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ABSTRACT

The choice of the characteristic value of a material property is fundamental in all civil engineering
design and critical in geotechnical engineering. Based on our tradition, we strive to look for a
cautious value, whose evaluation includes our engineering judgement. While the definition of a
characteristic value is often given with the aid of statistics as a fractile value, its determination
includes considerations of mechanics because “value” refers to the relevant quantity affecting
the limit state. Soils are complex, often spatially heterogeneous and our knowledge of them is
typically based on sparse incomplete data. This makes the definition and determination of a
characteristic value for soils more multifaceted than for structural materials. This paper discusses
the choice of the characteristic value for soils from various perspectives (statistical, mechanistic
and practical) and summarises some recent findings to clarify the limitations of existing
practice. Overly simplified statistical approaches may lead to unsafe or overly conservative
designs. The authors conclude that a balance between practicality and incorporating salient
features are needed. By increasing the value of data in design decisions, engineers will be
motivated to collect, share, and utilise data as much as possible and bring our practice closer to
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the digital economy.

1. Introduction

According to the Webster’s Encyclopedic Unabridged
Dictionary of the English language the word character-
istic has the meaning “pertaining to, constituting, or
indicating the character or peculiar quality of a person
or thing; typical; distinctive”. A characteristic value for
a material property could thus be seen as a typical
value that truly represents the material and describes
its fundamental quality.

In civil engineering design we often wish to be cau-
tious in our design assumptions. For example, when
picking a material value, if we do not know the exact
value and we do not know how to handle the uncertainty
(arange of test results) explicitly, it is reasonable to pick a
cautious value that is affected by the lower bound, rather
than an average that is less affected by the lower bound.
This is often considered as part of engineering judge-
ment. Engineering judgment and cautious estimates
based on judgment are though difficult to quantify.
When writing standards, it might be seen as desirable,
to put clear numbers and equations to provide a data-
informed basis from which engineering judgment
could be applied to decide how cautious a characteristic

value should be. In addition, making effective judgment
without a data-informed basis is increasingly difficult as
big data increase in volume, velocity (or rate), and var-
iety. Depending on the experience of the engineer, one
can imagine a situation where pure engineering judg-
ment arrives at a characteristic value that is significantly
at odds with what the data is saying.

The problem was clearly illustrated by Bond and
Harris (2008), presenting results of a study where
more than one hundred engineers and engineering geol-
ogists were asked to select a characteristic line (or lines)
based on more than one hundred standard penetration
tests performed at a site in Holborn, London, as shown
in Figure 1. In the upper part (London clay, above
approx. —21 m OD) there seems to be relatively good
consensus about the trend, although the results are
rather widespread, and some estimates deviate greatly
from the average interpretation. For the lower part
(Lambeth clay) where the data is more scattered, also
the interpretations vary widely.

In this paper, the problem of defining characteristic
values for soils is discussed with respect to the Euro-
codes and geotechnical design standards in general.
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Figure 1. Results of standard penetration tests in London and Lambeth clays, with engineers’ interpretation of the characteristic value

(Bond and Harris 2008).

Important recent findings that cover statistical, mechan-
istic and practical perspectives are reviewed to clarify
limitations of existing practice. The authors are of the
opinion that simple equations consistent with the quali-
tative guidelines provided in Eurocode 7 (EN 1997-1;
CEN 2004) can be developed to account appropriately
for spatial variability, failure mechanism, and their
interactions correctly.

2. Characteristic values in the Eurocodes
2.1. General

In the Eurocode system, as in many other standards, the
design value of a material property or resistance is
obtained by dividing the characteristic value by a partial
safety factor. According to EN 1990 “When a limit state
verification is sensitive to the variability of a material

property, upper and lower characteristic values of the
material property should be taken into account.” (CEN
2002). EN 1990 further states that unless otherwise stated
in the material codes, a 5% fractile value should be used
for a low value of material property and a 95% fractile
value for a high value material property. For the struc-
tural stiffness parameters, EN 1990 states that they
should normally be represented by mean values.

EN 1997-1 states that “The characteristic value of a
geotechnical parameter shall be selected as a cautious
estimate of the value affecting the occurrence of the
limit state.” Although this complies with EN 1990,
there are some underlying differences when selecting
this value as the characteristic value for geotechnical
design, as also pointed out by Simpson and Driscoll
(1998). In structural design, the choice of a character-
istic value is more straightforward and can often be
based on statistical procedures applied to the results of
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material tests. In geotechnical design one firstly needs to
identify what the materials (soils and rock) are. This is
often guided by experience and existing geological
data. Field and laboratory investigations are then used
to verify the identification and specify the properties
more accurately. Often it is advisable to carry out the
investigations in two or more rounds. Still, only a
small fraction of the relevant ground volume is investi-
gated and there exists a much greater uncertainty con-
cerning the soil properties than the state of knowledge
for the properties of a structural material. The uncer-
tainty is a result of spatial variability in the ground,
errors and uncertainties as a consequence of the inves-
tigation methods, transformation models used, and stat-
istical uncertainties due to a finite (typically small)
number of measurement points.

The total uncertainty of a geotechnical property, X, at
a point can be written using the coeflicient of variation
(COV) as:

COV)Z( = COViznherent,X + COVler,X + COVtzmns,X

+ COVZ,, x (1)

where COVipherentx 18 the inherent variability at a point,
COV,,x is measurement uncertainty, COVi,pex is
transformation uncertainty, and COV,, x is statistical
uncertainty. There are though also other presentations
for the total coefficient of variation, and the draft version
of EN 1997-1 (CEN 2021-05-03) presents only three
terms, namely inherent ground variability, measurement
error and transformation error. As pointed out by Zhang
et al. (2004), any systematic uncertainties are omitted
from these evaluations. Inherent variability is a major
source of complication, because it changes the “occur-
rence of the limit state”.

EN 1997-1 (CEN 2004) recognises many of the issues
discussed above regarding uncertainties of soils and
requires in § 2.4.5.2(4)P that in the selection of the
characteristic value the following factors are accounted
for:

e geological and other background information, such
as data from previous projects;

e the variability of the measured property values and
other relevant information, e.g. from existing
knowledge;

o the extent of the field and laboratory investigation;

e the type and number of samples;

« the extent of the zone of ground governing the behav-
iour of the geotechnical structure at the limit state
being considered;

o the ability of the geotechnical structure to transfer
loads from weak to strong zones in the ground.

However, there is no guidance on how to do this with
actual data. Referring to the data presented in Figure 1,
Orr (2015) concluded that there is a need for more
specific guidance. In particular, how does one combine
data from the project site of interest (typically sparse)
and data from previous projects (typically larger in
quantity but not directly applicable to the site of inter-
est)? This is known as the site challenge (Phoon 2018)
or site recognition challenge (Phoon, Ching, and
Shuku 2021). Recent research shows promising results
using data-driven methods (Phoon 2020; Ching et al.
2020a; Ching, Wu, and Phoon 2021; Phoon and Ching
2021).

The uncertainty of a ground property is case
oriented. The inherent (aleatory) variability can be
very different in different geological conditions. The
epistemic uncertainty on the other hand is much related
to different practices, one country may prefer SPT
another CPT or use of local correlations. For example,
a spatially homogeneous ground characterised by a
few test samples will be dominated by epistemic uncer-
tainty. Bedi and Orr (2014) observed that rock proper-
ties is another example and that for this situation, EC7
allows the design value to be determined directly, rather
than by the application of partial factors to characteristic
values. While this is a pragmatic approach, it points to a
recurring issue that surfaces in different forms in this
paper, namely the engineer is hard pressed on what
approach to take when the situation becomes compli-
cated, such as when both aleatoric and epistemic uncer-
tainties are of comparable importance. When
uncertainties are not quantified and not accounted for
explicitly using a probabilistic approach, engineering
judgement can be difficult to apply when site conditions
are complicated. In addition, the characteristic value
depends on the limit state under consideration, includ-
ing issues such as the failure mechanism and the sensi-
tivity of the limit state function to a particular input.
The former issue refers to failure in a spatially varying
soil mass. This is discussed in more details in Section
3. The latter issue refers to the change in a response
(e.g. capacity) resulting from a change in the input
(e.g. friction angle). The concept of sensitivity is well-
defined mathematically in the reliability analysis litera-
ture (Low 2015). The correct treatment of sensitivity
in the context of a characteristic value is explained in
Section 4.2.4.

In light of the above complicating factors that are not
explicitly counted for presently, substantial engineering
judgement is involved. This means more subjectivity. It
is challenging to cover all the judgement needed in a
purely statistical procedure, although progress has
been made in recent years. In fact, a pure statistical
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procedure that is based on the borehole/sounding data
alone would not provide the “value affecting the occur-
rence of the limit state” which requires a knowledge of
the failure mechanism for ULS. In addition, as pointed
out by Pristings, Spross, and Larsson (2019), if an
engineer determines the Eurocode characteristic value
statistically, does he or she actually account for all the
uncertainties and other factors listed in clause 2.4.5.2
(4)P from a statistical point of view?

2.2. Examples of characteristic value evaluation

The background for the current definition of character-
istic value of a geotechnical parameter was explained by
Denver and Ovesen (1994). The argument for keeping a
significant part of the reliability margin within the selec-
tion of characteristic value was that both the number
and quality of tests carried out to obtain the parameters
may vary greatly. If a mean value definition was
adopted, an extensive list of varying partial material fac-
tors would be needed. The fundamental choice then
made was to adopt constant partial material factors.
The underlying reason for using a 5% fractile as charac-
teristic value was further explained by Phoon, Kulhawy,
and Grigoriu (2003a). It is known as the “baseline
design” method in structural design. The idea is that
matching a characteristic resistance defined by a fractile
(e.g. 10% fractile) with a characteristic load defined by
another fractile (e.g. 2% fractile for 50-year return
period load) can produce relatively uniform reliability
even if the resistance and load random variables cover
a range of COVs. The reason is that a fractile includes
the effect of COV in its definition. It should though be
noted that the baseline design method is empirical
and does not guarantee a uniform reliability. On the
contrary, as noted by Phoon and Ching (2013), a con-
stant partial factor is unlikely to provide a uniform
reliability level when the variability of the governing
parameter is high. Ching et al. (2013) and Phoon,
Ching, and Chen (2013) pointed out this difficulty for
foundation design in layered soils.

With respect to the determination of characteristic
values, Denver and Ovesen (1994) pointed out that
experienced engineers will always try to incorporate a
priori knowledge in the process. To be able to quantify
that and to update with new soil investigation data they
recommended the use of Bayesian statistics. The use of
Bayesian updating has later been suggested by several
authors. To mention just a few: Ching, Phoon, and
Chen (2010) presented equations using Bayesian stat-
istics to reduce the uncertainty of undrained shear
strength by combining different field and laboratory
data. Later Muller (2013) and Miiller, Larsson, and

Spross (2014, 2016) developed this multivariate
approach further and used it both for reducing uncer-
tainty in the assessment of undrained shear strength
and assessing stability. Wang, Zhao, and Cao (2015)
presented a Bayesian equivalent sample approach to
overcome the problem of the limited number of data
points in the determination of characteristic values
from standard penetration tests (SPT).

Although Bayesian updating can be seen as a good
tool to combine a priori data with new soil investigation
data, it leaves the question of the characteristic value
open. Herein a short summary of some commonly
encountered equations is given. For simplicity, only
uncorrelated spatial data following a constant mean
trend are considered.

Many of the recommended methods are based on the
use of the Student’s t-distribution developed by William
Sealy Gosset under the pseudonym Student (1908).
Accordingly, a 5% fractile can be calculated as:

/ 1
Xisoo = Xinean - |:1 - tgf? . COVX 41+ ;:| (2)

Where X, can, is the mean value, COVy the coeflicient of
variation and n the number of samples. Such a charac-
teristic value represents a value that any spatial point
value is likely to exceed with a one-sided 95% confi-
dence level.

Strictly, the above definition for the characteristic
value could be used for a limited local failure. However,
geotechnical designs often involve a large volume of
ground. Then it is often more relevant to look at a
value mobilised over the volume of ground rather
than a point value in the ground. If one further assumes
that the mobilised value is the mean (cf. EN 1997-1
(CEN 2004), Clause 2.4.5.2(7) - “the value of the gov-
erning parameter is often the mean of a range of values
covering a large surface or volume of the ground”), the
5% fractile for this mean could be calculated with the aid
of the t-distribution as:

1
Kimean = Xmean * |:1 - tgf? -COVy - \/;:| (3)

One possible way of looking at a priori knowledge is to
assume that the COV is known for the population, i.e.
that there is no uncertainty to its value. This might be
based e.g. on a large database covering different investi-
gation and soil types, say for example the COV for
undrained shear strength for clays is COV = 50%. It
might also be much more specific, say for example the
COV for undrained shear strength for soft sensitive
clays with OCR < 2, determined with a CPTU class x
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and with a transformation model y is COV = 20%.
When the COV is known, the value for the t-distri-
bution converges to 1.645, which is the 95% fractile
value for the standard normal distribution. Equations
(2) and (3) can then be rewritten as Equations (4) and

(5).

1
Xiso = Ximean - |:1 —1.645-COVy - /1 +—~ (4)
n

1
kaean = Xmean : |:1 —1.645 - COVX ' \/; (5)

These four basic equations are also utilised in the 2021
draft of the new EN 1997-1 (CEN 2020). Therein appen-
dix A defines a procedure for the determination of the
characteristic value where Equation A.7 corresponds to
Equation (2), A.5to (3), A.6to (4) and A.4to (5). The out-
come of these equations is presented in Figure 2 as the
multiplier factor Xi/X,eqn for COV values of 10 and
30%. On the secondary y-axis the inverse is shown, repre-
senting a kind of “secondary” partial factor. In Figure 3,
the outcome is presented with respect to COV for n = 4
and n = 10. In Figures 2 and 3 the line for “5% COV
unknown” refers to Equation (2). The line for “5%
COV known” is obtained by replacing the factor to
by 1.645 (corresponding to the fractile for large n). The
line for “5% COV unknown” refers to Equation (2).
The line for “5% COV known” is obtained by replacing
the factor to-7 in Equation (2) by 1.645 (corresponding
to the fractile for large n). The line for “mean COV
unknown” refers to Equation (3). The line for “mean
COV known” is obtained by replacing the factor 3}’ in
Equation (3) by 1.645.

The following observations that can be drawn from
Figures 2 and 3:

(1) The difference between a characteristic value for a
5% point fractile value and a 5% mean fractile
value is rather large and increases with the value
of COV.

(2) The difference between the characteristic value in
the case of known and unknown COV values is
relatively large for small sample sizes and increases
with the value of COV.

(3) For samples sizes less than 10 the multiplier
factor decreases rapidly, especially with increasing
COV.

There are a number of other equations presented for
the evaluation of the characteristic value. As the t-distri-
bution is a bell-shaped distribution that approaches the
normal distribution with increasing number of samples,

it is considered well suited for properties that are dis-
tributed according to distributions resembling the nor-
mal distribution. The normal distribution is
unbounded, which means it is possible to produce an
absurd negative value for positive-valued variables
such as undrained shear strength or friction angle
when the COV is large, fractile is low, and number of
samples is small. However, in the case of Eq. 5 with n
= 1, the characteristic value of the mean is only negative
when COV > 60%. Hence, Eq. 5 remains reasonably
practical for most soil properties with low to medium
variability based on the three-tier variability classifi-
cation scheme shown in Table 1. This scheme has
been expanded to classify model uncertainty recently
(Phoon and Tang 2019; Tang and Phoon 2021).
Equations, covering both general and simplified
approaches for evaluation of the characteristic value
for properties that are lognormally distributed and
have COV > 30%, have been suggested, e.g. Schneider
and Schneider (2013).

In relation to observation (1) above, it might be
sometimes difficult to determine whether one should
use the 5% fractile for a point value or for the mean.
With respect to Equation (1) such consideration is
often accounted for by applying a variance reduction
factor I's (Vanmarcke 1977, 2010) to the spatial varia-
bility. This requires an estimation of the scale of fluctu-
ation (8), which is the distance over which soil
properties are strongly correlated. Cami et al. (2020)
conducted a comprehensive review of spatial variabil-
ity and tabulated scales of fluctuation for reference.
The approximate value for T§ = 1 when the averaging
length (L) is shorter than the scale of fluctuation.
This is the “local failure” scenario. For the case of aver-
aging length much larger than the scale of fluctuation,
the approximate value for I'§ = &/L. Based on the
definition of §, the indicative number of uncorrelated
samples in L is n = L/§. Hence, '3 = 1/n, which is simi-
lar to the “mean failure” scenario. It is clear that the
contribution from the spatial variability diminishes
for the non-local problem. However, for many design
situations the value of I's would lie between the two
scenarios. As a refinement, equations have been
suggested where the actual zone of influence for the
limit state in question is considered. Schneider and
Schneider (2013) adopted the following simplification
for the variance reduction factor along a prescribed
non-critical path, which is that I's = Fil")z,l"ﬁ, where
I'? and I are the variance reduction factors in the
two horizontal directions, x and y, and I'? is the var-
iance reduction factor in the vertical direction, z
defined by Vanmarcke (1983) and modified Equation
(5) to account for the reduction in COV due to spatial
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Figure 2. Outcome of equations (1) to (4) for COV = 10% (left) and 30% (right) with respect to number of samples. The multiplier on
the mean is the factor Xi/Xnean, and the partial factor on mean is the inverse.

averaging:

kaeun = Xmean
. |:1 — 1.645 - Covinherent,X Y Fé :| (6)

In addition, Orr (2015) proposed an equation to cover
the extent and quality of investigations, extreme value
of the parameter and zone of influence.

It is not always easy to identify the correct failure
path/surface in advance. For example, in slope stability
analysis there might be a wide range of potential failure
paths/surfaces that need to be analysed before the criti-
cal path/surface is identified. Some research has been
conducted to further refine Equation (6) to account
for mean reduction along the critical path. Note that
the mean along the critical path is smaller than the
mean along a prescribed path/surface shown in Equation
(6) (Ching and Phoon 2013a, 2013b; Ching, Phoon, and
Kao 2014; Hu and Ching 2015; Ching, Lee, and Phoon
2016; Ching, Hu, and Phoon 2016; Ching, Tong, and
Hu 2016; Ching, Phoon, and Pan 2017; Ching, Sung,
and Phoon 2017). This is a challenging research ques-
tion that has not been fully resolved, although some
simple solutions for routine structures have been

—— 5% COV unknown
----- 5% COV known

NN

mean COV unknown

o
=

Multiplier on mean
Partial factor on mean

COoV [%]

Multiplier on mean

developed recently (Tabarroki et al. 2021). Only the
mean value [Equations (3) and (5)] and the point
value [Equations (2) and (4)] cases are included in the
new EN 1997-1 draft. It will be demonstrated in the
next section that these equations can be easily modified
to provide significantly better solutions for common/
routine geotechnical structures.

With respect to observation (2) it is worthwhile not-
ing that even if the value of COV is assumed based on
some general dataset, its value might be large, often
even well above 30%. This results in very small charac-
teristic values compared to the mean. For example, for
COV = 40% the characteristic value is of the order of
30% of the mean. Applying such an approach, for
example to the undrained shear strength of soft clays,
would then surely be needed to be balanced with a priori
knowledge of the minimum undrained shear strength to
avoid physically impossible low values. It is well known
that the critical state friction angle and the remoulded
undrained shear strength are less uncertain than their
peak values and they are arguably reasonable lower
bounds. The statistical method has occasionally
attracted criticisms that it is not applicable to geotechni-
cal engineering, because it was found to produce results
at odds with reality. In the opinion of the authors, there

o
o

Partial factor on mean

——5% COV unknown
----- 5% COV known
mean COV unknown
----- mean COV known

0 10 20 30
CoV [%]

40

Figure 3. Outcome of equations (1) to (4) for n = 4 and 10 with respect to COV. The multiplier on the mean is the factor x; /w(x), and

the partial factor on mean is the inverse.
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Table 1. Three-tier classification scheme of soil property
variability for reliability calibration (Source: Table 9.7; Phoon
and Kulhawy 2008).

Geotechnical parameter Property variability COV (%)
Undrained shear strength Low?® 10-30
Medium® 30-50
High* 50-70
Effective stress friction angle Low? 5-10
Medium® 10-15
High® 15-20
Horizontal stress coefficient Low? 30-50
Medium® 50-70
High® 70-90

Typical of good quality direct lab or field measurements.

PTypical of indirect correlations with good field data, except for the standard
penetration test (SPT).

“Typical of indirect correlations with SPT field data and with strictly empirical
correlations.

is nothing wrong with statistics. It has been widely
adopted in all disciplines. The issue is the adoption of
overly simplistic assumptions rather than the generality
of the method. In this example, the adoption of a distri-
bution with an appropriate lower bound would address
the criticism of an unrealistic fractile value. It is worth
pointing out that a simple Johnson family of distri-
butions exist that can cater to both lower and upper
bounds (Johnson 1949; Ching and Phoon 2015). The
Johnson family is obtained from three closed-form
transformations of the normal distributions. The most
well-known is the lognormal distribution.

Observation (3) simply suggest that the minimum
sample size should be kept close to 10.

3. Considerations beyond statistics

There are several statistical, mechanistic and practical
considerations that are relevant to the selection of
characteristic values. It is worth demarcating these
issues explicitly and describing them individually,
before discussing their inter-dependencies.

(1) Value affecting the occurrence of the limit state

The limit state is a question of mechanics, not a ques-
tion of statistics. For ULS, this requires a knowledge of
the critical failure path/surface. The “value affecting the
occurrence of the limit state” for ULS can be interpreted
as the pertinent average strength value mobilised along
the critical failure path/surface. It is important to note
that the critical failure path/surface is the solution of a
boundary value problem and it can change from one
realisation of the random field to the next. It is evident
the mobilised value (say strength) along the critical
path/surface is not the same as the mobilised value
along a prescribed potential path/surface. In limit equi-
librium analysis, the critical failure path/surface is
defined as the potential path/surface with the lowest

factor of safety. A minimisation step is required. For
spatially varying soils, it is also important to note that
classical solutions for homogeneous soils are not appli-
cable in general. The failure mechanisms in spatially
heterogeneous soils can be non-classical.

Hicks and Samy (2002) proposed a method of simu-
lating the “effective property” for a spatially hetero-
geneous soil mass based on the random finite element
method (RFEM) (Fenton and Griffiths 2008). The effec-
tive property for a particular random field realisation is
defined as the homogeneous input property that
matches the same performance response as the RFEM.
In the context of ULS, the concept of the effective prop-
erty was also adopted by Ching and Phoon (2013a) and
Ching, Sung, and Phoon (2017) to homogenise a soil
mass with spatially heterogeneous shear strength. How-
ever, they adopted the term “mobilized shear strength”
for the effective property. In essence, the mobilised
shear strength is the value affecting the occurrence of
ULS. Hence, the characteristic value can be taken to
be the 5% fractile of the mobilised shear strength, and
this particular characteristic value for ULS is called the
reliability-based characteristic value (Hicks 2013;
Hicks et al. 2019) and is denoted by Xjgrgy in the cur-
rent paper. Xirrgm Dot only addresses the spatial aver-
aging over the influence zone, but it also addresses
non-classical mechanisms caused by spatial variability
(e.g. seeking out weak zones). The main limitation of
Xirrem is that it relies on RFEM, so a simple analytical
expression similar to Equations (2-6) for Xyrrpm does
not exist. For spatially heterogeneous shear strength,
this limitation has been overcome by Tabarroki et al.
(2021). Tabarroki et al. (2021) calibrated the weakest-
path model (WPM) for the mobilised shear strength
simulated by 2D RFEM. This WPM is a two-parameter
model developed by Ching and Phoon (2013b) and
Ching, Sung, and Phoon (2017): one parameter is the
variance reduction factor I'y that considers the spatial
averaging over the failure zone (influence zone),
whereas the other parameter k quantifies the tendency
for the failure path to seek out mechanically admissible
weak zones. The following simple analytical expression
for the “mobilisation-based” characteristic value
(denoted by Xymop) is derived from the calibrated WPM:

kaoh = Xmean : |:1 —k- COVinherent,X : v Fé :| (7)

where k is calibrated by RFEM results in Tabarroki et al.
(2021). It turns out that the calibrated k depends on two
factors: (a) the degree of constraint (low, medium, high,
and full) of the failure zone and (b) the normalised scale
of fluctuation (6/L) (8 = the scale of fluctuation and L =
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length of the classical failure path/surface). For clay with
COVinherentx = 0.3 for its undrained shear strength (iso-
tropic scales of fluctuation), the variation of the RFEM-
calibrated k with respect to 8/L is shown in Figure 4a.
For sand with COVipherentx = 0.1 for its friction angle
(also isotropic scales of fluctuation), the variation of the
RFEM-calibrated k with respect to 6/L is shown in Figure
4b. For problems with full constraint (e.g. friction piles in
compression, no weak zone seeking), k = 1.645 and
Equation (7) reduces to Equation (6). High constraint is
exemplified by the active failure of a retaining wall (failure
path/surface passes through the toe and is usually close toa
straight line), medium constraint by the ultimate failure of
a footing (failure path/surface passes through a footing
corner), and low constraint by the failure of a soil-cement
column in compression (failure path/surface varies rela-
tively free with regard to orientation and location).

Figure 5 illustrates the relation between conventional
statistics-based (e.g. Equations 2-5), mobilisation-based
(Xkmob in Equation. 7), and reliability-based character-
istic values (Xyrrem). The conventional characteristic
value is purely related to the input random field. It is
cheap to calculate, but it is not related to the value affect-
ing the occurrence of the limit state at the detailed fail-
ure mechanism level. The authors consider the
demarcation into “local” and “mean” failure mechan-
isms to be a gross simplification of the mechanics. The
reliability-based characteristic value is an outcome of
RFEM, and it is thus related to the occurrence of the
limit state at the most detailed failure mechanism
level. The mobilisation-based characteristic value
approximates the reliability-based characteristic value.
It tries to capture sufficient mechanics without incur-
ring the RFEM cost. Equation (7) does not require the
engineer to grapple with the choice between “local”
and “mean” failure mechanisms. The actual failure
mechanism is more likely to fall between these two sim-
plified extremes. The authors submit that Equation (7) it
is a significant improvement, because it removes the
artificial binary choice between “local” and “mean” fail-
ure mechanisms and it correctly addressed the inter-
action between statistics and mechanics.

(2) 5% fractile value

The need to consider a conservative value implies
that the values of interest are not exactly known, due
to a number of reasons mentioned above. The key
difference between applying judgment and a fractile to
determine this conservative value is that the latter is
more defensibly linked to measured data and one can
handle complex issues beyond the reach of judgment,
e.g. multivariate data and mobilised strength along criti-
cal failure path/surface. It has been emphasised that
fractiles can never be unrealistic if an appropriate

probability distribution is adopted (e.g. a distribution
bounded from below by the critical state strength).

(3) Cautious estimate

In EN 1997-1 (CEN 2004) a cautious estimate and a
5% fractile value are almost synonymous. (def of cau-
tious). Traditionally, a cautious estimate also includes
judgement in relation to how a measured value from a
test represents the field conditions. There might be a
need to account for time and rate effects or the quality
of samples and/or test to the measured values. A fractile
value should thus not be taken directly from measured
values, rather from values representing the general
field conditions. In short, a fractile value should be
determined based on correct mechanics and statistics.
It is inadequate to consider mechanics or statistics
alone - both aspects are not mutually exclusive and
interact with each other. Ching and Phoon (2013c)
demonstrated that the undrained shear strength can
be corrected for test mode, overconsolidation ratio,
and strain rate in a statistically consistent way.

(4) Fixed partial factors

Partial factors are customarily regarded as fixed in all
current national annexes for EN 1997-1. However, there
will be site differences even when a design code is
restricted to a country. For example, spatial variability,
testing methods, transformation models, etc. can result
in different levels of uncertainty (Phoon and Kulhawy
2008) - see Table 1. Phoon (2017) highlighted that “geo-
technical design is less amenable to standardisation than
structural design and the engineer should be able to
exercise his/her discretion to adjust the resistance factor
and/or characteristic resistance to suit a particular site
and other localised aspects of geotechnical practice”.
The issue here is that site-specificity is a core consider-
ation in geotechnical design and construction. Denver
and Ovesen (1994) pointed to the number and quality
of tests as one aspect of practice that can vary from
site to site. However, there are many other site-specific
aspects, such as those mentioned above, in addition to
the extent of prior knowledge accrued from similar
ground conditions and past design and construction
experiences with similar structures. At present, there
is no consensus on whether it is better to: (1) keep the
partial/resistance factor constant while adjusting the
characteristic value to suit site conditions, (2) allow
the partial/resistance factor to vary with site conditions
while keeping the characteristic value fixed at a cautious
estimate or particular fractile of the mean value, or (3)
allow the partial/resistance factor and the characteristic
value to vary. Phoon (2017) pointed out that the second
approach has been adopted by Phoon, Kulhawy, and
Grigoriu (2003a), Phoon and Kulhawy (2008), the
Canadian Highway Bridge Design Code (CAN/
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Figure 4. Variation of k with respect to 6/L.

CSAS614:2014), and 1SO2394:2015 (Phoon et al. 2016).
The value of a resistance factor depends on the soil
property variability (low, medium, high) in Phoon, Kul-
hawy, and Grigoriu (2003a) and Phoon and Kulhawy
(2008) and the “degree of understanding” (low, typical,
high) in CAN/CSAS614:2014. A more detailed discus-
sion is presented in Section 4.1. The practice of using
fixed partial factors means one must entertain the use
of an adjustable characteristic value to ensure site differ-
ences are accounted for in the final design value (charac-
teristic value divided by the partial factor). EN 1997-1
(CEN 2004) adopts this practice. It is not surprising
that the characteristic value has become a major source
of controversy and difficulty in the implementation of
Eurocode 7. An important related question is what
issues are amenable to engineering judgment and what
issues are more effectively resolved using data and
data-driven methods. The reliability calibration of par-
tial factors is an example of relieving the engineer
from making risk-informed decisions using engineering
judgment alone without any formal aid. Reasoning in
the face of uncertainty is not intuitive.

(5) Sensitivity of limit state to inputs

Phoon (2017) further noted that a large uncertainty
at the input level does not necessarily translate into a
large uncertainty in the response — this is related to
how sensitive is the limit state to a particular input par-
ameter. The discussion on how to select a conservative
value thus far is restricted to the input stage, although
one may argue that a larger conservative margin is jus-
tified for more sensitive parameters. On the other hand,
it is possible to argue that EN 1997-1 (CEN 2004) does
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not subscribe to the notion of maintaining uniform
reliability (this is the goal of reliability-based design)
and it is acceptable to produce designs of widely differ-
ing implied levels of reliability. However, the authors do
not think this argument can be carried to the extreme -
not maintaining a uniform reliability does not mean
engineers are willing to accept widely differing levels
of conservatism. One way of looking at “acceptable con-
servatism” is to look at the range of reliability implied by
existing designs. Phoon, Kulhawy, and Grigoriu (1995,
2003a) have shown that many foundations designed
using the working stress method carry implied
reliability levels spanning two orders of probabilities
of failure. To keep within this range (2 orders of magni-
tude), engineers have applied judgment to adjust input
parameters according to sensitivity as well. From Figure
5, it can be seen that the current statistics-based
equations do not consider this sensitivity aspect. The
reliability-based characteristic value considers sensi-
tivity exactly through the use of RFEM. The mobilis-
ation-based characteristic value considers sensitivity
approximately because it is calibrated from RFEM.
The key point in the above discussion is that the
selection of a characteristic value in its current form
must necessarily involve a proper appreciation of mech-
anics and statistics and their interaction, as well as some
degree of judgment, because there are issues beyond
broad qualitative appreciation of mechanistic consider-
ations and statistics. For example, the sensitivity of
inputs to limit state requires a knowledge of the output
from a mechanistic analysis. However, the conventional
characteristic value is an input to this analysis - it is not
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Figure 5. Statistics-based, mobilisation-based, and reliability-based characteristic values

the “value affecting the occurrence of the limit state”.
This value can be the spatial average along a critical
slip surface which is an output of say a limit equilibrium
analysis. The crucial difference between a critical slip
surface and a prescribed slip surface is not well appreci-
ated. This is the fundamental gap that judgment is asked
to bridge (Figure 5). This gap is not evident for an ideal
case of a homogeneous soil mass. It may not be surpris-
ing that engineers find it difficult to estimate this charac-
teristic value, because the concept is loaded with too
many issues. One can imagine the difficulty of visualis-
ing even remotely the response of a complex 3D soil-
structure problem that is outside one’s experience base
even qualitatively. On the other hand, the partial factor
approach (which is associated with the concept of the
characteristic value) appears to be applicable only to
familiar Category 2 problems - not unusual and com-
plex problems. Nonetheless, even for familiar problems
such as slopes, foundations and retaining structures,
judgment is unlikely to be effective to consider inter-
dependencies between these issues as they are complex.
They can involve physical and/or statistical complexity.
For example, the failure path/surface (mechanism) for
spatially variable soil is not the same as for homo-
geneous soil. How does one visualise the failure mech-
anisms in spatially heterogeneous soils for all plausible
or the most critical random field realizations consistent
with limited borehole data? The correlations between
multiple input parameters are difficult to untangle
using judgment alone. It is known that prescribing a
5% fractile for all input parameters is excessively conser-
vative unless all parameters are correlated (Ching et al.
2020b). An SLS problem involving multiple input par-
ameters is presented in Section 4.2 to illustrate the
difficulty of extending the current understanding of a

characteristic value in the context of multiple input par-
ameters. Note that almost all geotechnical problems are
governed by multiple input parameters — this is the
norm, not an exception.

4. Use of characteristic values for different
limit states and analysis

4.1. Characteristic values for ULS analysis

In ULS design the use of a cautious estimate can be seen
as a continuation of traditional (sound) design pro-
cedures. However, the variation of material properties
is in many cases a substantial source of uncertainty in
geotechnical design. In EN 1997-1 (CEN 2004) a single
constant partial factor is applied to the material prop-
erty. In some situations, for example in ULS designs
where there are only permanent loads and the partial
load factor is unity, this is the only source of safety
applied in the calculation, apart from the safety pro-
vided through the selection of the cautious character-
istic material property value. As mentioned above, this
places a substantial demand on the selection of the
characteristic values as it should account for all the
site and investigation specific variation of uncertainty
of the material property and a broad appreciation of
the soil-structure interaction mechanism (“value affect-
ing the occurrence of the limit state”). It can be debated
if subjectively chosen best estimate values or a simple
statistical procedure can solely account for this uncer-
tainty. Alternatively, one could apply a partial factor
that would depend on the degree of uncertainty. This
follows one of the original principles from which the
partial safety factor method was first proposed by
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Hansen (1965); a higher safety margin is applied where/
when there is higher uncertainty.

This kind of approach was introduced in the 1995
reliability-based design guidelines for transmission
line structure foundations (Phoon, Kulhawy, and Gri-
goriu 1995, 2003a), the 2014 Canadian Highway Bridge
Design Code (CAN/CSAS614:2014), and 1SO2394:2015
(Phoon et al. 2016). The resistance factors in CAN/
CSAS614:2014 have been calibrated based on reliability
to reflect the degree of understanding in the following
three-level or three-tier system:

» High understanding: Extensive project-specific inves-
tigation procedures and (or) knowledge are com-
bined with prediction models of demonstrated
quality to achieve a high level of confidence with per-
formance predictions;

e Typical understanding: Typical project-specific
investigation procedures and (or) knowledge are
combined with conventional prediction models to
achieve a typical level of confidence with perform-
ance predictions;

e Low understanding: Limited representative infor-
mation (e.g. previous experience, extrapolation
from nearby and (or) similar sites, etc.) are combined
with conventional prediction models to achieve a
lower level of confidence with performance
predictions.

For example, for the analysis of the bearing capacity
of shallow foundations the resistance factors are 0.45,
0.50 and 0.60 for low, typical, and high degree of under-
standing, as shwon in Table 2. Linsivaara and Poutanen
(2014) also suggested a similar approach in which the
partial factors of safety for soil strength are related to
the coefficient of variation. Phoon, Kulhawy, and Gri-
goriu (1995, 2003a) have shown that it is possible to
achieve a significantly improved uniformity in the
reliability of designs when they are based on resistance
factors calibrated to a three-tier classification scheme
for the coefficient of variation (see Table 1). This
reliability calibration exercise can be expanded to
include a new three-tier classification for model uncer-
tainty (Phoon and Tang 2019; Tang and Phoon 2021).
The degree of improvement can be objectively bench-
marked against the range of reliability indices produced
by working stress designs based on a single factor of
safety (conceptually the same as a single resistance fac-
tor). Phoon, Kulhawy, and Grigoriu (1995, 2003a)
showed that the probabilities of failure for allowable
stress design typically vary across two orders of magni-
tude for a variety of foundation designs for transmission
line structures. The key point is that it is possible to

account for uncertainty in an objective way based on
measured data without having a precise estimate of
the coefficient of the variation. The need to strengthen
the link between decisions and data has become more
pressing with the rapid growth in digital technologies
(Phoon 2020).

4.2. Characteristic values for SLS analyses

4.2.1. Selection of characteristic values for SLS
analyses

While EN 1990 (CEN 2002) generally recommends the
use of mean values as characteristic values for stiffness
parameters, EN 1997-1 indicates that cautious estimates
should be used as characteristic values also in SLS. In the
2021 draft version of prEN 1997-1 (CEN 2020) the
design values are determined using the same principles
for ULS and SLS analyses, applying partial factors
which, for SLS analyses, the recommended values are
1.0, to representative values, which in turn are based
either on cautious estimates or statistics. The underlying
logic seems to be that for a mean value, or more pre-
cisely, for the median value, the limit state would be
exceeded with a 50% probability. This though depends
on the definition of the allowable deformations as well
as on the loads that are used. A safety margin could
also be achieved by introducing safety to the calculated
settlements. For example, in the 2014 Canadian High-
way Bridge design code discussed above, resistance fac-
tors are also introduced for SLS calculation. The
Canadian Highway Bridge design code uses the term
“resistance factor” for both ULS and SLS, although it
is more appropriate to use the term “deformation fac-
tor” for SLS. These factors also reflect the degree of
understanding and are for example for the settlement
analysis of a shallow foundation 0.70, 0.80 and 0.90
for low, typical, and high degree of understanding as
shown in Table 2. Deformation factors for SLS have
been recommended as early as 1995 (Phoon, Kulhawy,
and Grigoriu 1995, 2003a). An example is shown in
Table 3 for footings subjected to uplift.

A noteworthy point here is that although the
reliability index for SLS is lower than that for ULS,
because the consequences of failure are arguably less
severe (as far as protection of lives are concerned), the
reliability index for SLS is not zero which corresponds
to 50% probability of exceeding the SLS. This is why
for SLS calculations prEN 1997-1 (CEN 2020) requires
that design material parameter values are used that are
characteristic values, i.e. a cautious estimate or 5% a
fractile value, divided by a partial factor equal to unity
to provide the required reliability against the allowable
deformations being exceeded. For the simple case of
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Table 2. Geotechnical resistance factors for the ultimate limit state (ULS) and serviceability limit state (SLS) appearing in Table 6.2 of
the 2014 Canadian Highway Bridge Design Code (CHBDC) (CAN/CSAS614:2014). Numbers are for illustration only — the 2014 CHBDC
must be consulted for the actual factors (Source: Table 4; Fenton et al. 2016).

Degree of understanding

Application Limit State Test Method/Model Low Typical High
Shallow foundations Bearing, ¢, Analysis 0.45 0.50 0.60
Scale model test 0.50 0.55 0.65

Sliding, ¢g, Frictional Analysis 0.70 0.80 0.90

Scale model test 0.75 0.85 0.95

Sliding, ¢y, Cohesive Analysis 0.55 0.60 0.65

Scale model test 0.60 0.65 0.70

Passive resistance, ¢, Analysis 0.40 0.50 0.55

Settlement or lateral movement, ¢ Analysis 0.70 0.80 0.90

Scale model test 0.80 0.90 1.00

Deep foundations Compression, @g, Static analysis 0.35 0.40 0.45
Static test 0.50 0.60 0.70

Dynamic analysis 0.35 0.40 0.45

Dynamic test 0.45 0.50 0.55

Tension, ®gu Static analysis 0.20 0.30 0.40

Static test 0.40 0.50 0.60

Lateral, ¢y, Static analysis 0.45 0.50 0.55

Static test 0.45 0.50 0.55

Settlement or lateral deflection, @gs Static analysis 0.70 0.80 0.90

Static test 0.80 0.90 1.00

Ground Anchors Pull-out, ¢, Analysis 0.35 0.40 0.50
Test 0.55 0.60 0.65

Internal MSE reinforcement Rupture, @g, Analysis 0.75 0.80 0.85
Test 0.85 0.90 0.95

Pull-out, ¢, Analysis 0.35 0.40 0.50

Test 0.55 0.60 0.65

Retaining systems Bearing, ¢y, Analysis 0.45 0.50 0.60
Overturning, @, Analysis 0.45 0.50 0.55

Base sliding, ¢g, Analysis 0.70 0.80 0.90

Facing interface sliding, ¢, Test 0.75 0.85 0.95

Connections, Pgu Test 0.65 0.70 0.75

Settlement, ¢, Analysis 0.70 0.80 0.90

Deflection/tilt, ¢, Analysis 0.70 0.80 0.90

Embankments (fill) Bearing, ¢y, Analysis 0.45 0.50 0.60
Sliding, @g, Analysis 0.70 0.80 0.90

Global stability-temporary, ¢y, Analysis 0.70 0.75 0.80

Global stability-permanent, ¢, Analysis 0.60 0.65 0.70

Settlement, ¢ Analysis 0.70 0.80 0.90

Test 0.80 0.90 1.00

two independent lognormal random variables, it can be
shown theoretically that the partial factor correspond-
ing to a 5% fractile value is exp[(1.645-0.75%p)xCOV],

Table 3. Undrained uplift resistance/deformation factors for
LRFD (Phoon, Kulhawy, and Grigoriu 2003a).

Yy
Depth/ Width ~ COV of K Resistance factor ~Deformation factor
Width (m) (%) (ULS) (SLS)
1-2 1-2 30-50 0.45 0.69
50-70 0.43 0.66
70-90 0.41 0.63
2-3 30-50 0.42 0.63
50-70 0.40 0.60
70-90 0.38 0.58
2-3 1-2 30-50 0.41 0.62
50-70 0.38 0.58
70-90 0.36 0.55
2-3 30-50 0.39 0.58
50-70 0.36 0.54
70-90 0.34 0.51

Note: K = operative horizontal stress coefficient; target reliability index = 3.2
for resistance factors (ULS) and 2.6 for deformation factors (SLS)

in which { is the reliability and COV is the coefficient
of variation (Ravindra and Galambos 1978). A partial
factor of unity implies a reliability index of 2.2.
Phoon, Kulhawy, and Grigoriu (1995, 2003a) calibrated
an annual reliability index of 3.2 and 2.6 for ULS and
SLS respectively. With reference to Table C2 of
EN1990 (CEN 2002), the annual, i.e. 1 year, target
reliability indexes for ULS and SLS are 4.7 and 2.9,
respectively, while the 50 year target reliability indexes
are 3.8 and 1.5.

One shortcoming of the argument for using 5%
fractile values for SLS is that uncertainties related to

Table 4. Water content and the deformation properties
obtained from oedometer tests.

Depth [m] w [%] 0'cy [kPa] Moc [kPa] m a
2.5 90.8 50 1400 55 -1.1
4.2 118.1 50 1100 4.6 -1.2
6.2 116.8 58 1350 3.7 -15
8.7 85.9 75 2000 35 —-1.35
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the SLS calculation output are not just related to the
choice of soil parameters. There are certainly many
other uncertainties involved, such as those present in
the estimation of loads or in the choice of calculation
model. In an extensive survey of load test databases,
Tang and Phoon (2021) concluded that the model fac-
tors for many settlement calculations methods are of
high dispersion (coeflicient of variation larger than
0.6). It is not consistent nor justified to try to cover
all this in the evaluation of characteristic soil par-
ameters. Additionally, for settlement analysis, it is
not necessarily the maximum total settlement that is
the governing limit state; differential settlement is
often more critical. It is thus not always the lower frac-
tile value that is decisive, but rather a combination of
lower and upper fractile values. However, to search for
the worst combination of these could be very laborious
at this point.

When the output of a geotechnical calculation is gov-
erned by multiple parameters, the determination of a
cautious estimate or fractile value gets more compli-
cated. The parameters might well be correlated, and
an independent evaluation of the characteristic value
is no longer possible. The examples that are usually
given, for example in relation to EN 1997-1 (CEN
2004), are for simple single parameters such as the
undrained shear strength s, Young’s modulus E or
compression index C.. When introducing equations to
determine characteristic values it is thus often left to
the engineer to figure out how to apply them for more
complicated parameter sets.

4.2.2. Settlement analysis example

To address the problem of how to select the character-
istic values for SLS analyses in the presence of multiple
input parameters, a basic settlement analysis example is
considered, utilising the Janbu constrained modulus M,

defined as;
1—a
M:m-au-<i) (8)

Oq

Where m is the modulus number (dimensionless), a the
stress exponent (dimensionless), o, reference stress (=
100 kPa) and o’ the effective vertical stress. The task is
to calculate the total settlement for an 8.5m thick, soft
clay layer under a load of 30 kPa. Above the soft clay
layer, a 1.5 m thick stiff crust, referred to in Figure 6
as Dry crust, can be found. As the deformation of the
crust is minimal in comparison to the soft clay layer,
it is not considered here. To evaluate the deformation
properties of the soft clay, four oedometer tests have
been carried out, whose results are presented in Table

4, where w is the water content and ¢’ is the preconso-
lidation pressure. For the overconsolidated region a
constant constrained modulus Mgc is applied, while
for the normally consolidated region the modulus num-
ber m and stress exponent a are applied using Equation
(8). In the evaluation of the results, engineering judg-
ment has been used and effects of strain rate and sample
quality have been assessed. As the qualities of the soft
clay layer change with depth, it was decided to divide
the layer into four sub-layers, Clay 1-4, according to
the oedometer results. The division of layer, in situ
effective vertical stress, preconsolidation profile, and
final stress state is presented in Figure 6. For Clay 3
and Clay 4 layers where the preconsolidation pressure
is changing with depth, the modulus number in the cal-
culation is modified with respect to the preconsolidation
pressure according to Lansivaara (2000, 2012).

4.2.3. Settlement analysis using simple statistical
characteristic values

In the first set of calculations the characteristic values
are calculated as the 5% fractile of the mean assuming
that the COV is known, i.e. applying Equation (5). As
there are 4 oedometer test results, but the clay layer is
also divided into 4 sublayers, it is not obvious if the
sample number n should be chosen as 1 or 4. Looking
at the trend in the preconsolidation pressure, one may
also argue that there are 2 sublayers with similar charac-
teristics. Neither is it obvious regarding the 5% of which
parameter or parameters should be chosen to calculate
the characteristic settlement. To study the influence of
both, the calculations are performed using the combi-
nations presented in Table 5.

In the calculations where a fractile value is applied to
the preconsolidation pressure, the minimum value of
the preconsolidation pressure in the settlement calcu-
lation is the in situ effective vertical stress. For simpli-
city, it is assumed that the COV values are the same
for all parameters. If the constrained modulus M is
the only parameter defined at its characteristic value
(Moc and m in the calculation), the ratio of the charac-
teristic settlement to the best estimate settlement can be
calculated as the inverse of the multiplier for the mean
in Equation (4). This can be expressed by Equation (9).

settlementimoduus 1

Settlementhest estimate N 1
1—-1.645-COVyx - /-
n

The results of the calculation for COV lying between 0
and 30% are presented in Figure 7 as calculated charac-
teristic settlement/best estimate settlement, where best
estimate settlement refers to calculation with the best

)
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Figure 6. In situ effective vertical stress (solid line), preconsolidation profile (dashed line), and final stress state (dotted line) for the
settlement example. The square markers indicate the preconsolidation pressure values from the oedometer tests. The groundwater

table at 1.5 m depth is indicated by a dashed dotted line.

estimate values in Table 4. In Figure 7a) the influence of
number of samples is shown. In Figure 7b) all the differ-
ent combinations of characteristic values are shown for
n=4.

As can be seen from Figure 7a), the choice of n =1
increases the settlement drastically. However, the
authors believe that, although the 4 oedometer tests
are conducted in different layers, as they represent the
same clay deposit, the number of samples should be
taken as four. It can further be seen from Figure 7a)
that taking the 5% fractile of the preconsolidation
pressure alone, will only have an effect for a certain
range of COV values. For the case of n = 1, the charac-
teristic settlement will not increase after around COV =
16% as the reduction of the preconsolidation pressure is
limited to the in situ effective vertical stress.

The results in Figure 7b) show a wide scatter for the
results with different combinations of characteristic
values. It is not obvious which should be chosen but
some considerations can be given. Regarding the stress
exponent a in Equation (8), there certainly is uncer-
tainty also regarding its determination, related e.g. to

Table 5. Combinations for simple statistical characteristic value
calculations.

Set of characteristic values n=1 n=4
Best estimate values, i.e. values presented in Table 4. (X) (X)
5% mean values for M and a X

5% mean values for M and m X

5% mean values for M, m, and a X

5% mean values for o', X X

5% mean values for o', M and m X X

5% mean values for o', M, m and a X

the sample quality. However, its value is much related
to the soil type. For non-sensitive clays, it is often
close to zero, giving then identical behaviour to the
compression index method, for sands it is close to 0.5
and the constant constrained modulus M used in the
overconsolidated region corresponds to a =1. As one
would not normally consider its variation when using
the compression index methods, nor when using a con-
stant constrained modulus, the authors suggest that it
should be fixed. In practice, this means, that the fractile
is determined for the constrained modulus M itself, not
for the constituent variables used to model it.

As can be seen from Figure 7 b), the curves for
Equation (9) and for taken 5% mean fractile for Mgoc
and m coincide. For situations where the settlement
only depends on the stiffness of the soil and not on
the preconsolidation pressure, the situation is relatively
simple. This could be e.g. sands or overconsolidated
clays. One could then apply either Equation (5) to the
stiffness parameters or Equation (9) to the calculated
best estimate settlement. The geotechnical resistance
factors (equal to deformation factors) corresponding
to high, typical, and low degree of understanding are
0.90, 0.80 and 0.70. The inverse of Equation (9) for
COV values 10, 20, 30, and 40% are 0.92, 0.84, 0.75,
0.67, i.e. such an approach would be in line with the
Canadian Highway Bridge Design Code (CHBDC).

In this example, the preconsolidation pressure is the
dominant factor. This is typical for lightly overconsoli-
dated clays where the applied load increases the stresses
beyond the preconsolidation pressure. However, as a
priori knowledge is used restricting the value of the
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Figure 7. Influence of number of samples a) and comparison of different sets of characteristic values for n = 4 b) to the ratio between

characteristic and best estimate settlement.

preconsolidation pressure not to be lower than the effec-
tive vertical in-situ stress, its influence is reduced even
for n = 4 for COV values beyond 25%. If one adopts a
5% mean fractile value for all the parameters, the calcu-
lated settlement for COV = 30% is more than 2.5 times
higher than the best estimate value, corresponding to a
deformation factor of less than 0.4. However, the influ-
ence is strongly dependent on the relation of the over-
burden stress to the preconsolidation pressure. With
increasing overconsolidation ratio, the ratio of the
characteristic settlement to the best estimate settlement
of 2.5 for COV = 30% decreases towards 1.3. In the
authors’ opinion, this emphasises the importance of
always carrying out best estimate and sensitivity ana-
lyses. The question remains, which characteristic settle-
ment one should use. In all likelihood, this question
cannot be answered if Eurocode 7 remains non-prob-
abilistic, because the goal of selecting characteristic
values and partial factors to achieve a uniform reliability
level is only meaningful within a reliability-based design
framework, simplified or otherwise. It is worth pointing
out that a non-probabilistic approach offers less data-
informed support for decision making, notwithstanding
other considerations debated elsewhere (Phoon 2017).
For example, it is not possible to consider correlations
between different soil parameters in a non-probabilistic
framework. Correlations do exist empirically and are
widely used in practice in the form of transformation
models. As an example, Janbu proposed a correlation
between the modulus number m and the water content
in the form m = 700/w% £30%, for stress exponent a =0
(Janbu 1995). Di Buo et al. (2018) suggested that the
constant constrained modulus for the overconsolidated
region can be evaluated based on the preconsolidation
pressure given by M = ¢°,/0.03. They are not theoretical
abstractions invented to make a case for reliability
analysis but are critical to generalising the concept of
the characteristic value derived from a single to multiple
parameters (Ching et al. 2020b). A non-probabilistic

framework cannot address the more critical limit state
of differential settlement that can only arise from
spatially varying soils.

4.2.4. Settlement analysis using reliability-based
characteristic values

Hicks (2013) and Hicks and Nuttall (2012) proposed
that characteristic values should be selected to give a
failure probability of 5% with respect to the system
response. Hicks (2013) and Hicks and Nuttall (2012)
denote such characteristic values as the reliability-
based characteristic values (Xyrpp). The corresponding
settlement is referred to as the reliability-based charac-
teristic settlement (settlementrzpp). It is clear that
settlementygpp is the 1-5% = 95% fractile value of the
settlement, which can be determined by Monte Carlo
simulation (MCS).

In order to perform the reliability-based character-
istic settlement calculations some further assumptions
are needed. One needs to consider the correlations
between the parameters, both the spatial (auto-corre-
lation) and the physical (cross-correlation), as well as
assume distributions for the parameters. In the follow-
ing the cross-correlations for parameters o’,, M, and
m are considered, while the exponential a is assumed
to be fixed.

There are four clay layers, and each layer has its own
(0’cy» M, m). As a result, there are in total 12 parameters.
The spatial correlation among the four clay layers is
considered by assuming the single exponential auto-
correlation model:

1 e—2|zl —2,|/SOF e—2|21 —z3|/SOF e—2|zl —z4|/SOF
1 672|22723|/SOF 672|zzfz4|/SOF
R, = 1 g~ 2lz—241/SOF
SYM 1
(10)

where (z;, 2, z3, z4) are the mid depths of the four
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layers, and SOF is the assumed vertical scale of fluctu-
ation. The cross-correlation among the four parameters
is considered as follows:

1 p(d o, M) p(0 ey, m)
Riross = 1 P(M> m) (1 1)
SYM 1

The correlation matrix R for the 12 parameters is equal
to the Kronecker-product between R, and R

R:Rcross(X)Rz (12)

With the marginal distributions of (¢, M, m) and the
correlation matrix R, the translation method (Johnson
1949; Li et al. 2012) is adopted to simulate N = 10*
samples of (0’y, M, m). These samples are used to com-
pute N settlement samples, and settlement,zpp is there-
fore the 1-5% = 95% sample fractile value.

To the authors” knowledge there are no data about
the correlation between (¢’,, M, m). As the preconsoli-
dation pressure of soft clays for good quality samples is
generally reached with a compression of 3-4 %, one
could argue that there is a strong positive correlation
between o', and M. On the other hand, when fitting
the parameters to the observed behaviour from an oed-
ometer test, an increased o’ value needs to be compen-
sated by reducing the m value. To study the influence of
cross-correlation two different assumptions are made.
First, a strong positive correlation of 0.8 is assumed
between ¢’., and M, whereas a weak positive correlation
of 0.3 is assumed between ¢’., and m and between M
and m. A second calculation is made using a negative
correlation of —0.5 between ¢’., and m and o', and
M, while no correlation is assumed between M and
m. For both cross-correlation scenarios, calculations
are performed for the cases of: (a) number of samples
n = 4 and SOF as a large number (10000) and (b) n =
1 and SOF = 1. The results of these calculations are pre-
sented in Figure 8a).

As can be seen, the biggest influence is caused by the
assumption of either positive or negative correlation. As
the major part of the settlement comes from the nor-
mally consolidated region, the assumed cross-corre-
lation between o', and m is the most important.
Although the are no reported data on the cross-corre-
lation between these parameters, the authors believe
that the cross-correlation between o, and m is likely
to be negative, based on the earlier consideration
about parameter determination. The following calcu-
lations are thus carried out using only the negative
cross-correlation scenario.

Next a comparison between normal and log normal
distributions for the parameters is made. For this

comparison as well, the calculations for each distri-
bution are performed for the cases of: (a) number of
samples n = 4 and SOF as a large number (10000) and
(b) n = 1 and SOF = 1. The results are presented in
Figure 8b). As can be seen, the differences between
results from assuming normal or log normal distri-
butions are, even surprisingly, small. Therefore, the fol-
lowing calculations will be carried out using the normal
distribution only for consistent comparison with the
simple characteristic value calculations.

In practice, the goal is to find the appropriate charac-
teristic values or fractile inputs (i.e. Xyrgp) such that the
desired fractile response (i.e. settlementgpp) is
achieved. However, the above MCS procedure can
only evaluate settlementgpp. It cannot determine
Xirpp- This is a more complicated inverse problem.
Recently, Ching et al. (2020b) proposed an approximate
method of finding X rpp to achieve any desired fractile
settlement (settlement,zpp). In this method, the appro-
priate characteristic values are defined as the n fractiles
of the inputs (X). Note that n is usually not 5%, but it
can be calculated using the concept of the effective ran-
dom dimension (ERD), which is defined as the effective
number of independent standard random variables that
affects the response (Ching, Phoon, and Yang 2015).
ERD can be computed based on the R matrix in Eq.
(11) and the sensitivity of the response to the inputs.
If ERD = 1, n is exactly 5%, if ERD > 1, n is greater
than 5%. In general, n can be computed (Ching,
Phoon, and Yang 2015) as:

1 = ®[®1(0.05)/ERD"*] (13)

where @ is the cumulative distribution function for a
standard normal distribution.

For the scenario of negative correlation, ERD is about
1.34 (i.e. there are only about 1.34 effective independent
standard normal inputs, although there are apparently 3
input parameters). The n value corresponding to the
computed ERD is about 0.077. Therefore, the appropri-
ate characteristic values (denoted by Xygrp) should be
calculated using the 7.7% fractiles of the means of X’s:
(0’y» M, m), rather than 5% fractiles of the means.
The “mean” is assumed to be more appropriate than
the “local” mechanism scenario. While the “mean”
mechanism is likely to be appropriate under full mobil-
isation in ULS, it is uncertain if it is equally appropriate
under more restricted mobilisation in SLS. This example
illustrates the difficulty of making a choice between
Equation (4) and (5) when only two options are avail-
able. These Xygrp values can be used to compute the
characteristic settlement, denoted by settlementygrp. A
comparison of RBD and ERD characteristic value
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Figure 8. Reliability based characteristic settlement calculations. The influence of positive vs. negative correlation a), the influence of
normal vs. log normal distributions b), comparison of RBD vs. ERD characteristic settlement calculations ¢) and comparison of simple
static and RBD/ERD characteristic settlement calculations for n = 4.

settlements are presented in Figure 8c). As can be seen,
the settlement,grp is reasonably close to settlement,rpp,
and thus Xgrp is deemed to be a reasonable approxi-
mation of Xygrpp. It can be noted that ERD gives results
on the safe side and that the difference from the RBD
results gets smaller as n increases.

In Figure 8d) a final comparison between some of the
results from the simple, RBD and ERD calculations are
presented. The most important conclusions from this
example are;

o Taking a 5% fractile of the mean of all considered
parameters (0’c,, M, m) leads to overly conservative
results, while the correct characteristic values for
this example should rather be taken as 7.7% fractiles
of the mean.

e Taking a 5% fractile independently for the preconso-
lidation pressure (0’.,) and the constrained modulus
(M and m) and using the maximum settlement value
as the characteristic value seems to give reasonable
results for this example.

e The ERD method produces reasonable approxi-
mations for the full RBD.

The complexity of the example arises to a large extent
from the low overconsolidation ratio, since defor-
mations occur in both the OC and NC regions, and

the difference in the soil stiffness is significant between
the two regions. As discussed previously, for simple
cases where the settlement is not dependent on the pre-
consolidation pressure, a simple evaluation could be
obtained using Equation (9). This was further verified
with RBD and ERD analyses, which for n = 4 and
SOF >>1 gave exactly the same result as Equation (9).
One may argue that it is difficult to know what is the
correct COV value to use, as it may not be possible to
determine it statistically from limited data. It is though
possible to use a priori knowledge of the test methods
and the quality of the obtained parameters. It is also
possible to combine large generic data with limited
site-specific data using Bayesian machine learning to
obtain a more precise estimate of the COV of the par-
ameters (Phoon 2020). If the oedometer tests have
been performed on high quality samples meeting the
sample quality criteria (Lunne, Berre, and Strandvik
1997), and consideration of strain rate effects are
made, as well as after carrying out careful assessment
of other factors such as loads, possible fluctuation of
groundwater, etc., it might be justified to use a low
COV of the order of 10%. On the other hand, poor
sample quality generally causes conservative settlement
predictions. It is also important to consider the conse-
quence of exceeding the allowable settlement. If the
example represents the construction of a local road,
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the consequence would not be as severe as in a settle-
ment analysis of, for example, a brick-built house. Judg-
ment is thus stretched in the determination of the
parameters, in the evaluation of other calculation inputs
and in the evaluation of calculated results. This might
partly be based on characteristic value calculations as
in the previous example. It is important to note that
such calculations do not even attempt to cover all the
uncertainties involved in the problem in hand. These
need to be considered by other means. A simple and
straightforward way to do this would be to use defor-
mation factors, as in Table 2, based on degree of under-
standing for the whole analysis and multiply these with
some consequence factors If the deformation factors are
multipliers for the calculated best estimate settlement,
such an approach could be as shown in Table 6. If
such an approach were adopted it would be advisable
to scale the deformation factors in Table 2 with the
aid of a comprehensive RBD/ERD analysis.

4.3. Characteristic values for FEM analysis

When using the finite element method, the problem of
defining characteristic values is perhaps even more
complicated than discussed above for general SLS.
More and more complicated material models are
used in engineering practice. It is not unusual to use
soil models having more than ten parameters. These
parameters are often correlated so that the selection
of one parameter influences the values of some of the
other parameters. The performance of such models
reflects the combined effect of its parameters, for
example stiffness properties can have a considerable
influence on the resulting strength and strength prop-
erties can have a considerable influence on the result-
ing stiffness. Applying a 5% fractile to all input
parameters simultaneously could be excessively con-
servative and might lead to unusually large and uneco-
nomical designs. In addition, most of them would
rather present speculative values than true 5% fractiles
as the COV of many of the parameters would not be
known.

Table 6. Example of empirical deformation factors (herein
defined as multipliers applied to best estimate settlement)
depending on the level of understanding and consequence of
exceeding the serviceability limit state.

Consequence

Low Normal High
1 1.1 1.2

Level of understanding High 1.1 1.1 1.21 132
Normal 13 13 1.43 1.56
Low 15 15 1.65 1.8

As discussed in the previous section, Ching et al.
(2020b) studied the determination of the characteristic
values in the case of multiple correlated parameters.
They showed that if a 5% fractile is applied indepen-
dently to all correlated parameters, the resulting prob-
ability of a worse value governing the occurrence of
the limit state can be highly variable, beyond the two
orders of magnitude implied in working stress designs.
Such an interpretation of the characteristic value,
referred to as ITP1 (Interpretation 1) by Ching et al.
(2020b), corresponds to the curve with 5% fractile
values for M, m a and o, in Figure 7b), giving also
very conservative results. Ching et al. (2020b) further
concluded that Interpretation 2 (ITP2) lacks the pro-
blems of ITP1. In the previous example, ITP2 corre-
sponds to the RBD method and, as a simplified
version, to the ERD calculations, where a 5% fractile is
applied to the output (settlement in the previous
example). Note that using a 5% fractile with unit partial
factor in an SLS design is equivalent to a reliability index
of 2.2 based on the assumptions adopted by Ravindra
and Galambos (1978). This is the average of the annual
target reliability index (2.9) and 50-year lifetime target
reliability index (1.5) for SLS in Table C2 of EN1990.
The authors believe that the practical question of how
to calculate the fractile for the inputs of any material
model to achieve a 5% exceedance probability of SLS
can be based on the quantile value method (QVM)
(Ching and Phoon 2011) and the concept of an effective
random dimension (ERD) (Ching, Phoon, and Yang
2015). No probabilistic analysis is needed, and it may
offer a reasonable solution to the problem of selecting
multiple characteristic values from correlated inputs as
shown in Figure 8. The authors agree that the naive
interpretation of applying a 5% fractile to all inputs
(ITP1) is not reasonable.

The authors believe that the simplified QVM-ERD
method or the approximate ITP2 method has the poten-
tial to be applied in routine practice. Meanwhile, more
guidance for the application of characteristic values in
FEM is needed. When selecting the parameters of a
more complicated soil model, it is a common procedure
to simulate laboratory tests to determine/verify the par-
ameters. In addition, calibration tests may be carried out
on some structures. There may not be sufficient data
about particular parameters to enable fractiles of the
best estimate parameters to be selected. Instead, an
approach applying deformation factors as in Table 6
could be applied in FEM based SLS analysis. It should
be remembered that the difference between the results
of analyses due to using different models, say between
a linearly elastic-perfectly plastic model and an
advanced visco-plastic hardening model, might be
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more significant than the difference due to the variation
of the parameters. Such differences could be included in
the level of understanding as in Table 6. At present, the
model uncertainties associated with calculation models
for foundation capacity and settlement are well studied
(Tang and Phoon 2021), but the same cannot be said for
different constitutive models in FEM.

Another important issue not well highlighted in the
literature is the importance of spatial variability and
the necessity of using FEM to solve soil-structure inter-
action problems in spatially variable soils. Analytical
solutions are only possible for homogeneous soils.
Note that spatially variable soils are a more realistic rep-
resentation of “ground truths”. It is not possible to sim-
plify a spatially variable soil mass as an equivalent
homogeneous soil mass by simple spatial averaging,
because the failure mechanism is different (Ching and
Phoon 2013a, 2013b; Ching, Phoon, and Kao 2014;
Hu and Ching 2015; Ching, Lee, and Phoon 2016;
Ching, Hu, and Phoon 2016; Ching, Tong, and
Hu 2016; Ching, Phoon, and Pan 2017; Ching, Sung,
and Phoon 2017; Tabarroki et al. 2021). Two major
difficulties arise in practice when trying to apply the
characteristic value concept to FEM analyses: (1) it is
difficult to reduce complex soil-structure interaction
problems involving spatially variable soils to a single
deterministic problem defined by a single set of charac-
teristic values regardless of how they are chosen - a
reliability analysis is more appropriate, and (2) a deter-
ministic homogeneous FEM analysis defined by charac-
teristic values may not locate the critical failure
mechanism in spatially variable soils — a weakest path
model is the simplest approximation to a full reliability
analysis. Equation (7) and Figure 4 constitute the cur-
rent state-of-the-art to address point (2) approximately
but with sufficient rigor.

4.4. Input values for RBD analysis

When using reliability-based methods, the uncertainties
are included in the calculations. Regarding parametric
uncertainty, distributions of the parameters are needed,
often given by the mean, coefficient of variation and
some probability density function, and these need to
be best estimate values. The cross-correlation matrix
such as Equation (11) is also needed.

There are many discussions on how useful RBD is
when site information is typically quite limited, and
due to this practical constraint, the statistics obtained
can be inaccurate. The authors are of the opinion that
a meaningful question is whether RBD is an improve-
ment over the existing practice of managing uncertain-
ties by judgment alone, rather than whether RBD is a

perfect method. The authors’ position is that: (1) No
method is perfect and RBD is far from perfect and (2)
Judgment is necessary, regardless of choice of method.
The authors submit that RBD is an improvement
because it relieves the engineer from managing uncer-
tainties using judgment alone. The difficulty of this
task is under-appreciated because discussions do not
cover multivariate inputs in the context of FEM analysis
which is the norm in geotechnical practice. If spatially
variability is an important aspect for a particular design,
it will not be possible to handle this using judgment
alone as it would involve performing random field
simulations and computing critical failure paths/sur-
faces in a spatially heterogeneous medium with no com-
putational aid. Phoon (2017) opined that random field
simulations can identify Simpson’s (2011) “worst cred-
ible situations” more systematically from borehole
data than an engineer. While it may be possible for an
engineer to interpret a characteristic profile such as
that shown in Figure 1 at one borehole location using
judgment alone, this is unlikely to be practical for big
data sets. In fact, it is not possible to interpret a 3D
characteristic profile by pure judgment even in the pres-
ence of available site investigation data. A 3D site profile
is needed, because it is already routine to use 3D finite
element analyses in design offices. It is also difficult to
envisage how judgment can remain effective as the
4Vs (volume, velocity, variety, and veracity) of big
data increase with the advent of the Internet of Things
(IoT). Surely, no human can make sense of data from
say a thousand devices in real time. Phoon (2020) pre-
sented advanced Bayesian machine learning algorithms
that are effective under severe data constraints that the
author described as MUSIC (multivariate, uncertain
and unique, sparse, incomplete, and potentially cor-
rupted). The sparse Bayesian Learning (SBL) approach
proposed by Ching, Huang, and Phoon (2020) is likely
to be the first implementation that can consider all stat-
istical uncertainties in the mean trend and other ran-
dom  parameters  while  avoiding  onerous
computational cost in 3D. It has been extended recently
to deal with incomplete CPT sounding data (Ching,
Yang, and Phoon 2021), but a full MUSIC-3X (3X refers
to 3D spatial variability) compliant SBL approach in 3D
remains out of reach currently (Phoon, Ching, and
Shuku 2021; Phoon and Ching 2021). Even in the pres-
ence of limited data, it is possible to estimate second-
moment statistics such as mean and coefficient of vari-
ation. The resistance and deformation factors in Table 3
can achieve a desired target reliability index over a
narrow range of COVs, but they need to be adjusted
to maintain this reliability index over different COV
ranges. It is clear that a precise COV estimate is not
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necessary for simplified reliability-based design. It is
only necessary to assess which range it falls into.
Finally, is it possible to estimate probability tails
with limited data? This is a question related to the
choice of the probability distribution function. The
answer is no. However, this does not imply that assum-
ing a reasonable probability distribution function such
as a lognormal distribution is not meaningful. The
above question is framed under the traditional fre-
quentist lens where the probability distribution and
the resulting probability of failure are “real” if
sufficient data exist to support this “reality”. The mod-
ern view is Bayesian, where probability theory is
viewed as an organising framework that allows the
engineer to reason with uncertainties consistently.
This framework applies whether the sample size is
large or small. The outcomes of probabilistic analyses
can be “updated” as more data are collected. The
National Research Council (1995) points out the
advantage of treating the small sample size issue for-
mally in spite of the attendant difficulties: “In many
instances, the input (e.g. statistics, such as the means
and standard deviations of uncertain quantities)
required for probabilistic analyses are themselves
highly uncertain and can only be established approxi-
mately through the reasoned judgment of trained pro-
fessionals. Even so, the discipline and logic of these
analyses provide a useful approach to a solution.
Further, this framework can be used to evaluate the
sensitivities to uncertainties, and hence the impli-
cations, of professional judgments. This type of under-
standing can be helpful in making decisions”. In recent
years, this reasoning framework has been exploited in
machine learning where decision making can become
better and better with repeated use of the machine
learning algorithms. The bottom line is that dealing
with uncertainties by judgment alone cannot take
advantage of more data and experience gained from
repeated use of judgment cannot be shared directly
with other engineers. It can be shared through edu-
cation, mentorship, and supervision, but this is not
as effective as sharing a trained neural network. The
inability to connect explicitly with data is a major
impediment to aligning geotechnical engineering to
digital transformation (Institution of Civil Engineers
2017). This may be the most compelling reason to
use data-driven methods such as statistics in decision
making, be it based on RBD or other design methods.
Phoon and Ching (2021) highlighted the emergence of
data-centric geotechnics, in which data-driven site
characterisation (DDSC) is an active area of research
that may provide a 3D probabilistic subsurface map
to make better data-informed decisions in the future.

5. Discussion

The evolution of geotechnical standards occurs in paral-
lel and is influenced by the evolution of structural stan-
dards (Phoon, Kulhawy, and Grigoriu 2003b). Many of
the concepts that are applied in geotechnical design
regarding safety originate from structural design. Differ-
ent load factors are applied to variable and permanent
loads as the uncertainties associated with each of these
are different due to the different character of e.g. wind
and snow loads in comparison to the weight of struc-
tural elements. In geotechnical design, the application
of load factors is less straightforward. In principle the
Eurocodes introduce a harmonised set of load factors
for both structural and geotechnical design, ie. the
safety elements in EN 1997-1 (CEN 2004) for geotech-
nical design relating to the ground properties and
behaviour should accommodate these load factors and
the uncertainties associated with them. Unfortunately,
this original intent is not always met. As an example,
in retaining wall design using design approach 2
(DA2), active earth pressure is taken as the load, while
passive earth pressure is the resistance. In cases where
the excavation reaches the tip of the wall, the resistance
part of the soil is lacking, and all safety is due to the
(load factoring) of active earth pressure and possible
factoring of structural elements such as struts. The
uncertainty related to active earth pressure is larger
than the uncertainty in the weight of a structural
element. As pointed out by Lénsivaara and Knuuti
(2015), it can further be argued that the uncertainty in
the earth pressure caused by the weight of an historical
building next to an excavation pit is less than the uncer-
tainty in the earth pressure from some variable load that
might occur on the side of the excavation. The uncer-
tainty of the latter can be reduced by sufficient site
supervision.

Although geotechnical design and design standards
today have clear differences compared to the structural
standards, the authors believe that it is time to look even
more closely at the distinctive needs of geotechnical
engineering in developing the standards. Preparation
of the second generation of Eurocode 7 has involved
many Task Groups that have been established to look
at the particular features of geotechnical design, includ-
ing the application of reliability-based design methods.

Regarding material properties, the uncertainty in the
properties does not vary widely in structural engineer-
ing. For steel, it is minimal and there are production
standards requiring that the stated yield strength will
be fully met for all tested samples. For soil parameters,
for example for the undrained shear strength, the uncer-
tainty can be much larger if it is determined from an
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SPT test compared to if triaxial compression tests are
performed on high quality block samples. Therefore,
instead of relying on a vague definition of a cautious
upper or lower value as the characteristic value, another
option would be to have a partial safety factor depend-
ing on the level of uncertainty, as has been adopted for
the different types of loads in all geotechnical and struc-
tural designs. A constant problem in geotechnical
engineering is the lack of sufficient site investigation.
The problem often being that the benefits of the extra
costs are not clearly visible to the investor. Both these
issues were addressed by Fenton et al. (2016) who,
when introducing the Canadian Highway Bridge Design
Code, stated the following:

In addition, geotechnical engineers are also aware that
their uncertainty about the resistance of a geotechnical
system decreases with increased site understanding and
site modeling effectiveness. Thus, there is a real desire
amongst the geotechnical community to have their
designs reflect the degree of their site and modeling
understanding. In other words, geotechnical designs
should become more economical as site and model
understanding increases.

Fenton et al. (2016) also advocated the importance of
linking partial factors not just to the resistance uncer-
tainty but also to the consequence of failure. The basic
idea of such a floating partial factor is presented In
Figure 9a). A similar conclusion was drawn by Lénsi-
vaara and Knuuti (2015) who stated that linking the par-
tial safety factors to the uncertainty would encourage
better ground investigations to be carried out as there
would be a clear benefit also to the stake holders. The
essence of their approach is presented in Figure 9b)
where RC stands for Reliability class in the Eurocodes,
i.e. a measure of consequence, and RC3 stands for the
most sever consequence.

Analysing a benchmark slope stability case Knuuti
and Linsivaara (2019) showed that for the constant par-
tial factor approach of EN1997-1 (CEN 2004) the over-
design factor ODF decreased from 1.0-0.9 when the
reliability index decreased from 3.61-1.13. For the vari-
able partial factor approach presented in Figure 9b) the
decrease was from 0.9-0.56. The required reliability
index in EN1997-1 for normal consequences (CC2)
and a 50-year period is 3.8. The calculations were car-
ried out for varying COV and using a 5% fractile of
the mean as the characteristic value. The example
showed that a simple characteristic value may not
account for all the uncertainty, and may result in unsafe
design.

The 2021 draft version of prEN 1997-1 (CEN 2020),
incorporates partly similar thinking as in Figure 9.
Therein Geotechnical Categories (GC) are introduced

as functions of the Consequence Class (CC) and the Geo-
technical Complexity Class (GCC), as shown in Table 7.
The Geotechnical Categories do not influence the partial
factors but are used to specify the minimum requirement
regarding: ground investigation, validation of calculation
models, supervision, inspection, monitoring, designer
qualification and experience and amount of reporting.
However, the draft introduces consequence factors Ky,
that are applied to the partial factors on soil strength.
As the Ky factors depend only on the consequence of
fajlure and aim to provide different target reliability
index values, the application of the Ky factors has essen-
tially the same effect on the partial factor values as have
the consequence and reliability class (RC) in Figure 9a)
and b) respectively, i.e. the vertical axis in both graphs.
Note, in Figure 9a) the factors are multiplier resistance
factors, while in Figure 9b) the factors are divisor partial
factors adopted in Eurocode 7 in general.

Ching, Phoon, and Yu (2014) showed that the value
of site investigation can be monetised using simplified
RBD. By doing so, site investigation will be viewed as
an investment rather than as a cost. Similar gains can
also be achieved with approaches like those represented
in Figure 9. By improving the understanding and redu-
cing the uncertainties lower partial factors can be used
to achieve the same reliability but with lower costs. In
all countries, site investigation is kept as a minimum
purely to satisfy building regulations rather than geo-
technical needs. This state of affairs is detrimental to
the advancement of the industry and to our knowledge,
there is no persuasive and defensible strategy to change
this attitude among cost-conscious clients. The potential
for RBD to change this state of affairs is not well
appreciated. This issue has even become pressing
recently, because keeping site investigation to a mini-
mum is out of alignment with digital transformation
that views data as an asset.

A characteristic feature of geotechnical calculations is
that they are often highly non-linear. As pointed out by
Phoon (2017), a large COV in an input parameter may
not propagate to a large COV in the response. For other
cases, a minor change of input may have a big influence
on the output. Honjo et al. (2009) opined that the choice
of a characteristic value that is considerably different
from its mean value may result in the predicted behav-
iour of the designed structure being very different from
the most likely behaviour of the actual structure. Honjo
et al. (2009) further emphasised the philosophy that a
design engineer should keep track of the most likely
behavior of the structure to the last stage of the design
as much as possible. To follow this idea, the character-
istic soil properties should be best estimate values rather
than fractiles. On the other hand, Simpson (2011)
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Figure 9. a) Resistance factors (Fenton et al. (2016) and b) partial factors (Lansivaara and Knuuti 2015) depending on the level of

understanding and consequence of failure.

advocated the need to imagine worst credible situations
or values based on a reasonable and informed engineer-
ing assessment. The choice between “most likely” and
“worst credible” scenarios is intrinsically related to
deterministic analysis, where an engineer is compelled
to perform only one analysis based on one set of inputs.
This dichotomy does not exist in reliability analysis,
where all scenarios from “most likely” to “worst cred-
ible” are considered.

In relation to the notion of a worst credible value and
similar ideas, it can also be asked, do we always know on
what side a cautious estimate is with respect to the
occurrence of a limit state. In structural design mean
stiffness values are used for the majority of cases also
for ULS calculations. The reason being that it is often
impossible to anticipate if an upper or a lower value
would be more cautious when analysing a complicated
structural model. The same argument is very much
true also for many complex soil-structure interaction
problems. It is not necessarily evident beforehand
whether an upper or lower value is cautious, especially
not which combination of upper and lower values is
the governing one. The notion of a cautious or worst
credible value is likely to be practical only for relatively
common and familiar Geotechnical Category 2 ULS
problems where low strengths are clearly cautious or
worst credible estimates. The notion of a worst credible
situation (in contrast to a worst credible value) is related
to the occurrence of a limit state. It is conceptually simi-
lar to the ITP2 method presented by Ching et al.

Table 7. Definition of Geotechnical Categories (GC) based on
Consequence Classes (CC) and Geotechnical Complexity
Classes (GCC) according to draft prEN-1997-1 (CEN 2020).

Geotechnical Complexity Class (GCC)

Consequence Class (CC) Lower (GCC1)  Normal (GCC2)  Higher (GCC3)
Higher (CC3) GC2 GC3 GC3
Normal (CC2) GC2 GC2 GC3
Lower (CC1) GQ1 GQ2 GC2

(2020b). Translating this concept to a familiar non-
probabilistic calculation procedure that can appeal to
practitioners is not straightforward.

6. Conclusions

The baseline design method, asin EN 1997-1 (CEN 2004),
is empirical. Yet Eurocode 7 is not seen as a simple and
transparent design code, and the resulting probability of
failure may vary even beyond that implied by working
stress design. The Quantile Value Method (QVM)
(Ching and Phoon 2011) can be viewed as a theoretical
basis for this baseline method. Phoon (2017) opined that
the QVM is a “strategy of keeping the resistance factor
constant while adjusting the characteristic resistance to
handle different site conditions bears some similarity to
the Eurocode 7 partial factor approach in EN 1997-1
(CEN 2004). However, QVM is a form of simplified
RBD while Eurocode 7 is not in the sense that it does
not seek to meet an explicit target reliability index approxi-
mately. The design quantile in QVM may be larger or
smaller than 5% (the recommended value in Eurocode
7), depending on the target reliability index. EN
1990 (CEN 2002) recommended different reliability indi-
ces for different reliability classes (Table B2) and limit
states (Table C2). The main takeaway here is that geotech-
nical design isless amenable to standardisation than struc-
tural design and the engineer should be able to exercise
his/her discretion to adjust the partial material and resist-
ance factors and/or related characteristic values to suit a
particular site and other localised aspects of geotechnical
practice. A completely prescriptive approach in which
the engineer is deprived of any room to adjust the partial
material and resistance factors and the related character-
istic values runs counter to the notion that each site is dis-
tinct and hence a separate site investigation is warranted”.

To accommodate all this in a single safety approach is
fraught with significant difficulties, both practical and
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theoretical. Instead, a framework allowing for different
approaches with different levels of sophistication and
accuracy could be applied. As an example, a three-
level approach could be as follows.

(1) Variable partial factor approach

In ULS design, partial factor values are chosen
depending on the level of general understanding and
consequence of fajlure and they are scaled with the aid
of RBD to achieve consistent level for probability of fail-
ure. In SLS design, best estimate input parameter values
are used in analyses and the outcomes, e.g. settlements,
are multiplied by factors to account for the general
understanding and consequence of exceedance of the
serviceability limit.

(2) Semi RBD (Phoon and Ching 2016)

This includes many new methods, like the simplified
QVM-ERD for multiple correlated input parameters
discussed above. The methods need to be sophisticated
enough to overcome the deficiencies of Approach 1, yet
transparent and simple to use.

(3) Full RBD (Wang et al. 2016)

When sufficient data are available, the application of
full RBD accounting for all the true uncertainties
involved should be encouraged.

The authors believe that any design standard adopted
for future needs should include the following two prin-
ciples; a) all parties in a project should be engaged to
reduce uncertainties to an acceptable level, and b) to
achieve a) all parties should be engaged to share and
actively use all data available. These principles are
more aligned to the spirit of digital transformation
taking place in all industries.
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