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Abstract

Completely additive (c-additive in short) functions and completely multiplicative

(c-multiplicative in short) functions are ordinarily defined for positive integers but

sometimes on larger domains. We survey this matter by extending these functions

first to nonzero integers and thereafter to nonzero rationals. Then we can similarly

extend Leibniz-additive (L-additive in short) functions. (A function is L-additive

if it is a product of a c-additive and a c-multiplicative function.) We study some

properties of these functions. The role of an L-additive function as a generalized

arithmetic derivative is our special interest.

1. Introduction

We let P, Z+, N, Z, Q+, and Q denote the set of primes, positive integers, non-

negative integers, integers, positive rationals, and rationals, respectively. We also

write

Z6=0 = Z \ {0}, Q 6=0 = Q \ {0}.

The arithmetic derivative, originally defined [1] on N, can easily [12] be extended

to Z, and further to Q. Also, the arithmetic partial derivative, defined [9] on Z+,
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can easily [4] be extended to Q. More generally, this holds for the arithmetic

subderivative, too. Its original definition [10] extends easily [6] to Q.

Arithmetic functions have mostly been used for studying Z+, but sometimes

they have been considered also in other domains. Let us take three examples. A

completely multiplicative function is defined [7] on Q+. A completely additive and

a completely multiplicative function are defined [8] on an arithmetic semigroup.

These functions are defined [11] on an integral domain and extended to its field of

fractions.

We are mainly concerned with a function f = gh, where g is completely additive

and h completely multiplicative. We need certain properties of g and h for this

purpose. Having studied g in Section 2 and h in Section 3, we focus on f in Section 4.

The role of f as a generalized arithmetic derivative, considered in Section 5, is our

special interest. As an application, we study in Section 6 an arithmetic differential

equation and its generalization. A summarizing discussion in Section 7 completes

our paper.

2. Complete additivity

Let A be a set satisfying

∅ 6= A ⊆ Q, 0 /∈ A, x, y ∈ A⇒ xy ∈ A. (1)

All functions we study in this paper are rational-valued. (In fact, they can be

real-valued or even complex-valued, which, however, does not give us an additional

benefit.) A function g on A is completely additive (in short, c-additive) if

g(xy) = g(x) + g(y) (2)

for all x, y ∈ A. The reason for exluding 0 is that, if 0 ∈ A, then

g(0) = g(0x) = g(0) + g(x)

for all x ∈ A, and the only c-additive function is therefore the zero function θ(x) = 0.

(If we accept ∞, we can invalidate this conclusion by defining g(0) =∞.) If 1 ∈ A,

then substituting x = y = 1 in (2) yields

g(1) = 0.

Let p ∈ P. The p-adic ordinal of n ∈ Z+,

νp(n) = max{r ∈ N : pr | n},

is c-additive on Z+. We have

n =
∏
p∈P

pνp(n). (3)
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For n > 1, let

{p1, . . . , pk} = {p ∈ P : νp(n) 6= 0} = {p ∈ P : νp(n) > 0}

and

ni = p
νpi (n)

i , i = 1, . . . , k.

Then (3) reads

n = n1 · · ·nk. (4)

In the following proposition, we recall [10, Theorem 1] that a c-additive function

on Z+ is totally defined by its values at primes. We also see that in proving c-

additivity, we do not need to show that

g(mn) = g(m) + g(n) (5)

for all m,n ∈ Z+; to show it for all m ∈ P and n ∈ Z+ is enough.

Proposition 1. Let g be a function on Z+. The following conditions are equivalent.

(a) g is completely additive.

(b) For all n ∈ Z+,

g(n) =
∑
p∈P

νp(n)g(p).

(c) For all p ∈ P, n ∈ Z+,

g(pn) = g(p) + g(n).

Proof. (a)⇒(b). If n = 1, then (b) holds clearly. So, let n > 1 be as in (4). By

induction on νpi(n),

g(ni) = νpi(n)g(pi).

Therefore (b) follows by induction on k (defined in (4)).

(b)⇒(c). Let p ∈ P and n ∈ Z+. Since

νp(pn) = νp(n) + 1, νq(pn) = νq(n), p 6= q ∈ P,

we have

g(pn) =
∑
q∈P

νq(pn)g(q) =
∑
q∈P
q 6=p

νq(pn)g(q) + νp(pn)g(p)

=
∑
q∈P
q 6=p

νq(n)g(q) + (νp(n) + 1)g(p) =
∑
q∈P

νq(n)g(q) + g(p) = g(n) + g(p).
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(c)⇒(a). Substituting n = 1 in (c), we get g(1) = 0, and (5) therefore holds for

m = 1. For m > 1, let

m = pα1
1 · · · p

αk
k , p1, . . . , pk ∈ P, α1, . . . , αk ∈ Z+.

Since

g(pαii n) = g(pip
αi−1
i n) = g(pi) + g(pαi−1i n) = g(pi) + g(pip

αi−2
i n)

= g(pi) + g(pi) + g(pαi−2i n) = g(p2i ) + g(pαi−2i n) = · · · = g(pαii ) + g(n),

we have

g(mn) = g(pα1
1 (pα2

2 · · · p
αk
k n)) = g(pα1

1 ) + g(pα2
2 (pα3

3 · · · p
αk
k n))

= g(pα1
1 ) + g(pα2

2 ) + g(pα3
3 · · · p

αk
k n) = . . .

= g(pα1
1 ) + · · ·+ g(pαkk ) + g(n). (6)

In particular,

g(m) = g(pα1
1 ) + · · ·+ g(pαkk ) + g(1) = g(pα1

1 ) + · · ·+ g(pαkk ). (7)

Now, (6) and (7) give g(mn) = g(m) + g(n).

Remark 1. The condition

(d) g(pq) = g(p) + g(q) for all p, q ∈ P

does not imply (a). For a counterexample, define on Z+ that g(n) =
∑
p∈P νp(n) if

n has at most two prime factors, and g(n) = 1 otherwise. Then g satisfies (d) but

does not satisfy (a), since g(pqr) = 1 but g(p) + g(q) + g(r) = 3 for all p, q, r ∈ P
(all inequal).

Remark 2. If g is a c-additive function on Z+, then

g(cm)− g(cn) = g(c) + g(m)− (g(c) + g(n)) = g(m)− g(n) (8)

for all c,m, n ∈ Z+. The converse is not true. For a counterexample, the function

g(n) = 1 satisfies (8) but is not c-additive.

We extend a c-additive function on Z+ to that on Z6=0.

Theorem 1. Let g be a completely additive function on Z+, and let g̃ be a function

on Z6=0. The following conditions are equivalent.

(a) (a1) g̃ is completely additive and (a2) the restriction g̃ |Z+= g.

(b) g̃(n) = g(|n|) for all n ∈ Z6=0.
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(c) (c1) g̃(n) = g̃(−n) for all n ∈ Z6=0 and (c2) g̃ |Z+
= g.

Proof. (a)⇒(b). Since

0 = g̃(1) = g̃((−1)2) = 2g̃(−1),

it follows that

g̃(−1) = 0.

If n > 0, then (b) is just (a2). If n < 0, then

g̃(n) = g̃((−1)|n|) = g̃(−1) + g̃(|n|) = 0 + g(|n|) = g(|n|).

(b)⇒(c). Trivial.

(c)⇒(a). Because (c2) is the same as (a2), our claim is that (c1)⇒(a1) under (c2).

If m,n > 0, then

g̃(mn) = g(mn) = g(m) + g(n) = g̃(m) + g̃(n).

If m and n have opposite signs, say m > 0 and n < 0, then

g̃(mn) = g̃(m(−n)) = g(m(−n)) = g(m) + g(−n) = g̃(m) + g̃(−n) = g̃(m) + g̃(n).

If m,n < 0, then

g̃(mn) = g̃((−m)(−n)) = g((−m)(−n)) = g(−m) + g(−n)

= g̃(−m) + g̃(−n) = g̃(m) + g̃(n),

completing the proof.

Applying Theorem 1 to g = νp, we have

ν̃p(n) = νp(|n|)

for all n ∈ Z6=0, p ∈ P. Writing νp instead of ν̃p above, (3) extends to n ∈ Z6=0:

n = (sgnn)
∏
p∈P

pνp(n), (9)

where sgnn = n/|n|. Consequently, we can replace Z+ with Z6=0 in Proposition 1.

Next, we extend a c-additive function on Z6=0 to that on Q 6=0.

Theorem 2. Let g be a completely additive function on Z6=0, and let g̃ be a function

on Q 6=0. The following conditions are equivalent.

(a) (a1) g̃ is completely additive and (a2) g̃ |Z6=0
= g.
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(b) g̃(m/n) = g(m)− g(n) for all m,n ∈ Z6=0.

(c) (c1) g̃(x/y) = g̃(x)− g̃(y) for all x, y ∈ Q 6=0 and (c2) g̃ |Z 6=0
= g.

Proof. We begin by noticing that the equations (b) and (c1) are well-defined by

Remark 2.

(a)⇒(b). Let m,n ∈ Z6=0. Since

0 = g̃(1) = g̃(n
1

n
) = g̃(n) + g̃(

1

n
) = g(n) + g̃(

1

n
),

we have

g̃(
1

n
) = −g(n);

and further,

g̃(
m

n
) = g̃(m

1

n
) = g̃(m) + g̃(

1

n
) = g(m)− g(n).

(b)⇒(c2). If m ∈ Z6=0, then

g̃(m) = g(m)− g(1) = g(m)− 0 = g(m).

(b)⇒(c1). Let

x =
m

n
, y =

r

s
, m, n, r, s ∈ Z6=0. (10)

Then

g̃(
x

y
) = g̃(

ms

nr
) = g(ms)− g(nr) = g(m) + g(s)− (g(n) + g(r))

= g̃(
m

n
)− g̃(

r

s
) = g̃(x)− g̃(y).

(c)⇒(a). Because (c2) is just (a2), we again claim that (c1)⇒(a1) under (c2).

Let x and y be as in (10). Then

g̃(xy) = g̃(
mr

ns
) = g̃(mr)− g̃(ns) = g(mr)− g(ns)

= g(m) + g(r)− (g(n) + g(s)) = g̃(
m

n
) + g̃(

r

s
) = g̃(x) + g̃(y),

completing the proof.

Applying Theorem 2 to g = νp, we have

ν̃p(
m

n
) = νp(m)− νp(n)

for all m,n ∈ Z6=0, p ∈ P. Writing νp instead of ν̃p, (9) extends to x ∈ Q 6=0:

x = (sgnx)
∏
p∈P

pνp(x). (11)

We can now replace Z+ with Q 6=0 in Proposition 1.



INTEGERS: 21 (2021) 7

3. Complete multiplicativity

Let a setA satisfy (1). A function h onA is completely multiplicative (c-multiplicative

in short) if

h(x) 6= 0 and h(xy) = h(x)h(y) (12)

for all x, y ∈ A. Ordinarily A = Z+ and the definition is weaker. It suffices that

there is x ∈ Z+ satisfying h(x) 6= 0. Substituting y = 1 in (12) then yields

h(1) = 1.

Again, it is reasonable to exclude zero from A. Namely, if 0 ∈ A, then

h(0) = h(0x) = h(0)h(x),

which implies that the only c-multiplicative function is the unit function E(x) = 1.

(Accepting ∞ does not help now, because ∞ · h(x) 6= ∞ if h(x) < 0. Accepting

h(0) = 0, which is justified by the ordinary definition, does not benefit us.)

The next proposition is analogous to Proposition 1.

Proposition 2. Let h be a function on Z+. The following conditions are equivalent.

(a) h is completely multiplicative.

(b) For all n ∈ Z+,

h(n) =
∏
p∈P

h(p)νp(n).

(c) For all p ∈ P, n ∈ Z+,

h(pn) = h(p)h(n).

Proof. A straightforward modification of the proof of Proposition 1.

Remark 3. The condition

(d) h(pq) = h(p)h(q) for all p, q ∈ P

does not imply (a). For a counterexample, define on Z+ that h(n) = n if n has at

most two prime factors, and h(n) = 1 otherwise. Then h satisfies (d) but does not

satisfy (a), since h(pqr) = 1 but h(p)h(q)h(r) = pqr for all p, q, r ∈ P (all inequal).

Remark 4. Let h be completely multiplicative on Z+. Analogously to Remark 2,

h(cm)

h(cn)
=
h(c)h(m)

h(c)h(n)
=
h(m)

h(n)
(13)

for all c,m, n ∈ Z+. The converse is not true. For a counterexample, the function

h(x) = 2 satisfies (13) but is not c-multiplicative.



INTEGERS: 21 (2021) 8

Similarly to the c-additive case, we extend a c-multiplicative function on Z+ to

that on Z6=0.

Theorem 3. Let h be a completely multiplicative function on Z+, and let h̃ be a

function on Z6=0. The following conditions are equivalent.

(a) (a1) h̃ is completely multiplicative and (a2) h̃ |Z+= h.

(b) Either

(b1) h̃(n) = h(|n|) for all n ∈ Z6=0

or

(b2) h̃(n) = (sgnn)h(|n|) for all n ∈ Z6=0.

(c) Either

(c1) h̃(n) = h̃(−n) for all n ∈ Z6=0

or

(c2) h̃(n) = −h̃(−n) for all n ∈ Z6=0,

and

(c3) h̃ |Z+= h.

Proof. (a)⇒(b). Since

1 = h̃(1) = h̃((−1)2) = h̃(−1)2,

we get

h̃(−1) = ±1.

If n > 0, then h̃(n) = h(n) = h(|n|). If n < 0, then

h̃(n) = h̃((−1)|n|) = h̃(−1)h̃(|n|) = ±h̃(|n|) = ±h(|n|).

(b)⇒(c3), (b1)⇒(c1), and (b2)⇒(c2). Trivial.

(c1), (c3)⇒(a). Because (c3) is just (a2), we show that (c1)⇒(a1) under (c3). If

m,n > 0, then

h̃(mn) = h(mn) = h(m)h(n) = h̃(m)h̃(n).

If m and n have opposite signs, say m > 0 and n < 0, then

h̃(mn) = h̃(−m(−n)) = h̃(m(−n)) = h(m(−n))

= h(m)h(−n) = h̃(m)h̃(−n) = h̃(m)h̃(n).

If m,n < 0, then

h̃(mn) = h̃((−m)(−n)) = h((−m)(−n))

= h(−m)h(−n) = h̃(−m)h̃(−n) = h̃(m)h̃(n).

(c2), (c3)⇒(a). A simple variant of the above.
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So, there are two possible extensions from Z+ to Z6=0. We choose one of them

and extend it further to Q 6=0.

Theorem 4. Let h be a completely multiplicative function on Z6=0, and let h̃ be a

function on Q 6=0. The following conditions are equivalent.

(a) (a1) h̃ is completely multiplicative and (a2) h̃ |Z6=0
= h.

(b) h̃(m/n) = h(m)/h(n) for all m,n ∈ Z6=0.

(c) (c1) h̃(x/y) = h̃(x)/h̃(y) for all x, y ∈ Q 6=0 and (c2) h̃ |Z6=0
= h.

Proof. Proceed similarly to the proof of Theorem 2. The equations (b) and (c1) are

well-defined by Remark 4.

We can now replace Z+ with Q 6=0 in Proposition 2.

4. Leibniz-additivity

Let a set A satisfy (1). A function f on A is Leibniz-additive (L-additive in short),

cf. [5, 10], if

f = gh, (14)

where g is a completely additive and h completely multiplicative function on A.

Then

f(xy) = g(xy)h(xy) = (g(x) + g(y))h(x)h(y) = f(x)h(y) + f(y)h(x) (15)

for all x, y ∈ A. This may be considered a generalized Leibniz rule. In particular,

if h is the identical function N(n) = n, then (15) gives the Leibniz rule

f(xy) = f(x)y + f(y)x.

If 1 ∈ A, then

f(1) = g(1)h(1) = 0 · 1 = 0.

We saw in Section 2 that a c-additive function on Z+ has a unique c-additive

extension to Z6=0 and further to Q 6=0. We also saw in Section 3 that a c-multiplicative

function on Z+ has two c-multiplicative extensions to Z6=0, each having a unique

c-multiplicative extension to Q6=0. Because the latter observation concerns also

L-additive functions, we can directly go to the case A = Q 6=0.

Theorem 5. Let f be a function on Q 6=0. The following conditions are equivalent.

(a) f is Leibniz-additive.
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(b) There is a completely multiplicative function h on Q 6=0 such that

f(xy) = f(x)h(y) + f(y)h(x)

for all x, y ∈ Q 6=0.

(c) There is a completely multiplicative function h on Q 6=0 such that

f(
x

y
) =

h(y)f(x)− h(x)f(y)

h(y)2

for all x, y ∈ Q 6=0.

(d) There are functions g and h on P such that

f(x) =
(∑
p∈P

νp(x)g(p)
)∏
p∈P

h(p)νp(x).

(e) There is a completely multiplicative function h on Q 6=0 such that

f(py) = f(p)h(y) + f(y)h(p)

for all p ∈ P, y ∈ Q 6=0.

Proof. (a)⇒(b). This is already proved in (15).

(b)⇒(a). The function g = f/h is c-additive, since

g(xy) =
f(xy)

h(xy)
=
f(x)h(y) + f(y)h(x)

h(x)h(y)
=
f(x)

h(x)
+
f(y)

h(y)
= g(x) + g(y)

for all x, y ∈ Q 6=0.

(b)⇒(c). Since

f(1) = f(1 · 1) = f(1)h(1) + f(1)h(1) = 2f(1) · 1 = 2f(1),

we have

f(1) = 0;

and further,

f(y)h(
1

y
) + f(

1

y
)h(y) = f(y

1

y
) = f(1) = 0

for all y ∈ Q 6=0. Therefore

f(
1

y
) = −f(y)

h(y)
h(

1

y
) = −f(y)

h(y)

1

h(y)
= − f(y)

h(y)2
.
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Finally, for all x, y ∈ Q 6=0,

f(
x

y
) = f(x

1

y
) = f(x)h(

1

y
)+f(

1

y
)h(x) =

f(x)

h(y)
− h(x)f(y)

h(y)2
=
h(y)f(x)− h(x)f(y)

h(y)2
.

(c)⇒(b). Let x, y ∈ Q6=0. Since

f(1) =
h(1)f(1)− h(1)f(1)

h(1)2
= 0

and

f(
1

y
) =

h(y)f(1)− h(1)f(y)

h(y)2
=
h(y) · 0− 1 · f(y)

h(y)2
= − f(y)

h(y)2
,

we have

f(xy) = f(
x
1
y

) =
h( 1

y )f(x)− h(x)f( 1
y )

h( 1
y )2

=

f(x)
h(y) + h(x)f(y)

h(y)2

1
h(y)2

= f(x)h(y) + h(x)f(y).

(a)⇔(d). Apply Propositions 1 and 2, where Z+ is replaced with Q 6=0.

(b)⇒(e). Trivial.

(e)⇒(a). The function g = f/h is c-additive, because it satisfies condition (c) of

Proposition 1, where Z+ is replaced with Q 6=0.

5. Arithmetic gh-derivative

Let f be as in (14) with A = Q 6=0. If h(x) = x and

g(x) =
∑
p∈P

νp(x)

p
or g(x) =

νp(x)

p
,

then f is the arithmetic derivative D [1, 12] in the first case, and the arithmetic

partial derivative Dp [9] in the second. More generally, if h(x) = x and

g(x) =
∑
p∈S

νp(x)

p
, (16)

where ∅ 6= S ⊆ P, then f is the arithmetic subderivative DS [10] (or a general

arithmetic derivative [2]). In particular, DP = D and D{p} = Dp. Usually D(0),

Dp(0), and DS(0) are defined to be zero, but we leave them undefined.

An equivalent definition of D (and DS , respectively) is the Leibniz rule together

with D(p) = 1 for all p ∈ P (DS(p) = 1 for all p ∈ S and DS(p) = 0 for all

p ∈ P \ S, respectively). If we assume only the Leibniz rule, then DS generalizes to
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an L-additive function gN , where g is an arbitrary c-additive function on Q 6=0. So,

we must in this case choose h = N (i.e., h(x) = x).

Ufnarovski and Åhlander [12, p. 18] generalized D (using some different nota-

tions) to

D̃(x) = x
∑
p∈P

νp(x)D̃(p)

p

with prescribed D̃(p) for all p ∈ P. If each D̃(p) = 1, then D̃ = D. Thus D̃ = gN ,

where g is c-additive, satisfying

g(p) =
D̃(p)

p
for all p ∈ P.

We obtain a further generalization by replacing N with a c-multiplicative func-

tion h. In other words, we take any L-additive function and call it a generalized

arithmetic derivative.

More precisely, we define that a function f on Q 6=0 is an arithmetic gh-derivative

if there are functions g and h on Q 6=0 such that g is completely additive, h is

completely multiplicative, and f = gh.

Although an arithmetic gh-derivative is nothing but an L-additive function, we

find it reasonable to introduce this term and the notation

f = ∆g,h.

Then the arithmetic subderivative can be written as

DS = ∆g,N , g(p) =
χS(p)

p
for all p ∈ P,

where χS is the characteristic function of S (i.e., χS(p) = 1 for p ∈ S and χS(p) = 0

for p ∈ P \ S). In particular, we have for the arithmetic derivative

D = ∆g,N , g(p) =
1

p
for all p ∈ P,

and for the arithmetic partial derivative

Dp = ∆g,N , g(q) =
δpq
p

for all q ∈ P,

where δpq is the Kronecker delta (i.e., δpq = 1 if p = q, and δpq = 0 if p 6= q).

For a generalization of ∆g,N on Z6=0, cf. [3], let

φ = {φp : p ∈ S}

be a set of functions on Z+ such that the set

Sn = {p ∈ S : φp(n) 6= 0}
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is finite for all n ∈ Z+. Define the generalized arithmetic subderivative of n ∈ Z+

by

DS,φ(n) = n
∑
p∈S

φp(n)

p

and extend it to Z6=0 by DS,φ(n) = (sgnn)DS,φ(|n|) for all n ∈ Z6=0. The gN -

derivative on Z6=0 is its special case. Namely, if

φp(n) = pνp(n)g(p) for all p ∈ P,

then

∆g,N (n) = ng(n) = n
∑
p∈P

νp(n)g(p) = DP,φ(n).

The function

g(n) =
∑
p∈S

φp(n)

p

is not c-additive in general. However, if each φp is c-additive, then g is, too. Oth-

erwise, for a trivial counterexample, let S = {2} and φ2 = E. Then g(mn) = 1
2 but

g(m) + g(n) = 1 for all m,n ∈ Z+. Therefore g cannot be extended to Q 6=0 as it

was done in Theorem 2. Consequently, the same holds for DS,φ, too.

6. Equation DS(x) = ax and its generalization

We begin by recalling the already solved case of S = {p} but formulate it slightly

differently, because Dp(0) is now undefined.

Theorem 6 ([4], Theorem 3). Let p ∈ P and a ∈ Q. The equation

Dp(x) = ax

has a solution x ∈ Q 6=0 if and only if ap ∈ Z. Then the set of its all solutions is{
cpap : c ∈ Q 6=0, νp(c) = 0

}
.

We gave previously [6] a necessary and sufficient condition for a, under which

the equation DS(x) = ax has a solution x ∈ Q 6=0. We did not present the proof but

committed to do so in a forthcoming paper. We do it now.

Theorem 7. Let ∅ 6= S ⊆ P and a ∈ Q. The following conditions are equivalent.

(a) The equation

DS(x) = ax (17)

has a solution x ∈ Q 6=0.
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(b) The equation (17) has infinitely many solutions.

(c) There are p1, . . . , pk ∈ S such that ap1 · · · pk ∈ Z.

Proof. If a = 0, then all these conditions are trivially satisfied. So, we assume that

a 6= 0.

(b)⇒(a). The proof of this implication is trivial.

(a)⇒(c). Let x ∈ Q 6=0 satisfy (17). Since −x also satisfies it, we can assume that

x > 0. By (11),

x =
∏
p∈P

pνp(x).

Let

Sx = {p ∈ S : νp(x) 6= 0} = {p1, . . . , pk}

and write

ξi = νpi(x), i = 1, . . . , k.

If Sx = ∅, then x = 1, implying by (17) that ax = 0. This is a contradiction,

because a, x 6= 0. Hence Sx 6= ∅.
Now,

DS(x) = x

k∑
i=1

ξi
pi

=
x

P

k∑
i=1

ξiPi,

where

Pi =

k∏
j=1
j 6=i

pj , P = p1 · · · pk. (18)

Since x satisfies (17), i.e.,

x

P

k∑
i=1

ξiPi = ax,

we have

aP =

k∑
i=1

Piξi. (19)

Because the right-hand side is an integer, so is the left-hand side, and (c) follows.

(c)⇒(b). Let p1, . . . , pk be as in (c), and let P1, . . . , Pk, P as in (18). Because

gcd(P1, . . . , Pk) = 1, the Diophantine equation (19) has infinitely many solutions

ξ1, . . . , ξk ∈ Z. The equivalence of (19) and (17) completes the proof.

We generalize this theorem.
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Theorem 8. Let ∅ 6= S ⊆ P, and let g and h be functions on Q6=0 such that h is

completely multiplicative and g is completely additive with

g(p) =
χS(p)

pαp
, αp ∈ Z+,

for all p ∈ P. Let a ∈ Q6=0. The following conditions are equivalent.

(a) The equation

∆g,h(x) = ah(x) (20)

has a solution x ∈ Q 6=0.

(b) The equation (20) has infinitely many solutions.

(c) There are p1, . . . , pk ∈ S such that ap
αp1
1 · · · pαpkk ∈ Z.

Proof. A straightforward generalization of the proof of Theorem 7.

For S = {p}, we obtain a generalization of Theorem 6.

Corollary 1. Let α ∈ Z+, p ∈ P, a ∈ Q, and let g and h be functions on Q 6=0 such

that h is completely multiplicative and g is completely additive with

g(q) =
δpq
pα

for all q ∈ P.

The equation

∆g,h(x) = ah(x)

has a solution x ∈ Q 6=0 if and only if apα ∈ Z. Then the set of its all solutions is{
cpap

α

: c ∈ Q 6=0, νp(c) = 0
}
.

7. Discussion

We saw that a c-additive function on Z+ has a unique c-additive extension to Z6=0,

and further to Q 6=0. We also saw that a c-multiplicative function (and, consequently,

a Leibniz-additive function, too) on Z+ has two c-multiplicative extensions to Z6=0,

and each has a unique c-multiplicative extension to Q 6=0.

We have previously [5, 10] considered an L-additive function f = gh as a gen-

eralization of an arithmetic subderivative (in particular, as that of the arithmetic

derivative). While studying generalized arithmetic differential equations, we found

it reasonable to call f the gh-derivative and to write f = ∆g,h.

Solving an arithmetic differential equation – actually, already studying solvabil-

ity of such an equation – is difficult in general. Two such equations relate to famous
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number-theoretic conjectures. Ufnarovski and Åhlander [12, Conjecture 5] conjec-

tured that if b ∈ Z+, b ≥ 2, then the equation D(n) = 2b has a solution n ∈ Z+.

This follows if the Goldbach conjecture is true. They also [12, Conjecture 9] con-

jectured that the equation D2(n) = 1 has infinitely many solutions n ∈ Z+. This

follows from the twin prime conjecture by [12, Theorem 10].

We studied the equation ∆g,h(x) = ah(x). In the case of h = N , we solved it

for g(q) = δpq/p (then the equation is Dp(x) = ax) in Theorem 6. For g(p) =

χS(p)/p (then the equation is DS(x) = ax), we found in Theorem 7 its solvability

conditions but could not find the solutions. We also presented in Theorem 8 its

slight generalization.

The equation ∆g,h(x) = 1 may look easy, but its solution is an open question

even for g(p) = 1/p, h = N (then the equation is D(x) = 1), see [12, Conjecture 12].

Instead, several equations of type Dp(x) = . . . have been solved [4]. Some of these

results can be extended to equations of type DS(x) = . . . (for example, Theorem 6

to Theorem 7).

The primes have useful properties in multiplication but not in addition. Perhaps,

the most important such property is the fundamental theorem of arithmetic: every

positive integer, greater than one, can be uniquely expressed as a product of prime

factors (up to their ordering). However, primes have no special role in expressing a

positive integer as a sum. (To be more precise, such a role is not currently known.)

Therefore, equations DS(x) = . . . are difficult. To illustrate why equations

∆g,h(x) = . . . are even more difficult, let us look at the proof of Theorem 7. Then

h = N and g is as in (16). The problem is how to manage with

g(

k∑
i=1

ξi
pi

)

without any knowledge about g(x + y). Due to the fortunate interplay between g

and h, we obtained (19).

In extending this theorem to ∆g,h(x) = ax, g and h have no connection, and it

seems that we therefore can do nothing. Instead, in extending it to ∆g,h(x) = ah(x),

the interplay remains, and we obtain (under an assumption about g) Theorem 8.

So, there is much work to be done in this field. Another topic for further research

is the study of gh-derivatives in abstract structures. As already noted in the intro-

duction, c-additivity and c-multiplicativity can be defined in an integral domain,

for example. Murashka, Goncharenko, and Goncharenko [11] have taken steps in

this direction. One step has also been taken by Ufnarovski and Åhlander [12, The-

orem 21]. We recall it (with different notation and slightly different formulation).

Let R be an integral domain with the corresponding additive group R+ and

multiplicative monoid R∗, and let g : R∗ → R+ be a homomorphism. Then the

function

f : R→ R : f(x) = xg(x), f(0) = 0,
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satisfies the Leibniz rule. Conversely, if a function f : R → R satisfies the Leibniz

rule, then the function

g : R∗ → R+ : g(x) =
f(x)

x

is a homomorphism. If R is a field, then g is a group homomorphism and

f(
x

y
) =

yf(x)− xf(y)

y2

for all x, y ∈ R 6=0(= R \ {0}).
The homomorphism g is just a c-additive function. Hence, this theorem is a

special case of our results extended to R (and, according to our custom, with f(0)

undefined). These results are the following. Let R and g be as above, and let

h : R∗ → R∗ be a homomorphism. Then the function

f = gh

is L-additive. Conversely, if a function f : R 6=0 → R is L-additive, then the function

g : R∗ → R+ : g(x) =
f(x)

h(x)

is a homomorphism. If R is a field, then g is a group homomorphism and

f(
x

y
) =

h(y)f(x)− h(x)f(y)

h(y)2

for all x, y ∈ R 6=0.

References

[1] E. J. Barbeau, Remarks on an arithmetic derivative, Canad. Math. Bull. 4 (1961), 117-122.

[2] J. Fan and S. Utev, The Lie bracket and the arithmetic derivative, J. Integer Seq. 23 (2020),
Article 20.2.5.

[3] P. Haukkanen, Generalized arithmetic subderivative, Notes Number Theory Discrete
Math. 25.2 (2019), 1-7, http://nntdm.net/volume-25-2019/number-2/1-7/.

[4] P. Haukkanen, J. K. Merikoski, and T. Tossavainen, On arithmetic partial differential equa-
tions, J. Integer Seq. 19 (2016), Article 16.8.6.

[5] P. Haukkanen, J. K. Merikoski, and T. Tossavainen, The arithmetic derivative and Leibniz-
additive functions, Notes Number Theory Discrete Math. 24.3 (2018), 68-76, http://nntdm.
net/volume-24-2018/number-3/68-76/.

[6] P. Haukkanen, J. K. Merikoski, and T. Tossavainen, Arithmetic subderivatives: discontinuity
and continuity, J. Integer Seq. 22 (2019), Article 19.7.4.

https://cs.uwaterloo.ca/journals/JIS/VOL23/Utev/utev2.html
http://nntdm.net/volume-25-2019/number-2/1-7/
https://cs.uwaterloo.ca/journals/JIS/VOL19/Tossavainen/tossa6.html
http://nntdm.net/volume-24-2018/number-3/68-76/
http://nntdm.net/volume-24-2018/number-3/68-76/
https://cs.uwaterloo.ca/journals/JIS/VOL22/Merikoski/meri6.html


INTEGERS: 21 (2021) 18

[7] T. Hilberdink, Determinants of multiplicative Toeplitz matrices, Acta Arith. 125 (2006), 265-
284.

[8] J. Knopfmacher, Abstract Analytic Number Theory, 2nd ed., Dover Publ., New York, 1990.
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