromise the stability in weak

grids. Another approach is to measure the current controller

loop gain online in normal operation conditions. The inverter

robustness can be assessed by calculating the Nyquist contour

or directly from the indicated phase margin. The presented

methods were verified by simulations and power hardware-in-

the-loop experiments.



APPENDIX

TABLE I: Parameters for inverter and grid in simulations and experiments.

Parameter Symbol Value
Grid frequency fn 60 Hz

Nominal power Pn 2.7 kVA

Nominal phase voltage Vn 120 V

Switching frequency fsw 8 kHz

DC voltage reference V ∗
dc 414 V

D-current reference i∗d 10.6 A

Q-current reference i∗q 0 A

DC capacitance Cdc 1.5 mF

Inverter-side inductance L1 2.2 mH

Inverter-side resistance RL1 100 mΩ
Filter capacitance Cf 10 μF

Filter capacitor resistance RCf 1.8 Ω
Grid-side inductance L2 0.9 mH

Grid-side resistance RL2 400 mΩ
Grid inductance Lg 0...20 mH

AC current control P gain KP-CC 0.0149
AC current control I gain KI-CC 23.442
DC voltage control P gain KP-VC 0.0962
DC voltage control I gain KI-VC 1.2092
PLL control P gain KP-PLL 0.39...1.36
PLL control I gain KI-PLL 9.77...119.7
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