
sensors

Article

Unsupervised Learning in RSS-Based DFLT Using an
EM Algorithm

Ossi Kaltiokallio 1,*, Roland Hostettler 2, Hüseyin Yiğitler 3 and Mikko Valkama 1
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Abstract: Received signal strength (RSS) changes of static wireless nodes can be used for device-
free localization and tracking (DFLT). Most RSS-based DFLT systems require access to calibration
data, either RSS measurements from a time period when the area was not occupied by people, or
measurements while a person stands in known locations. Such calibration periods can be very
expensive in terms of time and effort, making system deployment and maintenance challenging.
This paper develops an Expectation-Maximization (EM) algorithm based on Gaussian smoothing
for estimating the unknown RSS model parameters, liberating the system from supervised training
and calibration periods. To fully use the EM algorithm’s potential, a novel localization-and-tracking
system is presented to estimate a target’s arbitrary trajectory. To demonstrate the effectiveness of
the proposed approach, it is shown that: (i) the system requires no calibration period; (ii) the EM
algorithm improves the accuracy of existing DFLT methods; (iii) it is computationally very efficient;
and (iv) the system outperforms a state-of-the-art adaptive DFLT system in terms of tracking accuracy.

Keywords: received signal strength; localization and tracking; bayesian filtering and smoothing;
parameter estimation; expectation-maximization algorithm

1. Introduction

In developed nations, the demographic change in the population is creating many
challenges both from a societal and an economic standpoint. Research into aging, age-
related conditions, and the means to support an aging population has therefore become
a priority for many governments around the world [1]. Ambient assisted living (AAL)
is the European Union’s funding program that aims at developing “information and
communication technologies (ICT) in a person’s daily living and working environment
to enable them to stay active for longer duration, remain socially connected and live
independently into old age” (www.aal-europe.eu, accessed on 17 August 2021). This can be
achieved by developing both preventive and monitoring systems for aging safely at home,
in the community, and at work. In this regard, radio frequency (RF) sensing is particularly
suitable for realizing AAL systems. The main advantages of the technology are four-fold:

1. it is passive and does not require users to carry obtrusive and uncomfortable sensors [2];
2. it is suitable for a wide range of monitoring purposes such as localization and

tracking [3], fall detection [4], vital sign monitoring [5], gesture recognition [6] and
behavioral sensing [7];

3. RF signals can penetrate walls, clutter and other occlusions, unlike many other sensors
that have a limited field of view [8]; and

4. it is privacy preserving which increases acceptance of the monitoring technology,
unlike vision-based systems that are intrusive [9].
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The focus of this paper is on device-free localization and tracking (DFLT), because position
and motion embed a wealth of information about people and can be used to develop
various AAL applications.

DFLT methods use received signal strength (RSS) measurements between static wire-
less nodes to provide location estimates of a person inside the monitored area. In DFLT,
there are two fundamental challenges: first, having a model of the RSS as a function of
person’s location and, second, maintaining an accurate model over time. Fingerprint-based
and data-driven DFLT methods use a supervised training period to collect RSS measure-
ments that are labeled with a person’s known locations [10,11]. The labeled data are used
for characterizing the unique propagation properties of the environment. During run time,
the non-parametric models can be used to accurately localize people even in challenging
indoor deployments. As a drawback, the training process is laborious, and the perfor-
mance degrades drastically as the environment is altered [12]. Parametric model-based
DFLT approaches use physical models to describe the changes in RSS with respect to the
locations of the sensors and person [2,13]. Typically, these methods only require a short
empty-room calibration period when the area is not occupied by people and hence, they
are easier to deploy than fingerprint systems. A downside is that the model inaccuracies
limit the localization accuracy and these systems require recalibration and retraining if
the environment changes. Both systems can be realized with the Calibration Data unit
and Localization-and-Tracking unit shown in Figure 1, and the main difference is how the
system is calibrated during the calibration period k ∈ [a, . . . , b]. Model-based systems only
require the RSS (Y = [ya, . . . , yb]), whereas fingerprinting methods also require the person’s
location (X = [xa, . . . , xb]). Considering an AAL application, all empty-room calibration
periods and training procedures that require human effort are very inconvenient since
it can take from several minutes [2,14] up to half an hour [11,15]. This paper presents a
parametric model-based DFLT system that requires no Calibration Data unit, streamlining
the requirements for deployment. The proposed system is presented in Figure 1 and the
system can be realized using the Localization-and-Tracking unit, the Smoother unit and
the Parameter Estimator unit.

Figure 1. The components of a typical and proposed DFLT system. The gray shaded block and
localization-and-tracking block is common to conventional systems, whereas the proposed system is
composed of the non-shaded blocks only. The notation is introduced in Sections 3 and 4.

The work in this paper addresses three major problems associated with the calibration
of typical DFLT systems. First, most DFLT methods require an empty-room calibration
period when the area is not occupied by people to calculate the mean RSS level µ [2,16].
Typically, the RSS changes are defined with respect to µ and an accurate estimate is a strict
requirement of DFLT. Second, it is a common presumption that the model parameters
are the same for all links [17,18], i.e., for all transmitter, receiver and frequency channel
combinations. Third, model-based DFLT methods that take into account the unique model
parameters for each link, require a calibration period when a person moves along a known
training trajectory to estimate them [13,19]. If µ is constant and the model parameters are
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the same for all the links, only a short empty-room calibration period is enough. However,
neither of these are valid assumptions in general scenarios. In Figure 2, the measured and
modeled RSS as a function of excess path length (see Equation (6)) for two example links
is illustrated. As shown, the model parameters of the two links differ significantly from
one another invalidating the common assumption. The used model is the exponential
model [20] (see Equation (26)) with parameters, Θ = [µ, φ, λ, σ2], which are estimated
using nonlinear least squares over the measurements and known trajectory.

(a) (b)

Figure 2. Measured ( ) and modeled ( ) RSS as a function of excess path length for two example
links. The shaded region depicts the 3σ confidence interval. In (a), the model parameters are
Θ = [−67.02, 3.42, 0.03, 3.92] and in (b), Θ = [−56.61,−5.71, 0.04, 0.80].

This paper aims to address the limitations and drawbacks of typical DFLT methods
by developing a system that does not require separate empty-room calibration periods and
that can learn the unique model parameters for each link during the time of operation. The
development efforts of this paper are validated using a 75 m2 open indoor deployment
and a 82 m2 residential apartment deployment, and it is shown that the proposed system
can achieve an average tracking accuracy as low as 17 cm in the open environment and
37 cm in the apartment. This paper makes the following contributions:

• A Gaussian filter is presented to estimate the state of the target and a novel Measure-
ment Selection unit is developed to select and combine the measurement models of
two DFLT methods into one filtering algorithm. The developed system is demon-
strated to outperform a state-of-the-art adaptive DFLT system and reduce the tracking
error by 42%.

• A Gaussian smoother is implemented, and it is used to evaluate the expectations
involved in the expectation step of the Expectation-Maximization (EM) algorithm.
Moreover, we show how the maximization step of the EM algorithm is available in
closed form for the considered measurement model. The presented EM algorithm is
computationally very efficient, up to 18 times faster than current solutions used in
the literature.

• An EM algorithm is presented for estimating the unknown RSS model parameters,
liberating the system from the need for supervised training and calibration periods.
It is demonstrated that the EM algorithm not only improves the accuracy of the
introduced system, but also other DFLT systems.

• The experiments conducted in this paper, together with Matlab code to run the
presented filtering, smoothing and EM algorithms are made publicly available and
are published in [21]. The aim is to lower the threshold to start research in the area
and advance the field of DFLT in general.

The rest of the paper is organized as follows. Related work is discussed in Section 2.
Section 3 formulates the problem and presents the localization-and-tracking system. The
parameter estimation framework is presented in Section 4. The experiments that were
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conducted are introduced in Section 5 and the results are presented in Section 6. Thereafter,
conclusions are drawn.

2. Related Work

In this section, related works that use calibration and training are summarized. We
begin the section by introducing the most common method in DFLT—using an empty-
room calibration period. Systems that use online training are discussed thereafter. Lastly,
works that calibrate the model using supervised or unsupervised training are presented.
Empty-room calibration—Most DFLT systems define the RSS changes with respect to µ,
often referred to as the reference or baseline RSS. The system performance depends on an
accurate estimate of µ and therefore, it is typically calculated over several minutes when the
area is not occupied by people [2,18,22]. In this paper, µ is one of the parameters estimated
by the EM algorithm and it is shown that the system can be initialized without having an
empty-room calibration period.

It is worth noting that methods that do not define the RSS changes with respect to µ
have also been proposed [8,23]. Instead, these methods calculate the sample RSS variance
over a fixed time window and do not require calibration. A downside is that variance-based
methods cannot locate stationary targets because in such scenarios, the variance drops
close to the noise floor and does not show up in the estimated image.

Online calibration—Several works have proposed calibrating the reference RSS µ [14,24],
or measurement noise variance σ2 [25,26] online. The system can be deployed without a
calibration period when the reference RSS is estimated on-the-fly. Moreover, improved
estimators can be developed when better noise models are available [23,25,26]. These
approaches first estimate the target state and then the parameters in a sequential order.
However, such a decoupling is not always possible, or degrades the system performance if
the state estimates are inaccurate. Unlike online calibration methods, this work uses the
EM algorithm to estimate µ and σ2 from batches of data that is collected while the person
is inside the monitored area.

Estimating the RSS distribution (defined by µ and σ2) in two states, when a person
is crossing or not crossing the imaginary link line between the transceivers, has been
explored in [27–31]. Not only can this information be used to localize people, but also
to determine if the monitored area is occupied—a non-trivial task in RF sensing. The
aforementioned works model the target location as a binary state: either the person is in
between the transmitter (TX) and receiver (RX), or they are not. In this paper, we use a
continuous measurement model and there is no need to explicitly determine whether a
target is crossing the link or not.

Model calibration—The works in [13,15,19] use an offline calibration phase for esti-
mating parameters of the measurement model. During calibration of the parameters, a
person moves along a known training trajectory and visits locations of interest. The RSS
is recorded between the static wireless nodes and the measurement model parameters
are estimated. During the online phase, the calibrated measurement model is used in the
tracking algorithm. The works cited above demonstrate high tracking accuracy, but the
calibration phase is inconvenient since it can take up to 30 min as in [15]. In this paper, the
estimated trajectory and EM algorithm are used for unsupervised learning. The position
estimates can be inaccurate in the beginning, but as the person moves in the area, the model
parameters can be estimated more accurately resulting in improved tracking performance.
The proposed parameter estimation method does not require human intervention other
than normal movement in the area.

Parameter estimation—This present work is most closely related to the developments
in [22,32], which have an online calibration module as well as a batch-estimation module
for tuning the model parameters. The aforementioned works use an imaging solution,
and the accuracy is inevitably affected by the binary measurement model and resolution
of the pixels. Instead, we use a continuous measurement model, and the implemented
Bayesian filter directly estimates the kinematic state of the target using the RSS and higher
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tracking accuracy is expected [20]. Furthermore, the existing approaches use a nonlinear
least-squares solution to estimate the model parameters [22,32], while the proposed method
solves the problem using a maximum likelihood approach based on a computationally
efficient EM algorithm. Since unsupervised learning depends on accurate position esti-
mates, the introduced system is superior with respect to [22,32]. The experimental results
demonstrate that the proposed system can reduce the tracking error by 42% or more and
the EM algorithm is computationally up to 18 times faster than the nonlinear optimization
method used in [22].

Expectation-maximization has also been used for RSS-based DFLT in [20,33]. However,
these approaches use a mini-batch- and particle-filtering-based online EM approach. Al-
though the online EM approach is attractive for on-the-fly estimation of the parameters and
rapid adaptation to changing environments, the method also suffers from some important
drawbacks. First, since the expectation step is based on particle filtering, which yields
a degenerate approximation of the smoothing posterior density required by EM [34,35],
it is computationally heavy, and the estimation of the marginal log-likelihood may be
poor. Second, in [20,33] the maximization step cannot be done in closed form, and it is
implemented by propagating a set of sufficient statistics and the numerical integration
is carried out using importance sampling. In contrast, in this paper, the expectation step
is calculated using a Gaussian approximation for the smoothing distribution which can
be computed efficiently and does not suffer from trajectory degeneration. Furthermore,
we show that the maximization step of the EM algorithm is available in closed form for
the considered measurement model and implemented Gaussian smoother. Hence, with
respect to [20,33], the solution presented in this paper is more tractable in terms of the
approximation of the expectation and maximization steps and computational complexity.
In addition, the EM algorithm used in [20,33] is only evaluated with simulations, whereas
we validate our proposed method using experimental data. The EM algorithm is widely
used in different applications and the readers are referred to [36] for an introduction to
parameter estimation and to [37,38] for a more general treatment of parameter estimation
in nonlinear dynamical system using Gaussian filtering and smoothing.

3. Localization and Tracking

This work aims to track the kinematic state of a target using the RSS measured between
static wireless nodes. The components of the introduced Localization-and-Tracking unit
and their relations are visualized in Figure 3 and presented in the following. We begin
by presenting the models used for localization and tracking. Thereafter, the estimation
tasks are presented, and they are performed by two complementary blocks: (i) the Radio
Tomographic Imaging (RTI) unit summarized in Section 3.2, and (ii) the Extended Kalman
Filter (EKF) unit presented in Section 3.3. The EKF uses the combination of RSS and RTI
position estimates in the measurement update, and the Measurement Selection unit selects
and combines the measurements as described in Section 3.4.

The idea to augment the EKF with RTI position estimates was originally presented
in [3]. The localization-and-tracking system presented in this paper further improves the
filter by introducing a Measurement Selection unit which selects and combines the measure-
ments in a way that enhances the tracking accuracy. In addition, we propose a novel RTI
positioning scheme that also estimates covariance of the position estimates. Furthermore,
the developed localization-and-tracking system performs no low-pass filtering of the RTI
images in contrast with the system presented in [3]. The reason is that image filtering has a
negative impact on the parameter estimation algorithm since it introduces a lag in the state
estimates and causes correlated position errors.
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Figure 3. Major components of the proposed localization-and-tracking method. The notation is
introduced in Sections 3 and 4.

3.1. Models
3.1.1. Dynamic Model

For DFLT, the state of the system in two-dimensional Euclidean space can be defined as

xk =
[
xk ẋk yk ẏk

]T (1)

where xk and yk are the x- and y-coordinates, and the velocity components are denoted as
ẋk and ẏk. This state representation is particularly suitable for DFLT because the position
and velocity define the temporal and spectral properties of the RSS [39]. This state evolves
at time k in accordance with

xk = Fxk−1 + qk−1, (2)

where F is the state transition matrix of the dynamic model and qk−1 ∼ N (0, Q) is Gaussian
process noise. As a person is not expected to change velocity very rapidly and unexpectedly,
a common choice of F in RSS-based DFLT [18,22] is the second-order kinematic model [40],
given by

F = I2 ⊗
[

1 τ
0 1

]
, Q = I2 ⊗ q

[ 1
3 τ3 1

2 τ2

1
2 τ2 τ

]
(3)

where I2 is an identity matrix, ⊗ the Kronecker product, q the power spectral density of
the process noise and τ the sampling period.

3.1.2. Measurement Model

Consider a wireless network, where each of the S nodes can communicate with
the other S− 1 nodes. Moreover, the wireless devices can communicate on C different
frequency channels. Each transmitter, receiver and channel combination is a unique link
and the total number of measured links is L = C · S · (S− 1). It is to be noted that full
connectivity is not mandatory for DFLT. It is also to be noted that we do not assume channel
reciprocity. The reason being, although the radio channel is reciprocal, measurements of the
radio channel are not reciprocal, and parameters of the reciprocal link can be different [41].

The nodes communicate in round-robin fashion and at time k, one node transmits and
the other nodes receive. At the next time instant, k + 1, the transmission turn is assigned to
the next node in the schedule. The nodes transmit sequentially, and one communication
cycle consists of one transmission by every node. At the end of the communication
cycle, the nodes switch simultaneously to the next frequency channel in a predefined list.
Thereafter, a new communication cycle is initiated. Once each node has transmitted on
every frequency channel, the schedule is restarted from the beginning.

For the considered problem, the measurement system at time k can be defined as

yk = Ik(H(xk)θ+ rk), (4)

where yk ∈ R(S−1)×1 is the measured RSS, Ik ∈ R(S−1)×L a deterministic link indicator
matrix defined by the schedule (see Section 3.3.1), H(xk)θ the linear-in-parameters mea-
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surement model and rk ∼ N (0, R) is Gaussian measurement noise. The human-induced
RSS changes are modeled using an exponential model [20] and the complete linear-in-
parameters model is defined as

H(xk) =


1 e−∆1,k/λ 0 0
0 0 1 e−∆2,k/λ

. . .
1 e−∆L,k/λ

,
θ =

[
µ1 φ1 µ2 φ2 . . . µL φL

]T,
(5)

where λ is the decay rate, µl the reference RSS and φl the measurement gain,H(xk) ∈ RL×2L

and θ ∈ R2L×1. In (5), the excess path length ∆l,k defines an ellipse with the foci at the TX

and RX and it relates the person’s location pk =
[
xk yk

]T to link l with TX m and RX n by

∆l,k , ‖pm − pk‖+ ‖pn − pk‖ − ‖pm − pn‖, (6)

where pm and pn denote the TX and RX positions in respective order. Lastly, the measure-
ment noise covariance is assumed diagonal and it is defined as R = diag

(
σ2

1 , σ2
2 , . . . , σ2

L
)
.

It is to be noted that the RSS can be measured at most for S − 1 links simultaneously
because only one node transmits at a time. Moreover, to measure the L links takes S · C
transmissions and S · C · τ duration of time.

3.2. Radio Tomographic Imaging
3.2.1. Image Estimation

RTI estimates a discretized RSS change field, denoted by bc, using the RSS of J = S(S− 1)
links measured on frequency channel c. As in [42], the RSS is assumed to be a linear combi-
nation of voxel changes plus noise

zc = Wcbc + rc, (7)

where zc ∈ RJ×1 is the mean-removed RSS, Wc ∈ RJ×N a weight matrix that relates the
spatial change field bc ∈ RN×1 to the RSS, N the voxel number and rc ∈ RJ×1 the measure-
ment noise. The measurement vector and noise covariance in (4) can be decomposed as

y =
[
yT

1 yT
2 . . . yT

C
]T and R = diag(R1, R2, . . . , RC) where yc and Rc denote the RSS

and measurement noise covariance on channel c. Now, the RTI measurement and noise
vectors are related to the model in (4) via zc = yc − µc and rc ∼ N (0, Rc).

The minimum mean square error estimate for the model in (7), with zero-mean
Gaussian image prior b ∼ N (0, Σb), is

b̂c = Πczc, where

Πc =
(

WT
c R−1

c Wc + Σ−1
b

)−1
WT

c R−1
c .

(8)

The covariance matrix Σb for pixels m and n is [42]

{Σb}m,n = σ2
b exp

(
−‖pm − pn‖

δd

)
, (9)

where σ2
b is the variance of each pixel and δd is a user-defined space constant. For link l

and pixel n, we define the elements of Wc as

{Wc}l,n =
φl
‖φl‖

e−∆l,n/λ, (10)
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where φl and λ are the measurement gain and decay rate of the model defined in (5), ‖φl‖
is a normalization term and ∆l,n the excess path length. In the literature, W has taken many
forms, and the reader is referred to [16,43] for further details.

The projection matrix Πc is channel dependent and it is computed independently for
each of the channels. However, Πc must be computed only once at the beginning of the
experiment and the real-time computation of the image requires only one matrix multipli-
cation, of O[NL] multiplications and additions. The spatial change field is estimated at the
end of each communication cycle when k mod S = 0 and zc contains measurements from
time instant k− S + 1 to k. The image estimate on channel c is denoted from now on as b̂k,
to prevent using two time notations.

3.2.2. RTI Positioning

For a single target, localizing the person can be postulated as finding the mode of b̂k
since it is expected that the pixels with highest intensity locate near the target [44]. The
mode is in the set of pixels with intensity higher than γB, where B = max(b̂k) denotes
the maximum component of b̂k and 0 ≤ γ ≤ 1 is a threshold. The threshold is a tuning
parameter between two extremes: if γ = 0 all pixels are taken into account and if γ = 1
only a single pixel is accounted for, and we have empirically found that γ = 0.7 provides a
good overall performance. Let us define

b̃k =

{
b̂k if b̂k ≥ γB
0 otherwise

, (11)

where w = b̃k/ ∑ b̃k. Now, the position estimate and sample covariance are given by:

p̂k =
N

∑
n=1

wnpn, (12)

Ck =
N

∑
n=1

wn(pn − p̂k)(pn − p̂k)
T, (13)

where pn =
[
xn yn

]T are the pixel coordinates and wn the weight for pixel n.
An example is illustrated in Figure 4 in which two RTI images are shown together

with the estimates given in Equations (12) and (13). The image on the left is an ideal RTI
image, pixels with b̂k ≥ γB are centered around the target location and the image has very
little noise resulting in an accurate position estimate and small covariance. The image on
the right is very noisy and the image is multimodal. As a result, the estimated position
does not accurately indicate the target location and the estimated covariance is significantly
higher than in the other image. However, estimating the covariance allows taking such
uncertainties into account and the tracking filter developed in the next section gives less
weight to position estimates that are estimated from noisy images, such as the one on the
right of Figure 4.

3.3. Tracking Filter

The extended Kalman filter (EKF) computes the marginal posterior distribution of
xk for each time step k using the data y1, . . . , yk and assuming Gaussian approximations
for the filtering densities so that p(xk | y1:k) ≈ N (xk | mk, Pk). Different than conventional
Bayesian filtering implementations for DFLT [13,18,20], in this work, the measurement
model of the filter is augmented with the position estimates from RTI as in [3]. This
bounds the filter’s measurement residuals by the position errors of the imaging approach.
Therefore, the developed filter has the robustness of an imaging method and the tracking
accuracy of a Bayesian filter. The filtering algorithm consist of three steps: (i) prediction
step, (ii) model selection, and (iii) measurement update step. We simply refer to the
introduced filter as EKF, although it is more complex than a first-order filter that would
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solely use RSS. In the following, we first present the observation model of the EKF and
thereafter, the prediction and update steps of the filter.

(a) Ideal RTI image (b) Noisy RTI image

Figure 4. Two example RTI images and the position and covariance estimates calculated using (12)
and (13). In the image, the deep blue regions indicate areas that are not occupied by people and the
bright regions indicate estimated obstructions. Furthermore, the plus sign indicates the true position,
the crosses are the position estimates, and the dashed line illustrates the 3σ uncertainty ellipse [3],
reprinted with permission from ref. [3]. Copyright 2019 IEEE.

3.3.1. EKF Observation Model

Recall that at a given time instant k, at most S − 1 links are measured. Instead
of using the complete model defined in Equation (5), the EKF operates on a subset of
the measurement model. We refer to the subset as the observation model and essentially, it
contains the measurements and associated models sampled at time k. Thus, the observation
model is defined by the TX and channel identifiers, and it changes with time. To explicitly
define the observation model, consider the set of nodes S = {1, 2, . . . , S} and the set of
channels C = {1, 2, . . . , C}. Then, the link index l corresponding to the transmission by
node i ∈ S on frequency channel c ∈ C and received by node j ∈ S is

l =

{
(c− 1)S(S− 1) + (i− 1)S + j− i i < j,
(c− 1)S(S− 1) + (i− 1)S + j− i + 1 i > j.

The RXs that measure the RSS at time k are R = S \ {i} and |R| = S − 1. Now if
m = [1, . . . , |R|], we can define the indices of the link selection matrix, measurement
model, and noise covariance as follows:

{Ik}m,l = 1,

{H(xk)θ}m,1 = {H(xk)θ}l,1,

{R}m,m = {R}l,l .

(14)

In addition, the EKF requires the Jacobian ofH(xk)θ, and the elements of this matrix are
given by

[
∂{H(xk)θ}m,1

∂x
∂{H(xk)θ}m,1

∂y

]T
=
{H(xk)θ}m,1

λ

(
pi − pk
‖pi − pk‖

+
pj − pk

‖pj − pk‖

)
, (15)

where pi and pj denote the positions of nodes i and j. The Jacobian for m is

{Hx}m,· =
[

∂{H(xk)θ}m,1
∂x 0 ∂{H(xk)θ}m,1

∂y 0
]
. (16)
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3.3.2. Prediction Step

Given that the dynamic model in (2) is linear, the prediction step of the first-order
additive noise EKF can be expressed as [36]

m−k = Fmk−1,

P−k = FPk−1FT + Q,
(17)

where mk and Pk denote the state estimate and covariance in respective order, and m−k and
P−k are the predicted mean and covariance.

3.3.3. Measurement Update

The measurement selection unit presented in Section 3.4 calculates the measurement
residual νk and forms the associated measurement noise covariance matrix R and mea-
surement model matrix H. Using these, the mean m−k and covariance P−k can be updated
using [36]

Sk = HP−k HT + R,

Kk = P−k HS−1
k ,

mk = m−k + Kkνk,

Pk = P−k −KkSkKT
k .

(18)

3.4. Measurement Selection

The DFLT system implementations using Bayesian filtering or imaging (in particular
RTI) have different characteristics. Depending on the target’s position and system deploy-
ment, the performance of the introduced filter can be improved by enabling or disabling
certain measurements. For example, the covariance of the RTI position estimate can be
small and biased. On the other hand, the filter can converge to an incorrect trajectory and
the estimated covariance is not able to account for the uncertainties in the state estimate.
To solve these issues, a logic to select the effective measurements is introduced. The pro-
cedure is based on the normalized innovation squared (a.k.a. square of the Mahalanobis
distance) [40]

ε1 =
(
p̂k −Hmk

)T(HPkHT + Ck
)−1(p̂k −Hmk

)
, (19)

where

H =

[
1 0 0 0
0 0 1 0

]
(20)

is the linear measurement model. The test statistic has a χ2 distribution with two degrees of
freedom and it can be used to assess whether the realized RTI estimate is unexpectedly large
with respect to the prior predictive distribution. In addition, the square of the Mahalanobis
distance between two successive RTI estimates is calculated

ε2 =
(
p̂k − p̂k−S

)T(Ck + Ck−S
)−1(p̂k − p̂k−S

)
, (21)

where p̂k−S and Ck−S denote the previous RTI position estimate and covariance. The test
statistic can be used to assess whether the prior predictive distribution has converged to an
incorrect trajectory.

For simplicity, the index notation is dropped and the measurement model, measure-
ment noise covariance matrix, and Jacobian are simply denoted as: H(xk)θ ∈ R|R|×1,
R ∈ R|R|×|R| and Hx ∈ R|R|×4, respectively. The resulting logic to select the measurement
models is presented below in which T denotes the confidence interval of the χ2 distribution
with two degrees of freedom.

• if ε1 > T and ε2 ≤ T—It is likely that the filter has diverged. Use only the output of
RTI, i.e., R = Ck, H = H and νk = p̂k −Hm−k .
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• else if ε1 ≤ T—Normal operation, concatenate the models: R = blkdiag(Ck, R),

H =
[
HT HT

x
]T and νk =

[(
p̂k −Hm−k

)T (
yk −H(m−k )θ

)T]T
• else—The RTI position estimate is likely inaccurate, use only the RSS measurements,

i.e., R = R, H = Hx and νk = yk −H(m−k )θ.

The measurement residual νk, measurement noise covariance matrix R and measurement
model matrix H are used by the EFK update step presented in Section 3.3.3.

4. Parameter Estimation

In this section, an EM algorithm based on Gaussian smoothing is developed. The
section begins by introducing the Gaussian smoothing recursion for the considered prob-
lem. Thereafter, we show how the developed Gaussian smoother can be used to eval-
uate the expectations involved in the E-step of the EM algorithm. We also derive the
solution of the maximization problem in the M-step in closed form for the considered
measurement model.

4.1. Gaussian Smoothing

In this section, we present the smoothing recursions for the Rauch-Tung-Striebel
smoother (RTSS). The RTSS computes the marginal posterior distribution of the state
by conditioning on the whole measurement data. The smoothing solution is given by
p(xk | y1:K) ≈ N

(
xk | ms

k, Ps
k
)
, where K ≥ k, which can be calculated recursively. The

smoothing recursion starts from the last time step K and proceeds backwards to the first
time step, and the recursion is given by [36]

P−k+1 = FPkFT + Q,

Gk = PkFT
(

P−k+1

)−1
,

ms
k = mk + Gk

(
ms

k+1 − Fmk
)
,

Ps
k = Pk + Gk

(
Ps

k+1 − P−k+1

)
GT

k .

(22)

In the EM algorithm, the expectation is over the smoothing distribution (see
Equation (24)) and the obtained smoother result is used by the EM algorithm.

4.2. Expectation-Maximization-Based Parameter Estimation

Likelihood-based parameter estimation approaches seek to estimate the unknown
model parameters Θ from the marginal likelihood p(y1:K | Θ). In general, these methods
maximize the logarithm of p(y1:K | Θ) to find the maximum likelihood (ML) estimate of Θ,
given by

Θ = arg max
Θ

[log p(y1:K | Θ)]. (23)

The likelihood is over the joint density of the measurements and the latent state variables.
Since computation of the high-dimensional integral required in marginalizing the states out
is practically impossible, in this paper, we use the EM for approximating ML estimation.
The key idea behind the EM algorithm is that the marginal likelihood can be maximized by
iteratively maximizing its lower bound, which is equivalent to maximizing [36]

Q(Θ, Θ(i)) = E{log p(x0:K, y1:K | Θ) | y1:K}, (24)

where the expectation is with respect to p(x0:K | y1:K, Θ(i)) and Θ(i) denotes the param-
eter estimate at iteration i. The expectation step of the EM algorithm is equivalent to
computing (24) over the smoothing distribution, whereas the maximization step aims at
maximizing Q(Θ, Θ(i)) with respect to Θ.
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Using the properties of the state-space model and noting that the parameters only enter
the measurement likelihood, maximizing Q is equivalent to maximizing (see, e.g., [36,38])

Q̃(Θ, Θ(i)) =
K

∑
k=1

E{log p(yk | xk, Θ) | y1:K}. (25)

Furthermore, for the DFLT problem considered in this paper and under the assumption
that the measurement noises of the individual links are mutually independent, zero-
mean Gaussian noise, rl,k ∼ N (0, σ2

l ) and Cov{rl , rj} = 0, ∀ l 6= j, the parameters
can be estimated independently for each of the L links as follows. First, recall that the
measurement model of the lth link is given by

yl,k =
[
1 e−∆l,k/λ

][µl
φl

]
+ rl,k

= hl(xk)θl + rl,k.
(26)

Then, it is shown in Appendix A that the M-step maximizing the approximation of
Q̃(Θ, Θ(i)) in (25) has a closed form solution and the parameter update is given by

θ̂l = G−1B,

σ̂2
l = 1

K

(
D− BTG−1B

)
,

(27)

where K is the number of measurements of link l, and B, D and G are calculated using the
latest smoother results as follows

B =
K

∑
k=1

E{hl(xk) | y1:K}Tyl,k,

D =
K

∑
k=1

yTl,kyl,k,

G =
K

∑
k=1

E
{

hl(xk)
Thl(xk) | y1:K

}T
.

(28)

The expectations used to calculate B and G involve nonlinear transformations of xk which
can be approximated using Taylor series expansion. This yields

E{hl(xk) | y1:K}≈hl(m
s
k),

E
{

hl(xk)
Thl(xk) | y1:K

}
≈hl(m

s
k)

Thl(m
s
k)+HT

x Ps
kHx,

(29)

where ms
k and Ps

k are the mean and covariance of the smoother result and Hx is the Jacobian
of hl evaluated at ms

k (see Equation (16)). For a more detailed treatment of EM-based
parameter estimation please refer to, for example, [36–38].

Due to quantization of the RSS, the estimated variance may be zero even though the
true real-valued received power would have had a positive variance. We apply shrinkage,
which imposes an L2-penalty on the estimated covariance matrix, to assure positive vari-
ance and avoid numerical instability. In practice, the L2-penalized ML estimate is given by
the simple convex transformation:

R = (1− α)R̂ + α
Tr R̂

L
IL, (30)

where R̂ = diag
(
σ̂2

1 , σ̂2
2 , . . . , σ̂2

L
)
, α is the shrinkage coefficient, Tr R̂ denotes the trace of

the matrix and IL is an identity matrix.
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5. Experiments

The development efforts of this paper are demonstrated using Texas Instruments CC2531
USB dongle nodes [45]. The nodes operate on the 2.4 GHz ISM band and communicate on a
set of frequency channels C ∈ {11, . . . , 26} defined by the IEEE 802.15.4 standard [46]. The
wireless nodes follow a round-robin schedule as discussed in Section 3.1.2. In the transmitted
packets, the nodes include the most recent RSS measurements, associated with the trans-
missions of other nodes. The time interval between the communications is approximately,
τ ≈ 2.9 ms, defining the sampling period for the system. A base station that overhears all
the traffic extracts the RSS from the packets and relays the measurements to a computer
through UART for centralized processing. The readers are referred to [47] for a detailed
description of the communication protocol. It is to be noted that the method of this paper
can be generalized to any device capable of measuring the RSS including Wi-Fi, Bluetooth
and RFID.

The experiments are conducted in an open indoor environment and in a downtown
residential apartment. In both experiments, 20 nodes are deployed as illustrated in Figure 5.
In the open environment, the nodes are set on top of podiums (≈0.9 m) and deployed
around a 75 m2 area. The size of the apartment is 82 m2 and the nodes are deployed by
the electric sockets so they could be powered from the mains. The walk-in closets did not
have electric sockets on the exterior walls, so we decided to deploy one battery-powered
node in each to ensure coverage of the entire apartment. These two nodes are located at
[0.08 2.89]T and [10.24 2.80]T.

(a) Open environment (b) Apartment

Figure 5. The experimental layouts in which the nodes ( ) and the reference positions ( ) are
illustrated [3], reprinted with permission from ref. [3]. Copyright 2019 IEEE.

Before the experiment, reference positions were defined and marked. During the
experiment, the person’s trajectory follows the imaginary lines between the markers. Once
the target reaches a reference position, they stop, remain stationary for a few seconds, and
then walk to the next reference position. During the experiment, the person is carrying
a video camera. In post-processing, the RSS and video streams are synchronized, and
the video is used to define the ground truth trajectory. In Section 6.4, the statistical
significance of the tracking error is tested to assure that the generated trajectory is close to
the ground truth.

The experiments in both environments are conducted with one, four and 16 fre-
quency channels and the set of used channels are: C = {26}, C = {11, 16, 21, 26} and
C = {11, . . . , 26}. In addition, three different trials are conducted with each channel num-
ber. The trials are approximately three minutes long and every reference position is visited
at least once in each trial. In the following section, the experiments are referred to as Exi.j.,
where i indicates the experiment number and j the trial. Experiments 1–3 are conducted
in the open environment and experiments 4–6 in the apartment. Furthermore, Ex1 and
Ex4 use one channel, Ex2 and Ex5 four channels, and Ex3 and Ex6 all 16 frequency chan-
nels. In the apartment experiment, there are several co-existing Wi-Fi networks located



Sensors 2021, 21, 5549 14 of 24

in the coverage area, but the presented system can remain operational. The system is not
particularly sensitive to occasional packet drops and frequency channel diversity partly
mitigates interference issues. As an example, the packet reception rate is below 85% on the
most congested channel and above 99% on channels that do not share the frequency band
with Wi-Fi.

The imaging parameters used in the experiments are given in Table 1, whereas the pa-
rameters of the tracking algorithm are defined by the measurement model Θ = [µ, φ, λ, σ2].
In the experiments, λ = 0.04 m is assumed to be constant unless otherwise stated, the mea-
surement gain and variance are initialized using φ0 = −5 dB and σ2

0 = 1 dB2. In Section 6,
the initialization of µ0 is discussed. The only user-defined parameter in the EKF is the pro-
cess noise value and it should be tuned to the actual motion. In this paper, q = 0.01 m2/s3

which corresponds to an acceleration of a ≈ 1.8 m/s2 for the considered system. The
tracking filter is initialized when the person has reached the first reference position and
is stationary. The filter is initialized using m0 =

[
x0 (m) 0 (m/s) y0 (m) 0 (m/s)

]T,
where x0 and y0 are the center coordinates of the monitored area and P0 = I4. To note,
the ground truth position is never at

[
x0 y0

]T when the filter is initialized. Occupancy
assessment is an important problem in DFLT [32] but for simplicity, we assume we know
the time instances when the person enters and exits the monitored area.

Table 1. Imaging parameters

Parameter Unit

Pixel Variance (9) σ2
b 0.0005 (dB2)

Correlation distance (9) δd 0.5 (m)
Spatial decay rate (10) λ 0.04 (m)
Pixel width (7) δp 0.25 (m)
Image threshold (12) γ 0.70

The filters are evaluated using the root-mean-square error (RMSE) which is defined as
RMSE =

√
MSE. The mean-squared error (MSE) is

MSE =
1
K

K

∑
k=1
‖pk − p̂k‖2

2, (31)

where K ≈ 62,000 is the total number of estimates in one trial, pk denotes the ground truth
position, the hat accent indicates the estimate and ‖·‖2

2 the square of the Euclidean norm.

6. Experimental Results

Matlab code to run the tracking and localization, smoothing and parameter estimation
algorithms presented in Sections 3 and 4, and the experimental data presented in Section 5
are available in [21]. The reader is referred to the associated readme file for an overall
algorithmic description of the derivations presented in this paper and to the Matlab files
for the actual implementation of the algorithms. The development efforts of this paper are
experimentally validated in the following and benchmarked against existing solutions from
literature. For now, µ0 is calculated using a two-minute empty-room calibration period.
From Section 6.3 onward, µ0 is initialized without an empty-room calibration period.

6.1. EM with Existing DFLT Methods

In this section, it is shown that the EM algorithm can be used to enhance not only the
performance of the proposed system, but also two de facto DFLT methods from literature.
The first is RTI. The target is positioned as presented in Section 3.2, a standard Kalman
filter (KF) is used for tracking and the RTSS is used for smoothing. The second method
is a particle filter (PF). The implemented PF is a sequential importance resampling (SIR)
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filter with 1000 particles. The state estimate and covariance are calculated from the filtering
distribution which is approximated by the set of particles and associated weights. A
particle smoother could be implemented for approximating the smoothing distributions
but for simplicity, the RTSS presented in Section 4.1 is used instead. A re-initialization
procedure is required by the PF, because it is prone to diverge when the measurement
model is inaccurate [3]. The PF is re-initialized, if the position error is larger than two
meters, by drawing new particles from a uniform distribution within the monitored area
and with zero velocity.

In Figure 6, RMSE of the different filters as a function of EM iteration number. As
shown, the tracking performance is satisfactory with the initial parameter estimates (EM
iteration 0) and all filters have an RMSE above one meter. It is to be noted that most
DFLT systems are implemented similarly, i.e., an empty-room calibration period is used
to estimate µ0 and an educated guess is used for the other parameters. The empty-room
data cannot be used to estimate the other parameters since they depend on the location of
the person. However, they can be estimated using the state estimates after the person has
entered the monitored area and moves around. In this paper, the EM algorithm based on
Gaussian smoothing is used and with better parameter estimates, the tracking accuracy
can be improved as we demonstrate in the following.

After the filtering recursion, the RTSS recursion starts from the last time step and
proceeds backwards to the first time step. Thereafter, the E-step of the EM algorithm
can be approximated using the smoothing distribution and the parameter estimates are
obtained from the M-step in closed form. Using the new parameter estimates, the filter-
ing recursion is started from the beginning. This iterative process improves the model
parameter estimates and results in enhanced tracking accuracy. As shown in Figure 6,
the RMSE decreases by 46–67%, depending on the filter. The results demonstrate that the
implemented smoother and EM algorithm can also be used with other DFLT methods, and
it is an effective method to improve system performance.

Figure 6. The RMSE, averaged over the 18 different experiments, as a function of EM iteration
number. The DFLT methods are: EKF ( ), RTI ( ) and PF ( ).

6.2. Parameter Estimation Algorithms

In this section, the EM algorithm is compared to the nonlinear least-squares (NLS)
approach proposed in [22]. The parameter estimates are obtained by minimizing the
cost function

J(Θ) =
K

∑
k=1

(yl,k − hl(m
s
k, Θ))2, (32)

where hl(ms
k, Θ) = µl + φl exp(∆l,k/λl) is the nonlinear exponential model and λl is now

a parameter to be estimated. In this paper, a nonlinear least-squares solver based on the
interior-reflective Newton method described in [48] is used to find the minimum of J(Θ)
and thereafter, the ML estimate of σ2

l is computed. The NLS approach provides freedom in
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the set of parameters that are estimated. In the following, we evaluate the NLS approach
that estimates the following parameters Θ{j}: (i) Θ{1} = [µ, φ, σ2], as proposed in this
paper; (ii) Θ{2} = [µ, φ, λ], as proposed in [22]; and (iii) Θ{3} = [µ, φ, λ, σ2], a system
that estimates all measurement model parameters. The results are compared to the EM
algorithm that estimates Θ{1}. We denote the parameter estimation algorithm and set of
parameters simply as NLS(Θ{j}).

The RMSEs are illustrated in Figure 7 and the results imply that estimating Θ{1}

yields the highest tracking accuracy whereas estimating Θ{2} the lowest. To examine this
difference more closely, we concentrate on Ex3 and the NLS and calculate the average R2

statistic, defined as

R2 =
L

∑
l=1

(
1− ∑K

k=1
(
yl,k − hl(ms

k, Θ)
)2

∑K
k=1(yl,k − ȳl)

2

)
· 100% (33)

and ȳl =
1
K ∑K

k=1 yl,k. The R2 statistic measures how much of the observed variation in the
mean can be explained by the model. For the two cases, R2 = 17.0% and R2 = 19.1% for
NLS(Θ{1}) and NLS(Θ{2}) in corresponding order, meaning that estimating Θ{2} explains
the mean of the data more accurately, but the difference is only 2.1%. Calculating the
Kullback–Leibler Divergence (KLD) yields 0.04 and 0.52 for Θ{1} and Θ{2} in respective
order. As the KLD indicates, Θ{2} is unable to account for the noise in the data and
improved estimators can be developed when better noise models are available. Thus,
estimating σ2 rather than λ has a significantly higher impact on tracking accuracy. It
is to be noted that EM(Θ{1}) and NLS(Θ{1}) yield comparative performance and small
differences are expected, for example, due to the termination rule of the optimization
method. Interestingly, NLS(Θ{3}) has a higher RMSE than NLS(Θ{1}). This is either caused
by over fitting the model or then the optimization algorithm converges to a local minimum.
In the measurement model, φ and λ are coupled and the optimization algorithm must
solve for these simultaneously which can be problematic.

Figure 7. Comparison of different parameter estimation algorithms as a function of iteration number:
EM(Θ{1}) ( ), NLS(Θ{1}) ( ), NLS(Θ{2}) ( ) and NLS(Θ{3}) ( ).

The main benefit of the proposed EM algorithm is that it can be solved in closed form
using simple arithmetic operations, whereas the NLS approach requires a solver for the
nonlinear optimization problem. In practice, the estimates only require computing two
vector products (B and D) with complexity O(K2), and calculating G with complexity
O(K2 + n3K), where n is the state dimension and K the number of measurements. As
an example, for three minutes of experimental data and using the initial parameter esti-
mates, the computation time of the parameter estimation algorithms in experiment Ex3
are: [1.66, 15.56, 29.15, 30.99] seconds for EM(Θ{1}), NLS(Θ{1}), NLS(Θ{2}) and NLS(Θ{3})



Sensors 2021, 21, 5549 17 of 24

in respective order. The results are obtained using a Matlab implementation and a com-
puter equipped with a 2.60 GHz Intel Core i7-8850H processor and 32 GB of RAM. As
demonstrated by the results, the EM algorithm is computationally very efficient, up to
18 times faster than NLS. It is to be noted that the computation time of NLS has a significant
dependence on the parameter values that are used to initialize the optimization algorithm.
For example, the computation time of NLS(Θ{3}) is 13.80 s during the last parameter esti-
mation iteration. Additionally, the link number has an impact since it defines the number
of times NLS is called. As an example, the computation time in Ex1.1. and NLS(Θ{3}) is
3.12 s, which is significantly shorter than in Ex3.1. because the experiment only uses one
frequency channel.

6.3. System Comparison

In this section, the proposed system is benchmarked against an adaptive radio tomo-
graphic imaging (ARTI) system [22]. ARTI is an imaging method that estimates µ and φ
online, smoothing is used to enhance the image and state estimates, and NLS is used for
estimating φ and λ. In the experiments, both systems are initialized without any prior
information of the RSS, model parameters or location of the person. ARTI has an online
calibration unit to estimate the reference RSS and the system is functional from the very
beginning. The proposed system does not have such a feature and we use the online
calibration unit of ARTI to estimate µ during the first filtering recursion and then the unit
is disabled during the subsequent iterations. It is to be noted that µ could be initialized in
various ways, but for matter of fairness we use the same method as ARTI uses.

The results are summarized in Table 2 and for each experiment, the results are averaged
over the three trials. As shown, the proposed algorithm results in superior performance,
an average decrease of 42% in the RMSE with respect to ARTI. For ARTI the estimates are
most of the time accurate, but in certain positions, the location estimate is widely off (the
skewness is 5 and kurtosis is 37 indicating that the distribution has a positive skew, and it
is heavy tailed). The main reason for the large position errors is that a link can measure
a really large RSS change when the person is not on the link line, the straight imaginary
line between the TX and RX. When using imaging methods, this one link will dominate
over the other links and the person will be localized in between the wrong TX-RX pair.
The proposed system is not as vulnerable to such outliers (skewness is 2 and kurtosis is
10) because of the implemented measurement selection logic which discards RTI position
estimates with abnormally large errors. The performance difference between ARTI and
EKF can also be explained with the set of parameters that are estimated by the systems.
ARTI estimates Θ{2} = [µ, φ, λ] and this limits the achievable accuracy of the system as
discussed in the previous section. To support this claim, in Figure 6 it is shown that an RTI
solution together with EM almost achieves the same accuracy as the proposed solution.

Table 2. DFLT system comparison: RMSE± standard deviation of the estimation error in centimeters.

EKF ARTI

Ex1 (open) 31.3± 18.7 62.8± 46.8
Ex2 (open) 20.8± 11.4 26.0± 15.0
Ex3 (open) 17.2± 8.9 23.8± 11.5
Ex4 (apt.) 50.4± 28.0 85.1± 62.0
Ex5 (apt.) 40.1± 20.9 62.9± 41.3
Ex6 (apt.) 36.7± 21.1 49.6± 28.4

6.4. System Performance over Time

Next, we demonstrate that the proposed system can maintain its high accuracy over
time. The conducted trials are actually snippets from a longer experiment. The entire
experiment contains the three trials explained before and a five-minute period when the
person randomly walks inside the monitored area. In between the occupancy time periods,
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the person leaves the area for two minutes at a time. The five-minute period takes place
before the trials, and we will run ten iterations of the EM algorithm using data from
this period. Then, the obtained parameter estimates are used the next time the person
enters the area. After each trial, the EM algorithm is used once to recalculate the model
parameter estimates. The results are summarized in Table 3 and in every experiment, the
tracking accuracy remains high throughout the different trials and there is no indication
that the RMSE increases. This implies that the proposed system is suitable for estimating
the model parameters without requiring human intervention and for maintaining high
tracking accuracy over time. The ground truth trajectory together with the coordinate
estimates is illustrated in Figure 8 for Ex6.3. Please note that the covariance of RTI position
estimates changes from frame to frame and, therefore, the pink area which illustrates the
3σ confidence interval is not constant.

Figure 8. Tracking accuracy of the system in Ex6.3. In the figure, the ground truth coordinates are
shown using ( ), the estimated with ( ) and the pink area illustrates the 3σ confidence interval
of RTI position estimates.

Table 3. RMSE in centimeters of the proposed system in the different experiments and trials.

Trial 1 Trial 2 Trial 3 Average

Ex1 (open) 23.4 25.1 28.2 25.6
Ex2 (open) 21.7 16.8 19.2 19.2
Ex3 (open) 18.3 16.3 16.9 17.2
Ex4 (apt.) 57.9 54.9 49.3 54.0
Ex5 (apt.) 42.8 41.5 39.7 41.3
Ex6 (apt.) 39.2 42.7 39.0 40.3

The described procedure is one of the possibilities how the proposed system would
be used in practice, i.e., the parameters would be estimated at regular intervals or once the
person has covered enough distance. However, there is a downside to the EM algorithm. It
does not account for prior information, and it computes the ML estimates of the parameters
from the data that is used as input. As an example, the data from the five-minute period is
forgotten when the parameters are re-estimated after the first trial. This is an issue that must
be solved for systems that are deployed over an extended period of time. One alternative
is to compute the maximum a posteriori (MAP) estimates which can be done in practice by
maximizing Q(Θ, Θ(i)) + log p(Θ) at the M-step instead of the plain Q(Θ, Θ(i)) [36]. The
prior information is included in the MAP estimate via the additional term log p(Θ).

The ground truth trajectory is reconstructed from the video recording. When the
person is stationary, the ground truth locations are accurate because the reference positions
were measured precisely with a laser rangefinder, and it is easy to extract these time
instances from the video. When the person is moving, the ground truth can contain small
errors because the video and measurements cannot be perfectly synchronized. Furthermore,
the person does not move exactly with constant velocity. Let us assume that the ground
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truth trajectory is reconstructed accurately and let the null hypothesis be that the RMSE
is the same when the person is stationary and moving. Then, we can test the statistical
significance of the result in determine whether the null hypothesis should be rejected
or retained. The RMSE is 32.8 cm when the person is standing still and 33.0 cm when
moving. The t-test statistic of the independent two-sample t-test equals 0.0465 and the
critical value is 2.03 with a 5% significance level. Since the statistic is lower than the critical
value, the null hypothesis remains valid and the RMSE for stationary and moving periods
can be considered the same. The result indicates that the ground truth trajectory has been
accurately reconstructed.

6.5. Simulations

Lastly, we want to validate the development efforts of this paper numerically using
simulations. Thus, the performance of the proposed system and ARTI are numerically ana-
lyzed using a simulation scenario which replicates Experiment 3. In total, 100 Monte Carlo
simulations are performed and for each run, the model parameters are randomly drawn.
The model parameters used in the simulation are drawn from: a Gaussian distribution,
µ ∼ N (−62.80, 7.50), non-standardized Student’s t-distribution φ ∼ T (−2.14, 3.60, 4.59),
a uniform distribution λ ∼ U (0.01, 0.13) and a log-normal distribution σ2 ∼ L(0.79, 0.88).
The exact distributions of the model parameters are unknown, but the used ones provide a
functional fit and they resemble the empirical distributions obtained using data from the
open environment experiments. In the following, the RMSE is evaluated with respect to
the posterior Cramér-Rao bound (PCRB) of RSS-based DFLT [3]. In addition, the RMSE of
the parameter estimates are examined.

In Figure 9, RMSE of the two systems as a function of parameter estimation iteration
number is illustrated. With the initial parameter estimates, see iteration number zero in
Figure 9, ARTI achieves a lower RMSE because µ and φ are estimated online during the
filtering recursion. However, the proposed system outperforms ARTI after the parameters
have been estimated by the EM and NLS algorithms. As illustrated in the figure, the EKF
converges much closer to the PCRB than ARTI. More quantitatively, at iteration number
five, the PCRB is 3.7 cm whereas the RMSE of the EKF and ARTI are 7.1 cm and 16.7 cm in
respective order, a 57% decrease in tracking error in favor of the EKF. The EKF achieves
higher tracking accuracy due to two reasons. First, the EKF-based tracking algorithm is
more accurate than the KF-based tracking algorithm of ARTI. With improved tracking
performance the parameter estimates are more accurate which improves the tracking
performance even further. As shown in Table 4, the RMSE of the parameter estimates
for the EKF are significantly lower for µ, φ and σ2. The second reason is that an accurate
estimate of σ2 rather than λ has a significantly higher impact on tracking accuracy as
discussed in Section 6.2. As tabulated in Table 4, the RMSE of λ for ARTI and the EKF
are 0.0365 m and 0.0433 m in respective order, only a 19% increase in RMSE when it is not
estimated by the proposed system. Respectively, the RMSE of σ2 decreases by 85% when
estimated by the EM algorithm and as a result, improved estimators can be developed
when better noise models are available.

Table 4. RMSE of parameter estimates

µ̂ [dB] φ̂ [dB] λ̂ [m] σ̂2 [dB2]

EKF 0.1705 1.3688 0.0433 0.6324
ARTI 0.6623 2.5230 0.0365 4.1551
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Figure 9. The posterior Cramér-Rao bound ( ) and RMSE of the proposed system ( ) and
the benchmark system ( ). For every iteration number, the results are averaged over 100 Monte
Carlo simulations.

7. Conclusions

The work in this paper addresses three fundamental challenges in DFLT: first, having
an accurate model of the RSS as a function of target and transceiver positions; second,
estimating the parameters of the model without requiring calibration or supervised train-
ing; and third, maintaining that model over time without requiring recalibration of the
system. These problems are tackled by developing a system for estimating the RSS model
parameters and the target’s arbitrary trajectory. In the paper, the model parameters are
estimated using an EM algorithm based on Gaussian smoothing and a novel localization-
and-tracking system is presented to fully use the EM algorithm’s potential. The system is
validated using 18 different measurement data sets from two different environments. The
results suggest that high tracking accuracy can be achieved without using calibration data.
With respect to another adaptive DFLT system, it is demonstrated that the proposed system
reduces the RMSE by 42%, while the parameter estimation algorithm is up to 18 times faster
to compute. The developments of this paper streamline the deployment and maintenance
needs of DFLT systems without sacrificing accuracy.

Appendix A. EM Algorithm

The parameter updates (27) for the linear-in-parameters measurement model (26) are
derived in the following. In state-space models, Q(Θ, Θ(i)) can be decomposed to [36–38]

Q(Θ, Θ(i)) =
K

∑
k=1

E{log p(yk | xk, Θ) | y1:K}

+
K

∑
k=1

E{log p(xk | xk−1, Θ) | y1:K}

+E{log p(x0 | Θ) | y1:K},

(A1)

by making use of the Markov property of the state sequence and conditional independence
of the measurements. Noting that in DFLT, the dynamic model p(xk | xk−1) and initial
distribution p(x0) are independent of the unknown parameters, maximizing (A1) is equiv-
alent to maximizing the first term only, i.e., maximizing (25). To simplify the notation, the
dependence of hl,k on xk is not explicitly stated in the following. The log-likelihood of the
first term is
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log p(yk | xk, Θ) =
L

∑
l=1

logN (yl,k | hl,kθl , σ2
l )

=
L

∑
l=1

(
− 1

2 log(2π)− 1
2 log(σ2

l )− 1
2σ2

l
‖yl,k − hl,kθl‖2

)
,

and taking the derivatives with respect to θl and σ2
l yields

∇θl log p(yk | xk, Θ) = 1
σ2

l
hT

l,k(yl,k − hl,kθl),

∇σ2
l

log p(yk | xk, Θ) = − 1
2σ2

l
+ 1

2σ4
l
‖yl,k − hl,kθl‖2.

To estimate the parameters, (25) is approximated using the smoothing distribution
provided by the Gaussian smoother in Section 4.1 and given by

p(xk | y1:K, Θ(i)) ≈ N (xk; ms
k, Ps

k). (A2)

The maximization step is computed by setting the gradient with respect to θl to zero, i.e.,

∇θlQ(Θ, Θ(i)) =
K

∑
k=1

E
{
∇θl log p(yk | xk, Θ) | y1:K

}
≈

K

∑
k=1

1
σ2

l
E
{

hT
l,kyl,k − hT

l,khl,kθl | y1:K

}
= 0.

(A3)

Using the notation in (28) and solving (A3) for θl yields

θ̂l = G−1B. (A4)

Similarly, for σ2
l we obtain

∇σ2
l
Q(Θ, Θ(i)) =

K

∑
k=1

E
{
∇σ2

l
log p(yk | xk, Θ) | y1:K

}
≈ −K

2σ2
l
+ 1

2σ4
l

(
K

∑
k=1

yTl,kyl,k − 2

[
K

∑
k=1

yTl,kE
{

hl,k | y1:K
}]

θl

+ θTl

[
K

∑
k=1

E
{

hT
l,khl,k | y1:K

}]
θl

)
= 0.

(A5)

Using the notation in (28), substituting θl to (A5) and solving for σ2
l yields

σ̂2
l = 1

K

(
D− BTG−1B

)
. (A6)

Finally, note that the optimal θ̂l does not depend on σ̂2
l so that they can be sequentially

optimized by first solving for θ̂l and then substituting the value into the estimate of σ̂2
l .
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