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carrier Doppler fd, and the code phase τ are the GNSS signal
parameters in which the GNSS receiver must synchronize.
Therefore, a tracking channel is composed of three STLs:
phase locked loop (PLL), frequency locked loop (FLL), and
delay locked loop (DLL). A correlator, a discriminator, a loop
filter, and a numerically controlled oscillator (NCO) compose
the STL [2], [4]. The type of discriminator, the loop bandwidth
B, the integration time τint, the order p, and the correlator spac-
ing are the STL configuration parameters. These parameters
determine the robustness against noise and signal dynamics.
The well-known trade-off between noise filtering capabilities
and signal dynamics resistance is the main problem of standard
STLs with fixed configurations. For instance, a high-order STL
with big loop bandwidth and short integration time is adequate
to track rapidly changing parameters. In contrast, a low-order
STL with small loop bandwidth and long integration time is
preferable to track noisy parameters.

There is an important need to improve the synchronization
stage under time-varying harsh scenarios since the standard
STL is inefficient due to its fixed configuration. Time-varying
scenarios are characterized by different realizations of signal
dynamics, noise, and fading effects. These changing effects put
the synchronization capability to the test [1]. Since traditional
tracking lacks resilience due to its fixed configuration [5],
there has been significant research towards robust tracking
solutions to solve this problem [6]. However, there is still
ample investigation to find the best technique in terms of
performance and complexity [7].

A solution to achieve the best synchronization is the Kalman
filtering (KF): a controlled feed-back loop using a proportional
integrator (PI) controller that permits the adaptation of the fil-
ter’s coefficients optimally [8]. These coefficients change in or-
der to achieve the minimum mean square error (MMSE). There
are several ways the KF can be implemented in the STL [9].
Two categories can be distinguished: direct-state Kalman-filter
(DSKF) and error-state Kalman-filter (ESKF) [10]. The former
is simpler to implement because it considers the whole STL
as part of the KF. The Kalman gains of the DSKF are directly
related to the coefficients of the standard STL. The latter
category substitutes the loop filter of the STL with the KF.
The complexity to obtain a direct relation between the ESKF
and the standard STL increases significantly compared to the
DSKF.

The MMSE is only achieved if there is good knowledge
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I. INTRODUCTION

Modern global navigation satellite system (GNSS) receivers
need to synchronize with GNSS signals to decode the navi-
gation message, measure the pseudo-range and pseudo-range
rate, and calculate a position, velocity, and time (PVT) solu-
tion [1]. The synchronization consists of two stages: acqui-
sition and tracking. Acquisition performs a coarse estimate
of the synchronization parameters, whereas the tracking stage
provides a more accurate estimate of those.

In this last stage, the scalar tracking loop (STL) is used
to refine t he s ynchronization o f i ncoming G NSS s ignals [1],
[2]. The STL replicates a synchronization parameter for every
loop iteration. The synchronization lock is achieved when the
difference between the true parameter and its replica (i.e., the
estimation error) tends to zero [3]. The carrier phase θ, the



of the process noise covariance Q and measurement noise
covariance R [11]. If this is not the case, the KF tends to a
suboptimal solution [12]. The difficulty of finding the correct
values of Q and R increases even more in time-varying scenar-
ios since those are continuously changing. In previous studies,
different adaptive Kalman filter (AKF) tracking techniques
are proposed to try to solve this problem. One solution can
be to implement a Cramér-Rao bound (CRB)-based DSKF,
in which the measurement noise covariance R depends on
the CRB of the STL [13]. The process noise covariance Q
of the DSKF can be also adapted according to the dynamic
stress error [14]. Another solution is the implementation of an
ESKF combining long non-coherent integrations to improve
tracking sensitivity [15]. Also, a weighted adaptive ESKF can
be implemented for scenarios with unknown carrier-to-noise
density ratio (C/N0) [16].

This paper presents the implementation of an adaptive
DSKF using the loop-bandwidth control algorithm (LBCA)
technique. The LBCA adjusts the loop bandwidth of the DSKF
based on the statistics of the discriminator’s output [17].
Due to the relation between the loop bandwidth and the
process noise covariance matrix Q, Q is updated based on the
algorithm’s bandwidth update. The adaptive DSKF is imple-
mented in the GOOSE receiver [18]. The GOOSE receiver is a
GNSS receiver with an open software interface. The tracking
performance of the LBCA-based DSKF is evaluated under
simulated scenarios with different dynamics and noise levels.
This technique is compared with the CRB-based DSKF and
the LBCA-based standard STL.

The novelty of this research starts by explaining the re-
lationship between the DSKF and the standard STL. This
relation establishes a connection between the loop bandwidth
and the Kalman gains of the DSKF. This connection eases the
implementation of the LBCA technique in the DSKF. The
main novelty resides in the implementation of the LBCA-
based DSKF in the GOOSE receiver. The rest of the paper
is organized as follows. Section II describes the state space
model (SSM) and the KF algorithm’s transfer function, in-
troduces the DSKF, and relates it with the standard STL.
Section III shows the architecture of the LBCA-based DSKF.
Section IV presents the experimental setup and the achieved
results. Finally, Section V concludes and indicates future work.

II. KALMAN FILTER-BASED SCALAR TRACKING LOOP

This section describes the KF algorithm. Next, the SSM
representation and the transfer function of the KF are shown.
Finally, the DSKF is described, and the relation with a standard
STL is presented.

A. Kalman Filter Algorithm

The KF is divided into two stages: prediction and update.
The prediction step estimates the predicted state x̂[n] and
predicted error covariance P̂[n] based on the previous updated
state x[n−1] , the previous updated error covariance P[n−1]
and the process noise covariance matrix Q[n]:

x̂[n] = A x[n− 1] (1)

P̂[n] = AP[n− 1]AT +Q[n] (2)

where A is the state matrix. The dimension of the presented
variables depends on the KF’s state order p: x, x̂ ∈ Rp×1,
A, P̂, P, Q ∈ Rp×p.

The update stage consists of calculating the updated state
x[n] based on the predicted state x̂[n], the measurement
residual εu[n] and the Kalman matrix K[n]. The measurement
residual is the difference between the observations ε[n] and
the estimated measurement based on x̂[n]. The Kalman matrix
K[n] indicates how much reliable the measurements are. K[n]
depends on the predicted error covariance matrix P̂[n] and the
measurement noise covariance matrix R[n].

εu[n] = ε[n]−H x̂[n] (3)

S[n] = H P̂[n]HT +R[n] (4)

K[n] = P̂[n]HT S−1[n] (5)

x[n] = x̂[n] +K[n] εu[n] (6)

P[n] = (I−K[n]H[n]) P̂[n] (7)

where S[n] is the innovation covariance matrix, H is the
observation matrix and I is the identity matrix. The order p
and the number of measurements m determine the dimension
of the presented variables: εu, ε ∈ Rm×1, S, R ∈ Rm×m,
K ∈ Rp×m , H ∈ Rm×p, I ∈ Rp×p.

B. State Space Model and Transfer Function

Figure 1 shows the linear model of the KF’s state prediction,
innovation, and state update (see Equations (1), (3), and (6)).
For the sake of simplicity, the Kalman gain calculation is not
included.
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Fig. 1: Linear model of the KF.

The open-loop SSM representation can be obtained com-
bining Equation (1) and Equation (6):

x[n] = A x[n− 1] +K[n] εu[n] (8)

εs[n] = H x̂[n] = HAx[n− 1] (9)

where εs ∈ Rm×1 is the estimated measurement vector based
on the predicted state.
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Fig. 2: Linear model equivalence between a third-order DSKF and a third-order STL.

The open-loop transfer function Ho(z) of the KF can be
calculated using the presented SSM. First, the z-transform Z(·)
of Equation (8) and Equation (9) is done:

X(z) =
(
I−A z−1

)−1
KEu(z) (10)

Es(z) = HA z−1 X(z) (11)

Second, Equation (10) and Equation (11) are combined:

Es(z) = HA
(
I−A z−1

)−1
K z−1 Eu(z) (12)

The dimension of Ho(z) depends on the number of mea-
surements: Ho(z) ∈ Rm×1. Assuming one measurement,
m = 1, the open-loop transfer function is expressed as:

Ho(z) =
Es(z)

Eu(z)
= HA

(
I−A z−1

)−1
K z−1 (13)

C. Direct-State Kalman Filter based Scalar Tracking Loop

The DSKF-based STL considers the synchronization param-
eters of the incoming GNSS signals (i.e., carrier phase, carrier
Doppler, code phase) as measurements. The measurement
residuals or the innovations are the discriminator’s output.
An example is addressed assuming a third-order state DSKF
with one measurement. The Backward Euler approximation is
used to define the discrete state matrix A [19]. This eases the
comparison with the digital backward Euler transform (BET)
STL [5].

The open-loop SSM representation of the third-order DSKF
example is characterized as:

x1[n]x2[n]

x3[n]


︸ ︷︷ ︸
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1 τint τ2int
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K
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(14)

εs[n] = [1 0 0]︸ ︷︷ ︸
H

×A× x[n− 1] (15)

where εu is the unsmoothed error of the carrier phase, carrier
Doppler or code phase, εs is the smoothed estimate of the error,
and τint is the integration time. Deriving Equation (13) based
on Equation (14) and Equation (15), the open-loop transfer
function of the third-order DSKF is expressed as:

Ho3(z) =
Z(εs)

Z(εu)
=

p−1∑
l=0

Klτ
p−l−1
int z−1

(1− z−1)p−l
(16)

=

p−1∑
l=0

Klτ
p−l−2
int

(1− z−1)p−l−1︸ ︷︷ ︸
F (z)

· τintz
−1

1− z−1︸ ︷︷ ︸
N(z)

(17)

The open-loop transfer function Ho3 can be related with the
standard STL. Equation 17 shows that Ho3 can be divided into
the transfer function of a standard loop filter and an NCO. This
concludes with the relationship between the Kalman gains and
the standard STL coefficients:

Kl = αlτint ∀l, l = 0, ..., p− 1 (18)

where αl is the lth coefficient of the STL [5]. Figure 2
shows an equivalent representation of Figure 1, that eases the
comparison with standard STLs.

The digital one-sided equivalent noise bandwidth Bd is
defined as:

2Bdτint =
1

2πj

∮
|z|=1

Hc(z)Hc(z
−1)z−1dz (19)

where Hc(z) is the closed-loop transfer function. Assuming
that the integration time τint tends to zero, the digital loop



bandwidth is equivalent to the analog loop bandwidth B [20]–
[22]. The relation between the loop bandwidth and the coef-
ficients of a third-order STL is expressed as:

lim
τint→0

Bd = B =
α2
2α1 − α2α0 + α2

1

4(α2α1 − α0)
(20)

D. Process Noise, Measurement Noise and Loop Bandwidth

The Kalman gain K is calculated for each loop iteration
based on Equations (2), (4), (5), and (7). K depends on the
process noise covariance Q and measurement noise covariance
R. In this paper, these matrices are calculated considering a
third-order DSKF that is implemented in a PLL. For the Q
calculation, a constant-acceleration particle is assumed [23],
[24]. The BET is used to discretize the noise that is added in
the acceleration state:

wk = Awτint = A

 0

0

wa

 τint =

waτ
3
int

waτ
2
int

waτint

 (21)

where w is the continuous random noise vector, wk is the
discretized noise vector, and wa is the zero-mean Gaussian dis-
tributed perturbation that suffers the acceleration in cycles/s3.
Q is obtained performing the variance of the discretized

noise:

Q = E
(
AwwT AT

)
τ2int =

τ6int τ5int τ4int

τ5int τ4int τ3int

τ4int τ3int τ2int

 q (22)

where q is the variance of the random process wa in
cycles2/s6. This value determines the uncertainty of the states.
A higher q implies higher state uncertainty, leading to higher
confidence in the incoming measurements. On the contrary,
the lower the q, the higher confidence of the states and the
measurement is less considered.

The measurement noise covariance R determines the va-
lidity of the incoming measurements. A high value indicates
higher uncertainty, whereas a low value determines a higher
confidence. An adequate model for R is the CRB of the
STL, since it represents the minimum error variance of a time
of arrival (ToA) unbiased estimator [25], [26]. In this case,
the measurement residual of the DSKF is the discriminator’s
output εu of an STL. The CRB of εu is achieved when the
error estimation does not feedback additional noise. Only the
thermal noise of the incoming error parameter ε is present.
If the carrier phase offset parameter (ε = θ) is taken as a
measurement, and under the assumption of a two-quadrant
discriminator, its variance in cycles2 can be represented as:

R = Var(θ) = CRB(θu) (23)

=
1

2τintC/N0l

(
1 +

1

2τintC/N0l

)
(24)

where C/N0l is the linear C/N0 in Hertz. This relation is
commonly used in CRB-based DSKF.

In the steady-state region, the kalman gains tends to a
steady-state value given a constant q and R. Since the Kalman
gains are directly related with the loop filter coefficients, and,
in turn, with the loop bandwidth, a relation between the steady-
state loop bandwidth Bss, q and R can be achieved [2], [27],
[28]. For a third-order DSKF, this relation is expressed as:

Bss =
5

6
6

√
q

R
(25)

Figure 3 shows the relation between q and B for different
values of R based on Equation (25). This relationship eases the
LBCA implementation in the DSKF since the loop bandwidth
update can be related with the covariance matrices.
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Fig. 3: Relation between steady-state loop bandwidth Bss and
process error variance q in a third-order DSKF.

III. LBCA-BASED DSKF
This section describes the architecture of the LBCA-based

DSKF. In previous studies, the LBCA has been implemented
in the traditional STL [5]. The LBCA-based STL presented
superior tracking and system performance compared to other
state-of-the-art techniques while achieving the lowest com-
plexity. This technique updates the loop bandwidth based on
the current normalized bandwidth BN [n] (i.e., the product
between the integration time τint and the loop bandwidth B)
and a control value c[n]:

B[n+ 1] =
BN [n] + c[n]

τint
(26)

The control value is a weighted difference between the nor-
malized noise N [n] and normalized dynamic D[n] estimates
of the discriminator’s output:

c[n] = D[n] (gMax − g[n,BN ])−N [n] g[n,BN ] (27)

where g[n,BN ] is a normalized loop-bandwidth dependent
weighting function, and gMax is the maximum value of
g[n,BN ]. The normalized estimates are represented as:

D[n] =
µ|εu|

µ|εu| + σεu

; N [n] =
σεu

µ|εu| + σεu

(28)
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Fig. 4: Non-linear model of LBCA-based DSKF.

where µ|εu| is the mean of the discriminator’s output absolute
value, and σεu is the standard deviation of the discriminator’s
output.

The selected weighting function g[n,BN ] is the one that
presented best results in the LBCA-based STL [5]:

g[n,BN ] =

[
0.014

0.086

]T
×

[
Sig (50 (BN − 0.06))

Sig (250 (BN − 0.36))

]
(29)

where Sig is the Sigmoid function [29].
Figure 4 shows the architecture of the adaptive DSKF using

the LBCA. This technique adapts the process noise covariance
matrix Q while setting the measurement noise covariance R to
a constant value. Due to the relation between q, R and the loop
bandwidth B (see Equation (25)), it is possible to implement
this adaptive algorithm in a direct way. This technique is
evaluated setting R to 10−7cycles2.

A. Complexity
Table I shows the added complexity of the implemented

adaptive DSKFs compared to the standard STL. The com-
plexity is based on the number of required additions, multi-
plications, and divisions. The added complexity of the CRB-
based DSKF is also added. CRB-based DSKF adapts R based
on Equation (24), being q a fixed value. Compared to the
LBCA-based DSKF, the innovation covariance S has more
complexity. However, the complexity of the LBCA technique
is not included. In the LBCA-based DSKF, The complexity of
Equation (25) is not added since a Lookup table (LUT) is used
to map the loop bandwidth B and the process error covariance
q. Also, the weighting function of the LBCA technique is
approximated using the piecewise linear approximation of
nonlinearities (PLAN) technique [5].

IV. RESULTS

This section describes the test setup to evaluate the LBCA-
based DSKF and the CRB-based DSKF and presents the static
and dynamic tracking performance results. The dataset used
to plot the presented results are available on the cloud [30].

TABLE I: Complexity of third-order CRB-based DSKF and
LBCA-based DSKF.

Tracking Sub- Number of operations:
technique module Add. Mult. Div.

CRB-based
P̂ 27 18 -

S,R 2 5 2

DSKF K - 3 1
P 9 9 -

Total 38 35 3

LBCA-based P̂ 27 18 -
S 1 - -

DSKF K - 3 1
P 9 9 -

LBCA + PLAN [5] 6 7 1
Total 43 37 2

A. Evaluation Setup

The evaluation setup is the same as in previous studies [5],
[7], [17]. The Spirent GSS9000 radio-frequency constellation
simulator (RFCS) generates controlled scenarios at different
C/N0 and signal dynamics levels. The simulator is configured
to perform 20 minutes simulations of a specific scenario
at different C/N0 levels. A static scenario and a dynamic
scenario are selected to evaluate the adaptive DSKF. In the
static scenario, the Global Positioning System (GPS) L1 C/A
signal of satellite vehicle (SV) 04 is selected to evaluate
the static tracking performance. For the dynamic scenario,
the GPS L1 C/A signal of SV 17 is used to evaluate the
dynamic tracking performance. The maximum line-of-sight
(LOS) signal dynamics for this dynamic simulated scenario
is 8.7 g/s.

The simulator is connected to the GOOSE© platform: a
GNSS receiver with an open software interface [18], [31]. The
tracking stage of this GNSS receiver is partially implemented
in hardware (e.g., correlators and NCO) and software (e.g.,
discriminators and loop filters). Once the acquisition coarsely



20 25 30 35 40 45 50 55

10
_
3

10
_
2

(a) Static tracking performance of SV04.

20 25 30 35 40 45 50 55
10

_
3

10
_
2

(b) Dynamic tracking performance of SV17

Fig. 5: Tracking performance of adaptive DSKF techniques in a third-order Costas PLL.

estimates the frequency doppler fd and the code phase τ , the
FLL and the DLL try to achieve a more accurate synchro-
nization. The PLL is enabled when a more refined estimate
of fd is achieved. First, the FLL assists the PLL until the
latter achieves a good lock. Next, the FLL is disabled, and the
PLL works unaided. At this stage, the receiver performs the
synchronization with the navigation data and the integration
time increases to the symbol period. Since the evaluation is
done using GPS L1 C/A, the integration time is increased to
20 ms.

Due to the equivalence between the DSKF and the standard
STL, only the required algorithms to update the coefficients
(i.e., the Kalman gains) must be implemented. These algo-
rithms are implemented in software. This section evaluates a
third-order DSKF-based Costas PLL using the presented adap-
tive algorithms: LBCA-based DSKF and CRB-based DSKF.

B. Tracking Performance

Figure 5 presents the tracking performance PTracking of the
implemented adaptive techniques in DSKF-based PLL. The
LBCA-based DSKF is compared with three configurations of
the state-of-the-art CRB-based DSKF. Moreover, the tracking
performance of the LBCA-based standard PLL is included [5].

In the LBCA-based DSKF, q starts with an initial value
of 10 cycles2/s6 and is adapted based on the LBCA’s loop
bandwidth update, while R is fixed to 10−7cycles2. Each
configuration of the CRB-based DSKF presents a different
constant q value, and R is adjusted based on the CRB.

The metric used to evaluate the PLL tracking performance
has the following form [5]:

PTracking = (σuθ − σuLB)λ (30)

where λ is the wavelength of the GNSS signal, σuθ is the
average of the last ten minutes un-smoothed carrier phase
error’s standard deviation, and σuLB is the CRB’s root square

(see Equation (24)). Also, the three-sigma rule-of-thumb con-
servative upper threshold σthθu is included in Figure 5. If σuθ is
less than this threshold, one can ensure a stable tracking and
no cycle-slips [1]. For a two-quadrant phase discriminator, the
three-sigma rule-of-thumb has the following value:

σthθu =
λ

24
(31)

In the static scenario, these techniques achieve similar
static tracking performance at high C/N0 levels. At low
C/N0, the LBCA-based PLL loses the lock because the
LBCA is configured to be very sensitive to dynamics. The
LBCA-based DSKF, with the same configuration as in the
LBCA-based PLL, can maintain the lock at 28 dBHz. All
the CRB-based DSKF configurations present superior static
performance compared to the other techniques at low C/N0.
At a C/N0 equal to 24 dBHz, the CRB-based DSKFs with
q = 10 and q = 100 achieve the tracking lock. In contrast, the
configuration with q = 1000 loses lock due to its increased
sensitivity to dynamics.

In the dynamic scenario, all the CRB-based DSKFs lose
the tracking lock except q = 1000 at high C/N0 levels. The
LBCA-based DSKF achieves better dynamic performance than
the rest of the DSKFs, maintaining the lock until 36 dBHz.
However, this technique presents worse performance than the
LBCA-based PLL. The LBCA-based DSKF updates the q
value, and some time is needed to converge to the desired
filter’s coefficients. Consequently, it takes time to achieve the
desired steady-state loop bandwidth, and the tracking loses
lock due to slow reaction. On the contrary, in the LBCA-based
PLL, there is a direct relationship between the loop bandwidth
and the coefficients, leading to a faster reaction and, in turn,
a better dynamic performance.



V. CONCLUSION

This paper evaluates the tracking performance of an adaptive
DSKF-based PLL using the LBCA technique. First, the rela-
tion between the KF and the DSKF is presented. The Kalman
gains are the product between the filter’s coefficients and the
integration time. This relationship eases the implementation
of the DSKF in the tracking stage. Second, the connection
between the loop bandwidth and the noise covariances of the
DSKF is shown, facilitating the implementation of the LBCA
in the DSKF. Third, the structure of the LBCA-based DSKF
is described. The LBCA’s loop-bandwidth update adapts q for
each loop iteration while setting R to a constant value. Fourth,
the static and dynamic tracking performance of the LBCA-
based DSKF, CRB-based DSKF and LBCA-based standard
PLL are presented. The results show that the CRB-based
DSKF acheives better static performance than the LBCA-
based DSKF at low C/N0 levels. However, in the dynamic
scenario, the LBCA-based DSKF outperforms the CRB-based
DSKF.

Standard STLs present fixed loop damping and decay-
rate parameters [20]. In contrast, the DSKF changes those
parameters until they converge to optimal values in the steady-
state region. The LBCA-based DSKF tries to adapt the filter’s
coefficients in order to achieve optimal performance in time-
varying scenarios. Therefore, the LBCA-based DSKF was
expected to have comparable or better performance than the
LBCA-based traditional PLL. However, the contrary has been
observed. Although the LBCA-based DSKF tries to adjust the
coefficients optimally, the adaption is not fast enough, leading
to a higher risk of losing the lock at high dynamic scenarios.
The fact that adaptive DSKF-based PLL is not better than
traditional PLL using the same LBCA technique under high
signal dynamics is an important observation based on our
studies and one of the main findings in this paper.
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