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Abstract
Recent independent analyses by Bonnetain–Schrottenloher and Peikert in Eurocrypt 2020 significantly reduced the estimated
quantum security of the isogeny-based commutative group action key-exchange protocol CSIDH. This paper refines the esti-
mates of a resource-constrained quantum collimation sieve attack to give a precise quantum security to CSIDH. Furthermore,
we optimize large CSIDH parameters for performance while still achieving the NIST security levels 1, 2, and 3. Finally, we
provide a C-code constant-time implementation of those CSIDH large instantiations using the square-root-complexity Vélu’s
formulas recently proposed by Bernstein, De Feo, Leroux and Smith.

Keywords Post-quantum cryptography · Isogeny-based cryptography · Quantum cryptanalysis · [Finite field arithmetic] ·
[Constant time implementations]

1 Introduction

Based on supersingular elliptic curve isogenies defined over a
primefieldFp, the commutative isogeny-based key exchange
protocol CSIDH is a promising isogeny-based protocol that
has received considerable attention since its proposal in Asi-
acrypt 2018 by Castryck, Lange, Martindale, Panny and
Renes [13].

CSIDH can be used analogously to the Diffie–Hellman
protocol to produce a non-interactive key exchange scheme
between two parties.Moreover, CSIDH can be adapted as the
underlying cryptographic primitive for more elaborate appli-
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cations such as key encapsulation mechanisms, signatures
and other primitives. It has remarkably small public keys (in
fact, even with the parameter scaling proposed in this paper
it still has shorter keys than the four public key encryption
round-3 finalists of the NIST post-quantum standardization
process [36] 1), and allows a highly efficient key validation
procedure. This latter feature aids in making CSIDH bet-
ter suited than most (if not all) post-quantum schemes for
resisting Chosen Ciphertext Attacks (CCA) and for support-
ing static-dynamic and static-static key exchange settings.
On the downside, CSIDH has a significantly higher latency
than other isogeny-based protocols such as SIDH and SIKE
[3,31]. Furthermore, as this paper will discuss in detail, sev-
eral recent analyses revised CSIDH’s true quantum security
downwards (see for example [12,38]).

The CSIDH framework considers a set of curves with
the same Fp-endomorphism ring. Isogenies between curves
are represented by ideal classes in this ring, which form a
group, so that an ideal a can operate over a curve E to pro-
duce a new curve E ′. We denote this by a ∗ E = E ′, and
call it the CSIDH group action. One very appealing fea-
ture of the CSIDH group action is its commutative property.
This allows one to apply the group action directly to the
key exchange between two parties by mimicking the Diffie–

1 The SIKE protocol, which is also isogeny-based, does have shorter
keys than our scaled version of CSIDH, but is classified as an “alternate
candidate”
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Hellman protocol. Starting from a base elliptic curve E0,

Alice and Bob first need to choose a secret key a and b,

respectively. Then they can produce their corresponding pub-
lic keys by computing the group actions E A = a ∗ E0 and
EB = b∗ E0. After exchanging these public keys and taking
advantage of the commutative property of the group action,
Alice and Bob can obtain a common secret by calculating
a ∗ EB = (a · b) ∗ E0 = (b · a) ∗ E0 = b ∗ E A.

TheCSIDHprotocol introduced in [13] operates on super-
singular elliptic curves E/Fp expressed in the Montgomery
model as

E/Fp : y2 = x3 + Ax2 + x . (1)

Since E/Fp is supersingular, one has full control of its order,
which is #E(Fp) = (p + 1). The CSIDH protocol chooses
p such that p + 1 = 4

∏n
i=1 �i , where �1, . . . , �n−1 are

small odd primes. This enables an efficient computation of
degree-�i isogenies, which correspond to the group action
of ideal li of norm �i . The most demanding computational
task of CSIDH is the evaluation of its class group action,
which takes as input an elliptic curve E0, represented by its
A-coefficient, and an ideal class a = ∏n

i=1 l
ei
i , represented

by its list of exponents (ei , . . . , en) ∈ �−m. .m�n . This list of
exponents is the CSIDH secret key. The output of the class
group action is the A-coefficient of the elliptic curve E A

defined as,

E A = a ∗ E0 = l
e1
1 ∗ · · · ∗ len

n ∗ E0. (2)

The action of each ideal lei
i in Eq. 2 can be computed by

performing ei degree-�i isogeny construction operations, for
i = 1, . . . , n. For practical implementations of CSIDH, con-
structing and evaluating n degree-�i isogenies, plus up to
n(n+1)

2 scalar multiplications by the prime factors �i , domi-
nate the computational cost [15].

Previousworks regularly evaluated andconstructeddegree-
�i isogenies using Vélu’s formulae (cf. [28, §2.4] and [42,
Theorem 12.16]), which cost≈ 6� fieldmultiplications each.
Recently, Bernstein, De Feo, Leroux and Smith presented in
[6] a new approach for constructing and evaluating degree-�
isogenies at a combined cost of just Õ(

√
�) field multiplica-

tions. Later, it was reported in [2] that constant-time CSIDH
implementations using 511- and 1023-bit primes were mod-
erately favored by the new algorithm of [6] for evaluating
Vélu’s formulae.

CSIDH’s Security. The security of CSIDH rests on an ana-
logue of the discrete logarithm problem: given the base
elliptic curve E0 and the public-key elliptic curve E A (or
EB), deduce the ideal class a (or b) (see Eq. 2).

From a classical perspective, the security of CSIDH is
related to the problem of finding an isogeny path from the

isogenous supersingular elliptic curves E0 and E A. Now,
random-walk-based attacks on the whole class group (of
rough size

√
p) have a complexity of Õ( 4

√
p) steps with

constant space (for more details see, [20]). Thus, in order
to provide a security level of 128 classical bits, the prime p
needs to be large enough to support 2256 ideal classes, hence
the choice of a 512-bit prime in the original CSIDH pro-
posal. The parameter m should then be chosen in such a way
that the private key space is also composed of 2256 different
secret keys, which we heuristically expect to fill nearly all
ideal classes.

From a quantum attack perspective, Childs, Jao, and
Soukharev tackled in [16] the problem of recovering the
secret a from the relation E A = a ∗ E0. They managed
to reduce this computational task to the abelian hidden-shift
problem on the class group, where the hidden shift corre-
sponds to the secret a that one wants to find. Previously in
2003 and 2004, Kuperberg and Regev had presented two
sieving algorithms that could solve this problem in subex-
ponential time if they were executed in a quantum setting
[29,39]. In particular, Kuperberg’s procedure has a quantum
time and space complexity of just exp

(
O(

√
log p)

)
. Later,

in 2011, Kuperberg refined his algorithm by adding a colli-
mation sieving phase [30]. The time complexity of this new
variant was still exp

(
O(

√
log p)

)
, but the quantum space

complexity was just O(log p).
In a nutshell, a Kuperberg-like approach for solving the

hidden-shift problem consists of two main components:

1. A quantum oracle that evaluates the group action on a
uniform superposition and produces random phase vec-
tors

2. A sieving procedure that destructively combines low-
quality phase vectors into high-quality phase vectors

The sieving procedure gradually improves the quality of
the phase vectors until they can be measured and reveal some
bits of the hidden shift, and thus the CSIDH secret key.

Recent analyses of this quantum algorithm that were
presented in Eurocrypt 2020 [12,38], point to a significant
reduction of the quantum security provided by CSIDH. Con-
cretely, the original 511-bit prime CSIDH instantiation was
deemed to achieve NIST security level 1 in [13]. However,
the authors of [12] recommended that the size of the CSIDH
prime p should be upgraded to at least 2260 or 5280 bits,
according to what they named as aggressive and conserva-
tive modes, respectively.

Both [12] and [38] focus on breaking the originally pro-
posed instantiations of CSIDH, rather than an exhaustive
analysis of the quantum attack. [12] focuses mainly on
Kuperberg’s first attack and Regev’s attack by providing a
thorough accounting of a quantum group action circuit. [38]
gives a thorough practical and theoretical analysis of Kuper-

123



Journal of Cryptographic Engineering

berg’s second algorithm and provides many optimizations.
While [38] simulates the full algorithm to give very precise
estimates, this methodwill not extend to the larger primes we
consider here because, by design, even the classical aspects of
the attack should be infeasible to compute.We use the results
of the theoretical analysis in [38] to count resource use with-
out a full simulation. This allows us to evaluate very large
primes and to explore depth-width tradeoffs and thus to com-
pare to NIST’s security levels. We argue that for the primes
we consider, CSIDH’s quantum security depends mainly on
the cost of the collimation sieve, not the current isogeny eval-
uation costs.

The SQALE of CSIDH. We use the acronym SQALE for
“Sublinear VéluQuantum-resistant isogeny Action with Low
Exponents.” The SQALE of CSIDH is a CSIDH instance
such that p = 4 · ∏n

i=1 �i − 1 is a prime number with small
odd primes �1, . . . , �n , and the key space size N � √

p is
determined by using only the k ≤ n smallest �i ’s, where the
exponents ei of the ideal class a = ∏n

i=1 l
ei
i , are drawn from

a small range, possibly {−1, 0, 1}.
The original CSIDH protocol chose exponents large

enough that the key space is approximately equal to the class
group. We show in Sect. 2 that a SQALE’d CSIDH preserves
classical security. We also argue in Sect. 4 that quantum
attackers need to attack the entire class group, regardless of
the subset that keys are drawn from, so we can choose low
exponents and preserve quantum security as well. With this
change, we improve the trade-off between the performance
of the key exchange and its quantum security. To further
improve performance of the large CSIDH instances consid-
ered in this paper, we incorporate the Vélu’s improvedO(

√
�)

algorithm for isogeny computations.
On a related idea, the isogeny-based signature scheme

SeaSign presented in [19], uses the notion of lossy keys,
where the ideals

∏
i �

ei
i cover only a small part of the class

group. The security guarantees of SeaSign are partially based
on the computational assumption that is hard to distinguish
the special case of lossy keys from uniform ideal classes (see
[19, §8.1]).

As an aside, note that increasing the size of the prime
makes it impossible to compute the class group with current
technology as it has been done with the CSIDH-512 prime
to derive related schemes such as the CSI-FiSh signature
scheme [9]. Quantum computing would allow for efficient
computation of larger class groups in the future, but this does
not affect the CSIDH scheme itself and a scheme like CSI-
FiSh is incompatiblewith our ideaof lowexponents anyways.

Outline. In this work, we present a detailed classical and
quantum cryptanalysis of CSIDH and its constant-time C
implementation using our revised prime sizes,which, accord-
ing to our analysis, are required to achieve the NIST security
levels 1, 2 and 3 (Table 1).

Section 2 gives background on CSIDH, efficient methods
for computing its group action, and the quantum cost models
we use. In Sect. 3 we describe the quantum collimation sieve
attack and explain how to estimate its cost. We account for
larger primes, depth limits, improved memory circuits, and
find several small optimizations. The sieve only seems able
to attack the full class group, and not any smaller generating
subset. We give several arguments for this in Sect. 4, ulti-
mately concluding that for a quantum attacker, only the size
of the class group affects the total quantum attack cost. These
conclusions suggests that an ideal scheme will operate on
isogenies of a number of degrees, but with small exponents
for each. Section 5 summarizes the quantum and classical
security and the effects of hardware limits.

We then give a concrete cost analysis of the CSIDH group
action for a key exchange with different sizes of primes p
in Sect. 6. We account for different options of the exponent
intervalm, from theminimal setting �−1. .1� (with orwithout
zero) up to the original proposal of �−5. .5�. For each inter-
val, we apply the framework reported in [15] to select optimal
bounds (differentmi for each prime) and their corresponding
optimal strategies. Starting from the Python-3CSIDH library
reported in [2], we present the first constant-time implemen-
tation of large CSIDH instantiations supporting the O(

√
�)

isogeny-evaluation algorithm from [6]. Our C library also
includes a companion script that estimates quantum attack
costs. Our software is freely available from,

https://github.com/JJChiDguez/sqale-csidh-velusqrt.

2 Background

This section presents some of the main concepts required for
performing classical and quantum attacks on CSIDH.

2.1 Construction and evaluation of odd degree
isogenies usingVélu Square-root Algorithm

Let � be an odd prime number, Fp a finite field of large
characteristic, and A a Montgomery coefficient of an ellip-
tic curve E A/Fp : y2 = x3 + Ax2 + x . Given an order-�
point P ∈ E A(Fp), the construction of an isogeny φ :
E A 	→ E A′ of kernel 〈P〉 and its evaluation at a point
Q = (α, β) ∈ E A(Fp) \ 〈P〉, consists of the computation of
the Montgomery coefficient A′ ∈ Fp of the co-domain curve
E A′/Fp : y2 = x3 + A′x2 + x and the x-coordinate φx (α)

of φ(Q).

Using the recent Vélu square-root algorithm (aka
√
élu)

as presented by Bernstein, De Feo, Leroux and Smith in [6],
A′ and φx (α) can be computed as (see also [17,33,34] and
[2]),
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Table 1 Summary of results NIST security level CSIDH quantum
security in bits

CSIDH prime
size in bits

Performance
(gigacycles)

Level 1 124 4096 23.2

Level 1 135 5120 42.2

Level 2 148 6144 74.8

Level 3 >160 8192 199.1

Level 3 >171 9216 292.4

Quantum security is depth×width, including a hardware limit of 280 for Level 1, 2100 for Level 2, and 2119

for Level 3, as well as a 210 overhead for error correction, and assuming a quantum oracle free of cost.
Performance based on the CSIDH variant OAYT-style (cf. Sect. 2.2)

A′ = 2
1 + d

1 − d
and φx (α) = α� hS(1/α)2

hS(α)2
,

where d =
(

A − 2

A + 2

)� ( hS(1)

hS(−1)

)8

,

S = {1, 3, . . . , � − 2}, and

hS(X) =
∏

n∈S

(X − x([n]P)).

Hence, the main cost associated with computing A′ and
φx (α), corresponds to the computation of hS(X). Given
E A/Fp an order-� point P ∈ E A(Fp), and some value
α ∈ Fp we want to efficiently evaluate the polynomial,

hS(α) =
�−1∏

i

(α − x([i]P)).

From Lemma 4.3 of [6],
where,

F0(Z , X) = Z2 − 2X Z + X2;
F1(Z , X) = −2(X Z2 + (X2 + 2A0X + 1)Z + X);
F2(Z , X) = X2Z2 − 2X Z + 1.

This suggests a rearrangement à la Baby-step Giant-step
as,

hS(α) =
∏

i∈I

∏

j∈J
(α − x([i + s · j]P))(α − x([i − s · j]P)),

where s is a fixed integer representing the size of the giant
steps and I,J are two sets of indices such that I±sJ covers
S.

Now hS(α) can be efficiently computed by calculating the
resultants of two polynomials in Fp[Z ], of the form

hI (Z) :=
∏

xi ∈I
(Z − xi )

E J ,α(Z) :=
∏

x j ∈J

(
F0(Z , x j )α

2 + F1(Z , x j )α + F2(Z , x j )
)

The most demanding operations of
√
élu require com-

puting four different resultants ResZ ( f (Z), g(Z)) of two
polynomials f , g ∈ Fp[Z ]. Those four resultants are com-
puted using a remainder tree approach supported by carefully
tailored Karatsuba polynomial multiplications. In practice,
the computational cost of computing degree-� isogenies
using

√
élu is close to K (

√
�)log2 3 field operations for a con-

stant K . For more details about these computations see [2,6].

2.2 Summary of CSIDH

Here, we give a general description of CSIDH. A more
detailed description of the CSIDH group action computation
can be found in [13,14,32,37].

The most demanding computational task of CSIDH is
evaluating its class group action, whose cost is dominated
by performing a number of degree-�i isogeny constructions.
Roughly speaking, three major variants for computing the
CSIDH group action have been proposed, which we briefly
outline next.

Let π : (x, y) 	→ (x p, y p) be the Frobenius map and N ∈
Z be a positive integer. Working now with points over the
extension field Fp2 , let E[N ] denote the N -torsion subgroup
of E/Fp2 defined as, E[N ] = {P ∈ E(Fp2) : [N ]P = O}.
Let also

E[π − 1] = {P ∈ E(Fp2) : π P = P}

and

E[π + 1] = {P ∈ E(Fp2) : π P = −P}.

Note that E[π − 1] corresponds to the original set of Fp-
rational points, whereas E[π + 1] is a set of points of the
form (x, iy)where x, y ∈ Fp and i = √−1 so that i p = −i .
We call E[π + 1] the set of zero-trace points.

TheMCR-style [32] of evaluating theCSIDHgroup action
takes as input a secret integer vector e = (e1, . . . , en) such
that ei ∈ �0. .m�. From this input, isogenies with kernel gen-
erated by P ∈ E A[�i ] ∩ E A[π − 1] are constructed for
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exactly ei iterations. In the case of the OAYT-style [37],
the exponents are drawn from ei ∈ �−m. .m�, and P lies
either on E A[�i ] ∩ E A[π − 1] or E A[�i ] ∩ E A[π + 1] (the
sign of ei determines which one will be used). We stress
that for constant-time implementation of CSIDH adopting
the MCR and OAYT styles, the group action evaluation
starts by constructing isogenies with kernel generated by
P ∈ E A[�i ] ∩ E A[π − sign (ei )] for ei iterations, followed
by dummy isogeny constructions that are performed for the
remaining (m − ei ) iterations.

On the other hand, the dummy-free constant-time CSIDH
group action evaluation, proposed in [14], takes as secret
integer vector e = (e1, . . . , en) such that ei ∈ �−m. .m� has
the same parity as m. Then, one starts constructing isogenies
with kernel generated by P ∈ E A[�i ] ∩ E[π − sign (ei )] for
exactly ei iterations. Thereafter, one alternatingly computes
E A[�i ] ∩ E A[π − 1] and E A[�i ] ∩ E A[π + 1] isogenies for
the remaining mi − ei iterations (for more details see [14]).

2.3 Quantum computing

We refer to [35] for the basics and notation of quantum com-
puting. Following [26], we treat a quantum computer as a
memory peripheral of a classical computer, which can mod-
ify the quantum state with certain operations called “gates.”
We give the cost of a quantum algorithm in terms of these
operations (specifically Clifford + T gates), which we treat
as a classical computation cost. With this we can directly
add and compare quantum and classical costs, since we mea-
sure quantum computation costs in classical operations. We
use the “DW”-cost, which assumes that the controller must
actively correct all the qubits at every time step to prevent
decoherence. This means the total cost is proportional to the
total number of qubits (the “width”), times the total circuit
depth.

We depart from [26] by giving an overhead of 210 classical
operations for each unit of DW -cost, to represent the over-
head of quantum error correction. With surface code error
correction, every logical qubit is formed of many physical
qubits, which continuously run throughmeasurement cycles.
We assume each cycle of each physical qubit is equivalent to
a classical operation. By this metric, Shor’s algorithm has an
overhead of 217 for each logical gate [23]. The algorithm we
analyzewill needmuchmore error correction, but we assume
continuing advances in quantum error correction will reduce
this overhead to 210. Since a surface code needs to maintain
a distance between logical qubits in two physical dimensions
and one dimension of time [21], we assume the 210 overhead
is the cube of the code distance, and thus every logical qubit

is composed of 210· 23 physical qubits.

3 Quantum attack

We follow Peikert [38] and analyze only Kuperberg’s second
algorithm [30]. Because of this, and our assumption that clas-
sical operations are only 210 times cheaper than quantum, the
tradeoffs of [10,11] do not help for our analysis.

Kuperberg’s algorithm can be divided into 3 stages:

1. Constructing phase states, where we compute an arbi-
trary isogeny action in superposition, perform a quantum
Fourier transform, then measure the result. This leaves
a single qubit in a random phase state with some asso-
ciated classical data, which forms the input to the next
stage.

2. A sieving stage, where we use a process called “colli-
mation” to destructively combine phase states to pro-
duce “better” phase states. This requires some quantum
arithmetic, but the main costs are quantum access, in
superposition, to a large table of classical memory, and
subsequent classical computations on this table.

3. A measurement stage, where we measure a sufficiently
“good” phase state and recover some number of bits of
the secret key.

We repeat these steps until we recover enough bits of the
secret key to exhaustively search the remainder.

Asymptotically, the sieving stage is the most costly, so we
focus on that. In Sect. 3.6 we justify our choice to ignore the
cost of constructing phase states.

3.1 Overview of Kuperberg’s algorithm

We start with an abelian group G (the class group) of order
N and two injective functions f : G → X and h : G → X
such that h(x) = f (x − S) for some secret S. For this
description we assume G is cyclic. This is generally untrue
for class groups, but a quantumattacker can recover the group
structure as a polynomial-cost precomputation (see [12, Sec-
tion 4]). They can then decompose the group into cyclic
subgroups, perform a quantum Fourier transform on each,
and collimate them independently. The total amount of col-
limation will be the same, so we focus on a cyclic group as
it is easier to describe.

For CSIDH, the function f will identify an element of the
class group with an isogeny from E0 to some other curve E ,
and output the j-invariant of that curve. The function h is the
same, but starts with a public key curve E A.

To begin, we generate a superposition over G (ignoring
normalization),

∑
g∈G |g〉. Then we initialize a single qubit

in the state |+〉 = |0〉 + |1〉, and use it to control applying
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either f or h:

∑

g∈G

|0〉 |g〉 | f (g)〉 + |1〉 |g〉 |h(g)〉 (3)

Then we measure the final register, finding f (g) = h(g + S)

for some g. Because f and h are injective, this leaves only
two states in superposition:

|0〉 |g〉 + |1〉 |g + S〉 . (4)

This is the ideal state. Naive representations of the group will
not produce precisely this state. Section 4.1 explains why our
best option is to fix a generator g, and produce superpositions
∑N−1

x=0 |x〉 |xg〉, which leads to a final state

|0〉 |x〉 + |1〉 |x + s〉 (5)

where S = sg. At this point, we apply a quantum Fourier
transform (QFT), modulo the group order N , to produce

|0〉
N−1∑

k=0

e2π i xk
N |k〉 + |1〉

N−1∑

j=0

e2π i (x+s) j
N | j〉 . (6)

Then we measure the final register and find some value b,
leaving us with the state

|0〉 e2π i xb
N + |1〉 e2π i (x+s)b

N ≡ |0〉 + e2π i sb
N |1〉 . (7)

From this point, we define ζ b
s = e2π i bs

N . We emphasize that
it is critical that the QFT acts as a homomorphism between
the elements of the group and phases modulo N , even an
approximate homomorphism as in [12].

A classical computer with knowledge of s can easily sim-
ulate input phase vectors, and the cost of the remainder
of the algorithm is mainly classical. Peikert thus simulated
the remaining steps of the algorithm for a precise security
estimate [38]. We hope to choose parameters such that the
remaining steps are infeasible, sowe cannot classically simu-
late them. Instead we extrapolate Peikert’s results to estimate
the full cost, with some small algorithmic improvements we
now describe.

Phase vectors with data. Kuperberg works with states of the
form in Eq. 7 to save quantum memory; however, we will
maintain the factor b in quantum memory.

We define a phase vector with data to have a length
L , a height S, an altitude A, and a phase function B :
[L] → [S]A (defining [N ] := {0, . . . , N − 1} and [N ]M :=
{0, M, 2M, . . . , M(N − 1)}), as follows:
L−1∑

j=0

ζ
B( j)
s | j〉 |B( j)〉 . (8)

The phase function B is known classically.
The vector in Eq. 7 almost has this form, with L = 2,

B(0) = 0 and B(1) = b (in fact B(0) = 0 for all phase
vectors), and S = b. To add the data to it, we simply use the
qubit to control a write of the value of b to a new register.

Starting froman initial phase vectorwith data,we can dou-
ble its length with a new initial phase vector. We describe the
procedure for a power-of-two length, which is much easier,
but other lengths are possible with relabeling. We first con-
catenate the new phase vector, then treat the new qubit as the
most significant bit of the index j :

(
|0〉 + ζ b′

s |1〉
)

⊗
⎛

⎝
L−1∑

j=0

ζ
B( j)
s | j〉 |B( j)〉

⎞

⎠

=
L−1∑

j=0

ζ
B( j)
s | j〉 |B( j)〉 +

2L−1∑

j=L

ζ
B( j−L)+b′
s | j〉 |B( j − L)〉 . (9)

On the left sum, the first bit of j is 0, and on the right sum it is
1.We then redefine the phase function to be B ′ : [2L] → [S+
b′], where B ′( j) = B( j) if j < L and B ′( j) = B( j−L)+b′
if j ≥ L . To update the phase register,we performan addition
of b′, controlled on the first qubit (which is now the leading
bit of the index j). The state is now twice as long, at the cost
of just one quantum addition, and classical processing of the
table of values representing B.

We can produce initial phase vectors with data of length
L = 2� by starting with an initial phase vector, adding its
phase function to a quantum register, then repeating this dou-
bling process � − 1 times. The height of such a vector will
be the maximum of � uniformly random values from 0 to 2n ;
we assume this is simply 2n . The altitude will be the least
common multiple of these vectors and we assume this is 1.

The next part of the algorithm is to collimate phase vec-
tors until their height equals approximately their length. A
collimation takes r phase vectors of some length L , height
S, and altitude A, and destructively produces a new phase
vector of length L ′, height S′, and altitude A′, where S′ < S
and A′ ≥ A. For efficiency, we try to keep L ′ = L .

Once the height equals the length, say S0, we perform a
QFT and hopefully recover lg S0 bits of the secret s, starting
from the bit at lg(A). To recover all of the secret bits, we run
the same process but target different bits each time, sequen-
tially or in parallel. Classical simulations show that each run
recovers only lg S0 − 2 bits on average [38].

Adaptive Strategy. The length of the register in Eq. 5, which
undergoes to the QFT, governs the cost of the sieve. Ideally,
after finishing one sieve, we would use the known bits of
the secret to reduce the size of the problem. For example,
if the group order is N = 2n for some n, then if the secret
is s = s12k + s0 and we know s0, we start with a state
|0〉 |x〉 + |1〉 |x + s mod 2n〉 for some random, unknown x .
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We can subtract s0 from the second register, controlled by
the first qubit, to obtain

|0〉 |x〉 + |1〉
∣
∣
∣x + s12

k mod 2n
〉

(10)

The least significant k bits of the second register are the same
in both states, so we can remove or measure these states, and
only apply the QFT to the remaining bits. Then our initial
phase vectors start with a height of 2n−k , rather than 2n .

This is Kuperberg’s original technique. Peikert analyzed
a non-adaptive attack, using a high-bit collimation in case of
non-smooth group orders. We remain uncertain whether an
attack can be adaptive with a prime-order group. With prime
orders, there is little correlation between the bits of x and
x + s mod N , even if we know most of the bits of s.

Alternatively, we could represent group elements by expo-
nent vectors. In that case, we end up with the state

|0〉 |x〉 + |1〉 |x + s mod L〉 (11)

where L is the lattice representing the kernel of the map from
exponent vectors to class group elements. However, a direct,
bit-wise QFT does not define a homomorphism from vectors
modulo a lattice are to phases (see Sect. 4.1).

We could try to represent integer exponent vectors x by
vectors v such that BLv = x, where BL is a matrix of the
basis vectors of the lattice. We would find all bits of a single
component, then clear that component for future sieves. Since
v = B−1

L x, and B−1
L = 1

det(BL )
adj(BL), and the adjugate of

an integer matrix is an integer matrix, the smallest nonzero
entry of B−1

L in absolute value is at least 1/ det(BL). This
means one needs lg det(BL) bits of precision for each com-
ponent v. However, det(BL) = det(L) = N , the size of the
class group, so each component is as hard to solve as the
entire problem under a generator-based representation, and
we still cannot adaptively sieve within each component.

It is possible that adaptive sieving on a prime-order group
is inherently difficult. There is a large gap between the classi-
cal difficulty of discrete log in a prime-order group compared
to a smooth-order group, so a similar gap may exist in the
highly similar abelian hidden shift problem. In summary, we
assume that partial knowledge of the bits of a secret s in an
abelian hidden shift problem gives no advantage in finding
unknown bits for groups of prime order. More formally:

Assumption 1 If it costsC to recover t secret bits in an abelian
hidden shift problem for a group of prime order, it will still
cost max{C, O(2n−k)} to recover t bits even if k bits out of
n are already known.

Each run of the sieve recovers about lg S0−2 bits on aver-
age, so the total number of sieves is lg N

lg S0−2 . If this assumption
is wrong, then in the worst case, the total sieving cost will be

dominated by the first run of the sieve, leading to a reduction
of ≈ 7 bits of security.

3.2 Collimation

From vectors of length L and height S, we repeatedly col-
limate to a height S′ as follows: First we concatenate the
vectors and add together their phase functions, which will
match the new phase. Addition is done in-place on one of the
phase registers. Let j = ( j1, j2) so that | j1〉 | j2〉 = |j〉, and
let B(j) := B1( j1) + B2( j2). The resulting state will be:

L−1∑

j1=0

ζ
B1( j1)
s | j1〉 |B1( j1)〉

L−1∑

j2=0

ζ
B2( j2)
s | j2〉 |B1( j1) + B2( j2)〉

=
L−1∑

j1, j2=0

ζ
B(j)
s |j〉 |B1( j1)〉 |B(j)〉 . (12)

Thenwe divide B(j) by S′ and compute the remainder and
modulus:

L−1∑

j1, j2=0

ζ
B(j)
s |j〉 |B1( j1)〉

∣
∣
∣
⌊

B(j)
S′

⌋〉 ∣
∣B(j) mod S′〉 . (13)

We then measure the value of
⌊

B(j)
S′

⌋
, which gives some

value K . Let J ⊆ L × L be the set of indices j1 and j2
such that

⌊
B1( j1)+B2( j2)

S′
⌋

= K . Since we know K , B1, and

B2 classically, we can find the set J and use it to construct
a permutation π : J → [L ′], where L ′ = |J |. Defining
a new phase function B ′ : [L ′] → [S/S′] where B ′( j) =
B(π−1( j)) mod S′, we find that B(j) = K + B ′(π(j)) for
all j ∈ J . Equation 14 shows that the factor of K only intro-
duces a global phase and thus we can ignore it.

We now fix the phase vector that was left after measure-
ment. First, wemust erase B1( j1).We use a quantum random
access classical memory (QRACM) look-up uncomputation,
which only needs to look up values of j1 which are part of a
pair in J . We expect L ′ such values.

Then we compute π(j) in another register. This is a
QRACM look-up from a table of L ′ indices with words of
size lg L ′. Letting j ′ = π(j), this leaves the state

∑

j∈J

ζ
B(j)
s |j〉 |π(j)〉 ∣∣B(j) mod S′〉

=
L ′−1∑

j ′=0

ζ
K+B′( j ′)
s

∣
∣
∣π−1( j ′)

〉 ∣
∣ j ′

〉 ∣
∣B ′( j ′)

〉
(14)

We now do a QRACM look-up uncomputation in a table of
L ′ indices to erase π−1( j ′).
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(b)

(a)

Fig. 1 A short, wide look-up circuit for a table T = [t0, t1, . . . ], where
T0 and T1 are two halves of T

This technique is analogous with r > 2. We uncompute
B1( j1), B2( j2), . . . , Br−1( jr−1) with a single look-up. We
can do this because each value of ji that appears in a tuple
in J likely appears in a unique tuple, since there are only L
possible values of ji and it appears in Li tuples. Since this is
an uncomputation, the extra word size is irrelevant [4]. The
greatest cost here seems to be computing the permutation π .

QRAM. Collimations repeatedly perform look-ups in quan-
tum random access classicalmemory (QRACM), also known
as quantum read-only memory (QROM). Given a large table
of classical data T = [t0, . . . , tn−1] of w-bit words, we want
a circuit to perform the following:

|i〉 |0〉 	→ |i〉 |ti 〉 . (15)

The simplestmethod is a sequential look-up fromBabbush
et al. [4], while Berry et al. [8] provide a version that par-
allelizes nicely. Beyond the minimum depth of that circuit,
we use a wide circuit, Fig. 1. Our cost estimation checks the
cost of each of these circuits and chooses whichever has the
lowest cost under each depth constraint; often this is Berry
et al.’s circuit with k ≈ 8.

Following Peikert we assume that if our target length is L ,
the actual look-ups will need to access Lmax = 8L words.

Memory latency has no effect on our final costs. For both
the look-ups and the permutation computation, we added a
depth of (100W )1/2, where W is the total hardware (classical
and quantum) needed. Signal propagation over a single bit
should be faster than execution of a single gate, which is our
unit of depth, so (100W )1/2 should safely overestimate the
latency of accessing two-dimensional memory. This still had

no effect on our final costs except under extreme conditions
of more than about 2130 classical processors.

3.3 Permutation

To compute the permutation π , we start with r sorted lists of
L elements in the range [S]. We want to find all tuples that
add up to a specified value K in [r S]. For our estimation, we
checked the cost of three different approaches and different
r and chose the cheapest, which was often r = 2.

Problem 1 (Collimation permutation) Let L , S1, and S2 be
integers such that S1 � S2 � L . On an input of r sorted
lists B1, . . . , Br of L random numbers from 0 to S1 and an
integer K , list all r -tuples from B1 ×· · ·× Br such that their
sum is in {K S2, K S2 + 1, . . . , K S2 + S2 − 1}.

One approach is to iterate through all (r − 1)-tuples of
elements from B1 to Br−1, compute the sum for each tuple,
then search through Br to find all elements that produce a
sum in the correct range. This has a cost of approximately
Lr−1 lg L , since we expect to check only 1/Lr−1 elements
in Br for each (r − 1)-tuple. With appropriate read-write
controls, this parallelizes perfectly.

The structure of the sieve guarantees S2 ≥ Lr for all but
the final collimation. This means we cannot guess a value for
the sum of the first r/2 lists, then search for a matching sum
in the remaining lists, because we would need to guess r

2 S2
values, raising the cost over Lr . This prevents divide-and-
conquer strategies like with a subset-sum, as in [11].

A lower-cost but memory intensive algorithm first merges
s of the lists into a single sorted list of Ls s-tuples and
their sums, at cost Ls(s lg L). Then it exhaustively searches
the remaining Lr−s tuples, and searches for matches in the
merged, sorted list. The total cost is O(Ls + Lr−ss lg L). We
choose s = �r/2�.

We assume both classical approaches parallelize per-
fectly, but we track the total numbers of classical processors
required to fit in any depth limit.

Grover’s algorithm. A simple quantum approach is Grover’s
algorithm, searching through the set of Lr r -tuples for those
whose sum is in the correct range. This requires O(Lr/2)

iterations, but each iteration requires r look-ups, which each
cost O(L). Each Grover search returns 1 possible tuple, cre-
ating a coupon-collector problem, so we repeat the Grover

search L lg L times. The cost thus grows as L
r+3
2 lg L , which

improves on the classical approach for r ≥ 5.
The cost of Grover’s algorithm gets much worse under

a depth limit. Grover oracles should minimize their depth
as much as possible, and since the look-up circuits paral-
lelize almost perfectly, we analyze only the wide look-up
as a Grover oracle subroutine. We assume the L lg L search
repetitions are parallel as well.
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3.4 Sieving

To find the cost of each sieve repetition, we first find the
depth of the tree of sieves. First we follow [5] to derive some
facts about the distribution of phase vectors after sieving. Let
K = {K1, . . . , Ks} be all possible measurement results from
collimation. We treat each of the Lr states in superposition
as i.i.d. random variables Xi with values in K , defining pi =
P[X = Ki ]. Since the states are in uniform superposition, we
imagine that measurement selects one such state X j . Let W j

be the number of other states in the superposition with the
same value as X j ; it equals 1+∑

i �= j 1Xi =X j . Conditioning
on X j = Km gives us

W j |(X j = Km) = 1 +
∑

i �= j

1Xi =Km ∼ 1 + Bin(Lr − 1, pm).

This means

P[W j = w] =
s∑

m=1

P[W j = w|X j = Km]P[X j = Km]

=
(

Lr − 1

w − 1

) s∑

m=1

pw
m (1 − pm)Lr −w. (16)

The size of the collimated list is the expected value of W j :

E[W j ] =
Lr
∑

w=0

w

(
Lr − 1

w − 1

) s∑

m=1

pw
m (1 − pm)Lr −w (17)

=
s∑

m=1

1

Lr

Lr
∑

w=0

(
Lr

w

)

w2 pw
m (1 − pm)Lr −w

︸ ︷︷ ︸
(Am )

(18)

In the first layer of collimation X is uniformly random so
pm = S1

S0
andW j is binomial, givingE[W j ] = S1

S0
(Lr −1)+1.

(Am) is the expected value of the square of Bin(Lr , pm),
implying E[W j ] equals

s∑

m=1

1

Lr

(
(L2r + Lr )p2m − Lr pm

)
= (Lr + 1)

s∑

m=1

p2m − 1.

To find pm for later collimations, we assume X is a sum of
r i.i.d. uniformly random variables with values in [0, . . . , s]
where s = Si/Si+1. By the central limit theorem this con-
verges to a N (rμ, rσ 2) random variable, whereμ = s/2 and
σ 2 ≈ s2

12 .
We approximate

∑s
m=1 p2m as the integral of the square

of the probability density function for N (μ, σ 2), which is

1
2
√

πσ
. This gives us

E[W j ] ≈ (Lr + 1)

√
3√

rπs
− 1. (19)

This means the size of a new list is approximately
Si+1

Si

√
3

rπ
Lr . We use cr :=

√
3

rπ
as an “adjustor.” Peikert

takes this as 2
3 for r = 2. Using the central limit theorem

might be inaccurate for small r , but in fact our adjustor gives
≈ 0.69 for r = 2, so we assume it is also accurate for r ≥ 3.

This derivation replicates Peikert’s result that each col-
limation reduces the height by a multiplicative factor of
Lr−1cr , with a more precise expression for cr .

We start with a height of N = √
p and we want to reach

a height of S0, so the height of the tree must be

h =
⌈

lg(N/S0)

lg(Lr−1/cr )

⌉

. (20)

Because of the rounding, we might need vectors of length
less than L in the initial layer. Thus, we recalculate: The
height of the phase vectors in the second layer (after the first
collimation) must be Sh−1 = S0(Lr−1/cr )

h−1.
The top layer has height Sh = N , the height of random

new phase vectors. Since Sh−1/Sh is larger than any other
layer, the phase vectors in the top layer only need a length L0

which is less than L . Following Section 3.3.1 of Peikert and
the previous derivation, the sieve requires L0 = (L N

Sh−1
)1/r .

For this top layer we do not have the adjusting factor of
cr because the sum of r uniformly random values up to N ,
modulo N , will still be uniformly random.

This tells us how many oracle calls must be performed:
There will be rh leaf nodes in the tree, and each one must
have length L0. We adjust this slightly: Since each layer has
some probability of failing, we divide this total by (1−δ)h for
δ = 0.02, which is an empirical value from Peikert. We also
add a 20.3 “fudge factor” from Peikert. The above analysis
gives the number of oracle calls.

3.5 Fitting the sieve in a depth limit

We focus on NIST’s security levels, which have a fixed limit
MAXDEPTH on circuit depth, forcing the sieve to parallelize.
The full algorithmconsists of recursive sieving steps, produc-
ing a tree, where we collimate nodes together at one level to
produce a node at the next level. This parallelizes extremely
well, though a tree of height h must do at least h sequential
collimations.

From this, we use MAXDEPTH/h as the depth limit for
each collimation. The cost of collimation is mainly QRACM
look-ups, which parallelize almost perfectly.
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If each collimation has depth dc and the tree has height
h, then MAXDEPTH − hdc is the maximum depth available
for oracle calls. We divide this by the depth for each oracle
call, do, and then by the number of total oracle calls. This
determines the number of oracle calls one must make simul-
taneously.

We also check whether collimation must be parallelized.
We compute the total number of collimations in the tree, then
multiply this by the depth of each collimation. Since one can
start collimating as soon as the first oracle calls are done, the
depth available for collimating is MAXDEPTH−do. This tells
us how many parallel oracle calls the sieve must make, Po,
and the number of parallel collimations, Pc.

If Po > lg(L0)Pc, then we will need to store extra phase
vectors. We compute the depth to finish all the oracle calls,
then subtract the number of phase vectors that are collimated
in that time, to find the number that must be stored.

If Po ≤ lg(L0)Pc, the algorithmcannot parallelize the col-
limation as much as required, because the input rate of phase
vectors is too low. Hence, we must increase Po to lg(L0)Pc.
This slightly overestimates the oracle’s parallelization, since
we can occupy the collimation circuits by collimating at
higher levels in the tree, but since the number of vectors
in successive levels of the tree decreases exponentially, we
expect negligible impact.

3.6 Oracle costs

We propose that the cost of the oracle is the most likely factor
for future algorithmic improvements to reduce CSIDH quan-
tum security. Any improvement in basic quantum arithmetic
will apply to computing the CSIDH group action in superpo-
sition; thus, using estimates from current quantum arithmetic
techniques like [12], will almost certainly overestimate costs
(indeed, the costs they reference have since been reduced
[24]). The alternative approach of [7] was to produce a clas-
sical constant-time implementation to give a lower bound on
cost, since latency, reversibility, and fault tolerance will add
significant overheads.

However, there is some possibility that quantum imple-
mentationsmay be cheaper than reversible classicalmethods.
A prominent example is the recent idea of “ghost pebbles”
[22], which shows that the lower bounds on the costs of
reversibly computing classical straight-line programs [27]
do not hold for quantum computers.

We give some rough estimates for the oracle cost here.
We start with [7] and assume the number of nonlinear bit
operations scales quadraticallywith the size of the prime. The√
élu memory costs 8b+3b log2 b field elements, where b ≈√
�max ≈

√
log p

log log p is the largest isogeny computed. Each
field element is log2 p bits. We assume that this is enough
to hold the “state” of the group action evaluation, and thus

we can apply straight-line ghost pebbling techniques. This is
likely not optimal but it is a first approximation. We assume
that the depth is equal to the number of operations, though
with perfect parallelization up to a factor of log2 p. We treat
each nonlinear bit operation as a quantum AND gate, and do
not include linear bit operation costs.

Pebbling. Reversible computers cannot delete memory, and
“pebbling” is the process of managing a limited amount of
memory (“pebbles”) to compute a program. We refer to [27]
for details.Ghost pebbling [22] is a quantum techniquewhere
wemeasure a state in the {|+〉 , |−〉}-basis, which releases the
qubits but may add an unwanted phase that must be cleaned
up. For our purposes, a pebble will be a state of many qubits,
so with near certainty, a measurement-based uncomputation
will leave a phase that we need to remove.

Our strategy is as follows: Supposewe have enough qubits
to hold s states simultaneously and n steps remaining in
the program. From one state we can compute the next step,
uncompute the previous state with measurements, and then
repeat this; this only requires 2 states at a time. As a base case
for s = 3, this gives the “Constant Space” strategy from [22],
which requires n(n+1)

2 steps. In fact we only need 2 states,
since we either consider the final state separately from this
accounting, or we only need to clear the phase from the final
state.

For a recursive strategy, we pick some k < n, and repeat
the 2-states-at-a-time method to reach step n − k. We then
recurse with s −1 states for the final k steps, then uncompute
the state at step n − k with a measurement. To clean up the
phase from this measurement, we repeat the 2-states-at-a-
time to reach step n − 2k, then recurse for the next k steps.
We repeat this process until all phases are removed.

If C(k, s − 1) is the cost for the recursive step, this has
total cost

⌈n

k

⌉
C(k, s − 1) +

� n
k �∑

i=0

ik. (21)

Based on some simple optimization, we choose k = n
s−1

s .
We find the total costs numerically, and test initial values of
s between 1

2 lg n and 5 lg n to find an optimal value. Table 2
gives the costs of one call to the oracle.

4 Security of low exponents

Oneof ourmain contributions is lowexponents as secret keys.
Our key space is thus a small subset of the class group. We
believe that this extra information does not help a quantum
adversary, for the following reasons:
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Table 2 Estimated CSIDH group action oracle costs in log base 2,
including 210 overhead for total cost and 26.7 hardware overhead for
each logical qubit

Prime Logical Depth Hardware Cost
Size Operations (DW )

512 44.9 44.0 26.5 73.4

1024 46.9 46.0 28.0 77.4

1792 48.5 47.6 29.3 80.3

3072 50.1 49.2 30.6 83.1

4096 50.9 50.0 31.2 84.6

5120 51.6 50.6 31.8 85.7

6144 52.1 51.2 32.2 86.7

8192 52.9 52.0 32.8 88.2

9216 53.2 52.3 33.1 88.8

1. The representation of group elements as a bitstring must
be homomorphic to bitstrings representing integers;

2. Creating an incomplete superposition of states will not
produce properly formed phase vectors; and

3. Incorrect phase vectors as input are likely undetectable,
uncorrectable, and quickly render the sieve useless.

We will explain each point in detail. These support our main
assumptions:

– Quantum adversaries will still need to search the entire
class group;

– The oracle for a quantum adversary will need to evaluate
arbitrary group actions, not just small exponents.

Both points mean that the quantum security depends only
on the size of the class group, not the size of the subset we
draw keys from. Importantly, these assumptions fail if we
restrict the keys to a small subgroup of the class group. It
is critical that the subset of keys generates the entire class
group.

4.1 Group representations

To create the input states,wemust use aQFTwhich computes
a homomorphism between elements of the group and phases
of quantum states. Circuits to do this are well-known only for
modular integers, represented as bitstrings. With a different
representation of group elements (e.g., vectors in lattice), we
either need a custom-builtQFT circuit for that representation,
or we first change the representation to modular integers.
However, a custom-built QFT is equivalent to a change of
representation: we could apply the custom QFT, then the
inverse of the usual QFT to integers, and this will map our
group elements to modular integers.

This seems to restrict us to representing elements of the
class group as multiples of a generator. We might be able to
reduce the cost of the search if we only used small multiples
of this generator; however, low exponents do not correspond
to small multiples. Hence, the exponent vectors will likely
be indistinguishable from randommultiples of the generator.

The state before theQFT has the form |0〉 |x〉+|1〉 |x + s〉,
where x is the coefficient of the generator for the group ele-
ment that we measured. Hence, if x is randomly distributed,
we will still need lg |G| qubits to represent it, and the QFT
will produce random phase vectors of height up to |G|. Since
the cost of the sieve is governed by the height of the input
phase vectors, the cost of the sieve will be the same.

In short, to exploit the fact that secrets are restricted, we
require a representation of group elements that can be homo-
morphically compressed to fewer than lg |G| qubits. We see
no method to do this.

4.2 Incomplete superpositions

The first step of producing phase vectors involves a super-
position over all of G. If we know that the secret s is in a
smaller subset H1 ⊆ G, we could instead sample from H1.
We could even sample from another set H0 for f , though it
must be the same size for the normalization to match. This
produces a superposition

|0〉
∑

g∈H0

|g〉 | f (g)〉 + |1〉
∑

g∈H1

|g〉 |h(g)〉 . (22)

Measuring the final register returns a particular value z =
f (g) for some g ∈ H0 or z = h(g) = f (g − S) for some
g ∈ H1. Let Z = f (H0) ∪ h(H1), and partition it into 3
subsets: Z0 = f (H0) \ h(H1), Z+ = f (H0) ∩ h(H1), and
Z1 = h(H1) \ f (H0). If we measure z ∈ Z0, then the state
after theQFT is just |0〉, since therewas no value g ∈ H1 such
that h(g) = z. Similarly, measuring z ∈ Z1 leaves the state
|1〉. Only if we measure z ∈ Z+ will we have a “successful”
phase vector, i.e., one that is not just |0〉 or |1〉 and has some
information about s.

The size of Z+ is |H0 ∩ (S + H1)| ≤ |H0|, and the prob-
ability of measuring z ∈ Z+ is |Z+|/|H0|. Choosing H0 and
H1 to make this probability large, without knowing S, seems
very challenging. For example:

Theorem 1 If we generate a uniform superposition of expo-
nent vectors with elements in {−m, . . . ,+m}, then for a key
in {−1, 1}n, the probability of a successful phase vector is

(
2m

2m + 1

)n

. (23)

Proof There are 2(2m + 1)n states in superposition when
we measure: (2m + 1)n exponent vectors in superposition
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for each value |0〉 or |1〉 of the leading qubit. Each state has
equal probability. We measure curves, meaning that a curve
reached by both E0 and E1 is twice as likely as a curve
reached by only one or the other.

For small m, the set of curves reached by E0 is close to
a bijection with a hypercube of exponent vectors of width
(2m + 1) and centered at 0. The set of curves reached by E1

is in bijection with a hypercube of exponent vectors of the
same width centered at s, the exponent vector of the secret
key. The intersection of these hypercubes has volume (2m)n ,
giving Eq. 23. ��

4.3 Effects of incomplete superpositions

We define a defective phase vector with fidelity q of length
L as a triple (B, J , |φ〉), where B : {0, . . . , L} → [N ] is
classically known, J ⊆ [L] is not classically known and
|J | = q L , and

|φ〉 =
∑

j∈J

ζ
B( j)
s | j〉 . (24)

If we measure a |0〉 or |1〉 state from an oracle that pro-
duces incomplete superpositions, then q = 1

2 , B(1) = b, but
B(0) = 0 and J = {0} or J = {1}.

In short, a phase vector with q < 1 is one where our
classical beliefs about the set of phases in superposition are
wrong.We know the function B correctly, but it onlymatches
the real state on the unknown subset J . The issue is that the
oracle cannot tell us the fidelity of a new phase vector; our
measurements do not tell us whether we succeeded or not.

We call this fidelity because it represents quantum fidelity
with respect to the state we believe we have, given the classi-
cal information of the function B. This means that if k input
phase vectors are defective, the fidelity of the entire input
state degrades to 2−k . If our final phase vector before mea-
surement has fidelity q with respect to the state we want,
then q is the probability of measuring the same result [35,
Section 9.2.2]. As a rough argument for why fidelity must be
high, even if the QFT partitions the noise so that the high-
order bits always give an accurate result, but the low order
bits are uniformly random, then at least k bits must be uni-
formly random if the probability of a correct measurement
is 2−k .

Hence, if our input states have fidelity q, we need the
fidelity to increase by the time we reach the final state. Quan-
tum circuits without measurement are unitary operations and
thus preserve fidelity, but measurements may increase it, so
we first argue that collimation does not appreciably increase
the fidelity.

Theorem 2 Starting with an initial phase vector of length L
and fidelity q < 1

2 , with height S, if we collimate to a new

height S′, the resulting phase vector is a new defective phase
vector with expected fidelity at most

q + 4

√
ln(L ′)

L ′ , (25)

for L ′ := S
S′ Lq ≥ 40.

Proof The probability of measuring any phase is uniform in
the first collimation. This means pm is constant in Eq. 16, so
the length of any state after measurement, which we denote
X , has distribution 1+Bin(|J | − 1, S′/S) = 1+Bin(q L −
1, p) for p = S′/S and q L = |J |. The length of phases
that we incorrectly believe we have will have distribution
Y ∼ Bin(L − q L, p).

The fidelity of the measured state is X
X+Y . We use

Chernoff bounds to concentrate X and Y to be within a
factor of (1 ± δ) of their means, except with probability
ε := 2 exp(−E[x]δ2/3) + 2 exp(−E[y]δ2/3). With δ =√
3 ln(L ′)/L ′, since q < 1

2 , this gives ε < 5
L ′ .

We know X
X+Y ≤ 1 so we can bound E[ X

X+Y ] as

E

[
X

X + Y

]

≤ 1 + δ

1 − δ

p(q L − 1) + 1

p(q L − 1) + 1 + p(L − q L)
+ ε.

(26)

With careful rearranging we find

q + q

L ′ + 2
√
3

√
ln(L ′)

L ′ + 5

L ′ . (27)

For sufficiently large L ′ this fits the required bound. ��
Theorem 2 shows that for small q, the fidelity increases

only linearly with each collimation. The factor of L ′ is
approximately equal to the actual number of states in super-
position in the collimated phase vector. Each phase vector
is only collimated once for each level of the tree and there
are only ≈ 27 sequential collimations, even at very large
prime sizes. Hence, even if collimation is helpful, it would
only remove the noise from ≈ 7 defective input phase vec-
tors. Each sieving run over a 6144-bit prime needs 276 input
phase vectors and recovers 39 bits of the secret. This means
we would need fidelity greater than 2−38 to gain any infor-
mation, so we would need the probability of failure for each
input vector to be at most 2−31. Given Theorem 1, this nearly
rules out sampling low exponents.

Since sieving is ineffective, can we instead take many
phase vectors, some of which may be defective, and produce
good vectors? We summarize this as the following problem:

Problem 2 (Probabilistic Phase Vector Distillation (PPVD))
Let s be an unknown secret value. As input, there are n input
states |φk〉with labels k, such that with probability p, |φk〉 =
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|0〉 + eiks/N |1〉, with probability 1−p
2 , |φk〉 = |0〉, and with

probability 1−p
2 , |φk〉 = |1〉.

With some probability ε, either output 0 for failure or
output 1 and t states

∣
∣φ j1

〉
, . . . ,

∣
∣φ jt

〉
and their associated

phase multipliers ji , such that, for all i :

∣
∣φ ji

〉 = |0〉 + ei ji s/N |1〉 . (28)

The PPVD problem cannot be solved with ε > 0 for
n = 1:

Lemma 1 There is no quantum channel (circuit plus mea-
surement) that distinguishes a single phase vector from |0〉
or |1〉 without calling the group oracle or learning the secret
s.

Proof Suppose such a quantum channel Φ exists. Since
the states we want to distinguish are constrained to a 2-
dimensional subspace, any measurement will produce a state
in a 1-dimensional space, which is a single vector. Since we
want the output to be a phase vector, our measurement must
produce a valid phase vector

∣
∣φ′〉. Suppose

∣
∣φ′〉 has some

associated phase j . The vector
∣
∣φ′〉 is the basis of our mea-

surement, and thus cannot depend on the input states nor the
secret s, since we assume we do not learn s. Hence, for an
input |φ〉 = |0〉 + eiks/N |1〉, the secret is s, so we require∣
∣φ′〉 = |0〉 + ei js/N |1〉. But if we instead had an input for a
secret s′ �= s, then

∣
∣φ′〉 is not a correct phase vector. ��

The argument of Lemma 1 does not readily extend to n >

1, but we assume that similar arguments exist. The central
issue is that our distillation process must project inputs onto
phase vectors that are correct for an unknown secret phase
multiplier s. We see no way to do this without learning s and
without being able to produce correct phase vectors from
“blank” inputs of |0〉 and |1〉. Either of these cases implies
a more efficient solution to the dihedral hidden subgroup
problem.Wemake that last statement more precise and argue
that we cannot expect to “gain” phase vectors on average:

Lemma 2 If the collimation sieve gives the optimal query
complexity for the dihedral hidden subgroup problem, then
no process can solve PPVD with tε > pn.

Proof For a contradiction, let tε > pn. Assume we have a
perfect phase vector oracle, from which we make n initial
queries. We then take pn of our phase vectors and shuffle
them together with |0〉 and |1〉 vectors. Then we run the pro-
cess that solves the PPVD. If it succeeds, it produces t new
phase vectors, which we add to a growing list; if it fails, we
call the phase vector oracle another t times. Either way we
have t −np new phase vectors, and in the first case we did not
need to call the oracle. Thus each iteration calls the oracle
t(1 − ε) times on average. We repeat this process to create
all the phase vectors that the collimation sieve needs.

If the collimation sieve requires Q states, this process only
calls the oracle Q

t−np t(1 − ε) times. If tε > pn, then

Q

t − np
t(1 − ε) <

Q

t − tε
t(1 − ε) = Q (29)

and thuswe solve the dihedral hidden subgroup problemwith
fewer than Q states. ��

5 Discussing secure CSIDH instantiations

5.1 Quantum-secure CSIDH instantiations

Table 4 presents estimated costs for quantum sieve attacks
against different prime sizes, based on the analysis in Sect. 3.
NIST defines post-quantum security levels relative to the
costs of key search against AES (we assume an offline single-
target attack) and collision search against SHA-3 [36], for
which the most efficient attacks, respectively, are Grover’s
algorithm (which is quantum) and van Oorschot & Wiener’s
(vOW) algorithm (which is classical) [41].

To compare these three algorithms, which have distinct
space-time tradeoffs, we include fixed hardware limits and
add a fault tolerance overhead. Figure 2 shows the space-
time tradeoffs of the three algorithms. These assumptions
are stronger than the assumptions used in the analyses of
other post-quantum schemes, particularly proposed NIST
standards. Since CSIDH, and our ‘SQALE’d version, are not
being considered for standardization, we use riskier assump-
tions in our cost model. This means the performance is not
directly comparable to other post-quantum schemes at the
same security level. Our recommended parameters are a
4096-bit prime for Level 1, 6144 bits for level 2, and 8192
bits for level 3.

Quantum Oracle Costs. Our estimates in this section assume
free oracle costs. The number of oracle calls decreases with
the size of the prime, relative to the total computational
expense, and we need very large primes to reach NIST secu-
rity levels. Further, the sieve can reparameterize to use more
collimationswhen it uses amore expensive oracle. Compared
to a free oracle, we found that the oracle costs from Sect. 3.6
only increase the total cost between 0 and 14 bits, depending
on the prime size, with no change in the NIST security levels.
Since oracle costs are the most likely to change with future
research, we opted to estimate costs based on a free oracle,
which gives us conservative estimates.

Hardware Limits. Grover-like quantum algorithms paral-
lelize very badly, but the collimation sieve parallelizes almost
perfectly. Thus the threshold for security increases as depth
decreases, but CSIDH’s bits of security remain the same.
To an adversary with a high depth budget of 296, SQALE’d
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CSIDH-4096 costs much more to break than AES-128, but
costs much less to break if the adversary must finish their
attack in depth 240. Is SQALE’d CSIDH-4096 as secure as
AES-128?

We assert that it does notmatter if an adversarywith access
tomore than 280 qubits could attackAES-128 at a higher cost
than attacking CSIDH-4096, since such an adversary is unre-
alistic. We constrain an adversary’s amount of “hardware,”
the total of classical processors, memory, and physical qubits
(see Sect. 2.3). All three are given equal weight. Under limits
of both hardware and depth, certain attacks are impossible.
The depths in Table 4 are the minimum depths for which the
collimation sieve can finish under our hardware constraint.
Because Grover search becomes more expensive at lower
depths, this removes high-cost attacks on AES.

Our hardware limit for NIST level 1 is 280, based on [1].
For level 2 we use 2100, the memory contained in a “New
York City-sized memory made of petabyte micro-SD cards”
[40], and for level 3 we use 2119, the memory of a 15 mm
shell of such cards around the Earth [40].

5.2 Classical security

Assumewewant to find aCSIDHkey that connects two given
supersingular Montgomery curves E0 and E1 defined over
Fp for a prime p = 4 · ∏n

i=1 �i − 1. Let N denote the key
space size.

Notice, large primes p � 2512 permit smaller key space
sizes N � p1/2 than the class group order; and then,
random-walk-based attacks are costlier than Meet-In-The-
Middle (MITM) procedures. In fact, MITM performs about
N 1/2 � p1/4 steps.

To illustrate the MITM approach, let us assume that for
i := 1, . . . , n, we require the computation of isogenies of
degree-�i , each of which we repeat m ∈ Z

+ times. The first
step is to split the set {�1, . . . , �n} into two disjoint subsetsL0

and L1, both of size n
2 . Next, for i = 0, 1, let Si be the table

with elements (e, ge) where ge corresponds to the output of
the group action evaluation with inputs Ei , and a CSIDH key
e = (e1, . . . , en) such that e j = 0 for each � j ∈ L1−i . The
MITM procedure on CSIDH looks for a collision between
S0 and S1; that is, two pairs (e, ge) ∈ S0 and (f, gf ) ∈ S1

such that ge = gf ; consequently, the concatenation of e and
f, maps E0 to E1.

The tables S0 and S1 each have about N 1/2 elements 2.
The size of the class group #cl(O) is asymptotically close to
p1/2, and the key space size N must be (approximately) equal
to 22λ to ensure λ ∈ {128, 192} bits of classical security.

2 In general, when mi degree-�i isogeny constructions are required for
each i = 1, . . . , n, where the cardinality of the sets L0 and L1 should
be #S0, #S1 ≈ N 1/2.

Table 3 Number of small odd primes �i ’s required for ensuring 128
and 192 bits of classical security given the hardware bounds we set

Bound m OAYT MCR Dummy-free

NIST Level 1 (λ = 128, w = 280)

5 64 86 86

4 70 95 95

3 79 111 111

2 95 139 139

1 139 221 221

NIST Level 2 (λ = 128, w = 2100)

5 68 91 91

4 74 101 101

3 84 117 117

2 101 148 148

1 148 234 234

NIST Level 3 (λ = 192, w = 2119)

5 96 129 129

4 105 143 143

3 119 166 166

2 143 210 210

1 210 332 332

Consequently, for large primes p � 21024, we have

#S0 ≈ #S1 ≈ 2λ � #cl(O)1/2 ≈ p1/4. (30)

Then (#S1)(#S0) � #cl(O), and the birthday-paradox prob-
ability of a collision between S0 and S1 (other than the one
expected by construction) happening by chance is negligi-
ble. The expected running-time of MITM is 1.5N 1/2 and
it requires N 1/2 ≈ 2λ cells of memory. Here, the classical
security of CSIDH falls into the same case as SIDH, where
van Oorschot & Wiener (vOW) Golden Collision Search
(GCS) is cheaper than MITM, and a small key space still
provides λ ∈ {128, 192} bits of classical security. In fact,
the van Oorschot & Wiener Golden Collision search proce-
dure [1,41] applied to CSIDH has an expected running-time
of

1

μ

(

7.1 × N 3/4

w1/2

)

(31)

when only μ processors and w cells of memory are
allowed to be used. As a consequence, the number k of small
odd primes �i ’s that allows λ-bits of classical security is

k ≈ 4

3

(
λ + 1

2 log2(w) − log2(7.1)

log2(δm + 1)

)

, (32)

where N = (δm + 1)k and (δm +1) determine the size of
either �−m. .m� (δ = 2, OAYT-style [37]), �0. .m� (δ = 1,
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(b)(a)

(d)(c)

(f)(e)

Fig. 2 Costs of the quantum collimation sieve attack under various
hardware limits. Colored solid lines are the costs of the collimation
sieve at primes of bit lengths from 512 to 9126; dotted lines are the cost
of key search on AES, from [25], with the same memory limits and

overhead as our analysis. All figures are logarithmic in base 2. Plots on
the left are parameterized to minimize gate cost, plots on the right to
minimize DW -cost. Larger primes achieving lower depth (e.g., 5120
vs. 4096) is due to increased memory limits

MCR-style [32]) or S(m) = {e ∈ �−m. .m� | e ≡ m mod 2}
(δ = 1, dummy-free style [14]).

Assuming the previously mentioned technological limits
of w = 280, w = 2100, w = 2119 cells of classical mem-

ory for NIST levels 1, 2, 3 (resp.), Table 3 summarizes and
compares the number k of small odd primes required as a
function of the maximum number m of isogeny construc-
tions per prime. In each case, we then found independent
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Table 4 Quantum attack costs
against CSIDH

Prime Depth Oracle Qubits Classical Cost Hardware Cost
Length (min.) Calls Hardware (DW ) (DW )

NIST Level 1 (hardware limit 280)

CSIDH AES-128

3072 40 55 59 77 110 89 132

4096 66 70 48 80 124 36 106

NIST Level 2 (hardware limit 2100)

CSIDH SHA-256

5120 41 73 77 99 139 101 146

6144 74 89 72 100 156 72 146

NIST Level 3 (hardware limit 2119)

CSIDH AES-192

8192 60 78 82 119 176 111 175

9216 92 102 79 118 181 47 143

CSIDH, lowest cost with no hardware constraints

3072 47 49 46 94 103

4096 45 56 59 108 117

5120 44 64 68 121 130

6144 52 70 73 132 142

8192 51 83 88 151 160

9216 54 87 91 161 171

Depth is the minimum possible under the given hardware limit. The final two columns give the lowest cost
of attacking {AES,SHA} in depth at least as much as the minimum to break the associated CSIDH instance,
based on [18,25,36]. Italics highlights where such a break exceeds the hardware limit

bounds mi for each degree-�i isogeny construction to opti-
mize the cost using the approach reported in [15]. Note that
any increase in our classical memory budget w will imply
a higher value of k, thus forcing us to re-parameterize the
collection of k isogenies that must be processed.

6 Experimental results

In this section, we discuss larger and safer CSIDH instanti-
ations. We report the first constant-time C-coded implemen-
tation of the CSIDH group action evaluation that uses the
new fast isogeny algorithm of [6], as reported in [2]. The
C-code implementation allows an easy application for any
prime field, which requires the shortest differential addition
chains (SDACs), the list of small odd primes (SOPs), and the
optimal strategies presented in [15]; in particular, our C-code
implementation is a direct application of the algorithm and
Python-code presented in [2], and thus all the data framework
required (for each different prime field) can be obtained from
its corresponding Python-code version.

Our experiments focus on instantiations of CSIDH with
primes of the form p = 4

∏n
i=1 �i − 1 of 1024, 1792, 2048,

3072, 4096, 5120, 6144, 8192, and 9216 bits (see Table 5).
We compared the three variants of CSIDH, namely, i) MCR-
style, ii) OAYT-style, and ii) Dummy-free-style. All of our

Table 5 Shape of the primes: p = 4
∏n

i=1 �i − 1, where �1, . . . , �n
are the first n odd prime numbers, excluding and including the listed
primes in columns Excluded and Included, respectively

log2(p) n Excluded Included

1024 130 739 983

1792 207 149 1289

2048 231 5 3413

3072 326 37, 2053 2203, 2007

4096 417 1151 2897

5120 504 5 4133

6144 590 71, 4289 4337, 4339

8192 757 4937, 5749 5783, 5791

9216 838 263, 6373 6473, 6481

experimentswere executedon a Intel(R)Core(TM) i7-6700K
CPU 4.00GHz machine with 16GB of RAM, with Turbo
boost disabled and using clang version 3.8. Our software
library is freely available from

https://github.com/JJChiDguez/sqale-csidh-velusqrt .
To illustrate the impact of using low exponents, Fig. 3

shows experimental results for all instantiations of CSIDH
using exponent bounds ranging from m = 1 to m = 4.
Each exponent bound is parameterized to reach the same
security,meaning fewer �i for largerm. In all caseswe started
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Fig. 3 Group action evaluation cost (excluding key validation) for each
CSIDH instantiation from1024 to 9216 bits. TheCSIDHconfigurations
are according to Table 3. Each experiment considers the cost of 1024

random instances, except for experiments corresponding to the 8192-
and 9216-bit instances which consider a smaller set of 128 experiments

from the global bound and then optimized for the bounds
per individual small prime and evaluation strategies as in
[15]. Note that some configurations of the 1024- and 1792-
bit primes do not have enough �i ’s to support the m = 1
and m = 2 bounds. We stopped the experiments at m = 4
because performance degraded at higher values.

Our results show a slight drop in performance with the
m = 1 bound in both the dummy-free and MCR-style ver-
sions, then for m = 2 onwards, higher m steadily performs
worse. For OAYT style, on the other hand, m = 1 was
always optimal. Because the performance bump at m = 1
appears to get ameliorated at higher primes, we decided to
use the m = 1 bound for all cases due to its simplicity

and security. The results for these instantiations, which pro-
vide NIST security levels 1, 2, and 3, are in Table 6. These
results correspond with the measurement of 1024 random
instances.

7 Conclusions

As the quantum security analysis ofCSIDHhas becomemore
robust, it seems clear now that its original parameters must
be updated by considering larger primes.

In this paper, we propose a set of primes large enough
to make the protocol quantum-secure. Taking as a basis
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Table 6 Clock Cycles (in gigacycles) corresponding to CSIDH instan-
tiations with 3072, 4096, 5120, 6144, 8192, and 9216 bits. Each CSIDH
instantiation uses m=1 (one isogeny construction per each li ). The mea-
sured clock cycles are the average of 1024 random instances without
key validation

Instantiation Style NIST
OAYT MCR Dummy-free Security

CSIDH-3072 11.09 14.03 19.42 Level 1

CSIDH-4096 23.21 28.50 39.35 Level 1

CSIDH-5120 44.56 53.39 73.57 Level 2

CSIDH-6144 74.88 87.09 117.57 Level 2

CSIDH-8192 199.15 236.13 322.57 Level 3

CSIDH-9216 292.41 346.46 475.64 Level 3

the Python 3 library reported in [2], we provide a freely
available software library coded in C, which implements
CSIDH instantiations that were built using these large
primes.

Since the introduction of CSIDH in 2018, it has been the
norm to try to approximate the key space to its maximum
theoretical size of #cl(O) ≈ √

p. Nevertheless, as quantum
security demands a larger prime, this key space has become
unnecessarily large. It is therefore important to prove that
leaving a portion of this space unused does not compromise
the CSIDH security, which is an important conjecture that
our analysis supports.

To make larger prime field instantiations of CSIDH more
viable, our implementation combines techniques such as
exponent strategy optimization, low exponents, and the new
Vélu formulas presented in [6]. Our results are the first
of their kind for these larger primes, hoping that these
designs will pave the path forward for future refinements of
CSIDH.

From our analysis, the main computational cost of the
quantum sieve comes from the classical cost of merging lists
to find permutations. Improvements to this subroutine would
lower the security of CSIDH. Given that CSIDH’s relative
security and it’s ‘SQALE’d performance depend on hardware
limits, our analysis highlights the need for consensus on the
resources of far-future attackers.
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