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Abstract
As electric vehicles (EVs) are emerging, smart and adaptive charging algorithms have
become necessary to ensure safe and efficient operation of the grid. In the scientific
literature, most of the proposed charging control algorithms focus solely on EV usage‐
related behaviour, while the charging characteristics of EVs are overlooked. Herein,
realistic charging characteristics are illustrated and discussed. More notably, to overcome
the issues caused by the non‐idealities in charging characteristics, a new adaptive charging
characteristics expectation algorithm is proposed. The objective of this algorithm is to
enable accurate estimation of the non‐ideal charging characteristics. This can be used to
reallocate any unused charging capacity and to ensure that the intended total capacity is
used effectively. The effectiveness of the proposed algorithm is demonstrated using
hardware‐in‐the‐loop simulations with commercial EVs and real charging data. The re-
sults show that the proposed algorithm achieves an 88%–97% capacity usage rate, while
the current benchmark solution achieves only 45%.

1 | INTRODUCTION

As electric vehicles (EVs) are emerging at a fast pace, smart
charging solutions are becoming increasingly important.
When it comes to real‐life EV charging solutions, there are
often numerous unknown variables to be considered. These
unknown variables include the EV user‐dependent charging
behaviour (available charging time and energy requirement)
and the EV technology‐dependent charging characteristics,
which define the current consumption at each moment of
time. Herein, the term ‘charging characteristics’ is used to
describe the complex correlation of the realised charging
currents to the factors, such as the current limit set by the
electric vehicle supply equipment (EVSE), the temperature
and state‐of‐charge (SOC) of the EV battery, and the limi-
tations of the on‐board charger (OBC). For the develop-
ment of efficient smart charging solutions, consideration of
realistic charging behaviours and charging characteristics is
imperative.

1.1 | Related research and motivation

In the scientific literature, the EV charging behaviour has
been analysed from the EV use perspective (hourly/daily
level) by using, for example, traffic survey data [1–8], energy
metre‐level data [9], and actual measurements of charging
sessions [6, 10–13]. However, in addition to the differences
in EVs' usage, the EVs also have different charging char-
acteristics. It is often assumed that the EV charging current
can be fully controlled, but in reality, the EVSE can only set
the maximum charging current, and the EV can choose any
charging current below the limit. There are several reasons
for an EV to charge with a lower current than the limit set
by the EVSE such as the vehicle's maximum charging rate
being lower than the limit or the OBC may choose a lower
charging rate to protect the battery from overheating [14].
The impacts of all these reasons are referred to as non‐ideal
charging characteristics as the charging current deviates from
the current limit set by the EVSE.
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From previous studies [1–14], only [4, 14] mention non‐
ideal charging characteristics, whereas the rest focus solely on
EV usage‐related behaviour. In [14], the realised charging
currents are measured to determine the energy levels of the
EVs more accurately. However, there is no mention of real-
locating the unused charging capacity when an EV is drawing
less current than the set limit. In [4], experimental measure-
ments of a Citroen C‐Zero are used to form a simplified model
for the final charging curve. However, no other non‐ideal
charging characteristics are considered, and the same model
is assumed for each EV in the simulations.

The issue regarding the non‐idealities has recently been
brought up in [15–17] and a solution is presented in [16, 17]. In
[15], the final charging curves of 304 charging sessions are
analysed. According to the analysis the different charging
curves can be classified into six types with reasonable accuracy.
In [16], a data‐driven approach for integrating a machine
learning model to predict the charging profiles is proposed.
According to that study, the realised utilisation rate of the
charging capacity was 65.8% of the planned utilisation when
the EVs are assumed to draw the maximum power, whereas
the proposed prediction algorithm achieves a 94.4% utilisation
rate. The increased capacity usage rate leads to a higher
charging energy dispatch and higher final SOC for the EVs in a
limited infrastructure without the need for costly upgrades of
the charging infrastructure [16]. Thus, these results signify the
importance of the consideration of the non‐ideal characteris-
tics. However, even though the results of the proposed solu-
tion are very promising, there is a notable drawback. The
approach requires a large data set of the charging processes of
the EVs and the trained model only reflects the charging
characteristics of the models included in the data set. There-
fore, its usability might be restricted if the necessary data are
not available. In [17], a capacity reallocation algorithm is pro-
posed for a case considering two EVs and a peak power‐based
tariff. The algorithm is tested using hardware‐in‐the‐loop
(HIL) simulations with commercial EVs. The results show
that the algorithm effectively reallocates unused charging ca-
pacity. However, the algorithm is limited to only two single‐
phase EVs and the reallocation method is not scalable to a
larger charging site.

In public charging stations, it is not reasonable to assume
that the charging characteristics of individual EVs can be
accurately predicted in advance. In addition, the charge point
operators do not have access to internal battery variables [16].
A control system can be made without feedback of the
charging current measurements, but this does not enable
the control algorithm to observe the realised charging load.
The potential deviation between the planned loading and the
realised loading is especially significant when considering
three‐phase charging points [16], because a notable share of all
EVs (include both full EVs and plug‐in hybrid EVs) support
only single‐phase charging. By measuring the charging currents,
the control algorithm can learn or adapt to the charging
characteristics of each EV during the charging sessions, which
can then be used for optimisation purposes. Control algo-
rithms with an ability to adapt and learn have been studied

before in, for example, [18–27]. However, the adaptation and
learning in these studies focus on the usage‐related behaviour,
while the limitations caused by the non‐ideal charging char-
acteristics are overlooked.

When it comes to practical solutions that are compatible
with the charging standards and commercial EVs, the present
state‐of‐the‐art solution is to assume that each active EV draws
the current indicated by the EVSE, as in [28, 29]. An EV being
active refers to a situation where it is plugged in and ready to
receive energy. Both these studies acknowledge the fact that
the realised charging currents of the EVs may be well below
the limit set by the EVSE. In [28], the realised charging cur-
rents are measured and used to calculate the realised energy
consumption of the EVs, but neither of the studies offers any
solutions to reallocate the unused charging capacity.

Based on the literature review, it seems that the non‐ideal
charging characteristics and their impacts are attracting more
attention. However, according to the best knowledge of the
authors, practical and scalable solutions to overcome the
potential deviation between the planned and realised loading
have not been proposed. This kind of solution can increase
the charging capacity utilisation rate, which may reduce the
necessary investment cost of the local electric grid or
improve the quality of the charging service (QoCS), that is,
increase the charged energy [16]. A greater charged energy
also improves the utilisation rate of the charging points and
can lead to higher revenues for the charging operator if a
volumetric charging energy pricing is used. In addition, the
deviation between the planned and realised loading may have
negative impacts on smart charging objectives, such as fre-
quency regulation.

1.2 | Contributions

The aim herein is to thoroughly illustrate the non‐ideal
charging characteristics and discuss their impacts. More
importantly, an adaptive charging characteristics expectation
(CCE) algorithm is proposed to minimise the wasted capacity
caused by the non‐idealities. This is a crucial step towards
capacity‐efficient charging sites. The proposed algorithm is
compared to the ideal situation, where the charging charac-
teristics are perfectly predicted, and to the present benchmark
situation where the charging currents are assumed to be equal
to the limit set by the EVSE. To ensure the intended operation
under realistic conditions, the experiment is carried out using
HIL simulations with two commercial EVs and measured data
of real charging sessions.

The contributions are as follows:

1. Illustrating the complexity of the non‐ideal charging char-
acteristics. Unlike other previously mentioned studies
regarding the non‐idealities, the non‐ideal charging char-
acteristics under different current limits set by the EVSE
are analysed herein.

2. Development of an adaptive CCE algorithm that enables
the charging control system to estimate the potentially
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unused three‐phase charging capacity and reallocate it
effectively among the active EVs.

3. Formulating a simulation model that considers non‐ideal
charging characteristics. The simulation model can be
used with real EVs (HIL simulation) or without (only
simulated EVs).

4. Comparing the proposed algorithm to the present benchmark
solution and to the ideal case. This can be used to determine
the usefulness and optimality of the proposed algorithm.

1.3 | Structure

The controllability of EV charging and the non‐ideal charging
characteristics are discussed in Section 2. The control algorithm
basis and the proposed CCE algorithm are described in Sec-
tion 3. Section 4 presents the experiment setup, including the
HIL simulationmodel, the used data and the laboratory setup. In
Section 5, the results are presented and discussed. Finally, the
conclusions are provided in Section 6.

2 | BACKGROUND FOR EV CHARGING
CONTROL

The focus herein is on the charging mode 3 defined in the
Standard IEC 61851‐1. The charging mode 3 includes extended
control options while still being cost‐efficient, and it is meant to
be the basic charging mode for EVs. There may be a need for a
charging control also in a fast charging site, but the objective of a
fast‐charging station is often to provide as much charging power
as is safely possible. Consequently, the charging control objective
may be different, for example, to utilise an auxiliary battery en-
ergy storage system to reduce charging demand peaks from the
grid point of view [30]. Therefore, further consideration of fast‐
charging solutions is not discussed here.

2.1 | Controllability

As stated in [31], mode 3 charging supports currents between 6
and 80 A. To indicate a charging current limit for the EV, the
EVSE can adjust the duty cycle of the pulse width modulation
signal through the control pilot circuit. The EV should then
adjust its charging current to the limit or below it. The same
charging current limit is for each phase and thus the EVSE
cannot control phases separately.

There are several non‐ideal characteristics that can cause a
phase current to be lower than the limit indicated by the
EVSE. In a three‐phase charging point, the most trivial and yet
the most impactful issue is the fact that some EVs support
only single‐phase or two‐phase charging. In addition, the OBC
or the charging cable may limit the maximum charging current
to, for example, 16 A. Other reasons include the OBC reducing
the charging current to protect the battery from overheating or
the vehicle's battery being nearly fully charge and thus
requiring slower charging [14].

2.2 | Nonideal charging characteristics

It may be trivial that different EVs have different charging
characteristics. However, an EV may also have different in-
ternal charging modes which can affect the charging charac-
teristics of the EV. For example, BWM i3 has three different
charging modes: ‘maximum’, ‘reduced’ and ‘low’ [32]. Only the
EV user can change the charging mode. Table 1 summarises
the examined EVs [33]. Since there are no accurate data
available regarding their charging efficiencies, the OBC effi-
ciency is assumed to be the same for each mode of the BMW.
Comprehensive details regarding the differences between the
three modes of the BMW are not available as it is presumably a
trade secret.

The same Smart Grid Technology laboratory [34] and
equipment (including the two EVs, the charging point and two
energy analysers) are used to measure the realistic non‐ideal
charging characteristics and to conduct the HIL simulation
experiment. The equipment is described in more detail in
Section 4.3.

The aim here is not to assess the technical details of the
EVs which define their charging characteristics. Instead, the
authors illustrate different charging characteristics and discuss
their impacts from the charging control system point of view.

2.2.1 | Steady state charging currents

Based on the conducted charging current measurements with
different current limits, the charging current seems to be steady
(variation of <0.5 A) until around 98% SOC. However, the
steady‐state currents might be slightly over or notably under
the limit set by the charging controller. This is illustrated in
Figure 1, where the charging current limit for the BMW in low
mode is changed every 20 s. The symbols I1–I3 in the legend
represent phase currents. In Figure 1, the largest difference
between the limit and the realised charging currents after a 20‐s
adjustment period is 7.7 A. This is the largest measured de-
viation between the current limit and the realised charging
current of the considered EVs. Similar currents were seen even
with longer adjustment periods. This means that the BMW in
low mode would charge with currents of around 7.6 A (I1),
7.5 A (I2) and 7.3 A (I3) when the current limit is 15 A. More
importantly, Figure 1 shows that all EVs may not be able to use
all charging currents between their minimum and maximum
supported charging currents, which has been assumed in [16].

For the other BMWmodes (i.e. reducedmode andmaximum
mode), the deviation between the current limit and the realised
current is smaller. For the Nissan Leaf, the steady‐state single‐
phase charging currents deviate ±0.8 A from the current limit.
For the sake of conserving space, these are not illustrated.

While the charging characteristics of, for example, BWM's
lowmode are likely to be more energy efficient or safer from the
EV perspective they pose a challenge from the charging control
systempoint of view. This is because there is no standardisedway
for a charging control system to gain access to the information
regarding the charging characteristics of the EVs.
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2.2.2 | Adaption time to a new current limit

The steady‐state charging current measurements show that it
takes around 2–15 s for an EV to reach the new steady state
after the current limit changes. The reaction time to decreased
current limit seems to be faster, around two seconds for both
EVs. A greater change of the current limit does not seem to
impact the adaption time. This was seen in the measurements
where the current limit is changed in steps of 5 and 10 A. An
illustration of these measurements is not included here due to
space restrictions.

There seems to be a relatively consistent delay when the
charging is supposed to start. This delay is often around 10 s as
seen in Figure 1. In three‐phase charging, there may also be
notable differences between the phases. As shown in Figure 1,
one phase current (I3) may react much faster than the others.
This characteristic was seen in each measurement of the BMW.

2.2.3 | Charging currents in the final SOCs under
a constant current limit

Different EVs may have dissimilar charging characteristics also
at the final SOCs. To illustrate this, the final charging curves of
both EVs are presented in Figure 2. In this figure, BMW
maximum mode is chosen as its final charging curves depend
more notably on the current limit compared to the other modes.
The illustration of the remaining two modes is excluded to

conserve space. The final charging curves are measured for all
current limits (6–16A), but for the sake of clarity, only the curves
with 6, 9, 12 and 16 A limits are presented. In Figure 2b, the
three‐phase charging of BMW changes into a single‐phase
charging at around the mid‐point of the final charging curve.
After the change, the current I1 triples quickly. There seems to be
a clear correlation between the steady‐state charging current and
the point where the three‐phase charging changes into a single‐
phase charging.

The energy drawn during the final charging curve depends
notably on the current limit. For the Nissan and the BMW this
energy varies between 0.09–0.71 and 0.16–0.91 kWh, respec-
tively. Assuming the efficiencies presented in Table 1, the final
charging curves start at around 97.5%–99.7% and 97.5%–
99.6% SOC for the Nissan and BMW, respectively.

3 | CHARGING CONTROL ALGORITHM

To overcome the challenges posed by the non‐ideal charging
characteristics, an adaptive CCE algorithm is proposed. The
algorithm utilises real‐time charging current measurement as
feedback to memorise and deduct the charging characteristics.
As opposed to the solution presented in [16], this solution does
not require any preliminary data and is computationally light,
which are valuable qualities in real‐life implementations. The
CCE algorithm is designed to complement other charging al-
gorithms to ensure that they operate as intended, even when
the EVs have non‐ideal charging characteristics. Therefore, an
algorithm basis is needed to demonstrate the efficiency of the
CCE algorithm. The main objective of the algorithm basis is
to:

1. Limit the charging currents according to the limits of the
local electricity network

2. Distribute the whole charging capacity evenly between the
active EVs.

The algorithm basis is essentially the same as the current
benchmark solution used in, for example, [28, 29]. The algo-
rithm does not require any user inputs or preliminary knowl-
edge about the arriving EVs. The following subsection
presents the CCE algorithm.

3.1 | Proposed charging characteristic
expectation algorithm

In short, the idea of the CCE algorithm is to use charging
current measurements to determine the charging characteris-
tics of each active EV, and then use that information to real-
locate any potentially unused charging capacity of an EV to
other EVs. Modelling each charging session separately makes
the algorithm scalable, which is the main issue in the solution
presented in [17]. In addition, the modelling considers three‐
phase charging as opposed to the solution presented in [17]
that focuses only on single‐phase charging.

TABLE 1 EV models and charging modes

EV model Charging mode Battery capacity OBC efficiency

BMW i3 (94 AH) Maximum mode 33.2 kWh 0.865a

Reduced mode

Low mode

Nissan Leaf – 24.1 kWh 0.899b

Abbreviations: EV, electric vehicle; OBC, on‐board charger.
aEfficiency for model BMW i3 (120 Ah).
bEfficiency for model Nissan Leaf Acenta (40 kWh).

F I GURE 1 Charging characteristics of BMW i3 in low mode
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The charging characteristics model is constituted of a
maximum current and a matrix of all current limit‐
correspondences from 6 A to the maximum current sup-
ported by the charging point (e.g. 16 or 32 A). Each cur-
rent limit‐correspondence is constituted of the current limit,
phase currents and a Boolean variable. In the beginning of
a charging session, when the algorithm notices a change of
a charging state from ‘A’ to ‘B’, ‘C’, or ‘D’, the charging
characteristics model is initialised, and ideal charging char-
acteristics are assumed. If the charging state is ‘B’, ‘C’ or
‘D’, an EV is connected to the charging point, whereas the
state ‘A’ means that an EV is not connected [31]. Further
explanation of the standard is not presented here due to
space restrictions. The initial charging characteristics model
is presented in Figure 3. In the figure, the currents IM,1,
IM,2 and IM,3 in the matrix present the presumed currents
when the corresponding current limit (IL) is set by the
EVSE. The Boolean variable is used to keep track of which
values are actual measurements and which are initial
assumptions.

The algorithm begins by updating the charging character-
istics model of each active EV based on the current mea-
surements. The updating process is constituted of four
different functions: direct memorisation, phase detection,
maximum current deduction and indirect deduction. These
functions are described in the next subsections. After updating
the expected charging characteristics, the algorithm calculates

the number of EVs present. This can be done by accessing the
charging state information known by the IEC 61851‐1
compliant mode 3 charging controller.

After calculating the number of active EVs, the algorithm
allocates the available three‐phase charging capacity evenly.
The capacity distribution process is iterative and considers the
charging characteristics memorised and deducted by the CCE
algorithm. At the beginning of the distribution process, a 6 A
limit is assumed for each active charging session as it is the
minimum current limit according to [31]. In each iteration step,
the capacity distribution process considers allocating 1 A
higher charging current limit for a certain charging session and
evaluates whether the expected total charging currents for the
charging site will be within the intended limits. If the 1 A
higher current limit can be allocated for the charging session,
the algorithm updates the considered current limit for the
charging session and moves to the next charging session to
maintain an even capacity allocation. This will be repeated until
a current limit incrementation will result in too high expected
total charging currents or until all active charging sessions have
the maximum current limits supported by the charging points.
This ensures that the non‐ideal charging characteristics of each
EV are taken into account and the charging capacity will be
reallocated if necessary.

Afterwards, there may be single‐phase capacity available for
allocation and thus the algorithm carries out a similar iterative
distribution process for each phase separately. The CCE al-
gorithm deducts the phase usage of each charging session,
which makes it possible to optimise phase‐specific capacity
utilisation. After the algorithm has determined the current
limits that are expected to lead to optimal capacity usage rate,
the current limits will be sent to the corresponding EVSEs to
be put into effect. A simplified block diagram of the control
algorithm is presented in Figure 4.

3.1.1 | Direct memorisation

Each time the charging currents are measured, the mea-
surements are updated for the corresponding current limit
and the Boolean variable is set to true. An example is given
in Figure 5, where the current limit is 10 A and currents of
10.2, 10.1 and 9.9 A are measured afterwards. It should be
noted that it may take around 10 s for an EV to properly
react to the current limit. Therefore, using a shorter time
step may result in an inaccurate charging characteristics
model.

The direct memorisation is only memorising the measured
values. To improve the rate at which the charging

F I GURE 2 Final charging curves for (a) Nissan Leaf and (b) BMW i3
in maximum mode

F I GURE 3 Initial charging characteristics model
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characteristics modelling evolves, the following three functions
use reasonable assumptions made based on the analysis of the
non‐ideal charging characteristics presented in Section 2.2.

3.1.2 | Phase detection

This function aims to determine which phases are used in the
charging session. If one phase current is clearly above zero,
while a current on another phase is zero, it means that the
phase with zero current is not used. After recognising an un-
used phase, the charging characteristics model is updated so
that there are not assumed to be currents on the phase

regardless of the current limit. An illustration is presented in
Figure 6.

There are two key factors which should be considered in
this function. First, there may be noise measured by the current
metre and thus a small threshold, for example, 1 A, should be
used to determine whether a current is zero or not. Second, as
mentioned earlier, it may take longer than 10 s for an EV to
start charging after the charging is allowed. Therefore, the
phase detection function should not be used without a clear
delay after the charging is allowed.

3.1.3 | Maximum current deduction

The goal of this function is to determine the highest current
that an EV can use. Public charging points may very well be
suitable for charging currents of up to 3 � 32 A, but EVs with
≤16 A maximum supported charging current in mode 3 (IEC
61851‐1) are very common. Since it is very likely that most
EVs cannot utilise the higher end currents, the accuracy of the
charging characteristics model may be improved notably after
deducting the maximum charging current.

The maximum current deduction function checks if the
measured charging current is clearly below the set current limit.
And, if so, the measured current is assumed to be the
maximum charging current for the present EV. As shown in
Figure 1, there may be notable differences (>7 A) between the
current limit and the charging current even though the current
has not reached its maximum value. Therefore, a threshold of a
couple of amperes should be used to determine whether there
is a clear difference between the current limit and the measured
charging current. However, since the algorithm can always
relearn the maximum charging current for each session, there
is no need for a remarkably high threshold (e.g. >7 A) which
would minimise the risk of erroneous maximum charging
current deduction.

The maximum current is taken into account according
to Equation (1), where IE represents the expected charging
current, IM represents the corresponding currents in the
matrix, Imax represents the maximum current, L denotes
the considered current limit, and the subscript p denotes the
phase.

IE;pðLÞ ¼min
�
IM;pðLÞ; Imax

�
: ð1Þ

3.1.4 | Indirect deduction

The aim of this function is to improve the modelling accuracy
of those current limit‐correspondences which are yet not
directly measured but which are between two directly measured
current limit‐correspondences. Since the non‐measured cur-
rent limit‐correspondences are assumed to be ideal, they may
be significantly inaccurate (potentially over 7 A difference as
shown in Figure 1). The current limit‐correspondences seems

F I GURE 4 Simplified block diagram of the control algorithm

F I GURE 5 Direct memorisation of newly measured charging currents
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to be logical in a way that a higher current limit results in equal
or higher charging currents, whereas a lower current limit re-
sults in equal or lower charging currents. Therefore, two
directly measured current limit‐correspondences can be used
to determine boundaries for all non‐measured correspon-
dences between them. Since more accurate prediction becomes
very complex and requires more input data, it is reasonable to
assume that the non‐measured current limit‐correspondences
are settled linearly between the two directly measured
correspondences.

After receiving a current measurement, the indirect
deduction function is used to check whether there are non‐
measured current limit‐correspondences between the adja-
cent directly measured correspondences. This is made possible
with the Boolean variables. If a measured correspondence is
found after one or more non‐measured correspondences, the
non‐measured correspondences are updated. The operation of
this function is illustrated in Figure 7.

4 | EXPERIMENT

In order to ensure compliance with commercial EVs, the
verification of the charging control algorithm is carried out
using HIL simulations. To further improve the overall accuracy
of the simulation model, real charging behaviour data and
realistic charging characteristics (illustrated in Section 2.2) are
used. The following subsections describe the used simulation
model, modelling of charging characteristics, the laboratory
setup and the simulation case.

4.1 | Simulation model

The experiment consists of up to two HIL charging points,
which are described in Section 4.3, and a necessary amount of
fully simulated charging points. The key feature of the simu-
lation model is the coupling of realistic charging profiles
(Section 4.2) and real charging session data (Section 4.4). The
simulation model and the used algorithms are implemented
using Python programming language, and a time step of 10 s is

used to calculate the values of the simulated EVs and to
measure the charging currents of the HIL charging points.

The control algorithm is run every 60 s unless a new EV
arrival is observed. To avoid potential overloading, the control
algorithm does not allow charging for a new charging session
until the control algorithm has allocated the charging capacity
properly. In the case of a new EV arrival, the control algorithm
is run on the very next time step. This improves the EV user
convenience as the charging will start with minimal delay.

As mentioned in Section 2.2, there may be a delay of over
10 s before a charging session starts properly. Therefore, the
algorithm waits 1 min after the start of the charging sessions
before enabling phase detection and maximum current
deduction functions to avoid erroneous characteristics
deduction.

4.2 | Modelling of EV charging profiles

This subsection describes the modelling of the charging pro-
files in the simulation model and should not be confused with
charging characteristics modelled by the CCE algorithm. The
charging profiles are modelled based on the measurements
illustrated in Section 2.2. Another option to model battery
behaviour would be the use of equivalent circuit models
(ECM). However, this approach is problematic as the detailed
parameters of an ECM as well as the battery pack composition
are generally trade secrets of the manufacturers and cumber-
some to determine via experimental battery measurements and
reverse engineering [16]. The charging profiles are measured
for each current limit for both EVs and for each BMW
charging mode mentioned in Table 1. The currents, voltages
and time are then used to calculate the missing energy of the
EV battery. The energies, currents and current limits are then
used to determine realistic charging profiles for each EV (and
for each BMW's charging mode) in which the charging current
depends on the EV battery energy level and the charging
current limit set by the charging controller.

The impacts of the battery temperature and other external
factors are not considered in these models. Therefore, a slight
deviance between the modelled charging currents and the

F I GURE 6 Detection of unused phases in the present charging
session

F I GURE 7 Indirect charging characteristics deduction
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laboratory measurements is expected. However, the charging
profiles can still be used to introduce realistic non‐ideal
charging characteristics to the simulation model.

4.3 | Laboratory setup

The experiment was carried out at the Smart Grid Technology
Lab [34] at TU Dortmund University. The HIL simulations
used the same EVs described in Table 1. A modified RWE
eSTATION charging station with two charging sockets suitable
for up to 22 kW (400 V AC) charging power was used. The
charging station included two Phoenix Contract Advanced EV
Charge Controllers (type EM‐CP‐PP‐ETH) which are
compatible with IEC 61851‐1 standard.

The algorithmuses aModbus library (PyModbus [35]) which
enables it to control the charging current limits of the charging
controllers and to read registers such as the charging state. A
similar Modbus connection is used for two KoCoS EPPE PX
power quality analysers with KoCoS ACP 300 current probes to
measure phase voltages and charging currents. The setup for the
HIL simulations is illustrated in Figure 8, and a photograph of
the setup is presented in Figure 9.

While the run time of one loop of the script (including the
proposed CCE algorithm) is a fraction of a second, the queries
through the Modbus connection may occasionally take several
seconds. The selected time step of 10 s works well without any
issues but the tests with shorter time steps does show an
increasing chance of the queries not having enough time to
receive a response.

4.4 | Simulation case

The simulation case uses real charging data measured at Mall of
Tripla [36], which is located inHelsinki, Finland. There are nearly
300 charging points, and the charging points for public use can
supply charging powers up to 22 kW. The data consist of around
5000 charging sessions recorded over a 6‐month period
(October 2019–March 2020). The charging sessions were un-
controlled. The data include start time, stop time, energy con-
sumption and peak power of each charging session.

According to the charging data, there were up to 20
simultaneous charging sessions. Since the utilisation rate of the
charging infrastructure was so low, the simulations consider
only 20 charging points and a total charging capacity limit of
3 � 120 A. As a consequence, the algorithm basis mentioned
in Section 3 is needed to limit the charging currents during
congestions. Since there are always at least 3 � 6 A charging
capacity for each charging session, there is no need to
temporarily disable any charging sessions.

The simulations consider three scenarios. These scenarios
are based on the 3 days with the highest number of charging
sessions and the highest total energy consumptions. By assuming
that the peak power of three‐phase charging would be over
10 kW, the EV types (single‐phase or three‐phase) can be esti-
mated. Scenarios 1 and 2 represent the days with the highest

number of single‐phase and three‐phase charging sessions,
respectively, whereas Scenario 3 represents the day with the
highest energy consumption. All single‐phase charging sessions
are modelled based on the Nissan, whereas all three‐phase
charging sessions are modelled based on the BMW. The BMW
modes for the three‐phase charging sessions are chosen arbi-
trarily. The scenarios are presented in Table 2, and the charging
point occupation rate is illustrated in Figure 10. Since these
charging sessions are uncontrolled, their total charged energies
are used as a reference value to represent the 100% QoCS level
used herein for comparison purposes. For each examined algo-
rithm, the QoCS is calculated by dividing its total charged energy
with the total charged energy of the uncontrolled case.

In addition to these scenarios, simulations are conducted to
provide an example of a peak power‐based charging control
algorithm and to demonstrate its differences regarding the
capacity allocation. This example is based on Scenario 3, but
the charging capacity is limited to 82.8 kW, which equals an
average phase current of 120 A (230 V). However, in this case,
the fuse size is assumed to be higher, and thus, the currents
on the individual phases are allowed to rise above 120 A as
long as the total charging load is within the power limit. In the
future, peak power‐based electricity tariffs are likely to become
more popular as they improve the cost‐reflectivity of the
electricity pricing [37]. As a result, there will be an incentive to
limit peak loading in charging sites and thus effective capacity
utilisation becomes more valuable.

F I GURE 8 The setup for the hardware‐in‐the‐loop (HIL) simulations.
HIL, hardware‐in‐the‐loop

F I GURE 9 The laboratory setup
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5 | RESULTS

The simulations are carried out using four different algorithms:

Algorithm 1 Uncontrolled charging

Algorithm 2 Control without an adaptive CCE al-
gorithm (the present benchmark solution),

Algorithm 3 Control with the proposed CCE
algorithm

Algorithm 4 Control with perfect knowledge of the
charging characteristics

The same algorithm basis (presented in Section 3) is used for
Algorithms 2–4, and only the adaption method to the different
charging characteristics varies. The second algorithm does not
include an adaptive CCE algorithm and thus the control algo-
rithm essentially assumes charging characteristics of each EV to
stay ideal. The third algorithm utilises the proposed CCE algo-
rithm. The fourth algorithm has perfect knowledge about the
charging characteristics and battery energy levels. Due to the
required preliminary knowledge, the fourth algorithm can only
be simulated. As the first two algorithms are less complex, only
the third algorithm is carried out as anHIL simulation.However,
the charging requirements of the EVs are kept the same
regardless of the chosen algorithm. The fourth algorithm is used
to assess the optimality of the proposed CCE algorithm and to
determine the upper bound of the possible capacity usage rate
without the risks of overloads. The capacity usage rate (Cusage) is
calculated according to Equation (2), where t is time index, P is

the realised power consumption and Pmax is the maximum
allowed power determined based on, for example, the fuse size
or other peak load limit.

CusageðtÞ ¼
PðtÞ

Pmax ðtÞ
: ð2Þ

5.1 | Scenarios 1–3

The results of Scenarios 1–3 are summarised in Table 3.
The charging loads in Scenario 1 and 2 are naturally spread
over the day, and thus, even the uncontrolled charging load
peak is relatively modest. However, Algorithm 2 simply di-
vides the available charging capacity among the EVs without
recognising that some of the EVs draw much lower currents
than the limit set by the EVSEs. Since the unused capacity
is not reallocated to other EVs, it is essentially wasted,
resulting in lower QoCS.

In Scenario 3, there is a notable charging load congestion
between 13:30 and 14:48 h and a smaller congestion between
16:42 and 17:13 h. In the case of uncontrolled charging, the
highest current peaks at 144 A, which means an overload of
24 A (20%), and thus, a peak load limitation is necessary. The
currents in case of Algorithms 3 and 4 are very similar and thus
the proposed CCE feature seems to operate near ideally. Ac-
cording to the simulations, even Algorithm 4 results in a slight
QoCS reduction of 8.1 kWh (1.8%), whereas Algorithms 2 and
3 resulted in a QoCS reduction of 148.2 (32.6%) kWh and 9.7
(2.1%) kWh, respectively. The currents in Scenario 3 are pre-
sented in Figure 11.

To illustrate the charging currents in more detail, the
moment of the more notable congestion is presented in
Figure 12. Algorithms 3 and 4 result in very similar charging
currents. Since the control algorithms are run only every 60 s
or in the case of a new EV arrival, neither algorithms can fully
utilise the whole charging capacity without the risk of a slight
overload. In addition, the charging sessions are not likely to be
equally distributed for the three phases, which may lower the
optimal capacity usage rate. The average capacity usage rates
during 13:30–14:40 h are 45.4%, 87.9% and 88.9% for the
Algorithms 2–4, respectively.

5.2 | Peak power‐based capacity allocation

This example demonstrates that a peak power limit‐based
charging capacity allocation is more straightforward than, for
example, fuse size‐based capacity allocation. This is because a

TABLE 2 Scenarios

Number of electric vehicle charging
sessions

Three‐phase charging
sessions

Single‐phase charging
sessions

Total charged
energy Date

1. 66 4 62 372 kWh 22 Feb 2020

2. 61 12 49 428 kWh 19 Oct 2019

3. 59 10 49 454 kWh 14 Dec 2019

F I GURE 1 0 Charging point utilisation for Scenarios 1–3
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power‐based capacity allocation does not require perfectly
balanced load for each phase. Therefore, a higher capacity
usage can be achieved. However, it is still necessary to consider
each phase separately to avoid phase‐specific overloading, and
an adaptive CCE algorithm is still required to effectively allo-
cate the intended total charging capacity. In this case, 96.5%
average capacity usage is achieved during 13:30–14:40 with the
proposed CCE algorithm. The charging currents are presented
in Figure 13. Without an adaptive CCE algorithm, the capacity
usage would be 45.4%, whereas the ideal algorithm would
result in 98.0% capacity usage rate over the same period. The
QoCS for Algorithms 2–4 are 67.4%, 99.8% and 99.9%,
respectively.

It is worth mentioning that even a higher capacity usage
percent is possible by exploiting the fact that in some cases,
such as [17], the objective is to limit the average power of a 1‐h
long period to a certain level, and thus, the power is allowed to
momentarily be higher than the targeted level.

5.3 | Discussion

Based on the results, by not considering an adaptive CCE al-
gorithm over half of the charging capacity would remain un-
used. In addition, even an ideal algorithm may not achieve
higher a fuse size‐based maximum capacity usage rate than
89%. This is because of the unevenly balanced charging loads
and the non‐ideal EV charging characteristics, which reduces
the controllability of the charging load. When comparing Al-
gorithm 3 (the proposed CCE algorithm) and Algorithm 2 (the
present benchmark solution), the average charged energy is
increased by 96.0 kWh by the CCE algorithm. Consequently,
the average QoCS is improved from 76.5% to 99.3%. These
results underline the usefulness of the CCE algorithm to
maximise the QoCS while minimising the investment costs of
the required charging infrastructure. When comparing the

CCE algorithm to Algorithm 4 (perfect preliminary knowledge
of the charging characteristics), the average charged energy is
only 0.6 kWh higher with Algorithm 4. The average QoCS is

TABLE 3 Results of Scenarios 1–3

Scenario Algorithm QoCS Charged energy Uncharged energy

1. 1. 100.0% 372.1 kWh 0.0 kWh

2. 77.6% 288.8 kWh 83.3 kWh

3. 100.0% 371.9 kWh 0.2 kWh

4. 100.0% 372.0 kWh 0.1 kWh

2. 1. 100.0% 427.8 kWh 0.0 kWh

2. 84.5% 361.4 kWh 66.4 kWh

3. 100.0% 427.8 kWh 0.0 kWh

4. 100.0% 427.8 kWh 0.0 kWh

3. 1. 100.0% 454.3 kWh 0.0 kWh

2. 67.4% 306.0 kWh 148.2 kWh

3. 97.9% 444.6 kWh 9.7 kWh

4. 98.2% 446.1 kWh 8.1 kWh

Abbreviation: QoCS, quality of the charging service.

F I GURE 1 1 Charging currents in Scenario 3 in the case of
(a) Algorithm 1, (b) Algorithm 2, (c) Algorithm 3 and (d) Algorithm 4
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99.4% with Algorithm 4. Based on these results, it can be seen
that the proposed CCE algorithm overcomes the issues posed
by the non‐ideal charging characteristics near ideally.

The non‐ideal charging characteristics would particularly
affect the algorithms that schedule the charging of EVs based
on their individual energy requirements and departure times,
such as the algorithms presented in [1, 2, 4, 11, 24]. The im-
pacts to the individual EVs cannot be completely avoided but
the proposed CCE algorithm could be used to ensure that the

whole intended charging capacity is used efficiently, which will
improve the average QoCS of all EVs.

It is worth mentioning that the charging standard IEC
61851 supports digital data communication between the EV
and the EVSE which, in theory, could replace the need for the
proposed CCE algorithm. However, this communication
approach is problematic from two perspectives. First, the
charging characteristics are complex, and the charging current
depends on variables such as the temperature. In addition, the
correlation between the charging current and the current limit
set by the EVSE is not always linear as presented in Figure 1.
Thus, in order to accurately keep track of the charging char-
acteristics of an EV, the control system requires multiple
updated data sets of the charging characteristics throughout
every charging session. This would increase the data transfer
between EV, EVSE, and the control system notably. Second,
even if the data transfer would be supported by some of the
EVs in the near future, it might take a long time for all EVs to
be able to support this data transfer. In the meantime, the
proposed solution will be very valuable. Based on the opti-
mality of the proposed solution, it may even be argued that
there is no need for EVs to be able to inform the EVSE or the
main control system about their charging characteristics.

The vehicle‐to‐X (V2X) is not considered herein as it is not
supported by the used EVs and charging point. It is reasonable
to assume that the V2X operation also includes non‐ideal
characteristics that will limit its controllability. The proposed
CCE algorithm could be modified relatively easily to consider
V2X operation. However, to ensure its effective operations, it
should be tested using EVs and charging points that support
bidirectional power flow.

6 | CONCLUSIONS AND FUTURE
WORK

The often‐overlooked issues caused by the non‐ideal charging
characteristics of commercial EVs have been illustrated and
discussed herein. While the non‐ideal charging characteristics
may make the charging safer and more energy efficient from
the EV's perspective, they pose a challenge from the charging
control system point of view. There is currently no stand-
ardised way for a control system to gain access to the infor-
mation regarding the EVs' charging characteristics. Therefore,
an adaptive CCE algorithm seems to be a prominent solution
to ensure that the intended charging capacity is effectively used
in public charging sites.

An adaptive CCE algorithm is proposed herein. The
algorithm utilised charging current measurements to memorise
and deduct charging characteristics of the EVs without any
preliminary knowledge. This information is then used to
ensure that the intended capacity is effectively used resulting in
a higher quality of charging service. The proposed CCE
algorithm is tested using HIL simulations with commercial
EVs to ensure compliance with the standard IEC 61851‐1. In
order to test the operation in a larger charging site, a simulation
model is developed that couples realistic charging profiles

F I GURE 1 2 Charging currents in Scenario 3 between 13:25 and 14:55
in case of (a) Algorithm 3 and (b) Algorithm 4

F I GURE 1 3 Charging currents in a power capacity allocation example
utilising the proposed charging characteristics expectation (CCE) algorithm
in Scenario 3. CCE, charging characteristics expectation
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(charging current over time) with real charging data (arrival
time, departure time and energy requirement). Thus, the
simulation model ensures that the non‐ideal charging charac-
teristics, which cause the charging current to deviate from the
current limit set by the EVSE, are realistically modelled.

According to the simulation results, the proposed CCE al-
gorithm operates almost as well as the ideal algorithm with
perfect knowledge. When compared to the present benchmark
solution, the total daily charging energy is increase by 96 kWh on
average, resulting in the average QoCS increasing from 76% to
99%. In addition, the results show that the proposed CCE al-
gorithm reaches up to 88% maximum charging capacity usage
rate over the congestion hour if the capacity is determined by a
fuse size, whereas the ideal control algorithm reaches 89% and
the present benchmark solution reaches only 45%. If the avail-
able charging capacity is limited to a certain peak power, the
capacity allocation does not require perfectly balanced phase
loading. Therefore, the capacity allocation is simpler and a higher
capacity usage rate is possible. In this case, the proposed CCE
algorithm reaches the 97% maximum capacity usage rate.

The result also gives an indication that over 98% QoCS can
be achieved in a public charging site with multiple 22 kW
charging points even if the total charging capacity per charging
point results in 3 � 6 A. To determine more comprehensive
guidelines to maximise the QoCS while minimising the
investment costs of the necessary charging infrastructure at
public charging sites, extended simulations will be carried out
for different charging sites. Additional future works include
testing of the proposed CCE algorithm in a pilot case with
multiple charging points and analysis of non‐ideal discharging
characteristics in V2X operation.
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