

Esa Lempiäinen

VISUALIZATION ANALYSIS AND
DESIGN FOR A GEOGRAPHIC

INFORMATION VISUALIZATION
PRODUCT

Faculty of Information Technology and Communication Sciences
M. Sc. Thesis
October 2021

ABSTRACT

Esa Lempiäinen:
Visualization analysis and design for a geographic
information visualization product

M.Sc. Thesis
Tampere University
Master’s Degree Programme in Human-Technology Interaction
October 2021

Developing information visualization software is a relatively new activity that involves theory of

many disciplines. Recent decades have seen big development in theory and practices for

software development, as well as design practices of information visualization. However,

developing interactive information visualization software has its own range of considerations for

design, implementation and evaluation that are not addressed by any other discipline individually.

As such the development work of visualizations can benefit from a theoretical base that defines

common concepts specifically for developing information visualization software. Such established

concepts would enhance the designers’ and researchers’ ability to think and discuss and thus

improve their designs and practices. In her book Visualization Analysis and Design Tamara

Munzner has presented a framework that defines a body of over-arching concepts for design and

analysis of information visualization tools that spans across the design and implementation

process. In this thesis I evaluate an interactive information visualization software product and its

development process considering Munzner’s framework, while also evaluating Munzner’s

framework considering how well it lends itself to the task.

Key words and terms: M.Sc. thesis, information visualization, design, analysis, requirement

definition, validation, software development.

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

Contents

1. Introduction .. 1

2. The information visualization software product ... 3

2.1 Real-time vis 4

2.2 Historic vis 5

2.3 Development process 6

3. Munzner’s framework: the four nested levels of vis design 7

4. Two-way evaluation ... 11

4.1 Overview 11
4.1.1 Vis product’s design process vs. four levels of design 11
4.1.2 What: data abstractions 12
4.1.3 Why: task abstractions 14
4.1.4 How: design choices 14

4.2 Vis product: addressing threats to validity 41
4.2.1 Pre-validation 42
4.2.2 Post-validation 44

4.3 Vis product: Closer look at design and validation gaps 46
4.3.1 Domain situation’s availability to designers 46
4.3.2 Support and hindrance from pre-existing data processing 46
4.3.3 Design choices 47
4.3.4 Verification of implementation vs. validation of designs 48

4.4 Munzner’s concepts 49
4.4.1 Interactions 49
4.4.2 Data uncertainty 50

5. Discussion .. 54

5.1 The vis product 54

5.2 Munzner’s framework 54

6. Conclusions ... 56

References ... 57

-1-

1. Introduction

Creating effective information visualizations (vis) requires understanding of a wide range

of theory on human visual perception. Likewise, creating computer software that

performs interactive information visualization involves many more concepts from the

fields of computer science and software engineering. Both realms, information

visualization and software engineering, have seen rapid development in theoretic

foundations and practices in the last decades. On software engineering, Erdogmus et al.

[2018] note how the field is yet to even reach the equilibrium of a mature discipline,

which would require widely agreed-on ways to solve common problems, since in

software engineering the solutions tend to be largely influenced by each practitioner’s

own experience. On information visualization, Friendly [2006] points out that “most of

the innovations in data visualization arose from concrete, often practical goals”. Given

the ever-present practical goals in both domains driving their development, it is fair to

assume that new solutions and theory will keep on coming in both.

The field of information visualization has its roots in statistical graphics, earliest of

which were employed by William Playfair in late 1700’s [1786]. As such the practices of

creating static visualizations of information has a history of some two centuries. Last

decades have seen researchers and authors such as Edward Tufte [1985, 1990, 1997],

Colin Ware [2013] and Card et al. [1999] establish a theoretical foundation for these

practices, first as static graphic representations, and eventually as interactive, computer-

mediated visualizations.

The field of software engineering has seen the rise (and decline) of many concepts

that aim to serve the software development process. They range from over-arching

concepts and process models, such as waterfall and agile development, to technical

paradigms for programming and software testing and verification. Developing these

concepts has been strongly driven by practical commercial interests of software industry,

which aims to produce maximum economic value with minimum resource investment.

These concepts concentrate on software engineering at a general level and don’t delve in

the use cases of the software.

The field of usability and interaction design has introduced concepts like user-

centered design that mingle with software development concepts to focus on the fact that

usefulness of software is ultimately realized in the interface between the user and the

software. These concepts that aim to support development of software with graphical user

interfaces (GUIs) do lend themselves to a great degree for creating information

visualization software, as interactive information visualizations are graphical user

interfaces.

-2-

However, developing interactive information visualizations requires special attention

to requirements set by the nature of the visualized data and the user’s needs for gaining

insights from it. The complexity of user needs and domains and the sheer number of

possible designs means that general usability principles offer only limited support for vis

design. On the other hand, the main body of vis theory focuses largely on the designs

alone. That is, it describes how to solve problems, but not how to define those problems,

let alone how to evaluate whether the problems were defined and solved adequately. As

such, conventional vis theory offers limited support for vis development work. Tamara

Munzner [2015] has introduced perhaps the first framework that is tailored for practical

vis design work in her book Visualization Analysis and Design, bridging the gap between

design concepts and vis creation process.

This thesis seeks to build understanding on vis software development by applying

Munzner’s framework to the development process of a geographic vis software product.

The results shed light both on how the vis and its development process can be improved,

as well as how Munzner’s framework and its associated concepts could be extended to

better support dealing with certain characteristics exhibited by the vis software at hand.

The analyzed vis software is introduced in chapter 2 and Munzner’s framework is

introduced in chapter 3. The evaluation of the two is described in chapter 4, followed by

discussion in chapter 5 and conclusions in chapter 6.

Due to commercial nature of the vis product, the exact nature of the data and the

product’s business and technology context are confidential. Because of this it is not

possible to describe the product in its actual domain language in this thesis. Also, all

identifying information has been redacted from images that show the vis product’s UI.

-3-

2. The information visualization software product

Figure 1. The real-time data vis UI of the vis product. Information that reveals the

technological domain and product identity has been redacted.

This thesis investigates one user interface (UI) of an information visualization software

product that is used for monitoring and troubleshooting the behavior of a system that

continuously processes large volumes of geographic data. This user interface displays the

data in a geographic visualization (see Figure 1). The product contains also other user

interfaces that display the data in different ways, but these GUIs are not in the scope of

this thesis.

The product is made specifically for a certain technological domain and is deeply tied

to the data of that domain. The monitored system processes data continuously, and the

product gathers and aggregates this data in effective real time, allowing real time

monitoring of the system. The product also stores the data in a database, allowing

querying historical data with the resolution down to individual raw data items. The users

of the product are engineers responsible for planning, management and optimization of

the monitored system. The product’s real-time monitoring allows users to continuously

verify the desired operation of the system, and to locate any anomalies in the system

behavior as soon as they appear.

-4-

The geographic vis UI that this thesis focuses on provides capability to monitor and

troubleshoot the system’s behavior based on geographic information. Following the two-

fold data of the existing product (aggregated real-time and raw historical), there are two

kinds of geographic visualizations: aggregated real-time visualization and visualization

of raw historic data per data item.

The vis UI is implemented as a single page application for web browsers with web

technologies (JavaScript, HTML, CSS). This is worth noting as certain design decisions

leverage web browser functionality.

In this chapter, aspects of the vis product are introduced in general terms to provide

an overview of the product. This provides context for the analysis in later chapters.

2.1 Real-time vis

In the real-time visualization (see Figure 1) the data items gathered by the product are

aggregated into geographic brackets denoted by geohashes [Niemeyer, 2008]. These are

called geotiles. Each geotile has data attributes assigned to it, such as numbers of different

types of data items, ratios between certain data item types and statistical figures like

averages and medians of data item measurements. These attributes are encoded with

colors so that as user defines one geotile attribute to be displayed, each geotile receives a

color that denotes its value for that attribute. The result is a colormap where geographic

map is overlaid with colored geotiles.

Another graphical element on the map are markers for device items associated with

the data. Each of these devices has associated data that is a collection of similar attributes

as geotiles. These attributes describe aggregated data associated with the devices,

analogous to how geotile attributes describe aggregated data associated with geographical

areas. As such, the device items are also colored to indicate their attribute values.

The coloring of geotiles and device items is segmented. That is, all values that fall

within certain value range receive the same color. These value ranges can be edited by

user. The functionality is described in detail in chapter 4 where the coloring is evaluated.

The data can be filtered in several ways. The period from which data is shown can be

chosen between one minute and one week, and data can be chosen from different data

sets and filtered by certain attributes. These selections and filters affect all data.

Additionally, geotile data and devices can be filtered separately.

The aggregation uses the product’s capability of continuously aggregating large

amounts of data in a very performant way. This has implications to the design, which are

explained in chapter 4.

-5-

2.2 Historic vis

Figure 2. The historic data vis UI of the vis product. Information that reveals the

technological domain and product identity has been redacted.

The vis for historic data (see Figure 2) provides functionality for querying data from

database and visualizing query results on map. As such it differs from real-time vis in

many ways, but also has many similarities.

-6-

The data in this case is not aggregated. Instead, it is individual data items, each with

its own geographic location. These are visualized on map as circular markers. The

markers can be colored by data item attributes in similar fashion as geotiles in the real-

time vis.

This vis also has the same markers for device items on map as the real-time vis. The

functionality about them is the same as in real-time vis, save for coloring by attributes.

Since in this historic vis all data is individual data items on map, there is no aggregate

data for devices either, and thus the device items cannot be colored by such data. Instead,

here the device items can be colored with individual colors that signify their relation to

the data items. That is, the data items have attributes that refer to the devices, so when

results for a query are received, each device for which there is a reference in the data is

assigned a unique color, and the data points are given the same color. This way the user

can see what devices are related to the data on the map.

2.3 Development process

The vis product was developed for a corporate product portfolio. The path from

requirements to design and to implementation involved two organization branches:

product management (PM) and research & development (R&D). PM defined

requirements for sellable features and the R&D specialists designed and implemented

functionality to fulfill the requirements.

In other words, PM acted as a client that ordered software functionality from R&D.

As such it was ultimately PM’s responsibility to define features, but in practice the feature

definition involved much collaboration between PM, designers from R&D and other

stakeholders, e.g. other in-house specialists, customers and sales representatives. That is,

while the final say on which features are picked up was with PM, initiatives for new

features came from many sources [Sillanpää, 2019].

PM was the authority on business priorities by which they decided and prioritized

features. Conversely, it was PM’s responsibility to decide when the implementation

presented by R&D fulfilled the agreed feature. However, defining features itself required

knowledge on user needs. There were some problems with impacts on design and

development process that stemmed from this division of responsibility between PM and

R&D designers. The division of responsibility and its impacts is discussed considering

the Munzner’s nested model in chapter 4.

-7-

3. Munzner’s framework: the four nested levels of vis design

In her book Visualization Analysis and Design Tamara Munzner presents a range of

concepts that pertain to creation of information visualizations and a framework for

reasoning about this creation process.

The core of Munzner’s framework is a nested model of visualization design and

validation [2015, p. 67]. It formulates the creation of information visualizations as stages

of different abstraction levels from abstract user needs to concrete implementation as

shown in Figure 3.

The rationale for this separation is to reason about how the requirements of higher

levels impact lower (or inner) levels of design. This way it is possible to verify that the

design motivations from the user needs carry throughout the whole design and

implementation process, resulting in visualizations that satisfy the user needs. To support

this reasoning Munzner presents a range of concepts for each of the levels, save for the

fourth level, algorithm implementation. She does so by using a holistic vocabulary to

disambiguate concepts, as there is a considerable number of concepts at each stage. She

acknowledges, however, that out in the wild there is no clear one to one mapping between

the concepts and words that can be used to label them. As such, the designers that use this

framework must match the concepts to the vocabulary used in their own context.

Figure 3. "The four nested levels of vis design" [Munzner, 2015, p. 68]

-8-

At domain situation level the designers work to identify who are the users, what is

the data available and what interests do the users have of the data. This identification

work produces information on which designers base their design decisions. As the

outcome of the identification work the designers should know what questions the users

have of the data, what actions they need to perform on the data and the exact nature of

the data. In terms of the geographic vis this thesis focuses on, the users are system

planning and management specialists whose interest can be formulated on a high level as

such: “I want to identify any devices that are causing the system perform below expected

level of quality so that I can take corrective action on those devices”. Munzner notes that

developing clear understanding of the domain situation requirements is tricky, as “while

it might seem obvious to you that it would be a good idea to understand requirements, it's

a common pitfall for designers to cut corners by making assumptions rather than actually

engaging with any target users” [2015, p. 69].

At data/task abstraction level the designers refine descriptions for user tasks and

the involved data based on the information gained from domain situation level. That is,

designers ought to look past any domain-specific vocabulary to identify the needed user’s

tasks in plain terms on which they can apply vis for solutions. Such plain tasks may be

e.g. finding outliers or identifying patterns. On the other hand, Munzner notes that

whereas user tasks are identified, the data for a vis is designed [2015, p. 70]. That is, as

vis always requires processing the data so that it can be displayed, the vis designers are

in control how the data is processed for presentation. Munzner points out that while

sometimes the raw data might be usable for the vis as is, often the best match for

supporting the user’s tasks requires transforming the data one way or another [2015, p.

71]. In the context of this thesis, the vis product transforms the data by aggregating it over

geographic regions, devices and time periods.

At visual encoding/interaction idiom level the designers decide how to present the

data (visual encoding idiom) that was designed and what kind of interactivity to provide

to let the users carry out the tasks that were identified at data/task abstraction level.

Munzner uses the term idiom to refer to distinct possible approaches for visual encoding

and interactions. There are usually multiple ways (idioms) to present any given task or

data. Munzner does not state it directly, but visual encoding/interaction idiom level

appears to be what may sometimes naively understood as “design”, as that is where the

designer makes the concrete decisions on how the vis is to be implemented by choosing

from available alternatives. Munzner refers to the range of possible idioms as design

space, from which designers pick idioms best suited for given data and task, or from

which they derive inspiration for new idioms. Using this metaphor Munzner illustrates

the importance of being aware of a wide range of idioms and being ready to evaluate

which of them is the best fit for the situation at hand (see Figure 4). There often are

-9-

multiple idioms that could be applied to a given situation, so to come up with a design

that adequately satisfies given tasks, the designer must be able to rule out the ill-suited

idioms and to pick an adequate one. In her book Visualization Analysis and Design she

presents a large number of concepts for analyzing data/task abstractions so that designers

could make well founded choices on idioms.

At algorithm level the visual encodings, data transformations and interactivity that

were designed at previous levels are implemented with computer programming. The

designs guide the implementation, but implementations also facilitate designs: Munzner

states as an example that “a design that requires something to change dynamically when

the user moves the mouse may not be feasible if computing that (sic.) would take minutes

or hours instead of a fraction of a second” [2015, p. 73]. Ultimately the goal at algorithm

level is to design the used algorithms so that the best possible visual encoding and

interaction idioms can be realized. This is often not a given, as required data

transformations and interactions can be computationally quite expensive. Munzner goes

on to note that “clever algorithm design could save the day if you come up with a way to

precompute data that supports a fast enough response” [2015, p. 73]. This is very much

the case with the vis product that this thesis investigates: large amounts of data are made

available for interactive visual representation by highly performant preaggregation.

Figure 4. “A search space metaphor for vis design.” [Munzner, 2015, p. 13]

-10-

Each of the design levels has certain threats to validity as Munzner puts it [2015, p.

75]. These refer to different ways that the design work can go wrong at different levels,

resulting in a vis with little usefulness. These threats are illustrated on a high level in

Figure 5. Munzner presents a range of means for tackling each of these threats, both

before making decisions at each of the levels, and also after implementing the vis

according to the decisions.

I go to into detail in Munzner’s model, data/task abstraction concepts and validity

threats in context of the vis product in Chapter 4 where I apply them on the vis product

and its development process, and conversely evaluate how the model and concepts lend

themselves to this task.

Figure 5. “The four nested levels of vis design have different threats to validity at

each level.” [Munzner, 2015, p. 75]

-11-

4. Two-way evaluation

The relationship between the vis product and Munzner’s framework is explored in this

chapter.

Chapter 4.1. focuses on providing overview for how the concepts of Munzner’s

framework appear in the vis product.

Chapter 4.2. contains evaluation of the vis product’s design process based on methods

Munzner proposes for ensuring soundness of design decisions.

Chapter 4.3. delves deeper in the issues identified in chapters 4.1 and 4.2.

Chapter 4.4. explores some interesting topics and gaps in Munzner’s concepts.

4.1 Overview

In this chapter I look at an overview on how different aspects of the vis product and

Munzner’s model correspond to each other. First, I investigate how the whole design

process maps to the nested design levels, and then I investigate how Munzner’s semantics

for data abstractions (What), task abstractions (Why) and design choices (How) play out

in the vis product’s design. This overview provides context for more in-depth look on

potential issues in the design and gaps in Munzner’s framework that are discussed in later

chapters.

4.1.1 Vis product’s design process vs. four levels of design

The process of feature specification and design that was explained in chapter 2 follows

the four levels of design described by Munzner. The features correspond to domain

situation level: they describe domain-specific needs in domain language. It is from these

descriptions that designers derive their design motivations, which correspond to data/task

abstraction and visual encoding and interaction idiom levels.

Features (domain situation level) are responsibility of PM, while designs (data/task

abstraction and visual encoding / interaction idiom levels) are responsibility of R&D.

This division presents some challenges in the design work, as the organizational divide

falls along what should ideally be a continuum from domain descriptions to

implementations.

As Munzner [2015, p. 68] notes, poor decisions at higher levels will restrict successful

design on lower levels. If domain situation is not defined with enough precision, or if it

is defined in a way that does not correspond to actual user needs, the decisions made at

lower levels cannot save the whole design: the result may be a perfect system for solving

problems that nobody has. Because of this the designers should be able to formulate as

precise domain situations as possible at the start of the design work, and to return to

refining the domain situations if the later design stages require it.

-12-

4.1.2 What: data abstractions

The data abstractions of the vis product focus on making large volumes of data

fathomable to the user. The raw data is of table type. That is, it consists of data items,

each of which has several attributes. Some of these attributes are positions that pinpoint

the data item to a geographic location. This makes the data also spatial in nature. Raw

data items can be seen in Figure 6.

The data is continuously accumulated, that is, it is dynamic. The data is also stored in

databases, becoming static.

In the real-time vis, the dynamic data is spatially aggregated into a geographic grid:

the geotiles. This is to allow user to see overview of attribute values over geographic areas

(see Figure 7).

Figure 6. Individual geographic data items displayed on map and in table in the

historic vis.

Figure 7. Geotiles aggregated from geographic data items in the real-time vis.

-13-

Another set of data is the devices. They are likewise table items with attributes, which

contain coordinates that pinpoint them to a geographic location. They are, however, only

static and are not spatially aggregated. Instead, each item of the dynamic dataset relates

to some item in the device data. With this information new attributes are derived for the

device data items by aggregating attributes from the dynamic data set also per device

items (see Figure 8).

Figure 8. Device items on map and in table in the real-time vis. The cone-shaped

markers encode devices by location and direction. The coloring is based on aggregated

data for each device.

Data aggregation makes use of the parent product’s real-time aggregation capability

[Sillanpää and Koivuniemi, 2019]. This capability has been proven to be performant and

stable in the parent product’s history. This is a significant argument in its favor in software

development context: it saves a large amount of work to use an existing, proven

functionality instead of developing new functionality. However, there is question of

existing solution’s fit for new requirements: while the existing solution is powerful in its

real-time performance, this performance comes at cost for data amount. The existing

solution works in-memory, that is, the aggregated data is not stored on disk. As such there

is a size limitation in the aggregated data. Because of this the aggregated data is only

available for a limited, moving time window. This naturally limits the potential domain

situations that the aggregated data could otherwise serve if it were available for a longer

history. This is one motivation for the historic vis, which uses the raw data stored on disk.

-14-

4.1.3 Why: task abstractions

The task abstractions of the vis product revolve around discovering phenomena in the

data and identifying geographic locations and devices associated with the data. That is,

users browse and explore to gain insight on outliers and features, and lookup regions and

devices with interesting properties based on external input.

The users are interested in monitoring data attribute values over geographic areas.

That is, they want to discover unexpected phenomena from the data and verify that the

data is as expected. They want to be able to act immediately if they discover unexpected

phenomena.

Upon discovering interesting phenomena, or upon being externally informed of

interesting phenomena, the user wants to identify the involved regions and devices and

explore their relationships to other regions or devices. Ultimately, the users are interested

in identifying devices that are involved with any problematic data, so that they can take

action to correct the situation.

4.1.4 How: design choices

The aggregations described earlier are instances of reducing items and attributes. As

explained by Munzner [2015, p. 305], aggregation has the tradeoff of not conveying all

information from the aggregated data. Additionally, in this situation the availability of

aggregated data is limited in time duration.

These limitations are the motivation for the historic vis. The historic vis enables

querying of raw unaggregated data from a much longer time range than what aggregated

data is available. To find data items of interest, the queries are performed with criteria

given by user. This is effectively filtering, an alternative way of reducing data. Unlike

aggregating, filtering does convey all information from the data that remains after

filtering. Its tradeoff is that as data that is filtered out is not visible, user may have trouble

staying aware of its existence [Munzner 2015, p. 300]. Providing both means of

aggregation provides refief both tradeoffs. In practice this means that users can search

an interesting geographic area from the dynamic aggregated data with the real-time vis,

and then use this information to derive more detailed information by browsing the static

unaggregated data for the same area in the historic vis. This is supported by allowing

users to launch the historic vis from the real-time vis so that the user can use the context

identified in the dynamic vis as the starting point for their activities with the historic vis.

In next chapters I will explain the vis idioms and the main interactions offered by the

vis.

-15-

 Filtering data

Before introducing the vis idioms, it is necessary to explain how the user can filter data

globally across the vis tool's view.

As described earlier, the real-time data items are aggregated by time period. After that

they are further aggregated by other factors such as the associated device, but common

time period is something that ties together all aggregated data.

At the top of the map area there are filters that apply to all aggregated data. The first

of these is the time period selection (see the leftmost pulldown control with label “60

min” in Figure 9) As the user changes this selection, new data is loaded into the vis from

the selected real-time aggregation period. This filtering operation is computationally

inexpensive, since data has been pre-aggregated, and changing the filter selection merely

defines what data is retrieved from the in-memory storage.

Figure 9. Filter components at the top of the map.

The aggregated data storage is continuously updated by the underlying data collection

functionality as new data is collected from the monitored system. To reflect this, the data

in the real-time vis is updated periodically to display the most recent aggregated data.

Other top-level filters leverage other pre-aggregations (see other pulldown controls

in Figure 9) that represent certain top-level categorical attributes of the data.

In addition to the top-level filters that serve as selectors for different aggregated data

sets, there are also filters for geotile and device data (see Figure 10 and Figure 11).

These filters allow selecting which data attribute (“KPI”, known performance identifier)

to display for geotiles and devices. These filters for geotile and device vis are discussed

in detail in next chapters

One of the geotile filters warrants special attention: the location algorithm filter (see

the bottom of Figure 10). It filters data based on an attribute that indicates certainty of the

data item location. That is, the location of data items may be defined by the monitored

system in several ways. These methods have varying accuracy: one method can pinpoint

data item location quite accurately, while others rely on algorithmically deriving the

information from a number of other available attributes. The less accurate location

methods are necessary, since not all data can be located with the most precise method due

to technological limitations.

-16-

Because of this varying certainty of data item location, designers of the tool have

considered it necessary to enable user to filter the data based on this certainty. That is,

one of the filter pulldowns allows the user to select which location methods to exclude:

they can see all data (no location methods excluded), or only the most precise data (all

but the most accurate location method excluded) or anything in between. This is made

possible by aggregating the data also by the used location method.

 Figure 11. The device data filters.

Figure 10. The geotile data filters.

-17-

 Geotiles

Figure 12. Geotiles on the map.

Table 1. Geotile idiom taxonomy.

The geotile idiom is the most significant idiom of the vis product, as it visualizes largest

quantity of data with the largest number of pixels of all the vis tool’s idioms.

As described in chapter 2.1, geotiles are a way to split Earth’s surface into rectangular

areas each denoted by a geohash. Geohash is a geographic location encoding method

presented by Gustavo Niemeyer [2008] that uses strings of alphanumeric characters to

denote rectangular geographic areas so that each added character creates a string that

denotes a sub-area within the area that is denoted by the preceding string. That is, geohash

“udby5” denotes an area of about 4.89 km × 4.89 km around coordinates 61.5305,

23.7088, while geohash “udby51” denotes an area of about 1.22 km × 0.61 km around

coordinates 61.5317, 23.692. As such, a geohash is an identifier that references a

geographic area. While it obfuscates the actual coordinates, the character string is

arguably much easier for humans to memorize than numeric coordinates, making it better

Idiom Geotiles

What: Data Spatial, dynamic

What: Derived The area under study may have been found with another

monitoring tool or process

Why: Tasks Lookup area of interest, explore to identify areas of interest,

discover devices of interest

How: Reduce Preaggregation into geographic grid, filter by attributes

How: Encode Use given geographic context, map to color hue

How: Manipulate Navigate map, select individual geotiles

-18-

suited for assigning human-readable identifiers to geographic areas. Technological tools

can then decipher the geohashes into actual geographic locations.

The concatenating, nested quality of geohashes is not used by the vis tool however,

as each geotile is 7 characters long, referencing a 153 by 153 meter area. Nevertheless,

the geotile-based approach to data aggregation was chosen to support possible future

functionality where data could be aggregated at different geographic granularities with

geotiles of different sizes.

Data is aggregated into geotiles as follows: per each time period (e.g. 15 minutes), all

data points of the raw data that fall to some geotile’s area are aggregated so that for some

attributes, average and median are calculated, and for some categorical attributes value

sums are calculated.

Aggregated values are encoded with color hue. Their value range is split into 5-8

discrete bins, each of which is assigned a hue (see Figure 12). The used hues depend on

type of the encoded attribute. Some attributes are counts, that is, their values range from

zero to theoretical infinity. Such attributes are assigned hues that represent a heatmap.

Smallest values are encoded with blue hues, then with green, followed by yellow and

orange, ending with a red hue. These values are aggregated simply by counting the sums

of certain categorical attributes in the data.

Other attributes have values that are calculated with certain domain formulas, and

their ranges are defined by these formulas. Depending on variable, one end of the range

signifies good performance, while the other end signifies bad performance. Such

variables are assigned hues that represent their valence (good/bad). These hues range from

green (good) through yellow and orange to red (bad) (see Figure 11 for the same

encoding for device items). Such values are aggregated for example by calculating

median and average for certain attributes that have been aggregated in the same geotile

in the same time period.

The user selects the encoded attribute for geotiles from the pulldown control on the

map edge (see Figure 10). In the same element there are also other controls for

configuring the geotile vis for the current user session. These are the controls for threshold

values used for dividing the data into discrete bins for the vis, and so-called guard value

for statistical KPI attributes.

The use of discrete value bins for encoding with hue as encoding method was chosen

because of an identified domain need. It was identified that users are mostly interested in

identifying values that fall below certain thresholds, as opposed identifying the

differences in geotile values with maximum accuracy. As described earlier, some

attributes range in valence from “good” to “bad”. For such attributes there are domain-

specific thresholds, by which the threshold of “bad” values can be defined. This threshold

information is used in geotile vis to define the default thresholds for the value bins, and

-19-

values in the lowest bin are given red hue. The rationale for this has been that the red hue

will stand out in the geotile colormap, allowing the user to quickly see the interesting

“bad” values.

The so-called guard values are a response to an identified need to deal with the

potentially misleading effect that calculated attributes have with the geotile idiom. As the

statistical aggregations such as average are calculated from what data items are available

in the aggregated set, they are impacted by the total number of data items in the set. That

is, if there is a small number of items, even a single item with anomalous value may have

a great impact on the calculated average. With median a handful of anomalous values will

not have as big an impact, but even then, there is a certain risk of a handful of anomalous

values tilting the aggregated value. The vis risk comes from the fact that each geotile

occupies the same number of pixels, but they represent different amounts of data.

As such a geotile that was aggregated from 10 data items has the same visual weight as a

geotile that was aggregated from 1000 items. A geotile with only 10 items usually is not

as interesting to the user as a geotile with 1000 items. The guard values are a filter that

filters out geotiles that have less aggregated data items than the number of the guard

value. This way the guard values “guard” the user from being misled by geotiles that

encode an insignificant number of items so that they can concentrate on more significant

geotiles. As there is no certain definition of “significant” number of items per geotile, the

user can set the guard values themselves, although the vis also has default values

configured for them. Figure 13 and Figure 14 demonstrate the guard value behavior. In

Figure 13 the guard value is 1 meaning that all geotiles are shown. In Figure 14 there is

guard value 50 which causes many geotiles to be hidden.

Figure 13. The effect of guard value “1” on geotile visibility. All available geotiles

are shown.

-20-

Figure 14. The effect of guard value “50” on geotile visibility. Geotiles with fewer

than 50 aggregated data items are hidden.

Geotiles make up a colormap, which is a powerful vis idiom but comes with certain

risks that may harm the effectiveness of the vis, especially when using hue encoding as

with geotiles. Munzner [2015, p. 234] notes that “segmented rainbows could also be used

for ordered data; while not ideal, at least the perceptual nonlinearity problem is solved

because the colormap range is explicitly discretized into bins.” She points out that “using

a segmented colormap on quantitative data is equivalent to transforming the datatype

from quantitative to ordered” and that “this choice is most legitimate when task-driven

semantics can be used to guide the segmentation into bins.” This is exactly the rationale

behind discrete geotile colormap: it was deemed important to make especially the “bad”

values stand out as their own category.

Another risk with geotiles is how they are affected by modifiable areal unit problem

(MAUP). Wong [2004] defines geographical MAUP to be caused by the fact that

“boundaries of many geographical units are often demarcated artificially, and thus can be

changed” and “when data are gathered according to different boundary definitions,

different data sets are generated. Analyzing these data sets will likely provide inconsistent

results”. The risks about the hue colormap and MAUP and how they have been considered

when designing the geotile vis idiom are discussed further in later in this chapter.

As geotiles occupy the largest number of pixels in the vis and they are visible

whenever the user pans the map to an area with data, they are starting point for many

workflows. When the user has selected to see a KPI attribute with encoded valence, they

may see some geographic areas where geotile color hue indicates poor KPI values.

Alternatively, the user may select to see a count attribute, in which case they may see

areas where there is an unexpected amount activity.

-21-

The user can select a geotile to see window with a

full presentation of its associated data (see Figure 15).

From this window they can browse through all attributes

of the geotile, in which case they may notice other

values of interest. They can then go to top level filtering

and select to see a different attribute for the geotiles,

which may lead to new discoveries. In the window the

user can also see a list of devices that are associated with

the data in the geotile. They can then select devices from

this list to open a similar window for the devices.

When the user selects a geotile, they will also see

lines on map that connect that geotile to all devices that

are associated with it (see Figure 16). This way the user

may discover if there are any unexpected devices

associated with the selected geotile.

Figure 15. Window for full

data of the selected geotile.

-22-

Figure 16. Lines that connect the selected geotile to its associated devices.

-23-

 Device items

Figure 17. Device items on the map.

Idiom Device items

What: Data Tabular list of device items, spatial location, part

static device attributes, part dynamic attributes

Why: Tasks Locate device with known identity, explore

device items at a location, identify associated

devices, derive devices associated with geotiles,

derive geotiles associated with devices, find

extreme values by sorting table

How: Encode Use given geographic context, shape to indicate

orientation, map attributes to color hue

How: Order Sort table to find extreme values

How: Reduce Filter by attribute values

How: Facet Juxtapose views with geographic location and

position in ordered table

Table 2. Device item idiom taxonomy.

-24-

In addition to geotiles, the map view shows items that encode devices that are involved

with the data (see Figure 17). These items encode geographic location of the devices as

their location on the map, and the physical direction of the devices with their shape. This

information on device locations and directions is static and comes from a different source

than the vis tool’s dynamic geographic data.

As for the dynamic, aggregated data, in addition to aggregation into geotiles, the data

is also aggregated per device. That is, same way that certain attributes are counted, and

some are aggregated as KPIs with statistical signifiers like medians and averages per

geotile, certain attributes are aggregated per device. This is possible because each raw

data item has, in addition attributes for geographic location, also attributes that identify a

device that is associated with that data item.

This aggregated, dynamic data is encoded the same way as with geotiles: with color

hue. As with geotiles, the value range for the attributes is split into discrete segments, and

each segment is assigned a hue. Also similarly with geotiles, the utilized hues depend on

the kind of encoded attribute: some range conceptually as quantities from “low” to “high”

and are encoded with hues from blue to red, while others range as valence from “bad” to

“good” and are encoded with hues from red to green.

As with geotiles, the user can select the displayed device attribute from the pulldown

on the map edge (see Figure 18). The same location contains also controls for the discrete

value bin thresholds and guard values. These controls function for device data the same

way as similar controls do with geotiles. One difference to note is that where geotiles that

are filtered out with guard values are hidden completely, device items that are filtered out

remain visible, but are given a grey “no data” color (see Figure 17). Geotiles are arbitrary

aggregations of data and as such they exist only when there is data to show, whereas

device items represent actual devices that exist even if there are no dynamic data values

to display for them.

-25-

Figure 18. The device attribute selectors and device color bin thresholds.

In addition to controls for encoding the aggregated data, the device items can be made

to show also certain static device data (see Figure 19). This domain specific data

represents a certain categorical attribute of the devices. This attribute is encoded with a

set of hues that were chosen so that they won’t be confused with aggregation-encoding

hues. The device items can also be filtered out based on these values with the checkbox

controls in the control pane.

Figure 19. Device coloring by a categorical attribute.

-26-

Also similarly as with geotiles, the user can select

a device item to see a window that contains a full

presentation of that device’s data in the selected time

period (see Figure 20). The selected device item is

highlighted with a pin icon on the map (see Figure

21).

The selected device receives special treatment in

the map’s semantic zoom. The device items are

hidden from view when user zooms the map far

enough. This is to prevent occlusion. Geotiles have

fixed geographic size, and they get smaller or larger

depending on the zoom level, up to the point where

one geotile may occupy only several pixels. On the

other hand, device items cannot be scaled this way:

due to their shape, visual borders and potential close

proximity to other device items, they would lose all

useful information if scaled to very small sizes.

Because of this the device item’s size is scaled only

slightly with the zoom level. This in turn would cause

severe occlusion on the map on higher zoom levels if

all the device items would remain visible while

geotiles become miniscule. To prevent this

occlusion, the device items are hidden from view at

higher zoom levels, except for the selected device

item. This makes the zoom a semantic zoom vs.

ordinary graphical zoom: the effect of the zoom is

adjusted so that the as much of the visual

representation’s meaning is carried over on each

zoom level.

From the device detail window, the user can filter

geotiles so that only geotiles associated with the

selected device are visible (see Figure 21). When

filtered this way, the user will see data that has been

aggregated both by geotile and by device. This way the user can see if data per geotiles

in certain area and per certain device contains unexpected values, or if there is data in

unexpected location associated with the selected device.

Figure 20. Window for full data

of the selected device.

-27-

When user sees this kind of per-device filtering for geotiles, the displayed geotiles

are encircled by an outline. This way the user may more easily notice if there any geotiles

scattered outside the main distribution.

In the device-specific window the user can also see list of other devices that are

associated with the selected device. This is relevant in the user domain, as certain devices

may be linked so that they are expected to take part in processing the same data. By seeing

the associated devices, the user may see if there are any unexpected devices associated

with each other. If some undesirably located devices are associated with each other, this

may lead to undesired behavior in the monitored system.

Figure 21. Geotile data as aggregated by both geotile and associated device (“device

footprint”). Note the line that shows the boundary of the area with geotile data.

The devices that are in the map’s visible area are shown also in table below the map

(see Figure 22). The table is sorted by default by the selected device attribute (see device

attribute selector in Figure 11) and the user can also sort the table by other attributes as

well. The displayed attributes include certain static device attributes and all dynamic per

device aggregated attributes. The map serves as control for the table contents, as the table

content is updated to show the devices from the map area as the user pans around the map

area.

-28-

Figure 22. The shown map area’s device data in a table.

The table’s sorting feature allows the user to quickly see any extreme values in the

dynamic aggregated per-device data. The default sorting of the table by selected device

attribute follows the semantics of each attribute so that the values that are judged to be of

most interest to the user are sorted to the top. Thus, for valence attributes the values

indicating poor performance are sorted to the top, while for quantity attributes the largest

values are at the top. This means that the sorting direction may change between ascending

and descending order as user changes which device attribute is displayed. While this

breaks consistency of behavior (where all attributes would be sorted in either ascending

or descending order), it was judged based on expert feedback that this will aid users to

discover the most interesting devices.

The device items on map and the rows of the table are facets of the same data that

provide complementary views on the data. The table allows the user to have a more

comprehensive view of the device values than what the vis alone can provide, as the table

displays simultaneously many values with numeric presentation, while the map shows the

geographic information for each device. The relationship of map items and table rows is

communicated to the user with mouseover highlight: as the user moves the mouse cursor

over either a map item or table row, the corresponding table row or map item in the other

view is given the same visual highlight as the highlighted item or row. The user can also

select rows from the table, in which case the selection opens the device-specific

information window the same way as if user had selected a device item from the map.

Same way as with mouseover highlight, the selection highlight is also displayed both for

related map item and table row.

In addition to device selection and highlight, the user can also mark devices. This is

done with checkbox components in the device table (see column “Marked” in Figure 22)

-29-

or device window (see “Mark device” checkbox in Figure 21). The marked devices are

highlighted on the map with black pin icons, and they will receive special treatment in

the map’s semantic zoom. They will remain visible on the map the same way selected

and highlighted device items do at higher zoom levels, where other device items are

removed from view. This supports the user’s memory by allowing the user to keep track

of multiple interesting devices as they pan the map and inspect other devices. Figure 24

shows the device items displayed at a zoom level where they all remain visible. Figure

25 show the same view one zoom level higher: device items are hidden, save for the

marked one.

The device marking plays an important role in user workflow from the dynamic vis

into the historic vis by allowing user to mark devices in dynamic vis and then having them

displayed in the historic vis.

The device marking also has a specific use within the historic vis. In the historic vis

the list of the marked devices’ IDs is automatically inserted in the query component. This

allows the user to easily pick devices from the map and the table for use in the historic

data query.

Figure 23. Marker pin on a selected device item.

-30-

Figure 24. Marker pin on on a device item that is not in selected state.

Figure 25. Marker pin on on a device item that is not in selected state, with map zoomed

out so that device items are otherwise hidden due to semantic soom.

-31-

Figure 26. Marking on a device displayed both as pin on the map and as checked

checkbox in the table.

-32-

 Device data by distance

Figure 27. Device-specific data aggregated by distance from the device.

Idiom Device data by distance

What: Data Tabular data items with derived rough geographic

location

Why: Tasks Browse to find outliers with unexpected location,

find extreme values by sorting table

How: Encode Use given geographic location, shape to indicate

orientation, map value to color saturation

How: Order Sort table to find extreme values

How: Facet Table in the device data window, geographic

location derived from the associated device location

and the data item’s distance to the device

Table 3. Device data by distance idiom taxonomy.

-33-

In the device window, the user can select to see yet another aggregation vis of the dynamic

data: data per distance from certain device (see Figure 27). This vis displays device-

specific data aggregated into segments by the data item’s distance from the device. The

cone shape is directed into same direction as the device itself.

This vis provides a complimentary view on the data. To aggregate data items into

geotiles, the data items must have coordinate data. This is not the case for all data items,

as the coordinate data may sometimes be missing or corrupted. In such case, the data item

may still contain a certain attribute value that indicates its distance from its associated

device. With this information, the data is aggregated also by this distance information

combined with identity of the data item’s associated device so that data that would

otherwise be useless can still be put into use in the geographic vis.

The cone displays the values for the attribute that user has selected for device KPI.

This attribute is encoded by color saturation, making it different from color hue encoding

used for geotiles and device items. This approach was chosen because the cone vis is

overlaid on top of geotiles and overlaying two hues would distort them both. By

overlaying only one hue with varying luminance on top of many hues with single

luminance the distorting effect is limited.

 The cone angle width is defined so that it corresponds to generally expected direction

and distribution where data items are in relation to the device. This is however only an

educated guess based on domain knowledge since each aggregated segment only contains

information in its distance from the device location.

The vis provides additional help in discovering locations with undesired data values.

As the user identifies a location of interest with the distance vis, they can then inspect

geotiles at that location to gain more insight into the data in the location. Usually the data

location is interesting if it is at an unexpected distance away from the device, as this may

indicate undesired behavior in the monitored system.

The vis allows the user to browse through devices by selecting them one by one and

quickly glancing the cone vis for each. Similar glancing can also be achieved by enabling

geotile filtering per device, but in such case the user would lose the general view of all

geotiles. This combined use of general geotiles and device-specific data with the overlaid

cone vis enables the user to see how device-specific data compares to the whole data

while browsing through devices.

-34-

 Individual data items

Figure 28. Data points for individual data items on historic vis map.

Idiom Data points

What: Data Data items with geographic location

Why: Tasks Browse data items returned by given query

parameters, find extreme values by sorting table

How: Encode Use given geographic context, map to color hue

How: Order Sort table to find extreme values

How: Reduce User queries data from limited time and geographic

area

How: Facet Juxtapose geographic context and numeric data values

by displaying the same data items in table next to the

map

Table 4. Data points idiom taxonomy.

-35-

The vis idioms described in previous chapters were for the dynamic aggregated data. As

mentioned, the motivation for performing this data aggregation and providing vis for it is

to enable users to gain overview of large quantities of data, and to reduce the data into a

smaller quantity so that it can be retrieved for inspection quickly.

This aggregation comes at a cost however: aggregation loses information as it

compresses data items [Munzner, 2015, p. 300]. In the aggregated dynamic vis there is

no way to see the actual individual data item from which the aggregated representation

was created. This limits the user’s ability to gain insights from the data, as some insights

may require investigating the data down to the level of individual data items.

To offset this cost of aggregation, the vis tool provides a vis for individual data items.

As opposed to the dynamic vis that uses the quickly accessible dynamic aggregated data,

the vis for individual data items requires the user to query the raw data items from

database and displays them as circular items on the map (see Figure 28). This vis occupies

an entirely separate, alternative view from the dynamic vis, as it uses different kind of

data and a vis idiom that does not coexist nicely with the geotile idiom.

At the top of the page there are controls by which the user can input conditions for

the database query. This is a significant difference from the previously described real-

time vis idioms. With the real-time vis idioms, the displayed data is automatically updated

at regular intervals to reflect the newest status of the data, whereas to view the individual

data items from the historic data, the user must first specify by which conditions they

want to retrieve data for inspection.

The user must always provide time range parameter for the query, and some query

types also take in geographic area as a query parameter. The tool allows the user to use

the map component as input element for specifying the geographic area: the user can pan

and zoom the map to view their desired geographic area and click the button in the query

conditions to use the map’s visible area as bounds for the geographic query conditions.

Figure 29 shows the query input component in state where it automatically picks up the

map area as query parameters.

-36-

Figure 29. Visible map area used as input for query’s area parameters. Note the blue

outline of the map, depressed visual appearance of the toggle button on top right and

greyed out text inputs to indicate that the automatic area input selection is active.

When the user provides conditions and launches a query, the matching data items are

retrieved and displayed on the map as circular data point items whose location on the map

encodes the data item’s coordinate values.

Each data point item also contains a color hue encoding for a data item’s attribute

value. The same way as with the dynamic vis idioms, the user can choose the displayed

attribute from the controls at the map edge (see Figure 28).

As the vis for individual data items requires the user to provide the conditions before

any data is displayed, it requires the user to have a pre-existing knowledge on what to

look for. This is where the complimentary nature of the historic data point vis and the

dynamic aggregated vis comes in. The user can identify phenomena with the dynamic vis

and go to historic data point vis to inspect the involved data more closely. In fact, this

workflow is supported in the dynamic vis with a control element in the map corner. This

pulldown menu contains certain pre-defined so-called launches that will take the user to

a new browser tab that displays the page for the data point vis and fills out the query

conditions based on the state of the dynamic vis from which the launch was done. Figure

30 and Figure 31 show how marked devices in the dynamic vis are carried over into the

historic vis. When user selects a query template item from the pulldown component as

-37-

shown in Figure 30, a new browser tab is opened with historic vis as shown in Figure 31.

This approach follows the principle of “Overview first, zoom and filter, details on

demand” [Shneiderman, 2003], where the user uses the given vis to narrows down the

data they inspect if their domain need requires them to inspect locate and closely inspect

some limited amount of data.

Figure 30. The nested pulldown for selecting a query template to launch from the

dynamic vis to the historic vis.

Figure 31. A query template launched from the dynamic vis to the historic vis. The

marked devices have carried over from the dynamic vis as paremeters on the launched

query template.

-38-

 Interactions

The vis tool employs multiple vis idioms to display many views on its data. To carry out

their tasks the user must make use of all of them using the interactions the vis tool

provides. This chapter explains the most significant interactions and the user tasks that

they support.

When the user opens the dynamic vis, the map shows a pre-configured area. The

system administrator can configure this default map location so that it will be close to

where the users need it. The default zoom level is such that if there are geotiles in the map

area, they will be visible. At this stage the user may want to either monitor overview of

the data over time to discover any unexpected phenomena in it or to seek to identify some

locations and devices that are associated with some problematic data.

If the user wants to monitor overview of the data they will select the displayed geotile

attribute and then pan the map to shift the displayed map area and zoom in and out in the

map to balance the size of the shown geographic area with the discernibility of the

geotiles. They can also toggle the map to fill the entire browser window so that they can

use maximum pixels for the vis. The user can set the displayed time period to something

that fits their interest, like one hour. Then the user can start focusing on some other tasks

while the vis updates periodically with the newest available data. In this case the vis works

as an information radiator that ambiently displays information, and users can glance it

amidst their other tasks to get an overview of the data. This way they can discover

undesired phenomena in the data, if the color hue in geotiles in some location changes to

indicate extreme values. Ott and Koch [2019] have conducted a study where they

explored the usefulness of information radiators.

If the user wants to identify locations or devices that are associated with some

undesired behavior in the system, they may have gotten to the starting point in two ways.

They may have discovered extreme values by monitoring the overview as explained

earlier, or they may have been alerted some other way in their work environment to locate

certain problematic area or device.

If the user has spotted an abnormality in the map, they will already know what

location to inspect more closely. If the user has been alerted of abnormal behavior in the

system at some geographic location, they will know a street address near a location where

abnormal behavior has been reported or identity of a device associated with the abnormal

data. They can locate either street address or a device with the search input at the map

edge. As the user inputs an address or a device ID, they are presented with a list of matches

from geolocation database and device database. The user can then select items from this

list and the map is automatically panned to the location of the selected street or the device.

When selecting a device from the list, the device is also selected the same way as if the

user had selected a device item from the map, that is, the user will see a window with

-39-

details of the device and the device will be highlighted on the map and in the adjacent

table.

When the user is investigating abnormality in a geographic location, they may need

to investigate the data on a more detailed level than what the aggregated and time-fixed

data of the dynamic vis allows. This is where the historic vis comes in.

The workflow is fundamentally different in the historic vis, where there is no quickly

accessible overview of the historic data. The user must first provide the query parameters

for the database query that retrieves the data for display. What parameter values to input

may come from external systems, whence the user inputs the parameters entirely

manually, but the main interaction flow has been designed to start from the dynamic vis.

In the dynamic vis, there are nested pulldown controls at the top of the map which launch

the historic vis with certain input data from the current state of the dynamic vis (see Figure

30). This data includes the current map bounds and the time period of the data in the

dynamic vis, and a list of marked devices. The devices are marked as explained earlier.

The options in the pulldown represent different query templates with different data

attribute query fields and possibly with some default values. When user selects a launch

option, a new browser tab is opened with the historic vis so that the map area, time period

and the list of marked devices carries over from the dynamic vis and are automatically

inserted into the query fields of the historic vis. From this point forward the user can

query the individual data items and inspect their exact data values with the historic vis.

From the individual data items the user can identify devices that relate to the individual

data items and their exact, unaggregated data values. This way they have more precise

information on the relationship of devices and their associated data items so that they can

pinpoint devices that require corrective action with greater confidence.

Figure 32 shows a representation of the main interactions between idioms in the vis.

The graphic and its relation to Munzner's concepts is discussed further later in this

chapter.

-40-

Figure 32. Interaction graph between the idioms of the vis tool.

-41-

4.2 Vis product: addressing threats to validity

In this chapter I analyze the validation of the vis product’s designs from the perspective

of what Munzner [2015, p. 74] describes as threats to validity. At each level through the

design process there are threats that can result in a vis that does not satisfy user needs.

These threats can be mitigated by certain actions throughout the design process, both for

validating decisions before implementing the vis (pre-validation) and for validating the

vis after it is implemented (post-validation). Figure 33 shows an overview of these threats

across design levels and their mitigation actions.

Figure 33 “Threats and validation at each of the four levels. Many threats at the

outer levels require downstream validation, which cannot be carried out until the inner

levels within them are addressed, as shown by the red lines. Any single project would

only address a subset of these levels, not all of them at once.” [Munzner, 2015, p. 76]

The following chapters deal with how the vis product has been validated against these

threats to validity at each level of design. Chapter 4.2.1 delves in pre-validation actions

and chapter 4.2.2 delves in post-validation actions.

-42-

4.2.1 Pre-validation

 Domain situation

Figure 34. Design validity threat and pre-validation action at domain situation level.

[Munzner, 2015, p. 76]

The way for validating domain situations is to observe and interview target users. In the

design work of the vis product a designer interviewed target users at potential customer

organization. Thus, pre-validation has been done at domain situation level, but it must be

acknowledged that interviews are not as powerful tool as field studies where users are

observed in their work. The weakness of interviews is that there is no guarantee on how

conscious the users are of their workflows or how aptly they can describe them verbally.

It isn’t feasible to require this of them either. User observation overcomes this problem

by allowing designer to gain first-hand insight on user workflows, which may contain

seemingly minor yet valuable details that can be used to formulate domain situations.

Munzner [2015, p. 68] points out that if designers struggle with defining data/task

abstractions at the lower design level, the reason may be inadequately formulated domain

situation. In such case the designers should return to domain situation level and try to

improve or extend the domain situation.

 Data/task abstraction

Figure 35. Design validity threat data/task abstraction level. [Munzner, 2015, p. 76]

There are no pre-validation methods for data/task abstraction level. This makes intuitive

sense: At this level the designs are abstractions of the concrete user needs defined at

domain situation level. Due to their abstract nature, they cannot be validated, that is,

demonstrated as right or wrong. They must first be translated into concrete visual

encoding/interaction idioms and possibly also implemented at algorithm level before they

can be validated. As such there was no validation at this level for the vis product either.

-43-

 Visual encoding/interaction idiom

Figure 36. Design validity threat and pre-validation action at visual

encoding/interaction idiom level. [Munzner, 2015, p. 76]

At visual encoding/interaction idiom level the design can be validated by justifying the

design choices against the existing body of design guidelines. That is, designers must be

able to view the proposed designs critically. This is of course easier when there are

multiple designers: a single designer may not see all potential issues in their own designs.

The design work for the vis product involved two designers who peer-reviewed each

other’s designs. They also discussed the design with a group of stakeholders in regular

meetings throughout the project. These measures brought a lot of valuable input by which

proposed designs were chosen and rejected. Thus, it can be concluded that pre-validation

at this level has been adequate.

 Algorithm

Figure 37. Design validity threat and pre-validation action at algorithm level.

[Munzner, 2015, p. 76]

At algorithm level the implementation can be pre-validated by analyzing the

computational complexity and thus efficiency of the chosen algorithms that process the

data for the visualization.

The vis product’s functionality leverages the parent product’s existing data

aggregation capability. Thus, the computational complexity was tackled by the existing

functionality that was found performant through the parent product’s history as a

commercially successful software tool.

The algorithms in the vis tool itself were not analyzed before implementation. This

was compensated by testing the whole implemented system’s performance both by

automated and manual performance testing after.

-44-

4.2.2 Post-validation

 Algorithm

Figure 38. Post-validation action at algorithm level. [Munzner, 2015, p. 76]

Post-validation at algorithm level means measuring the computation speed and resource

usage of the system.

The performance and stability of the vis product’s upstream components was tested

extensively with automated performance and stability tests. These tests perform requests

on the interfaces of the client component’s data over time periods ranging from hours

(performance tests) to days (stability tests).

The client code’s performance was validated manually by using the system with large

data amounts. The time and memory use were measured quantitively only in rare cases

where the performance of some particular functionality was at question. Otherwise, the

validation was done qualitatively: the client’s performance was adequate when the people

using it (designers, developers, other stakeholders) were satisfied with the response times.

 Visual encoding/interaction idiom

Figure 39. Post-validation actions at visual encoding/interaction idiom level.

[Munzner, 2015, p. 76]

The chosen visual encodings and interaction idioms at visual encoding/interaction idiom

level can be validated in three ways: 1) The visualizations produced by the system can be

analyzed qualitatively in a discussion to validate that they support the intended user tasks,

2) the visualizations can be analyzed quantitively by measuring their visual properties

against certain quality metrics, and 3) the system can be tested with users in a controlled

lab study.

Of these three validation methods only qualitative discussions were used with the vis

product. This was done by regularly demonstrating new implemented visualizations to

PM, proxy user, domain specialists and other stakeholders. This way the visual encodings

and interaction idioms were regularly subject to critical discussion on their validity for

intended tasks.

-45-

Quantitative measurements were not performed. The concept is unfamiliar to the

designers, though Munzner [2015, p. 79] also only mentions them in passing and points

out that only some of such metrics have been empirically tested.

There were no lab studies. The designers conducted several usability tests on the vis

product following basic usability test procedure [Sillanpää and Koivuniemi, 2019], but as

Munzner [2015, p. 79] points out, usability tests validate usability of a system, not how

effectiveness of a visual encodings and interaction idioms of a visualization design.

Where usability tests validate how effectively users can carry out the interactions that

designers have intended, controlled tests for visual encodings and interaction idioms

would require test scenarios that would validate the insights that a visualization enables

users to gain from data qualities.

 Data/task abstraction

Figure 40. Post-validation actions at data/task abstraction level. [Munzner, 2015, p.

76]

Validation at data/task abstraction level requires having a target user use the tool. This

differs from lab studies at visual encoding/interaction idiom level in that here actual

intended users of the tool use the tool for their actual work. This validation can be made

either by collecting feedback from users using the tool, or, more rigorously, by conducting

field study to observe and document target users using the system in their work.

With the vis tool a designer visited a customer to collect feedback from target users.

The designers also received continuous feedback from proxy user who evaluated design’s

usefulness for intended tasks whenever new designs were implemented. Field studies

were not done.

 Domain situation

Figure 41. Post-validation action at domain situation level. [Munzner, 2015, p. 76]

Designs are validated at domain situation level by observing how well the designed

system spreads. This is a difficult measure, as the quality of designs is not the only

defining factor for a system’s adoption rate, especially for commercial products.

As such in the situation of the vis product, the design’s effectiveness is hard to judge

from the product’s commercial performance. At the minimum it can be concluded that

-46-

the domain situation definitions and the resulting designs have been effective enough for

securing the deals that the product has seen. It does not, however, tell if the domain

situations could have been defined more accurately. As such it might be useful to seek

feedback from the sales organization on any customer contacts that have not resulted in a

purchase. Such feedback exists in the organization but is not readily available to

designers. It would be useful for designers to seek this feedback as they accumulate

experience to support their future design work.

4.3 Vis product: Closer look at design and validation gaps

In this chapter I delve deeper into some aspects of the vis product's design work that arose

from its investigation and interviews I did with its designers.

4.3.1 Domain situation’s availability to designers

As described in earlier chapters, the design levels between domain situation and lower

levels fall into different branches in the company. This means that effective designs

require effective collaboration between the organization parts. However, there is some

friction in this collaboration.

Designers reported that they had interviewed several users at customers at the start of

the project and during development they had access to user at one customer [Sillanpää

and Koivuniemi, 2019]. During the development the development team also closely

collaborated with an in-house specialist who was in close contact with customers. That

is, that specialist was a proxy user, with whom the designers and developers could define

requirements even at low design levels and evaluate designs and implementations. The

designers noted that this cooperation was very valuable. However, they also pointed out

that the in-house specialist is still not an actual user, but a mediator between the users and

the development team, who has their own opinions and preferences. Thus, the information

gained from the proxy user must be considered critically against this fact. Also, using a

proxy user does not allow for user observation.

The designers claimed insufficient access to end users from which they could gain

feedback on the design’s effectiveness, noting that this would require much more frequent

co-operation with customers or easy internal channel to get information from regional

sales teams [Sillanpää and Koivuniemi, 2019].

4.3.2 Support and hindrance from pre-existing data processing

The dynamic vis is built on the parent product’s capability to dynamically aggregate

data. Leveraging the existing data aggregation functionality comes at a cost of restricting

data availability to a fixed time frame, thus restricting available tasks and influencing

design choices. It has also limited the design space for the geographic data so that there

hasn’t really been other option that the geotile idiom, with the restrictions that is has.

-47-

However, this pre-existing aggregation capability may be the sole reason that the vis

tool exists. It is uncertain if the vis tool would have been deemed worth creating if there

had been additional cost of implementing new functionality that would have solved this

limitation. As such it can be argued here that perfect is the enemy of good. On the other

hand, it is also uncertain how good investment the product is to the product organization

with this limitation. The question is hypothetical, but it should be acknowledged since the

design’s effectiveness is judged against the available budget for design and

implementation.

4.3.3 Design choices

The design choices have been validated with cooperative evaluation by the involved

designers and stakeholders as explained in chapter 4.2., and thus the tradeoffs and

concerns of the designs have been justified. It is, however, worthwhile to look at some of

those concerns here.

Usage of categorical hue color encoding is a major design choice with several chosen

vis idioms. As the data attributes encoded this way are ordered and quantitative, a more

natural encoding for them would use saturation or luminance encoding, which lend

themselves for encoding continuous differences across the ended value range. However,

it was identified in discussions with domain specialists that such comparison of

differences is not what the users need. Rather, they need a way to spot values that fall

below, above or between certain thresholds. Because of this the exactness of the encoded

attributes was willingly sacrificed by using a categorical encoding. Munzner [2015, p.

234] notes how this kind of attribute transformation from quantitative to ordered

categorical can be justified this way by task semantics.

 A major tradeoff with aggregating spatial data into geotiles is how geotiles are

affected by modifiable areal unit problem (MAUP) [Wong, 2004]. That is, as spatial data

is aggregated into discretely bounded units, the placement of the bounds may break and

obfuscate patterns in the data. For example, if some attribute in the data is aggregated by

taking an average of certain other attribute, and the locus of some trend in that attribute

falls on the border between two units, the data items of the trend fall into different units

and are averaged together with data points where the trend does not occur. In such case

the trend is diluted by this split and uninvolved data points, more so than if the whole of

the trend would fall in a single unit. This diluting effect of the MAUP can be mitigated

by using smaller units of aggregation. This, however, would come at a computational cost

as the number of aggregate units increases.

There is also a concern of discoverability in the dynamic vis in general. As the user

can at a time only choose to see a single attribute displayed for geotiles and another one

for devices, they must know which one to choose. This problem cannot be tackled with a

single map. As Munzner [2015, p. 267] notes, a single vis view can display only so many

-48-

attributes before the amount of visual clutter grows too large for the user to handle. This

is especially true for colormaps: multiple colormaps cannot occupy the same the map.

As Munzner further notes, the limitation of a single vis view can be overcome by

using multiple views. This is also the case with the vis tool. As the tool is implemented

for web browsers, the solution leverages standard web browser functionality: the user

may open multiple browser windows where they can see multiple maps with different

data. As the views in different browser windows are independent from each other, any

potential interactivity of these multiple views is sacrificed. However, this was deemed as

worthy sacrifice against the cost of designing and implementing a multi-map view inside

a single browser window, or the cost of adding a lot of complexity by introducing

interoperability between the browser windows with web technologies such as cookies.

Another justification for limited discoverability is that the users operate in an

environment with multiple complementary tools and are not solely relying on the vis tool.

That is, it is expected that the users will have other sources of information for deciding

what to look at with the vis tool.

4.3.4 Verification of implementation vs. validation of designs

The development work involved great effort on verification at many levels: unit tests,

integration tests, stability and performance tests, end-to-end test automation and manual

tests in end-user environment. This greatly helped ensure that the system worked in a

performant and stable way and greatly helped to eradicate bugs. However, while valuable,

this test load is verification, not validation. The tests ensured that the system works as

designed, not that the designs truly fulfilled user needs.

Full validation of chosen design abstractions would require observing target users

using the vis in their own environment [Munzner, 2015, p. 78], which has been limited,

as actual users have largely been supplemented with in-house specialists as “proxy users”

[Sillanpää and Koivuniemi, 2019]. A designer noted that they interviewed users at later

stages of the project on their use of the system, something they found very valuable for

their work as a designer. However, as with requirement definition, interviews as a form

of validation are limited. Observational user research would yield stronger insights on

design’s effectiveness. Interviews allow for identifying glaring issues in workflows and

finding out new functionality ideas from users, but this is limited in usefulness in the same

way as interviews are limited in requirement definition: users are experts in their domain,

not in visualization design. They are not aware of the design space of possible designs

[Munzner, 2015, p. 10] to the extent that designers are.

-49-

4.4 Munzner’s concepts

4.4.1 Interactions

The vis tool displays multiple perspectives on its data with multiple vis idioms and the

user navigates around the tool shifting focus from one idiom to another to investigate the

behavior of the monitored system.

The concepts that Munzner presents offer a comprehensive terminology for

describing and analyzing the different idioms. However, the interactivity that joins the

idioms together is itself a major realm of design choices.

Munzner [2015, p. 9] stresses that interactivity is crucial for handling complex

visualizations and points out that interactivity is integral part of many vis idioms [2015,

p. 71]. She also explains how complex user tasks can be described as chains of simpler

tasks, where outcome of one task provides starting point for the next [2015, p. 44, 49].

Figure 42 shows the approach Munzner takes at interactions between idioms: each idiom

is to be considered as its own set of data-task abstractions, and one idiom feeds input

context for next idiom.

This divide-and-conquer approach does allow breaking down complexity of multi-

idiom vis systems, but it turns blind eye to more complex interactions between idioms. A

system of chained interactions can be seen in Figure 32 where I illustrated the vis tool’s

interactions by applying the what-why-how idiom splits into a non-linear graph. It is

evident from the figure that the relationships between idioms are much more complex

than the linear cascade from one idiom to the next that Munzner presented.

This complexity can be intuitively understood. A multi-idiom vis system can be

represented as a graph where each node represents a vis idiom and every link represents

Figure 42. “Analyzing vis usage as

chained sequences of instances, where

the output of one instance is the input to

another.” [Munzner, 2015, p. 18]

-50-

an interaction where the user’s focus moves from one idiom to another. Every new idiom

in a vis system introduces a new node into the system graph, and at least one link as input

into the idiom and one link as output from the idiom. Often one node links to multiple

other nodes. In such a graph it is easy to see how adding new nodes may quickly increase

the complexity of the graph. As each link, or interaction, represents a shift of one idiom’s

output to another idiom’s input, each time involving the whole scope of idiom-specific

design considerations, there is danger of not seeing the forest for the trees. That is, when

the user’s task involves moving over a network of idioms and connecting interactions,

creating an effective design must also consider this whole idiom-interaction network.

Designing and analyzing idiom by idiom is not enough, as the idioms must create a whole

where the idioms work together to allow user to gain insights from the data. Such holistic

design and evaluation is something where Munzner’s single-idiom focused concepts offer

little support.

4.4.2 Data uncertainty

There is one significant characteristic in the vis tool’s data for which there are no

supporting concepts from Munzner: uncertainty. The data’s geographic location attributes

may be inaccurate or altogether false, and with small sample sizes some aggregated

attributes may be skewed by few extreme values.

There is inaccuracy in data location as mentioned in chapter 4 where it was explained

how the user can filter the data based on the accuracy of the used location method. That

is, this known inaccuracy is handled with design by enabling the user to make the choice

on how accurate data they want to investigate. This selection is done with a pulldown

component in the geotile filter pane (see Figure 43). The component shows the available

location-method-specific aggregations: the default selection is data aggregation that

contains all location methods, and the rest of the options are for data with varying levels

of accuracy. Essentially each option shows data aggregation where every time the least

accurate location method is excluded, finally leaving only data with the most accurate

location method. The trade-off of the location method exclusion is decreased data quantity

for the more accurate location data.

Figure 43. Filter for choosing geotile data set per certainty of used location method.

The identities of the loaction methods have been redacted.

-51-

In addition to inaccuracies in data location attribute, the location may also be simply

false due to several technological reasons in the data collection. In this case the error is

in the data that is coming in from the monitored system itself, and the vis tool cannot do

anything to correct it. The attribute is corrupted, and the actual location of the data item

is not attainable. Fortunately, such corruption usually follows one of several possible

patterns, that is, it is easy to spot the corrupted location data if it is displayed with a

geographic vis. Because of this it was possible to automatically filter out corrupted data

based on these patterns. The downside of this is that some actual data may also be

discarded as false positives by such filtering, but this is a worthy tradeoff for preventing

false data from cluttering the vis.

Third aspect of uncertainty in the vis tool is the potential overemphasis of minor

phenomena in the data due to the geotile idiom. Each geotile has equal footprint in the

vis, even though they may encode drastically different quantities of data. As the user may

or may not be interested in geotiles that consists of few data items compared to most of

the geotiles, a filter dubbed guard values was added to filter out geotiles based on sample

count. While this allows the user to handle the issue, it pushes responsibility from the

design to the user, and is quite heavy handed: the user either sees the “minor” geotiles or

they don’t.

These sources of uncertainty are something the designers wrestled with considerably,

which makes the omission of uncertainty and its implications from Munzner’s concepts

unfortunate. The methods of accuracy-based aggregation, pre-filtering by known false

values and filtering out small sample sizes with guard values appear relatively

straightforward design decisions, so lack of vis theory about them is quite surprising.

As mentioned, the use of guard values is problematic due to their all-or-nothing effect:

geotile and device items with small sample sizes are excluded completely from the vis.

One approach to tackle this would be to encode the uncertainty itself with its own visual

channel. That is, items that fall below the guard value threshold could e.g. be given lower

saturation and higher transparency to differentiate them from more confident values and

to give them less visual weight. This approach would however come with a cost of

complexity: this would effectively double the number of colors that geotiles and device

items could have. Correll, Moritz and Heer [2018] propose an approach for dealing with

such added complexity of visualized uncertainty: value-suppressing uncertainty palettes

(VSUPs). Correll et al. propose VSUPs as an approach where the degree of uncertainty is

discretized into value bins and the data items are assigned the uncertainty value based on

which bin they fall into, and each uncertainty bin is split into discrete bins that encode the

“actual” data value. The degree of uncertainty is encoded with its own visual channel (in

the case of Figure 44 as lightness and saturation vs. the varying hue of the “actual” data

value), but the range of used visual features decreases as uncertainty increases. As a

-52-

differentiator from a bivariate color map (as seen on the left side of Figure 44), the number

of utilized visual bins for “actual” data values decreases as uncertainty increases. This

helps give the values with high uncertainty less impact in the overall vis complexity.

Figure 44. “A standard bivariate map (left) and a VSUP (right)…” [Correll, Moritz

and Heer, 2018]

VSUPs could be adapted for use with guard values: data values falling below the

guard value threshold could be encoded with a lower saturation and higher transparency,

and the scale of the values could be truncated so that only extreme bad values would be

given their signature red hue. All the rest of the values could be given a single muted grey

hue to dilute their actual values from complicating the vis, while keeping the geotiles

themselves visible, and thus keeping the user aware of their existence. This way the user

can remain aware of even insignificant geotiles and be able to tell if one of such geotiles

contain bad values. Figure 45 and Figure 46 show an example of a VSUP used on geotiles

as described.

-53-

Figure 45. Geotiles shown without a guard value applied.

Figure 46. Geotiles shown with a guard value and a value-suppressing uncertainty

palette applied. The red geotiles that fall below the guard value are given a less

saturated color. Other geotiles that fall below the guard value are given a light grey hue.

-54-

5. Discussion

In this chapter I discuss the key findings that rose from analyzing the vis product’s de-

sign work and Munzner’s concepts’ adequacy for the task.

5.1 The vis product

The main issues of the vis product's design work were about the disconnect of between

user context and the designers. This manifested somewhat in the pre-validation of the user

context definition as lack of in-depth user observation field studies, and especially as lack

of post-validation of implemented designs through field studies or even anecdotal

evidence from actual users. On the other hand, the inner idiom and implementation parts

of the vis validation were quite extensive through peer-reviewing the designs before

implementation, gathering regular feedback from proxy-users and domain specialists, and

performance testing the implementations. However, these inner levels of design are

subordinate to the decisions and validation made at design levels of domain situation and

data and task abstractions. That is, this seems to be an unfortunate case of validating that

the designs do things right, and not so much that the designs do the right things.

To improve the validation at domain situation and data and task abstraction levels,

the designers would need closer contact with the target users. This would require

prioritization from the business organization to provide time and resources for such

activity. The same closer contact would allow for more detailed definition and pre-

validation of the domain situation as the starting point of the design, and post-validation

of the de-sign in the wild.

There were several trade-offs with many fundamental design choices such as

modifiable areal unit problem (MAUP), issues with discretized color map and the limited

time duration for aggregated data. These were for most part driven by the nature of the

data, which in turn was dictated by the pre-existing data processing functionality. The

design work could not alter this data collection functionality, since the prime motivation

for creating the vis product was the fact that there was this pre-existing, highly performant

data processing functionality.

5.2 Munzner’s framework

It is evident from chapters 4.1 and 4.2 that Munzner's framework provides a great deal of

theory by which to analyze vis design. Especially the concepts of validating designs

proved useful in analyzing the strengths and weaknesses of the performed validations.

Such structured thinking about the cascading nature of the different design levels would

likely be useful in justifying the business needs for investing in pre-validation of designs.

 In chapter 4.4 I discussed two areas where the theoretical foundation was less

adequate: interactions where user's focus shifts between aspects of the vis, and data

-55-

uncertainty. In the same chapter I also suggested approaches for addressing these topics

in Munzner's framework.

For interactions I proposed using graphs for describing how the user's workflow takes

them from idiom to idiom as they carry out different tasks that the vis serves. I presented

an example of such a graph where the graph nodes represent data abstractions and graph

links represent task abstractions that move user's focus from one aspect of the data to the

next. A graph appears quite an effective solution for describing the web of interactions

and idioms of a vis, and I argue that presenting a more thought-out suggestion for such

graph among the rest of Munzner’s theory base would allow more extensive and detailed

analysis of complex interactive vis tools.

Data uncertainty was tackled in the vis product by filtering out aggregations with

small sample counts with guard values. It was a significant design choice because it

mitigates the impact of a potentially significant issue in the vis while introducing some

problems itself. The rationale for the design choice of guard values has no support from

Munzner's concepts one way or the other. Considering the impacts of data uncertainty, it

is quite surprising that it is not addressed among Munzner's concepts. Vis theory

concerning uncertainty appears to be surprisingly scarce.

The field of statistical science, from which vis partially descends, is firmly rooted on

methods for analyzing probability [Kalbfleisch, 2012], and many quintessential statistical

visualizations such as the bell curve can be understood as illustrating probability

distributions in data. Probability is a concept of for quantifying and managing uncertainty.

When describing probability, the classical statistical probability distribution

visualizations also indirectly describe uncertainty. Directly addressing uncertainty is done

surprisingly little in the field of vis theory, considering how unaddressed uncertainty in

data can have big negative impact on vis effectiveness. The value-suppressing uncertainty

palettes (VSUPs) proposed by Correll, Moritz and Heer [2018] is promising work in that

regard, and it would be welcome to see more research on vis idioms for addressing data

uncertainty. In the world of ever-increasing quantity of data, and increasing usage of data

in decision making, it would seem useful and moral to be explicit about the data’s

uncertainty. As such idioms and the theory for visualizing uncertainty would seem a

useful addition to Munzner’s concepts.

-56-

6. Conclusions

This thesis set out to apply the wide-reaching concepts in Tamara Munzner’s book

Visualization Analysis and Design on an existing, commercial vis product. Through this

journey it became evident that especially the concept of nested design levels helps analyze

the design work and identify pain points in it. The analysis indicated strongly that the

design decisions at the level of domain situation (users’ problems in their own terms) and

data and task abstraction (framing the users’ problems as visualization tasks that could be

tackled with designs) should have seen more extensive validation to ensure the

effectiveness of the designs. As it stands, it remains at question what shortcomings there

might have been in the designs, and what could be done to correct them. These could

guide improving the current product and be professional learnings for the designers and

other stakeholders.

Analysis of the implemented vis designs revealed the difficulty of analyzing the

entirety of an interactive vis that uses multiple vis idioms that display multiple views on

multiple kinds of data and provides multitude of interactions for users to navigate their

focus through them. Munzner’s concepts lend themselves to deep analysis of one idiom

at a time, but this piecemeal approach doesn’t provide a complete view that would enable

analyzing interaction flows through the whole vis in complex tasks where users are

expected to leverage many vis idioms in often nonlinear sequences to derive insights from

the data. I presented an attempt at visualizing such vis and interaction system as a graph,

but for more usefulness it might be in order to create a more comprehensive taxonomy

for such vis-interaction graphs. Such taxonomy could help guide design work with

interactions such as when the user derives some insight from one part of the vis and uses

that as a starting point for investigation of some other part of the vis (inputs and outputs)

and when the user may have to return to an already visited part of the vis with newfound

insights from elsewhere in the vis (cyclical interactions). Such taxonomy would seem to

extend the existing Munzner’s taxonomies so that such vis-interaction networks could

more readily be analyzed and validated as solutions for complex vis tasks.

-57-

References

Card, Stuart K., Mackinlay, Jock D. and Shneiderman, Ben. 1999. Readings in

Information Visualization: Using Vision to Think. Morgan Kaufmann Publishers.

Correll, Michael, Moritz, Dominik, and Heer, Jeffrey. 2018. Value-suppressing

uncertainty palettes. In: Proceedings of the 2018 CHI Conference on Human

Factors in Computing Systems 1-11.

Erdogmus, Hakan, Medvidović, Nenad and Paulisch, Frances. 2018. 50 Years of

Software Engineering. IEEE Software 35, 5, 20-24.

Friendly, Michael. 2008. A Brief History of Data Visualization. In: Chen, Chunhouh,

Härdle, Wolfgang and Unwin, Antony (eds.), Handbook of Computational

Statistics: Data Visualization. Springer Handbooks. 15-56.

Kalbfleisch, James G. 2012. Probability and statistical inference. Springer Science &

Business Media.

Munzner, Tamara. 2015. Visualization Analysis and Design. CRC Press.

Niemeyer, Gustavo. 2008. geohash.org is public! (http://blog.labix.org/#post-85 : 5

March 2008); archived at Wayback Machine (https://web.archive.org) >

http://blog.labix.org/ > 5 March 2008; citing a capture dated 1 September 2021.

Ott, Florian, and Koch, Michael. 2019. Exploring interactive information radiators – A

longitudinal real-world case study. Mensch und Computer 2019 - Workshopband.

Gesellschaft für Informatik.

Playfair, William. 1786. Commercial and Political Atlas: Representing, by Copper-Plate

Charts, the Progress of the Commerce, Revenues, Expenditure, and Debts of

England, during the Whole of the Eighteenth Century. Corry, London, England. Re-

published in Wainer, H. and Spence, I. (eds.), The Commercial and Political Atlas

and Statistical Breviary, 2005, Cambridge University Press.

Shneiderman, Ben. 2003. The eyes have it: A task by data type taxonomy for information

visualizations. In: Bederson, Benjamin B. and Shneiderman, Ben (eds.): The craft

of information visualization. Morgan Kaufmann. 364-371.

Sillanpää, Heli and Koivuniemi, Ari. 2019. Personal communication, June 19.

Tufte, E. R. 1983. The Visual Display of Quantitative Information. Graphics Press.

Tufte, E. R. 1990. Envisioning Information. Graphics Press.

Tufte, E. R. 1997. Visual Explanations: Images and Quantities, Evidence and Narrative.

Graphics Press.

Ware, Colin. 2013. Information Visualization: Perception for Design. Morgan Kaufmann

Publishers, 3rd edition.

Wong, David W.S. 2004. The modifiable areal unit problem (MAUP). In: Janelle, Donald

G., Warf, Barney and Hansen, Kathy (eds.), WorldMinds: Geographical

perspectives on 100 problems. Springer, Dordrecht. 571-575.

http://blog.labix.org/#post-85
https://web.archive.org/
http://blog.labix.org/

