

Julius Tamminen

EVALUATING THE PERFORMANCE OF
SECURE GATEWAY BETWEEN

REAL-TIME SIMULATION NETWORKS

 Master’s Thesis
Faculty of Information Technology and Communication Sciences

Examiners: Prof. Mikko Valkama
Dr. Joonas Säe

September 2021

ii

ABSTRACT

Julius Tamminen: Evaluating the performance of secure gateway between real-time
simulation networks

Master’s Thesis
Tampere University
Master’s Degree Program in Information Technology
September 2021

The current trend of digitalization and automation continues strongly onward within all industries,
which creates innovations and improvements to existing solutions. In the field of communication
and networking, there are many new and old network solutions, that each can be utilized in
various ways and have their own unique purposes and configurations. One network can connect
and serve multiple users allowing communication between them, whereas some networks can
simulate real-life scenarios and perform complicated calculations. In addition, these networks can
co-operate and share mutual information, if they are connected with proper equipment such as
gateways. These connections allow the creation of even wider networks, which can enable use
cases, where multiple organizations can share data and operate together. One example of such
massive scale networks is the Live Virtual Constructive (LVC) concept, where real time live and
simulated events are combined to the same environment, which can be accessed from different
geographical locations.

However, when connecting two or more networks together, the information security aspect must
be considered, especially when some of the networks contains more sensitive data than the other
networks. The security aspect can be fulfilled, and the leak of the sensitive data to other networks
can be prevented by utilizing a secure gateway that performs the necessary filtering operations.
Nevertheless, the secure gateway must consider the performance requirements of the networks,
which can vary depending on the end purpose and the use case of the networks. The performance
requirements, in the context of real-time simulation networks, were determined by the latency and
the throughput benchmarks that the real-time simulation network must fulfill. The benchmark
values were established by analyzing the literature and studies, with the help of a commercial
simulation system and by interviewing the experts of the field.

Once the performance requirement benchmarks were found out, the final evaluation of the effect
of a real-world secure gateway implementation, Cross Domain Solution (CDS) made by Insta
DefSec, could be made. The results for the evaluation were made by executing the latency and
throughput tests in separate measurement set-ups: one measurement set-up measured the
latency, and the other set-up measured the maximum throughput of the network, when the CDS
was attached and connected between the two real-time simulation networks. Then, the same
measurement set-ups were repeated by replacing the CDS with a commercial protocol translation
and bridging software VR-Exchange, which only passed the data through it, to determine the
reference results.

For the performance requirements it was found out, that the throughput requirement would be
1870 entities/s, whereas the upper limit for the latency would be 100 ms. The throughput
measurement disclosed that the maximum throughput of the CDS was 386.4 entities/s, while the
VR-Exchange resulted in 1077 entities/s. Furthermore, the latency measurement with a single
updating entity resulted in an average latency of 3.9 ms for the CDS and 13.7 ms for the reference.
Thus, the performance requirements were achieved only partially, as the throughput requirement
was not reached. Nevertheless, the latency of the CDS was below the requirement of 100 ms,
when a single updating entity was measured. Thus, the CDS fulfills the latency requirement when
the number of simultaneously updating entities is minimal. However, optimization of the software
of the CDS would improve the throughput and the latency capabilities even further.

Keywords: secure gateway, real-time simulation networks, latency, throughput, HLA

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

iii

TIIVISTELMÄ

Julius Tamminen: Reaaliaikaisten simulaatioverkkojen välisen tietoturvallisen
yhdyskäytäväratkaisun suorituskyvyn arvioiminen

Diplomityö
Tampereen yliopisto
Tietotekniikan DI-ohjelma
Syyskuu 2021

Digitalisaation ja automatisoinnin aikakausi jatkuu yhä vahvana kaikilla teollisuuden aloilla, mikä
luo yhä uusia innovaatioita ja parannuksia jo olemassa oleviin ratkaisuihin. Tietoliikennetekniikan
ja -verkkojen alalla on paljon uusia ja vanhoja verkkototeutuksia, joita voidaan käyttää eri tavoin
ainutlaatuisissa käyttötarkoituksissa ja konfiguraatioissa. Tietoverkkoja voidaan käyttää
esimerkiksi yhdistämään eri toimijoita, mikä mahdollistaa kommunikoinnin niiden välillä. Toisaalta
tietoverkkoa voidaan käyttää myös simulointiin, mallintamiseen ja laskentaan. Lisäksi näitä
toimintoja ja tietoverkkoja voidaan käyttää myös yhdessä, jos tietoverkot on yhdistetty oikein
esimerkiksi yhdyskäytävien avulla. Yhdistelemällä eri tietoverkkoja voidaan mahdollistaa yhä
laajempien verkostojen hyödyntämisen eri käyttötarkoituksissa, joissa esimerkiksi eri
organisaatiot jakavat tietoa ja tekevät yhteistyötä. Yksi tämän kokoluokan käyttötapaus on LVC-
konsepti, jossa yhdistetään reaaliaikainen toiminta simuloitujen ja elävien toimijoiden välillä
samaan ympäristöön, johon voidaan ottaa myös yhteys maantieteellisesti eri sijainneista.

Kahta tai useampaa eri tietoverkkoa yhdistäessä on kuitenkin huomioitava myös
tietoturvanäkökulma, etenkin jos jossain tietoverkossa käsitellään luottamuksellisempaa tietoa
kuin toisissa. Käyttämällä tietoturvallisia yhdyskäytäviä, jotka osaavat suodattaa tiettyjä sanomia
tai informaatiota, tietovuodot voidaan estää ja tietoturvanäkökulma voidaan ottaa huomioon.
Tietoturvalliset yhdyskäytävät eivät kuitenkaan saa rajoittaa tietoverkon suorituskykyä liikaa, ja
eri tietoverkkojen suorituskykyvaatimukset tulee huomioida tapauskohtaisesti.
Suorituskykyvaatimusten tulisi täyttää tietyt latenssi- ja läpäisykykyvaatimukset, jotta
reaaliaikaista tietoa pystyttäisiin hyödyntämään tehokkaasti. Näille latenssi- ja
läpäisykykyvaatimuksille määriteltiin raja-arvot kirjallisuuden, tutkimusten, kaupallisen
simulaattorijärjestelmän ja asiantuntijoiden haastatteluiden avulla.

Suorituskykyvaatimusten määrittelyn jälkeen Insta DefSec:in luomaa tietoturvallista
yhdyskäytäväratkaisua, Cross Domain Solution:ia (CDS), ja sen vaikutusta tietoverkon
suorituskykyyn pystyttiin arvioimaan latenssi- ja läpäisykykymittausten avulla. Tietoverkon
latenssia ja läpäisykykyä mitattiin eri skenaarioissa, joissa CDS yhdistää kaksi eri tietoverkkoa.
Lisäksi suoritettiin referenssimittaukset, jossa CDS korvattiin kaupallisella protokollien käännös-
ja välitysohjelmalla VR-Exchangella, joka päästi tiedon lävitseen ilman suodatuksia tai muita
muokkausoperaatioita.

Suorituskykyvaatimuksiksi muodostui lopulta läpäisykykyvaatimus 1870 entiteettiä/s, ja
latenssivaatimus 100 ms. Läpäisykykymittauksista selvisi, että CDS:n läpäisykyvyn maksimiarvo
oli 386.4 entiteettiä/s, ja VR-Exchangen vastaava arvo oli 1077 entiteettiä/s. Lisäksi
latenssimittaukset tuottivat CDS:n latenssin keskiarvoksi 3.9 ms ja referenssille 13.6 ms. Täten
tulosten perusteella suorituskykyvaatimukset täyttyivät vain osittain, sillä läpäisykykyvaatimusta
ei saavutettu. CDS:n latenssi oli kuitenkin pienempi kuin 100 ms, kun mitattiin yhtä päivittyvää
entiteettiä. Tällöin CDS saavuttaa latenssivaatimuksen, kun samanaikaisesti päivittyvien
entiteettien määrä on minimaalinen. Kehittämällä ja optimoimalla CDS:n ohjelmistoa voitaisiin
parantaa sen läpäisykyvyn ja latenssin suorituskykyä entistä paremmaksi.

Avainsanat: Tietoturvallinen yhdyskäytävä, reaaliaikainen simulaatioverkko, latenssi,
läpäisykyky, HLA

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.

iv

PREFACE

I would honorably thank all the people, who supported me and helped me to complete

this thesis within its various phases. Especially, I would express my gratitude to Marko

Latvala, who guided me with his professional knowledge, and kept me on the right track

when implementing the measurement system and algorithms, and while forming the

performance requirements. In addition, the excellent help and mentoring from Joonas

Säe enabled the academic accuracy of this thesis. Joonas and the staff from the former

department of Electrical and Communications Engineering made my study and working

periods enjoyable and memorable in the Tampere University over the years. I might be

back for the postgraduate studies later, but the future remains still open for everything.

Furthermore, also the colleagues at Insta DefSec have helped me to solve various

problems during this thesis, and without them the integration and debugging of the

measurement software would still continue at the moment. Finally, I am grateful for the

love and support that Kaisla and my family have given to me during the time of this

project.

In Tampere, 24.09.2021

Julius Tamminen

v

CONTENTS

1. INTRODUCTION .. 1

2. SIMULATION SOFTWARE ... 3

2.1 Simulations and their advantages .. 3

2.2 Standards and the process of standardization...................................... 4

2.3 High Level Architecture (HLA) .. 6

2.3.1 Structure ... 7
2.3.2 Framework and rules .. 8
2.3.3 Federate interfaces ... 12
2.3.4 Object model template (OMT) ... 18

3. TRANSFER OF DATA AND GATEWAYS ... 21

3.1 Data packet structure ... 21

3.2 Secure gateways ... 22

3.3 Cross Domain Solution (CDS) .. 22

3.3.1 CDS rulesets, rules and conditions ... 23
3.3.2 The functioning of the rule engine and HLA integration 24

4. PERFORMANCE OF SIMULATIONS ... 27

4.1 Performance requirements for real-time simulators 27

4.1.1 Latency ... 27
4.1.2 Reference measurement of a commercial simulator system 29
4.1.3 Throughput ... 30

5. IMPLEMENTATION OF PERFORMANCE MEASUREMENTS 34

5.1 Set-up of the system .. 34

5.2 The measuring process .. 37

6. PERFORMANCE RESULTS ... 44

6.1 The latency set-up ... 44

6.2 The throughput set-up .. 46

7. CONCLUSIONS .. 48

REFERENCES... 51

vi

LIST OF SYMBOLS AND ABBREVIATIONS

3GPP 3rd Generation Partnership Project
ALSP Aggregate Level Simulation Protocol
API Application Programming Interface
ASTERIX All Purpose Structured Eurocontrol Surveillance Information

Exchange
CDF Cumulative distribution function
CDS Cross Domain Solution
CSV Comma-Separated Values
DDM Data distribution management
DIS Distributed Interactive Simulation
DM Declaration management
DMSO Defense Modeling and Simulation Office
FEDEP Federation Development and Execution Process
FOM Federation Object Model
HLA High Level Architecture
IEEE Institute of Electrical and Electronics Engineers
IEEE SA IEEE Standards Association
ISO International Organization for Standardization
LVC Live Virtual Constructive
M&S Modeling and Simulation
OMT Object Model Template
OOP Object-Oriented Programming
PAR Project Authorization Request
RevCom Standards Review Committee
RO Receive-Order
RPR FOM Real-time Platform Reference Federation Object Model
RTI Run Time Infrastructure
RTT Round Trip Time
SISO Simulation Interoperability Standards Organization
SOM Simulation Object Model
TSO Time-Stamp-Order
XML Extensible Markup Language

1

1. INTRODUCTION

In recent years, digitalization has been growing and the usage of automated and digital

applications has increased within industry, but also in other fields such as entertainment

and education. One of the major beneficiaries of this trend is the Modeling and Simulation

(M&S) industry which focuses on recreating different real-life events in digital

environments with the help of mathematical models [1]. These independent simulations

can adapt very complex calculations and perform intensive computing, which can yield

lifelike experiences in the form of vehicle simulators and virtual reality worlds for

example.

However, it is not a trivial task to implement a proper simulation that can model the events

well. The task becomes even more challenging, when two or more simulations that are

dissimilar, must communicate with each other. Common time synchronization, the

optimization of calculations and the connections for allowing the interoperability are one

of the key challenges when combining two or more simulation networks together [2].

Fortunately, there are already solutions to combine the different networks and avoid

these challenges. By using standardized protocols, such as High Level Architecture

(HLA), the communication between individual simulation systems is possible, even if

their main purposes differ significantly. Nevertheless, when combining two or more

different networks together, the information security aspect must be considered. The

combination of two or more networks allows sharing of all the data between them, which

is not preferable, if some information is confidential or should be used only in one of the

networks.

To avoid this issue, secure gateway solutions can be used as the combining element

between the simulation networks. Insta DefSec’s Cross Domain Solution (CDS) is a

secure gateway, that enables the filtering or modification of the confidential data between

the networks it is connected to. This ability makes possible the secure connection

between two or more networks with different security classifications. Thus, the sensitive

part or the whole message can be filtered, but at the same time, other messages can

pass the gateway as they are without any altering.

Besides the information security point of view, also the performance requirements of the

simulation networks must be taken into account. Especially real-time simulation systems

2

require relatively small delays for the exchange of data, to be able to simulate the

scenarios and properties correctly. Another key performance requirement for real-time

simulation systems is high enough capacity or throughput capability to handle the

transfer of numerous messages, entity updates, various computations and other tasks

during the process of simulation.

One of the main goals of this thesis is to find out appropriate scale or tolerable limits for

the performance requirements of the real-time simulator networks. Suitable references

are searched with the help of the existing literature, standards, existing commercial real-

time simulation systems and the experts of the industry. When the base for the

performance requirements is found, the next task is to evaluate whether the real-time

simulation network with a CDS between is capable to achieve these results. The

performance of the real-time simulation network should not drop below the tolerable

bounds, when CDS is applied to the system.

The test measurements and set-ups for evaluating the effect of adding the CDS to the

real-time simulation network are performed in the empirical part of this thesis. After all,

the performance requirements and the measurements together would disclose, whether

the usage of the CDS between the simulation networks would be possible in operational

use cases requiring data with real life and real-time constraints. Alternatively, if the

performance requirements are not met, valuable information for the further development

of the CDS is gathered to enable more precise improvements for its current

implementation.

3

2. SIMULATION SOFTWARE

The digitalization has increased the demand to experience various real-life events and

activities virtually. Simulation software try to imitate these events and activities in such

ways that the environment and events would be as realistic as the real experience would

be. To understand the concept of simulation, especially in the context of this thesis, we

address next the definition of simulation and its advantages, the process of creating new

simulation standards, and the details about the main simulation standard behind the final

measurement process.

2.1 Simulations and their advantages

The term simulation can be defined as the imitation or copying of a real-world process,

an operation or a system over some time. The simulation requires an artificial timeline,

where each event can be put, to observe and analyze the causality between them. [3]

Simulations can be used in different environments for various purposes: educational

simulations such as driving simulators can be helpful in the process of learning to drive.

If the same driving simulator is integrated to a video game, the context of the simulation

changes to entertainment purposes. Furthermore, simulations are utilized in the field of

research and development, where existing systems and conceptual models are

simulated with the help of computers and software, like MATLAB and SolidWorks.

There are several advantages that have helped the simulations to become as widely

used in different contexts as they are nowadays. One of the biggest advantages is the

possibility to choose different outcomes, without needing to allocate any real resources

to them [3]. This means in practice that different options can be tested beforehand and

the best alternative is chosen from the simulated resources. For example, choosing the

best material for a building could be very expensive and time consuming, if the different

options are tested and built in real-life, compared to simulating the different alternatives.

Another advantage is the ability to stop, speed up, or slow the time in the simulation [3].

Noteworthy events can be revisited and the investigation of why they happened becomes

easier, whereas the unnecessary ones can be skipped. However, the time management

and manipulation procedures are not so simple if the data of the simulator is needed and

handled real-time.

In addition, the training of different operators can be done in the simulators, which

reduces the overall expenses of the training [3]. For example, considering the training of

4

the aircraft pilots, fuel consumption is not an expense anymore. Also, some situations

including safety aspects and experimental maneuvers are more feasible to do with

simulations, like practicing the emergency landings in various scenarios, without any

risks for damaging the aircraft or harming the pilot. [4] On the other hand, the developing

process of simulations can be time consuming, expensive and it may require specific

knowledge and expertise from the field. Also, the results from the simulations can be

difficult to interpret, due to complexity of the system and the amount of information the

simulation can produce. [3][4] All in all, there are more advantages than disadvantages,

which make the usage of simulators feasible in many fields, especially as the

technologies evolve and develop forward.

2.2 Standards and the process of standardization

There are many contributors and manufacturers in the field of simulators, but also in the

field of communication and industry in general. In order to guarantee that their

components and software are compatible with each other, they must follow commonly

approved principles called standards. These standards are defined by the

standardization organizations, such as Institute of Electrical and Electronics Engineers

(IEEE), 3rd Generation Partnership Project (3GPP) and International Organization for

Standardization (ISO), which are considerably massive organizations. Next, we address

the IEEE’s process of standardization, as the development of the key standard of this

thesis, the HLA, is controlled by this standardization organization.

The standardization process of IEEE consists of six parts: the initiation of the project,

mobilizing the working group, drafting the standard, balloting the standard, gaining final

approval, and maintaining the standard as presented in the Figure 1 [5].

5

Figure 1: The standardization process of IEEE. [5]

The process of standardization starts from the initiation of the project. Possibly a new

idea or implementation that develops the current models or completely new state-of-the-

art solution can lead to submitting a Project Authorization Request (PAR). Mainly the

reason and goals of the standardization project are stated in the PAR which is a legal

document that has to be submitted to IEEE Standards Association (IEEE SA) for the first

approval. After the approval, the process moves to the second part, mobilizing the

working group. The working group are the people who will write the standard and

manage its progress. The working group needs at least one working group Chair that

leads the process towards the next stages. In addition to the Chair, there are the

individuals who participate in the writing and decision making of the standard. These

individuals can be anyone having enough expertise in the field of the requested standard.

If the working group becomes large and the managing gets difficult, the working group

can have additional officers helping to share the load. The Vice Chair can assist the

Chair’s tasks, the Treasurer can handle the fees of the meetings and other expenses,

and the Secretary can take the notes and other records of the meetings and forward

them onwards.

When the working group has been mobilized, the drafting of the standard can

commence. After drafting and having the writing process in the finalization phase, the

working group will create the balloting group, that examines, comments and then votes

for the approve or the disapprove of the standard. If consensus is achieved by having a

1. Initiate

the project

2. Mobilize
the working

group

4. Ballot the
standard

3. Draft the
standard

5. Gain final
approval

6. Maintain
the

standard

6

minimum of 75 % of votes of the ballots to approve, the balloting is approved. If not, the

disapprovals have requested changes with comments, which must be handled. After the

new changes, the balloting process is recirculated, and the consensus is revisited.

When the technical part of the standard has been approved in the balloting process, the

other aspects, such as documentation, IEEE SA procedures and openness are reviewed

by the Standards Review Committee (RevCom). If there are not any insufficiencies, the

RevCom will recommend this standard for the IEEE SA and the standard gets the final

approval. However, the standardization process will not end here, as it must be

maintained. The standard has a validity period of 10 years after the final approval. After

the validity, the standard must be revised or withdrawn. Therefore, in order to keep the

standard up to date, the work for the new revised version of the standard must begin,

which forms the cyclic and recurring process of standardization.

2.3 High Level Architecture (HLA)

High Level Architecture (HLA) is one standardized solution to connect different simulator

systems together via common integrated architecture and interface [6]. The first stable

version of HLA was 1.0, which was developed by the Defense Modeling and Simulation

Office (DMSO) in the 1996 [7]. The main motivation for a new simulation protocol was to

improve the integration and the co-operation of the military’s wide-ranging simulation

systems. The development team of HLA used the already existing simulation protocols,

Distributed Interactive Simulation (DIS) and Aggregate Level Simulation Protocol

(ALSP), to produce a more generic and versatile simulation protocol. [8]

The core structure of the protocol was presented in the first revision containing the

framework and the rules, interface specifications and object model specifications of the

implementation. After a few years, the next updates were the improved version HLA 1.3

and two Run Time Infrastructure (RTI) solutions RTI 1.3 and RTI 1.3 Next Generation

(NG). The next important leap forward for the HLA was when IEEE standardized HLA as

HLA std 1516-2000 to open the usage of HLA to wider audiences, outside of the military

context. [7] The standardization also brought up some updates that improved the usage

of Federation Object Models (FOMs) with the support of Extensible Markup Language

(XML) files. Also, the Federation Development and Execution Process (FEDEP) became

clearer with the addition of IEEE 1516.3-2003 to the standard.

The newest revision of HLA is the HLA 1516-2010, also known as HLA Evolved. This

version came with a major update to the FOM structure enabling modular FOMs meaning

that the information that is exchanged within the simulation can be more flexible and

7

optimized for each separate simulator system [9]. Currently, the next revision of HLA is

in development with the working group lead by the Simulation Interoperability Standards

Organization (SISO). One of the upcoming new updates is adding authorization

mechanisms to determine which entities have access to join to the integrated system of

simulators. [10]

2.3.1 Structure

The overall functioning HLA simulation consist of federates, federations and the Run

Time Infrastructure (RTI). The interoperation of all these entities together over time form

the federation execution process. The RTI is the heart of the federation execution

because it acts as a central unit, which manages data exchange, joining or resigning and

other key services between the federates that it connects. All the services that the RTI

provides and how the federates must communicate with it can be found from the HLA

interface specification which is addressed later in the chapter 2.3.3.

A federate is an application, possibly a simulator, that wants to communicate with other

federates to accomplish its tasks as defined. [6] The other federates can be within the

same federation or in the other federations. If the federates are within the same

federation, they must comply with the same federation wide FOM, which defines all the

possible object classes, instance attributes, data types and interaction parameters to be

used. Even though the HLA does not take a stand on what type of data the FOM can

contain, it defines the overall structure of the FOM. This structure for presenting the

object classes, instance attributes, data types and interaction parameters is specified in

the Object Model Template (OMT), which is covered in the chapter 2.3.4. Thus, all the

federates shall follow the OMT principles regardless of their federation. However, if the

federates are within the same federation, it usually means that the federates have similar

applications or are the same application’s different instances or positions.

Similar federates can have also differing rulesets due to the federate wide Simulation

Object Models (SOMs). The SOMs are like FOMs, but they define the object classes,

instance attributes, data types and interaction parameters for the individual federate [6].

For example, the two similar federates within the same federation can have the same

object classes, but the other implements the class with different attributes as the other.

However, all the attributes must be defined in the FOM of the federation.

Regardless of the federations, the data exchange between the federates goes always

through the RTI, with the help of update and reflection messages, which is discussed in

detail later. Nevertheless, the main benefit of the HLA is the generalization of the

8

interfaces: each federate operates with the same interface, even though the federate

applications can be very different from each other. This overall generalization enables

the interoperability between multiple different simulators, which provides one solution for

managing modern complex concepts like Live Virtual Constructive (LVC) where real time

live events and simulated ones are combined to the same environment.

2.3.2 Framework and rules

IEEE 1516–2010 is the first standard out of the three 1516 standards, that HLA

applications should follow, when implementing the standard. This standard defines the

framework and rules of HLA, by introducing a set of 10 rules. Half of the rules apply to

the whole federation level and the remaining half are federate-specific. [6]

The first rule: “Federations shall have an HLA FOM, documented in accordance with the

HLA OMT” means, that within each separate federation, there must be a common ruleset

for all the federates [6]. The ruleset, or how the data is exchanged between the federates

and the RTI, is defined in the FOM. The data itself can vary because HLA standard does

not define it. However, the structure must comply with the HLA OMT, which defines the

general, reusable and inheritable object model structure for HLA. This type of reusability

is in the heart of design of the HLA. One example of FOM is the SISO’s Real-time

Platform Reference Federation Object Model (RPR FOM), which defines the objects and

hierarchy for the simulated physical entities, like vehicles and lifeforms, and interactions

including collisions and communications between them [6][11].

Next, the second rule: “In a federation, all simulation-associated object instance

representation shall be in the federates, not in the RTI” [6]. This statement means, that

the RTI is only the forwarder of the data, and the information is stored within the federates

and their object’s instances themselves, not in the RTI. Still, the RTI can use information

within federates to support its services, but RTI will not do any changes to the data. By

having the object and federate-specific information separated from the supporting

infrastructure, mainly the RTI, the federation can adapt to very different tasks. The overall

flexibility and generalization are the advantages that the HLA utilizes.

The third rule is similar to previous one: “During a federation execution, all exchange of

FOM data among joined federates shall occur via the RTI” [6] The communication and

data exchange between the federates are managed by the RTI. All the services that RTI

provides are listed in the HLA 1516.1-2010 federate interface specification which are

discussed in more detail in the next chapter. When a new federate joins to a federation,

it communicates with the RTI to get the information it needs and what it provides, to

9

operate correctly in the federation. Then, the RTI ensures, that the correct data is shared

alike with the federates. The data exchange is declared in the FOM, which allows the

coherent usage of the data within the federation.

The last two federation-specific rules are also tightly connected with the already

presented ones: “During a federation execution, joined federates shall interact with the

RTI in accordance with the HLA interface specification” and “During a federation

execution, an instance attribute shall be owned by, at most, one joined federate at any

given time” [6]. The former specifies, that the communication between the federates and

RTI must comply with the standard interface given in the HLA 1516.1-2010 federate

interface specification. The main advantage of a common interface is the same as the

usage of application programming interfaces (APIs) in programming in general: the

interface remains constant, even though there are changes and updates behind the

interface in the used application. The latter rule states that, the maximum number of

owners to a single instance attribute is one federate, but the owner for the same

instance’s other attributes is not required to be the same federate. For example, the

location of a vehicle instance can be owned by one federate, whereas the same vehicle’s

state of the fuel can be owned by other federate. In addition, the ownerships of the

attributes can change dynamically during a federation execution with the help of

ownership management services of the RTI.

The remaining rules are federate-specific and therefore applied in the federate level. The

sixth rule is as follows: “Federates shall have an HLA SOM, documented in accordance

with the HLA OMT” [6]. Similar to rule one, federation having one FOM, each federate

should have one SOM. SOM determines the object models and instance attributes that

are used within one simulation to storage and distribute information. For instance, the

federate models and simulates a vehicle with numerous instance attributes like position,

speed, fuel state, assets and usability. Nevertheless, the other federates of the federation

are only interested in the usability of the federates vehicle instances. Therefore, only

vehicle usability is distributed outside this federate and monitored by the other federates

in the federation. To enable this exchange and transfer of data, federation wide common

rules must have been made. Thus, setting the vehicle object with its instance attributes

to FOM, makes the relevant information exchange possible to all federates needing it.

The following rules, rule 7, 8 and 9 define more requirements for the SOMs of the

federates. “Federates shall be able to update and/or reflect any instance attributes and

send and/or receive interactions, as specified in their SOMs”, “Federates shall be able

to transfer and/or accept ownership of instance attributes dynamically during a federation

execution, as specified in their SOMs” and “Federates shall be able to vary the conditions

10

(e.g., thresholds) under which they provide updates of instance attributes, as specified

in their SOMs” [6]. As stated in the previous paragraph, that FOM enables the

communication between the federates by common rulesets, but additional federate-

specific information should be found from the SOM. This information should contain at

least, as stated in the rules 7–9, the list of instance attributes that the federate updates

or reflects, how often or with what criteria these instance attributes are updated, and the

possibility of changing the ownership of the instance attributes to another federates.

The last rule: “Federates shall be able to manage local time in a way that will allow them

to coordinate data exchange with other members of a federation” considers the time

management of the federates [6]. The federate’s local time management system must

be implemented in a way that the interoperability between federates can be achieved

considering the timestamps and possible inconsistencies with the current time in each

federation. Some of the federates may run faster than real time and some does not track

the time at all. One solution to synchronize each federate’s time to each other is to utilize

the time management services of the RTI. The accuracy and synchronization of time

play a significant role in the managing of a large real-time simulator system. Even minor

delays or asynchronous times can lead to inoperability of the whole federation if the

essential information gets delayed, distorted, or lost.

Now, all the 10 basic rules of HLA have been examined and as a summary, they are put

together in the Table 1.

11

Table 1: The 10 rules of HLA.

Rule number Scope Description

1 Federation The ruleset for the data and its exchange within each

federation is given in the FOM, which follows the

restrictions of the OMT.

2 Federation The information of the objects is stored in the

federates, not in the RTI.

3 Federation The data exchange goes always through the RTI, and

cannot happen directly between the federates or the

federations.

4 Federation The communication with the RTI happens through the

interface defined by the HLA interface specification.

5 Federation The maximum number of owners for a single instance

attribute is one joined federate.

6 Federate The ruleset for the data and its exchange within each

federate is given in the SOM, which follows the

restrictions of the OMT.

7 Federate The SOM determines the principles for the updating

and reflecting of instance attributes and the sending

and receiving of the interactions for each federate.

8 Federate The SOM determines the principles for the changing

of the ownerships of the instance attributes.

9 Federate The SOM determines the principles for the conditions,

when the federate provides updates of its instance

attributes.

10 Federate The time management of the federates must be

implemented in a way, that allows the interoperability

between the federates despite of the differences in

their current local time.

12

2.3.3 Federate interfaces

Next, we address the second standard of the three main HLA specifications: IEEE

1516.1–2010 Federate interface specification. The purpose of this standard is to define

the common interfaces and services that the federates can use within the federation to

succeed in the federation execution properly [12]. The API provided in this standard is

implemented between the federates and the RTI, and it consists of six basic groups with

an additional support service group.

The first basic group of services is the federation management, which provides the tools

for the managing of the federation execution. The actions, which can be performed are

the creation of the federation execution, modification and dynamic control of it including

joining and resigning of the federates, and the deletion of it. Federates can only join to

the federation, when the federation execution has started, and the federate is connected

to the RTI. When the federate has joined to the federation execution, the RTI can support

the federate by its provided services. This state is called supporting joined federates

state, and all the other basic services, which are stated later in this chapter, are

happening within this normal operational state of the federation execution. After having

done its part in the federation execution, federate can leave from it via resign federation

execution and disconnect services. If there are not any federates to serve for the RTI,

the federation execution transfers to no joined federates state. In addition, if there are

not any connected federates, the federation execution is destroyed eventually, and it

moves to federation execution does not exist state. However, new federation execution

can be started, if a new federate connects to the RTI, and the joining and serving process

starts again, similarly as before. The life cycle of the federation execution process is

presented in Figure 2.

13

Figure 2: Federation execution process diagram, adapted from [12] © 2010 IEEE.

Furthermore, it is noteworthy that a single federate can be a part of more than one

federation, and within a federation there can be multiple federates. Also, during the

initialization part, when the federate is connecting to the RTI via a connect service, a

callback model is specified as immediate or evoked. A callback means a service which

is initiated by the RTI. For example, a reflect attribute values service, inside object

management services, is one important callback service. Thus, if the federate has

specified the callback model as immediate, all instance attribute updates that the

federate has subscribed to, are reflected to this federate immediately by the RTI. If the

callback model would be evoked, the attribute updates are reflected when the subscribed

federate asks for new changes via evoke callback or evoke multiple callbacks services.

Lastly, all the callbacks can be disabled by using a disable callbacks service found inside

support services. Then the RTI will not start any callback service with this federate

regardless of the callback model. The callbacks can be restored by calling an enable

callbacks service. By using these support services, additional guard mechanisms and

customization of the federates can be performed. [12]

The next basic group for services is the Declaration management (DM) service. Like the

federation management, the DM services are closely related to the initialization phase of

the federation as the joined federates declare the type of information they intend to

produce and receive in the federation. These declarations happen before any instance

attribute update, interaction, or object instance discovery between the federates can

occur. Each federate declares only the relevant information that they are interested in or

Join federation execution

or
resign federation execution

The last resign
federation execution

Supporting joined

federates
No joined federates

The first join
federation execution

Create federation execution Destroy federation execution

Federate connects to RTI The last federate disconnects

Federation execution

does not exist

RTI is started

Federation execution

Federation execution exists

14

they will produce. Thus, other federates can identify, in which federate are the usable

and notable information for their usage. The information can be the whole object, or some

of the instance attributes of the object. Also, the declarations must comply with the

federate-specific SOM and the federation wide FOM to allow a successful federation

execution. [7][12]

Within the DM, there are several services, including but not limited to a publish/unpublish

object class attributes service, a subscribe/unsubscribe object class attributes service

and equivalent services for the interaction classes. So, one example of a simplified

declaration process when a new federate A joins a federation execution, could progress

as follows: a federate A joins the federation execution, and it declares the instance

attribute X that it will provide via publish object class attribute service. After that, a

federate B which already belongs to the federation, is interested of the instance attribute

X that the federate A owns. Hence, the federate B subscribes only to this instance

attribute by sending a subscribe object class attribute X message to the RTI. Now, the

RTI knows to relay any update in the instance attribute X to the federate B, or any other

federate, which has subscribed to the updates of X. After some time, the federate B does

not need updates from attribute X, and the federate B uses the unsubscribe object class

attribute service. The RTI informs the federate A that no one is listening to the updates

of instance attribute X anymore via stop registration for object class callback service.

However, this message is only advisory, so the federate A can continue to send the

updates to the RTI. This example declaration process is seen in the Figure 3. There are

also some services in the figure that are considered in more detail in the next paragraph

about object management.

15

Figure 3: Example of declaration and object class registration process [12].

The object management complements the DM services, and it provides more details to

finding, registration and deletion of object instances [12]. Also, these methods play an

important part within the federation’s exchange of data and information. Before any

information exchange of object instances or the instance attributes can happen after the

declaration, the object instance must be registered to the RTI. The registration of an

object instance is generated with a register object instance service, which is invoked by

the federate. If the object class is defined in the FOM and there are not any other

exceptions, such as instance name duplicates or an unpublished object class, the object

instance will be registered. When registered, the object instance can be discovered by

the other federates. The discovery is initiated by the RTI, and it is provided to the

federates that have informed the interest of following to this object class or its attribute

via a discover object instance callback service. The registration and the discover process

is presented in the Figure 3. When the object instance is discovered, the updates of their

instance attributes are forwarded to the other federates with the help of an update

attribute value service and a reflect attribute values callback service.

As the data exchange between the federates happen when a joined federate updates its

instance attributes and the RTI reflects them forward, there must be a maximum of one

federate responsible for each instance attribute to make the system work efficiently. The

Federate A

owns attribute X

Federate B

no need for X

 2. Stop registration for

 object class (advisory)
1. Unsubscribe to

object class attribute (X)

RTI

implements the declaration management

[3. Continue attribute

updates of value (X)], optional

Publish and subscribe services

Federate A
Federate B

owns object instance
wants to utilize X

with attribute X

1. Publish object class attribute (X)
then

Register object instance

3. Update attribute
4. Discover object instance

value (X)
then

reflect attribute value (X)

2. Subscribe to

object class attribute (X)

RTI

implements the declaration management

Unsubscribe and stop registration for object class services

16

federate that is responsible for updating the value of the instance attribute and turning

the updates of the attribute on or off, if requested by the RTI, is called the owner of the

attribute. To achieve a reliable and adaptable federation execution, the ownerships of

the instance attributes can be dynamically changed, by following the interface declared

in the ownership management services. [12] The change of the ownership can be

initiated either by the owning joined federate or the non-owning joined federate that has

requested the ownership. Both federates must mutually agree the ownership change and

the new owner-candidate federate must have published the instance attribute in question

in order to happen any change of ownership. There are different kinds of change

operations, some of them are less complex than others, but the main difference between

them is having a condition or not to make the change happen. With an attribute

ownership divestiture if wanted service, the ownership of the instance attribute is

changed, if some other federate is already attempting to acquire the instance attribute

and thus fulfilling the condition. In contrast, if joined federate uses an unconditional

attribute ownership divestiture service, the instance attribute becomes immediately

unowned. Another way of directly releasing the ownership of some instance attribute is

to stop publishing the class of the instance attribute. If the instance attribute becomes

unowned, the RTI tries to find a new suitable owner from the federates of the federation.

If not found, the attribute stays unowned and cannot be updated, which can lead to

problems in the federation execution.

The main goal of time management services in the federations is to allow each federate

to operate within their own time regardless of the current time at the other federates.

With the help of time management services, the RTI can deliver and relay messages

between the federates in a consistent and causal way. [12] Each message from the

federates can be put to federation-wide timeline with the help of timestamps. If the

federate produces timestamped messages, it is called a time-regulating federate. In

addition, if the federate wants to receive and utilize timestamped messages, it must

follow the time advancement procedures of the federation and is called a time-

constrained federate. The default state of the federates is to not be a time-constraint or

time-regulated federate. However, timestamps can still be added to the messages, but

they are forwarded as they are without any rearranging or management. This order type

of message is called a receive-order (RO) message. When the message, usually an

instance attribute update or reflection of it, is forwarded in the order of the timestamps,

the order type is called a time-stamp-order (TSO). The RTI will not forward the received

timestamped messages, starting from the oldest one before it can guarantee that there

are not older messages to be sent.

17

Each federate that joins in the federation gets a logical time from the RTI. The logical

time represents the state of the federate’s time in the federation-wide time-axis. The

logical time can only advance forward, and the overall time management happens when

the federates request time advances. The time advance request usually means that the

federate has processed the previous messages and is ready to for the messages or

events in its queue. When the time advance is triggered by completing an event, the

federate is using a next message request service. After processing the event, the

federate’s logical time advances and it can move to perform the next event in its queue.

The time advancement can also be triggered periodically within a certain time interval.

Then, the federate uses a time advance request service to update its time. The time

interval approach is more feasible for the not so event-driven and more passive

federates. The third method for the federate time advance is to use a flush queue request

service, where the federate wants to have all the messages in its queue immediately in

TSO. However, now the RTI cannot guarantee if there are still older upcoming messages

on their way to the RTI, which can lead to rollbacks and retractions. Thus, this service

should not be used repeatedly.

The last basic service in the federate interface specification is the Data distribution

management (DDM) which is used to improve the efficiency of the data exchange by

reducing the unnecessary traffic between the federates [12]. In the DM, the relevance of

the data was presented in an object class level. This means that the federates know,

which federate updates data for the object classes it publishes. But now in the DDM, the

level of abstraction is one step deeper in the class instance level. Hence, the federates

can specify which object instances are relevant and irrelevant leading to more efficient

communication and decreasing the load of the federation.

The relevance of the instance attributes can be defined within specific bounds of region

space by the federates. The producers, or the federates sending information, have

declared their own upper and lower bounds of the space, the update region. Whereas

the consumers or the receiving federates have specified their own subscription region. If

these regions overlap, there are instance attributes that are relevant for both producer

and consumer, and they can only focus on receiving or transmitting these instance

attributes while the RTI filters the irrelevant ones. [12]

Finally, in addition to the basic services, support services provide miscellaneous

supplementary services that the federates can also utilize. These services include name-

to-handle and handle-to-name transformations where objects classes can be called by

their unique names, or the name of the object class can be retrieved if given its unique

handle. Also, advisory switches can be created which are triggers that send notification

18

to federates in question when a specified condition happens. In addition, some

modifications to the regions of the DDM can be made from the support services. Lastly,

the mode of the callback service, evoked or immediate, or the way of receiving the

instance attribute updates can be set via a specified callback service within the support

services. [12]

2.3.4 Object model template (OMT)

The final specification of the three interrelated HLA documents is the IEEE 1516.2–2010

object model template. This specification defines the format and the syntax for the

presentation of the HLA objects. [9] However, the content of the objects is not considered

to preserve the nature of the standard as open and general to all simulation

environments. Thus, the contents of the objects can vary regarding of the purpose of the

federation and they are specified in each federations’ FOMs and SOMs. Nevertheless,

the OMT enables a common structure of object models, which helps the federates and

the RTI to coordinate together by being able to “speak the same language”. Also, the

HLA objects specified in this document are the necessary tools that describe a single

federate or federation’s capabilities in a standardized format through their FOMs and

SOMs. With this information, other federations and federates know exactly what type of

information or benefits these potentially joining federates or other federations could bring

into their federation.

The object model used in HLA is similar to object-oriented programming (OOP), but there

a few key differences: in HLA the objects are defined only by the object’s instance

attributes and their values, for example a vehicle object having an instance attribute fuel

with value of 100. Whereas in OOP, the objects can have data members and methods

which can be called directly by the other objects. Contrary to OOP, HLA objects do not

communicate directly with each other; it is the federates that communicate via the HLA

services, for instance updating or reflecting the instance attribute values or sending

interactions as stated earlier. Also, the owning or the update responsibility of the instance

attributes can be divided more freely in HLA to different federates while in OOP the

updates happen more locally and be stricter described with private, protected and public

types of values. [9] In addition to object classes, HLA has also an alternative class type,

an interaction class. This class describes the interactions, or the relationships, between

the object classes with separate parameters without the need of creating an object

instance. [7]

The HLA object models are formed from several interrelated components that specify

the representation form of the information it provides. For example, the first component

19

object model identification table consists of two columns: category and description. The

category being the name of a parameter and the description a text which briefly describes

the parameter. The category could be purpose, type or name of the object model. The

corresponding descriptions would be then: to model a vehicle federate, SOM and vehicle,

respectively. The main purpose of this component is to document the object models for

possible future development purposes or troubleshoots. The object model identification

table and other components that must be addressed are presented in the Table 2.

Table 2: OMT components and their descriptions [9].

Component Brief description of component.

Object model

identification table

Documents the purpose of the object model and other relevant

parameters that identify it from the other objects.

Object class

structure table

Describes the relations of the classes and subclasses or the

inheritance architectures.

Attribute table Specifies how the attributes of the objects are presented.

Parameter table Specifies how the parameters of the interaction classes are

presented.

Dimension table Specifies the dimensions that are utilized in the DDM process

of filtering irrelevant instance attributes.

Time representation

table

Specifies how the time values are represented.

User-supplied tag

table

Specifies how the additional tags are represented with certain

HLA services.

Synchronization

table

Specifies how the datatypes of the HLA synchronization

service are represented.

Transportation type

table

Specifies the transportation mechanisms. Can be reliable or

best effort.

Update rate table Specifies the update rate for the information.

Switches table Specifies the initial parameter settings for the use of the RTI.

Datatype table Specifies details of data representation.

Notes table Specifies some additional explanation for OMT table item.

20

The OMT components as such are not sufficient for providing a fluent simulation

interoperation. Thus, the OMT also defines a collected set of tables which accurately

describe the semantics of the classes, attributes and parameters. In other words,

explanation for each class, attribute, or parameter in FOM and SOM is given in order to

document the federations or federates’ capabilities. This section of the OMT is called the

FOM/SOM lexicon. As mentioned earlier, there are several simple tables that form the

FOM/SOM lexicon: the object class definition table and attribute definition table are

closely related to each other. In the object class definition table, there are two columns:

one describes the name of the object class, and the other column describes the object

class briefly. The attribute definition class has three columns: the name of the attribute,

the object class it belongs to, and brief description of the attribute. Similarly, also the

interaction classes and interaction class parameters are explained in the interaction class

definition table and in the parameter definition table. With the help of these semantics,

OMT components and some conformance rules presented in the OMT specification, a

more effortless simulation interoperability can be achieved, which leads to overall better

results in the federation executions. [9] Now, the three main specifications of the HLA

standard have been presented, and in the next chapter we consider data transfer and

CDS and how the HLA standard is utilized with them.

21

3. TRANSFER OF DATA AND GATEWAYS

The data transfer from one place to another consists coarsely of three parts: the

transmitter, transfer media and the receiver. The transmitter produces the data to be

transmitted and the receiver is the destination of the data. In between is the transfer

media or the channel which can be wireless or wired. In modern digital communication

systems, the data is mostly digital consisting of zeros and ones. When the zeros and

ones, or the bits, are ordered in a certain known way, information can be interpreted and

transmitted digitally to others. Also, conversion from digital to analog and vice versa

enables the transmission and the receiving of analog waveforms, also known as wireless

communication. Next, we are focusing more on the wired transmission where the data

moves usually in certain repeating structures called the data packets.

3.1 Data packet structure

Data packets are typically formed from two parts: the header part and the payload part.

The payload part contains the information that is the actual information to be sent, such

as a message or the updated values of some parameters. In contrast, the header part

contains redundant data for the information, but necessary for the success of the

transmission. An example header could contain some preamble sequence, the

destination of the receiver, the source of the sender and the size of the payload. The size

of the whole data packet is determined mostly by the size of the payload, while the

header has only a small part of it. This ratio of a header and a payload should weight the

payload part to be able to maximize the throughput of the transfer system.

Another way of improving the throughput of the data packets is to compress parts of it,

which reduces the total number of transmitted bits in a data packet for the same

information. If the compression can be reversed and no information is lost the

compression is lossless. However, if some parts of the data are not recoverable after the

compression, the compression method is lossy. [13] The lossless method should be used

when loss of information is not tolerated in any form. This is evident in the case of

transferring and compressing written documents, where the integrity of the information

should remain unchanged. One example of a lossless compression is using the

standardized compression method ZIP [14]. The lossy methods can be used when the

loss of information is acceptable, for example converting images to smaller formats to

save memory, such as using the original JPEG format [15].

22

3.2 Secure gateways

Gateway can be defined as a device which connects several different purpose networks

together [16]. The separation of two different networks is an important concept when

considering the information security point of view. Usually, if two computers are in the

same network, they can find and then communicate with each other, which is a

preferable thing if both of the parties are co-operating and the common goal is the same.

However, if the other party is not aware of the other, the communication between the

computers in the same network can be used for harmful purposes, such as

eavesdropping, capturing and modifying messages and accessing sensitive data. To

avoid the unwanted traffic and operators, gateways are used. The gateways can be

found from the homes of the people or in the corporates’ offices where several networks

with different purposes are connected to form private networks. Thus, the people from

the outside cannot access these networks without permission or authorization.

Another operating principle for the gateways is to act as a data filter that allows, blocks,

or modifies certain data that passes through it. With this type of secure gateway solution,

different networks can be connected and communicate together even though the other

one can contain more sensitive information than the other. The sensitive part of the data

is stripped or changed within the gateway before it is relayed forward to the other

networks. At the same time, data can pass unfiltered or filtered if needed to the stricter

and more secure network. One example of these secure gateways is the Insta DefSec’s

product Cross Domain Solution (CDS) which is covered in more detail in the following

chapter. Also, as a note regarding the remainder part of this thesis, the abbreviation CDS

refers to this product as it can also be a synonym for a general secure gateway.

3.3 Cross Domain Solution (CDS)

CDS is a secure gateway solution developed by Insta DefSec that allows message

filtering and modification between two differing security level networks. The solution

consists mainly of three parts: The user interface tool, the rule engine and the logger.

The overall presentation of the system diagram is shown in Figure 4.

23

Figure 4: The system diagram of CDS [17].

The CDS user interface is an application where users can define the rulesets of the rule

engine. With clear and coherent symbols, buttons and input fields, the user interface

enables the usage and modification of CDS rulesets for people with less technical

expertise. This reduces the need for help from the developers or from the system

administrators when reconfiguring the rulesets for different purposes. The ruleset is then

transmitted to the rule engine which implements the ruleset in practice. In addition to

outputting the data in the desired format of the ruleset, the rule engine has a logger

output. If the data coming to the rule engine is modified or filtered, the corresponding

actions are logged. Thus, the main purpose of logging is to keep track of the history of

the modified data, but it can also be used for debugging the system if it is not operating

as expected. [17]

3.3.1 CDS rulesets, rules and conditions

The CDS ruleset forms three layers of hierarchical levels: the top level are the different

rulesets which are given by the specific rules. To get the individual rules that define the

ruleset, conditions and corresponding operation are given for each rule. The condition is

the triggering element that activates the rule. The triggering can happen when some

specific value of the received data is equal to, not equal to, greater or less than, greater

or less equal than the threshold value for the condition. After the triggering, the

corresponding operation is executed for the data packet in processing. The available

Cross Domain Solution

Rule engine

24

operations are blocking, passing, logging and transformation. With the blocking and

passing operation, the received data packet can be filtered completely, or passed without

any altering. Also, the logging operation lets the packet through, but with a customized

logging message. The transformation operation needs an additional parameter for the

replacement of the specific part of the packet.

As each rule can consist of many conditions, it requires all of them to fulfill the rule and

make the operation happen. In other words, the conditions of the rules have AND logical

operator relationship. However, the individual rules which are the combinations of

conditions and operations have mutual relationship of logical operator OR. This means

that, the triggering of a single rule does not require the fulfillment of the other ones within

the ruleset. Thus, the overall rulesets can be large and customized for various purposes.

3.3.2 The functioning of the rule engine and HLA integration

After the ruleset is defined, it can be imported to the rule engine which then implements

the rules of the ruleset in practice. The rule engine uses the imported ruleset directly as

a generic form for all the protocols it must handle. Thus, some specific protocol-to-

general form adapters are needed before applying the rules, to handle data from the

different protocols. Currently CDS can support data from protocols that have certain

structure in their messages. The two these kinds of protocols that CDS supports, are the

HLA and the All Purpose Structured Eurocontrol Surveillance Information Exchange

(ASTERIX) protocol. Both protocols have a simple hierarchical structure that can be

mapped similarly. [13] For example, the hierarchical dependencies of the object and the

interaction classes of the HLA are simple to present as a general tree structure with root

and nodes. The object class hierarchy of the RPR FOM 2.0, considering the root node

HLAobjectRoot and only its BaseEntity branch with its subclasses, are presented in the

Figure 5. The RPR FOM 2.0 also contains several other object class branches, such as

EmbeddedSystem and EnvironmentObject that are formed from the HLAobjectRoot

class. Due to vast number of these other classes, they are not visible in the Figure 5.

25

Figure 5: RPR FOM 2.0 BaseEntity branch object class and its subclasses [11].

The RPR FOM 2.0 also contains the definitions for the interaction classes that are

available for the federations which utilize this FOM. Some of the interaction classes that

are based on the HLAinteractionRoot are Collision, WeaponFire and

EnvironmentObjectTransaction. All the other interaction classes and their subclasses,

and the complete hierarchy of the object classes under the HLAobjectRoot can be found

from the paper defining the RPR FOM 2.0. [11]

As the object and the interaction classes relationships are straightforward to follow, also

the values of the instance attributes of the object classes and the parameters of the

interaction classes can be mapped effectively. When the owner of the attribute or the

parameter is known, the corresponding key-value pair is easy to retrieve from similar

mapping of a tree structure.

After the conversion to a general form in the adapter, the rule engine can parse the

received message for the comparison between the rules. If the rule engine matches a

rule to the message, the corresponding operation is executed to the message. An

example ruleset that filters the HLA messages belonging to a class Platform is presented

in the Figure 6. The key specifies the possible object classes of the message, value is

Aircraft

AmphibiousVehicle

GroundVehicle

Platform MultiDomainPlatform

Spacecraft

SubmersibleVessel

SurfaceVessel

Lifeform

CulturalFeature

Munition

Expandables

Radio

Sensor

Supplies

NonHuman

Human

HLAobjectRoot

AggregateEntity

PhysicalEntity BaseEntity

EnvironmentalEntity

26

the parameter that the key is compared with the operator, and if the condition is valid,

then the operation is executed.

Figure 6: Example ruleset model for HLA. The example filters all HLA messages
from the object class Platform and its subclasses. Note, all possible object classes are

not shown for presentational purposes [17].

If the operation to the message is executed, the operation is saved by the logger and the

operated message in question is transmitted onward to the following network or filtered

out depending on the type of the operation. Then, the next message is compared to the

same rules of the ruleset, and the process continues as long as there is data to be

forwarded between the networks.

Operation

Rule

Platform

BaseEntity

Type : Filter
Value:

“Platform”

"

Operator : == Field

Condition

Keys
Data type :

string

PhysicalEntity

27

4. PERFORMANCE OF SIMULATIONS

The performance requirements for the well-functioning real-time simulation systems

should be known in order to find out if the CDS is an applicable solution as a secure

gateway between multiple real-time simulation networks. The following findings from the

literature, the experts’ opinions and the reference measurement should act as

benchmarks which give the approximate region where the end results of the

measurements should be located at.

4.1 Performance requirements for real-time simulators

The existing performance requirements of real-time simulator systems were studied with

the help of different sources, including technical reports and specifications from RTI

manufacturers, other scientific publications and theses, inquiries from the experts of the

industry and from the reference measurements of commercial flight simulator software

Prepar3D.

The performance metrics that were selected for the evaluation of the performance of the

simulator system were the latency and the throughput. These performance metrics form

the requirements that the correctly functioning real-time simulation networks should

follow in all cases, including a configuration with a CDS solution involved. Thus, the time

taken for each update and the amount of data that can be transferred, should follow the

limits presented in the upcoming chapters regarding the studies and research of latency

and throughput, and the views of the experts of the industry of real-time simulator

systems.

4.1.1 Latency

Latency is a metric of time which presents how much time it takes for a single data packet

to get from the transmitter to the receiver. There is always some amount of latency in

data transfer due to the constraint of the speed of the light, but on top of that, the latency

increases when the data packets are processed in various nodes and processors. Thus,

the latency is usually an unwanted phenomenon, but it can be tolerated to a certain limit,

which depends on the use case of the data transfer system. With real-time systems, two

general categories can be found: the systems having a hard or soft deadline [18]. In the

other end are the soft deadline systems where missing the deadline for receiving the

information on time is not desirable but it can happen. For example, some non-critical

28

measurement system measuring the highest temperature of the day, but it had some

major delays in the measurements because of the malfunction and restarting of the

systems. The lack of receiving the data is not preferable, but it will not form any potential

risks to others. In contrast to soft deadline systems, there are the hard deadline systems

that do not tolerate any delays for the deadline and if the latency exceeds certain limit, it

can have critical consequences for the system or its users. Hard deadline systems can

be monitoring systems of critical infrastructure or real-time LVC systems. As an example,

a system monitoring the state of a nuclear power plant cannot tolerate any major delays

in its measurements if something seems to be not working properly. Next, we are

focusing on studies of the latency requirements on different real-time simulation systems,

focusing mainly on those that consider the standard of HLA.

Firstly, there are not any clear indications of the latency requirements of the HLA in its

three main specifications, the framework and the rules, interface specification or in the

OMT. However, there is a small note or an example in the OMT that sets a coarse scale

for what the requirements could be: the example of an update rate table that defines the

optional maximum update rate within federation for the owners of the attributes. The

table defines that a high update rate is 30 Hz, medium is 5.0 Hz and low is 0.2 Hz [9].

Therefore, if the update rate is 5.0 Hz, it means that an update is sent 5 times in 1 second,

or every 0.2 seconds. The corresponding latency limits for the high, medium and low

update rates are then 33.3 ms, 200 ms and 5000 ms, respectively. Hence, it is feasible

to assume that in the case of a real-time simulation system, the latency of the update

should be lower than the update rate, to enable the receiving of the data packet before

its next update. If the latency is higher than the rate of the updates, the most recent data

is not utilized in the latest update, and the simulation presents outdated information. This

can produce problems, especially if the delayed information concerns the parameters of

an important entity. With misleading parameters, the right decisions will take up time or

can lead to even wrong conclusions with serious consequences. Thus, a real-time LVC

system can be considered more as a hard deadline system than a soft deadline system.

Similar range of latency results, in the order of 30–100 ms, were requested by a paper

from the RTI manufacturer MAK Technologies for the limits of real-time simulation before

the feeling of the real-time interactivity becomes intolerable for the operator [19]. Also, it

was mentioned in a master’s thesis, that a rate of 10 frames per second is a minimum

acceptable rate for a well working real-time simulation system [20]. As the latency

increases, the updates will be received later. If the simulation updates its view only when

there are new updates, the immersion of real-time simulation can disappear if the

updates of the simulation are delayed by the increasing latencies. However, the tolerable

29

latencies depend on the purpose of use of the simulation. As said earlier, real-time and

immersive simulations such as flight simulators need low latencies, but some other

simulations could manage with higher latencies.

Overall, the key point from all these results would be that the upper limit for the latency

should be approximately 100 ms although lower latencies are expected from the

measurements considering real-time simulation network with and without the CDS

attached utilizing the HLA. This requirement is one of the performance metrics that are

evaluated in the final measurements where the effect of the CDS is examined.

4.1.2 Reference measurement of a commercial simulator
system

As a part of defining the estimate of the throughput benchmark for the real-time simulator

systems and to familiarize with a real-world simulation implementation, a reference

measurement for a commercial simulator system was made. The simulator of interest

was the flight simulator Prepar3D made by the Lockheed Martin [21]. The simulator in

question was chosen due to its presumable high-performance requirements and the

capability of measuring them with ease via utilizing built-in API.

The reference measurements were two parted due to the different main protocol of the

Prepar3D which was not HLA. The main protocol used in the Prepar3D was DIS, the

predecessor of the HLA. Thus, the first measurements were done by capturing the DIS

data traffic directly from the API with the help of Wireshark [22]. The other measurement

required a DIS protocol conversion to HLA by using a third-party software VR-Exchange

to have an equivalent measurement with HLA [23]. However, the Wireshark does not

support HLA messages, so the converted HLA traffic is captured by the test bench

software that is used also in the final measurements of this thesis. The test bench logs

each received HLA message with timestamps for further analysis.

The set-up for both these measurements were similar: one aircraft entity in the flight

simulator flying straight and level, which updates its location and other parameters with

approximately constant rate to the API. The update rate is determined by taking the

difference between two consecutive timestamps for all the flying entity-updates and then

averaging them. The only major difference between these two measurements is the

conversion to the HLA and the data capturing software. Thus, the conversion block might

add some additional delay to the system. The results of the reference measurements are

presented in the Table 3.

30

Table 3: The results of the reference measurements of a commercial flight
simulator.

Reference Protocol Update interval (ms) Samples

Type - Average Std -

Measurement 1 DIS 94.4 83.7 2130

Measurement 2 HLA 111 197 4505

The measured update interval was around 100 ms for both DIS and HLA messages. The

minor difference between these two could result from the different message size and

structure of the HLA and DIS protocols. Also, as mentioned earlier, the conversion from

DIS to HLA can add some delay, which could explain the slightly bigger update interval

of the HLA. In addition, the standard deviations of the update interval measurements

were in the same magnitude as the averages, which means that the update intervals

varied at different instances of time remarkably even though the aircraft flew at a constant

speed and altitude and did not do any additional maneuvers.

4.1.3 Throughput

The second performance metric that helps to evaluate the suitability of the CDS to the

real-time simulation networks is the throughput. Generally, it determines the amount of

data bytes that can be transmitted from the transmitter to the receiver in certain time

interval, usually in one second. However, the throughput can also be presented as

updates/s or entities/s, which is a more user-friendly approach to present the throughput

information. To maximize the potential capacity of the system, the supported throughput

should be high. This reduces the queueing of the data if the amount of the data to transfer

increases suddenly. The reduction of the queues also decreases the latency, which is

also beneficial for the simulation systems in general. As the simulation systems tend to

produce a lot of data, high throughput requirements are essential for these systems.

Especially with the real-time simulation systems, the throughput must be high enough to

manage the load all the time even if there are sudden changes in the number of entities

or other types of events that increase the traffic significantly.

Similarly, as in the case of latency, the HLA specifications do not provide any defined

number for the throughput requirement of the HLA systems. However, the lack of this

definition follows the idea of the HLA being as general and versatile as possible. Same

throughput rates cannot be promised to be achieved with highly complex multiple

31

federation connecting simulation systems as with simple single federation and federate

system. Furthermore, suitable studies and papers were not found from the literature

addressing the throughput requirements of the real-time simulator systems, which lead

to acquiring the appropriate benchmarks via interviewing the experts of the industry for

their opinion. With the help of their insight and from the data gathered from the

commercial real-time flight simulator software, also the throughput requirement could be

established.

A brief interview in the form of a survey, was sent to four different experts specialized in

this field [25]. The purpose of the survey was to find out what would be the maximum

number for simultaneous entities that would still be realistically presented and updated

in the same simulation or federation. The expert A mentioned that the range of 200–250

would be a typical upper range, but even higher amounts could be temporarily supported.

However, a constant exceeding would degrade the overall performance and should be

avoided with the help of possible countermeasures. Similarly, the expert B concluded

that the upper range would be around 150 flying entities with additional 30 ground-based

entities. However, this could be achieved with a significantly smaller update rate where

all the entities would be updated after every 6 seconds. The view of the expert C also

contained a separate estimate between simultaneous flying and ground-based entities.

The theoretical upper limit for the flying entities was 210 while additionally 100 ground-

based entities could be simultaneously supported. Furthermore, the same expert gave a

more realistic view where the number of flying entities would be a half from the

theoretical, but the ground-based entities would remain the same leading to a more

practical estimate totaling of 205 simultaneous entities. The last response was from the

expert D, who gave the widest range of 20–200, which was based on different simulation

scenarios where the expert had been involved in.

When considering all the answers from the interviews, the ranges varied above and

below 200 entities. According to experts A and C, the simultaneous entities above 200

could be interpreted as more theoretical or momentarily states that could possibly be

achieved only temporarily. Also, the experts B and C highlighted the separate numbers

for the flying and ground based entities. Therefore, it could be presumed that the different

types of entities can stress the simulation system differently. Mainly the ground-based

systems can remain stationary, which does not necessary trigger entity updates when

nothing is changed in the parameters of the stationary ground entity. In contrast, there

are the flying entities that produce continuous updates which cannot be stationary as

their ground-based counterparts. Thus, the number of maximum simultaneous entities

would be lower if all the entities would be flying compared to flying and ground-based

32

entities combined. However, the RPR FOM V2 defines aircraft and ground vehicle

entities practically with the same attributes, so the division between these different

entities is not remarkable, and they are considered as the same in the final

measurements and in the throughput requirements.

Furthermore, the more moderate estimates proposed by the experts D and B were in the

range of 20–200 and 180. So, the 200 simultaneous entities were now in the upper range

of the estimate. However, the view of expert D was based on in the involvement in

various scenarios, which could have a very different context in them. For example, some

of the simulations could test only the performance capabilities whereas others could

focus on other scenarios where the number of 20 simultaneous entities would be enough.

Thus, the upper range of this estimate would fit better with the views and outlines of the

other experts.

Lastly, the view of 180 simultaneous entities from the expert B is similar to other

estimates, but it was mentioned that it could be achieved with a lower update rate of after

every sixth second. If the update rate is increased to 10 times in a second, which was

measured with the commercial flight simulator, there could be major differences in the

capability to support the increasing number of the required updates. With 180 entities

that update after every 6 seconds, the required throughput is 180 entities divided by the

6 seconds leading to throughput of 30 entities/s. This is much less than the

corresponding throughput which is calculated with the update rate of after every tenth of

a second. With the update after every tenth of a second and with 180 simultaneous

entities, the throughput would be 1800 entities/s, which is 60 times bigger estimate than

the previous one. These results would implicate that the estimate of the expert B would

be lower if the required update rate would be higher, as it will be presumed in the final

measurements of this thesis.

As a conclusion, the approximate maximum number of simultaneous entities could be

estimated by calculating the weighted average from the views of the experts. As

discussed in the previous paragraphs, the experts had some variations in their views,

and the preconditions were not the same. Thus, the estimates of the experts have

different weights for the average regarding their similarities to the test set-up of this

thesis. The expert A and C both have a weight of 30 %, whereas the expert B and D both

have a weight of 20 %, meaning that the views of experts A and C have more influence

on the throughput requirement. These weights and the estimates result in a weighted

average of 187 simultaneous entities when considering the different views of the

interviewed experts. However, there can be variation in both directions, and this is only

33

an approximate result combined on the grounds of four different opinions with weights

based solely on the interviews.

By knowing the update rate and the typical number of simultaneous entities, the final

throughput benchmark could be calculated with a simple multiplication calculation. The

reference measurement described the results for the update rate that was around 10 Hz

in the two measurement sets, which means that every entity updates 10 times in a one

second. In addition, the view from the experts of the field was that the maximum number

of simultaneous entities in a realistic scenario would be approximately 187 entities. To

conclude the chapter of the throughput, the benchmark for the throughput should be

around 1870 entities/s when considering the update interval of the entities and the

maximum number of them being simulated at the same time within the simulation.

34

5. IMPLEMENTATION OF PERFORMANCE
MEASUREMENTS

The evaluation of the effect of the CDS to the real-time simulation network was measured

with the help of a test bench software, message forwarding RTIs, CDS and VR-Exchange

software. The role of the test bench software was to create the federations and federates

that communicate with each other by updating the object attributes and interaction

parameters. The RTIs would transfer the messages which go through the CDS or the

VR-Exchange if the CDS is not attached. After the gateway and RTIs, the HLA messages

are received in the other test bench which act as a receiving federate. Next, a more

detailed look of the measurement system is presented to find out the basic functioning

mechanisms. Also, the final measurement process is described in detail to enable the

repeatability of the process.

5.1 Set-up of the system

The physical measurement set-up is formed by connecting three different laptops

together with Ethernet cables. The exact configuration and the connections are shown

in the Figure 7.

Figure 7: The physical configuration of the measurement set-up.

The two most outermost laptops in the configuration run in the Windows environment

whereas the middle one operates in the Linux/Unix platform. The middle laptop has two

network interfaces, and it works as a connecting element between the two separate

networks it is connected to. The Ethernet connector cables are crossover cables, so any

external switches are not needed within the configuration. There are four different

software that are utilized in this configuration: the test bench, MAK RTI 4.2 made by the

MAK Technologies, CDS and VR-Exchange. The laptops with the Windows operating

system contain the test bench and RTI software while the CDS and VR-Exchange are

35

executed in the connecting laptop in Linux/Unix platform. The layout of these programs

in the configuration are presented in the diagram in Figure 8.

Figure 8: The layout of the software within the configuration.

Next, the purpose of each software in the measurements are discussed in more detail to

understand their role and location in the configuration better.

The test bench software is a simple program created with JAVA, which is programmed

to test the performance requirements and the capabilities of the CDS for the needs of

this thesis. After the start up, it connects to the RTI, creates the federation execution,

and joins to the federation as a one federate, similarly as the creation of the federation

execution is presented in the Figure 2. After the joining, the federate registers the object

instances and publishes the object class attributes that it will update during the

measurements. Also, the necessary subscriptions are performed to the interaction

classes, which act as responses for receiving the updates from the receiver end. These

procedures follow the Figure 3 which presents the general steps for enabling the

communication between the connected federates.

The same test bench program can be configured as a transmitter which updates the

object classes, but also as a receiver which receives the transmitted updates and sends

the acknowledgements of the messages with the help of the interaction classes. The

operating mode is selected after the program is started to allow the usage of this program

within both ends of the measurement system without any major reconfigurations. In

addition, the mode for the measurement set-up is chosen due to the different nature of

the two set-ups: the first set-up will be measured with a single entity that updates its

attributes whereas the second one has multiple simultaneous entities that are updated.

This difference between the measurement set-ups requires different configuration for the

test bench in the transmitter side which can be changed from the user interface of the

36

test bench. The user interface also has a selection for connecting the test bench to the

RTI, which makes the required procedures for the connection and the communication as

described earlier, and after their successful initialization, the logic of the chosen

measurement set-up starts automatically. The graphical user interface is presented in

the Figure 9.

Figure 9: The graphical user interface of the test bench software.

The user interface of the test bench program and its components were constructed with

the Swing library which is one of the standard libraries for JAVA. It enables the creation

of the graphical user interface that can contain several basic components such as

buttons, combo boxes, lists, labels, tables, and menu items. The main benefit of the

components of the Swing is that they are all coded with JAVA, which guarantees that the

graphical user interface works similarly within all the platforms it is used. [24] Another

main library that was utilized in the test bench software is the hla.1516 library which

implements the services that the RTI provides, or in other words, defines the methods

on how to connect and communicate with the RTI and other federates. The hla.1516

library is RTI-specific because it only works with the RTI solution made by the MAK

Technologies. Therefore, to be able to connect with RTIs from the other manufacturers,

additional libraries should be added to the implementation. Furthermore, the newest

version of the library hla.1516e was not chosen due to compatibility errors with the latest

JDK11 which was used in the development of the test bench software. Also, the main

functioning of the hla.1516 and hla.1516e are similar and there are not major differences

that would affect the results significantly.

As said earlier, the two test bench software need a way to communicate with each other.

Both test benches create messages, but the messages can only find their destination via

the help of the RTI. The RTI keeps track of the needs of the federates that are joined to

it and delivers the messages between them. For example, the transmitting federate

wants to receive every Collision interaction which are responses from receiving the

37

transmitted message in the receiving federate. Thus, the transmitting federate creates a

need for receiving the Collision interactions by sending a request via the Subscribe

Interaction Class service. Now, the RTI knows to relay every interaction of type Collision

to the transmitting federate. The transmitting federate can inquire for the possible new

updates from the RTI by using the evoke callback or the evoke multiple callbacks

services. If there are not any new updates that the inquiring federate is subscribed to,

the RTI will inform the federate that there are not any new updates available. The same

principle works also for the object instance attribute updates which are needed in the

receiving federate and sent by the transmitting federate. The RTI of the receiving

federate knows to relay the correct attribute updates when the receiving federate has

subscribed to the right attribute updates via the subscribe object class attribute service.

This final measurement set-ups consists of two federations both of which are connected

to their own RTIs, the RTI A and the RTI B. The configuration with two RTIs is needed

to simulate the possible real-world configuration where two different networks have their

own RTIs and federates. These federates and RTIs are then combined with the CDS

which can filter or modify the specific messages that are specified in its ruleset.

Therefore, the sensitive messages and information are not distributed outside the secure

network whereas still allowing the sharing of the non-sensitive messages and

information. To allow the realistic separation of the networks, the CDS is configured as

the connecting block between the two networks. Hence, all the traffic will go through the

CDS if data is needed to be shared between the networks. The CDS ruleset for both the

measurement set-ups is the same: pass all the messages that comes to the CDS from

both directions.

The computer with the CDS has also the VR-Exchange software which is used instead

in the reference measurements without the CDS functionality. The VR-Exchange acts as

a gateway, but it will pass all the data through it without any altering. Thus, the reference

measurement without the CDS is as similar as the set-up which includes the CDS and

its functioning ruleset. Thus, the effect of the CDS in the measurement set-ups can be

evaluated by measuring the differences in the measurements set-ups considering both

the effect on latency and the throughput.

5.2 The measuring process

The final measurement process contains two different measurement set-ups: the latency

and the throughput set-ups. The latency measurement has a single object instance which

updates its instance attributes in a constant frequency. The latencies of these updates

are then measured with the CDS between the transmitter network and the receiver

38

network. The first measurement is then repeated, but the CDS is replaced with the VR-

Exchange. With the help of this reference measurement, the effect of the CDS to the

latency can be evaluated.

After the single object instance latency measurements, the throughput measurement

with multiple object instances is executed. The throughput measurement is repeated with

different amounts of updating entities, to find out the optimal conditions for the maximum

throughput. The maximum throughput can be calculated when the number of received

updates and the total time taken in the measurement is known. Also, the throughput

measurements are repeated by replacing the CDS with the VR-Exchange. Next, the

measurement procedures are presented in more detail, by introducing the initialization

process and the different steps of the latency and the throughput measurements.

The latency measurements start with the initialization process of the federates which is

illustrated in the Figure 10. These steps must be executed before any communication

between the federates can happen.

Figure 10: The initialization process of the latency measurement.

The first three steps in the initialization process are the same for both the transmitting

and the receiving federates. First, the connection to the RTI is established by giving the

ip-addresses and the port numbers of the RTI to the joining federate. After the connection

is established, the federation execution is created where the connected federates can

now join. The measurement system consists of two RTIs, so there are two different

federations. Hence, the names of the federations must be unique and can be selected

from the UI of the test bench software before the initialization process. Also, the CDS

with a configured ruleset, or alternatively the VR-Exchange, must be started and

connected to the RTIs to get the gateway between the RTIs work properly. The other

1. Connect to the RTI
2. Create the federation execution
3. Join the federation execution
4. Publish the object class

BaseEntity.PhysicalEntity.Platform.Aircraft
5. Publish the required object class attributes
6. Subscribe to interaction class Collision
7. Reserve the unique names for the object class

instances
8. Create the required number of object class instances
9. Start the Callback thread that inquires new updates

from the RTI
10. Ready for the measurement

1. Connect to the RTI
2. Create the federation execution
3. Join the federation execution
4. Publish the interaction class Collision
5. Publish the required interaction class parameters
6. Subscribe to object class

BaseEntity.PhysicalEntity.Platform.Aircraft
7. Subscribe to all the attributes of the previous

object class
8. Start the Callback thread that inquires new

updates from the RTI
9. Discover all the object class instances

10. Ready for the measurement

Transmitting
federate

Receiving
federate

39

port of the gateway is connected to the same federation as the transmitting federate

while the other end is connected to the same federation as the receiving federate.

Next, the federates publish either their object or interaction classes and their attributes

and parameters which will be updated in the measurement set-up. In addition, the

federates must subscribe to the interaction classes and object attributes that they wish

to receive. Within these measurements, the receiving federate is only interested in the

attribute updates of the object class of BaseEntity.PhysicalEntity.Platform.Aircraft, while

the transmitting federate is waiting for the interactions of the receiving federate. The

transmitting federate also creates the required amount of object instances, or also

referred as entities, that it is going to need in the measurement set-up, which each have

a unique name that can be reserved manually or generated automatically by the RTI.

To find out the existence of these unique object instances and to be able to get the

newest attribute updates or interactions from the other federate, a callback to the RTI

must be made. If the federate sends a callback request to the RTI, the RTI will inform

the federate of the updates that have been happened to the object attributes and

interactions it has subscribed to. A separate thread for the callbacks is created which

aims to inform the federate for the new updates as soon as possible. With the help of the

callbacks, the receiving federate detects that there are new object instances of its

interest, and it can prepare to receive their attribute updates. The callbacks are handled

in a separate thread to avoid the accumulative delay that the receiving process could

produce if it would be included in the transmitting cycle. Now, the initialization process is

finished, and the actual latency measurement set-up can start.

The core logic of the latency measurement set-ups remains unchanged: the transmitting

federate updates the object instance attributes that it owns, and the receiving federate

receives the updates and responds with an interaction. The time it takes for the update

to get to the receiver added with the time for the response to get back to the transmitter

form the round trip time (RTT) of the connection. The RTT cycle is presented in the

Figure 11.

40

Figure 11: The RTT cycle of the system.

The overall latency consists of several parts as there are multiple steps in the RTT cycle.

The transmitted message starts from the test bench software, which sends the attribute

update to the RTI. Next, the RTI processes the update and relays it onwards and outside

the first laptop. The update goes through the physical Ethernet cable and enters the

second laptop containing the active CDS or VR-Exchange. Therefore, before any

processing from the CDS, the message has travelled already through hardware and

software, which add ups to the latency. After the CDS ruleset checking and further

processing, the message reaches the final Ethernet cable and laptop, where the second

RTI and the test bench software do their own procedures. Then, the interaction response

from the receiving federate travels the same way but in the opposite direction. By the

time the interaction is in the transmitting federate, the RTT cycle is complete.

When the RTT is divided by two, the end result is the latency of the system. By repeating

this cycle of updates and responses 10000 times, summing the latencies together and

dividing them by 20000, the comparable average latency of the system can be found.

Because only the middle software in the configuration changes, CDS to VR-Exchange

or vice-versa, the differences in latencies in the same measurement set-up should

originate from the dissimilarities of the latencies of the CDS and VR-Exchange. The

measuring steps of the latency set-up is described in the Algorithm 1.

Updating instance attribute

3. Pass update

4. Relay
update

RTI

6. Reflect update

5. Callback for
updates

6. Reflect

interaction

RTI

Responding with interaction

3. Pass interaction

4. Relay
interaction

5. Callback for
interactions

1. Update
instance attribute

2. Reflect
update

RTI

CDS /

VR-Exchange

Transmitting
federate

2. Reflect
interaction 1. Send interaction

RTI

Receiving
federate

CDS /

VR-Exchange

Transmitting
federate

Receiving
federate

41

Algorithm 1: The measurement steps for the latency measurement.

The same measuring process is then repeated by replacing the CDS with the VR-

Exchange to get reference without the effect of the CDS. After the latencies are

measured, the throughput set-up is executed.

The throughput measurements are performed with a similar test set-up, but now the

messages are sent only in one way, from the transmitter to the receiver to find out the

maximum throughput capability of the connecting element between the two RTIs. Now,

as the messages go only in one way, it will reduces the complexity of the system and the

initialization process. The initialization process is very similar to the latency

measurement, but now some phases are unnecessary and can be removed. Therefore,

the initialization process has fewer steps, and its simpler implementation is described in

the Figure 12.

The measuring process of average latency

Number of aircraft instances: X = 1,

number of iterations: numberOfIterations = 10000,

amount of time to wait: sleepTime = 100 ms,

at start: i = 1, numberOfUpdates = 0 and numberOfResponses = 0.

1. Save the startTime of the whole measurement

2. Federate A updates a single attribute of an aircraft instance

3. Save the updateTime of the update i

4. Federate B receives the update and numberOfUpdates ++

5. B sends a response (Collision interaction)

6. A receives the response and numberOfResponses ++ (concurrent

Callback thread, already initialized before the start)

7. Save the responseTime of the response i

8. if i <= numberOfIterations

9. Wait for sleepTime, i++ and continue from row 2

10. elseif i > 10000 AND numberOfResponses = 10000

11. save EndTime

➔ 1) Calculate the differences of responseTime – updateTime for the latencies. Sum them together

and divide by 20000 => average latency.

➔ 2) Plot the latency as a function of received responses.

42

Figure 12: The initialization process of the throughput measurement.

In the throughput measurement, the federate A only transmits updates for the

simultaneous aircraft instances while the federate B receives them. This measurement

consists of 100000 updates, that are distributed evenly by the number of simultaneous

updating aircraft entities and the number of iterations. For example, with 50 simultaneous

entities, the number of iterations is 2000 to achieve a total of 100000 updates. There are

different combinations of simultaneous entities and iterations to find out the optimal

configuration for maximizing the throughput.

In the measurements with the CDS the delay parameter sleepTime is set to 0 ms.

However, due to the message handling and processing of the VR-Exchange, the

sleepTime is not 0 ms. The sleepTime adds some delay between the iterations in order

to prevent the interruptions of the flow of the messages. It was discovered that the

transfer of the entity updates slows down remarkably, and some updates are lost if there

are too many updates to process in a short time interval. But by keeping the delay time

as low as possible and calculating the throughput with the actual number of received

entity updates and the total time taken, the maximum throughput can be calculated for

the CDS and VR-Exchange. The detailed description of the measurement steps of the

throughput measurement can be found from the Algorithm 2.

1. Connect to the RTI
2. Create the federation execution
3. Join the federation execution
4. Publish the object class

BaseEntity.PhysicalEntity.Platform.Aircraft
5. Publish the required object class attributes
6. Reserve the unique names for the object class

instances
7. Create the required number of object class instances
8. Ready for the measurement

1. Connect to the RTI
2. Create the federation execution
3. Join the federation execution
4. Subscribe to object class

BaseEntity.PhysicalEntity.Platform.Aircraft
5. Subscribe to all the attributes of the previous

object class
6. Start the Callback thread that inquires new

updates from the RTI
7. Discover all the object class instances
8. Ready for the measurement

Transmitting
federate

Receiving
federate

43

Algorithm 2: The measurement steps for the throughput measurement.

Both measurements produce a result log-file that contains the values of interest in a

readable comma-separated values (CSV) form. The CSV-file for the latency

measurement contains the index of the attribute update, the timestamps when the update

is sent and the interaction is received, and the calculated latency. The throughput

equivalent has the index of the received update, timestamp for the time it is received and

the start and end times of the measurement. It does not have the transmission time for

the entity update because of the differing clock times of the laptop 1 and laptop 2. The

Algorithm 1 guarantees that all the transmitted messages get a response. However, in

the Algorithm 2, it is possible that some of the transmitted messages are not received.

But this is acknowledged in the final throughput calculation which is calculated with the

number of updates that are properly received in the receiving federate. The end results

of all the measurements are presented in the next chapter with the help of graphical

charts and tables.

The measuring process of maximum throughput

Number of aircraft instances: X = 50/100/150/200/250,

number of iterations: numberOfIterations = 2000/1000/666/500/400,

amount of time to wait: sleepTime = 0/30/40/50/60/70/80/90/100 ms,

at start: i = 1 and numberOfReceivedUpdates = 0.

1. Save the startTime of the whole measurement

2. Federate A updates the attributes of all aircraft instances X

3. Federate B receives the updates, numberOfReceivedUpdates ++

4. Save the receiveTime of the updates.

5. if i < numberOfIterations

6. Wait for sleepTime, i++ and continue from row 2

7. else

8. save endTime and numberOfReceivedUpdates

➔ 1) Calculate (numberOfReceivedUpdates) ∙ 1000/(endTime-startTime) => throughput

44

6. PERFORMANCE RESULTS

The performance results are divided into two subsections: the first one presents the

results for the latency measurements where two tables and two graphs are introduced.

The second subsection summarizes the throughput measurement. Within both these

measurement set-ups, the core measurement procedures do not change between the

CDS and its reference the VR-Exchange.

6.1 The latency set-up

The latency measurement contained 10000 samples for both the measurement with CDS

and VR-Exchange, which were extracted from the CSV-log file after the measurements.

The values presented in the Table 4 were calculated with spreadsheet program Microsoft

Excel. The key figures that were calculated were the average, the standard deviation,

the minimum and maximum.

Table 4: Latency set-up result table.

Software Average (ms) Std (ms) Min (ms) Max (ms) Samples

VR-Exchange 13.7 7.2 2.5 55.5 10000

CDS 3.9 1.6 2.0 44.5 10000

To present the development of the latency and to find out if there are any major

irregularities as the simulation progresses, a graph for the latency results was also made.

The same data was exported to MATLAB, which allowed its further processing. The

latency as a function of received responses is presented in the Figure 13.

45

Figure 13: Latency as a function of received responses.

In addition, MATLAB allowed to gather more information about the distribution of the data

of the latency measurement. The cumulative distribution function (CDF) of the

measurement is plotted in the Figure 14. The graph shows the latency and the

corresponding percentage of values of the whole population that are below the desired

latency value.

Figure 14: Cumulative distribution function (CDF) of the latency results.

Number of received responses

L
a
te
n
c
y
 (
m
s
)

 Exchange

CDS

Latency (ms)

 .

 .

 .

 .

 .

 .

 .

 .

 .

C
D
F

 Exchange

CDS

46

Some of the most important percentiles are also highlighted in the Table 5, where the

5th, 50th and the 95th percentiles are presented for the CDS and VR-Exchange. Other

percentiles, including the ones presented in the Table 5, can be roughly approximated

from the CDF plot in the Figure 14.

Table 5: Latency set-up percentiles table.

Software 5th percentile (ms) Median (ms) 95th percentile (ms) Samples

VR-Exchange 4 12.5 27 10000

CDS 2.5 3.5 6 10000

6.2 The throughput set-up

The throughput measurement consisted of 10 set-ups where the total number of

transmitted updates was determined by multiplying the number of simultaneous aircraft

instances with the number of iterations. The preferred sleep times of the VR-Exchange

set-ups were determined by testing different values and repeating the measurement. The

optimal delay value was chosen when it resulted in the highest throughput before the

interruptions of the flow of the messages occurred. The results for the throughput

measurement can be seen from the Table 6.

47

Table 6: Throughput set-up result table.

Software Number of

instances

Number of

iterations

Sleep time

(ms)

Time

(ms)

Received

updates

Throughput

(entities/s)

VR-E 50 2000 30 94324 78059 827.6

CDS 50 2000 0 277875 100000 359.9

VR-E 100 1000 40 66183 62719 947.7

CDS 100 1000 0 268286 100000 372.7

VR-E 150 666 60 79249 74607 941.4

CDS 150 666 0 267057 99900 374.1

VR-E 200 500 70 70768 73543 1039.2

CDS 200 500 0 258803 100000 386.4

VR-E 250 400 80 64048 68977 1077.0

CDS 250 400 0 266411 100000 375.4

In the following chapter, the meaning of the achieved results is discussed in more detail.

The results are also compared to the performance requirements, which were defined

earlier, to find out if the CDS fulfills these requirements.

48

7. CONCLUSIONS

The two main purposes of this thesis were to find out suitable performance requirements

for a real-time simulation network and to evaluate the capabilities of a corresponding

real-time simulation implementation using CDS. The proper performance requirements

were established in the forms of latency and throughput due to the needs of small delays,

but also high capacity demands of the real-time simulation networks. It was discovered

that the proper upper limit for the latency would be 100 ms whereas the throughput

requirement would be 1870 entities/s.

Moreover, these performance requirements were applied to the measurements with the

CDS which measured the latency of a single updating entity and the maximum

throughput with multiple simultaneously updating entities. The results showed that the

average latency of a single updating entity remain below 100 ms when the CDS connects

the networks. In contrast, the maximum throughput of the system with CDS was 386.4

entities/s, which was below the requirement of 1870 entities/s. Thus, these results

indicate that the CDS achieves the latency requirement if there are not too many

simultaneous updating entities but fails to meet the throughput requirement.

For the comparison, same measurements were made by changing the network

connecting element from the CDS to the VR-Exchange. The VR-Exchange should only

monitor the data going through it, so any differences with the end results between the

CDS and the VR-Exchange should originate from the additional processing of the CDS.

The VR-Exchange achieved a maximum throughput of 1077 entities/s, which was

considerably larger than the corresponding result of the CDS. Surprisingly, the average

and the standard deviation of the single entity latency measurement for the VR-

Exchange, were significantly greater than the results of the CDS. Therefore, the accurate

description of how much latency does the CDS add to the system cannot be made in the

basis of the single entity measurement. It would be beneficial to perform similar latency

measurements where there are more than one updating entity at the same time in order

to have more information of the behavior of the latency in different scenarios. Also,

additional reference measurements could be made, where the VR-Exchange could be

replaced with another similar software if there are other HLA supporting software

available.

The reason for the unexpected behavior of the VR-Exchange with a single updating entity

remains unclear, but there are also other aspects that could change the end results. For

49

example, the utilization of more realistic types of attribute updates that are sent within

the federates. Now, the transmitting federate updates the aircraft entity by sending four

attributes: EntityIdentifier, EntityType, Spatial and ForceIdentifier. The first three are

mandatory for the message to go through the VR-Exchange, and the last parameter

ForceIdentifier is updated in every iteration to receive updated data. However, in a real-

life scenario, there would be more possible attribute values, and each of them can have

an alternating update rate. For example, the spatial attribute which contains the

information regarding the location, position, and motion of the entity, can update very

frequently if the entity makes fast changes in its course. When the position and directions

of the entity remains more constant, some of the parameters are unchanged and the

updates are not sent as frequently. The high standard deviation of the HLA messages

was also present in the commercial flight simulator measurement presented in Table 3.

The results of this thesis might not be as accurate in some use cases, which differ

remarkably from the basic set-ups of the measurement cases. Thus, repeating the same

experiments with recorded data from the real cases or even by connecting the CDS to a

live and operational network would be an interesting topic for validation and further

research and development.

Similarly, the throughput requirement of 1870 entities/s is an indicative value which was

established from the basis of one commercial flight simulator and from the weighted

average of the opinions of different experts. Thus, it is not the absolute truth which

determines if a performance of a real-time simulator system is enough, and the final

requirement can change if the weighting of the opinions or the flight simulator are

changed. However, the difference between the measured maximum throughput of CDS

at 386.4 entities/s is clearly smaller than the requirement, so improvements and

optimizations to the throughput capabilities of the CDS should be made to meet the

requirements better.

In addition, it seems that the relaying capabilities of the RTIs do change as the simulation

progresses. For example, in the Figure 13 the average latency drops remarkably with

both CDS and VR-Exchange, when 800 iterations have passed. This would indicate that

it takes less time for the RTIs to process the messages when the simulation progresses

to a certain point, which would mean better performance for the network. To find out if

this is a RTI manufacturer specific feature, other RTI-implementations could be tested

with the same test measurement set-ups. Also, it would give more information and the

results of this thesis could be analyzed more if similar measurements would be measured

with these other RTI-implementations. There are several alternatives among different

RTI contributors: Pitch Technologies is a commercial solution, like the RTIs of the MAK

50

Technologies used in the measurements, whereas Portico and CERTI are similar open-

source alternatives with potential to grow and perform as their commercial counterparts

[26][27]. Also, the possible interoperability between the different manufacturer’s TIs

and the effect of the required message conversions to the performance of the network

should be studied more. By supporting the utilization of various RTIs together from

different RTI-manufacturers, the improved diversity of the network would allow even

more different systems and operators to join the networks while also reducing the

dependency to a single commercial component manufacturer.

As a conclusion, the CDS achieves the latency requirement, but only with single updating

entity. However, the CDS would need some improvement in its software to meet the

throughput requirement. If the performance of the software were improved, for example

by utilizing more concurrent threads in suitable locations and by spotting and cleaning

up inefficient methods, both performance requirements could possibly be achieved and

exceeded.

51

REFERENCES

[1] Topçu O., Oğuztüzün H., Guide to Distributed Simulation with HLA, Cham:
Springer International Publishing, 2017, 307 p.

[2] Tolk A., Engineering principles of combat modeling and distributed simulation,
New York: WILEY, 2012, 888 p.

[3] Banks J., Introduction to Simulation, WSC'99 Winter Simulation Conference
Proceedings. 'Simulation - A Bridge to the Future’, , pp. 7–13

[4] Funke J., Computer-based Testing and Training with Scenarios from Complex
Problem-solving Research: Advantages and Disadvantages, International
journal of selection and assessment, 1998, pp. 90–96.

[5] IEEE, The Standards Development Lifecycle, 2021, Available (accessed on
24.03.2021): https://standards.ieee.org/develop/index.html

[6] IEEE, IEEE Standard for Modeling and Simulation (M&S) High Level
Architecture (HLA)– Framework and Rules, 2010, 26 p.

[7] Dahmann J., Morse M., "High Level Architecture for Simulation: An Update",
Proceedings. 2nd International Workshop on Distributed Interactive Simulation
and Real-Time Applications, 1998, pp. 32–40

[8] Straßburger S., Overview about the High Level Architecture for Modelling and
Simulation and Recent Developments. Simulation News Europe 16, 2006,
pp. 5–14

[9] IEEE, IEEE Standard for Modeling and Simulation (M&S) High Level
Architecture (HLA)– Object Model Template (OMT) Specification, 2010, 100 p.

[10] Möller B., Karlsson M., Herzog R., Wood D., Security in Simulation – New
Authorization Opportunities in HLA 4, Virtual Simulation Innovation Workshop,
2021

[11] Möller B., Dubois A., Leydour P., Verhage R., RPR FOM 2.0: A Federation
Object Model for Defense Simulations, Fall Simulation Interoperability
Workshop, 2014

[12] IEEE, IEEE Standard for Modeling and Simulation (M&S) High Level
Architecture (HLA)– Federate Interface Specification Specification, 2010, 363 p.

[13] Pu I.M., Fundamental data compression, Oxford: Butterworth-Heinemann, 2006,
269 p.

[14] ISO/IEC, ISO/IEC 21320-1:2015 Information technology – Document Container
File – Part 1: Core, 2015, 8 p.

[15] Wallace G., The JPEG Still Picture Compression Standard, Communications of
the ACM 34.4, 1991, pp. 30–44

52

[16] Shinde S., Computer Network. Daryaganj, New Age International Ltd, 2000,
404 p.

[17] Holmala O., Designing a Protocol Agnostic Rule Engine for a Cross-Domain
Solution, Tampere University, 2019, Available: http://urn.fi/URN:NBN:fi:tty-
201905031471

[18] Gervais C, Chaudron J.B., Siron P., Leconte R., Saussie D., Real-Time
Distributed Aircraft Simulation through HLA, Proceedings of the 2012 IEEE/ACM
16th International Symposium on Distributed Simulation and Real Time
Applications (DS-RT '12), IEEE Computer Society, 2012

[19] Nandi S., Rodriguez F., Wood D., Granowetter L., The MAK High-Performance
RTI : Performance by Design, 2015, Available:
https://edstechnologies.com/Mailer/may15/newsletter/images/MAK_RTI_Perfor
mance.pdf

[20] Ping I., HLA performance measurement, Naval Postgraduate School, 2000, 105
p., Available:
https://archive.org/details/hlaperformanceme109457709/page/n9/mode/2up?q=
10

[21] Lockheed Martin, Prepar3D professional plus, 2020, Available (accessed on
05.04.2021): https://www.prepar3d.com

[22] Wireshark Foundation, Wireshark, 2021, Available (accessed on 05.04.2021):
https://www.wireshark.org/

[23] MAK technologies, VR-Exchange, 2021, Available (accessed on 05.04.2021):
https://www.mak.com/products/link/vr-exchange

[24] Oracle, Javax.swing package, 2020, Available (accessed on 01.05.2021):
https://docs.oracle.com/javase/7/docs/api/javax/swing/package-
summary.html#package_description

[25] Experts from Insta DefSec Oy, Insta DefSec Oy, Tampere, Interview on
30.04.2021.

[26] Gütlein M., Baron W., Renner C., Djanatliev A., Performance Evaluation of HLA
RTI Implementations, 2020 IEEE/ACM 24th International Symposium on
Distributed Simulation and Real Time Applications (DS-RT), 2020, pp. 1–8

[27] Akram A., Sarfraz M. S., Shoaib U., HLA Run Time Infrastructure: A
Comparative Study, Mehran University Research Journal of Engineering and
Technology, 2019, pp. 961–972

