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Abstract. This paper presents a numerical study on a possible piezoelectric effect in thermal 

drilling of Quartz bearing rocks. For this end, the governing piezoelectro-thermo-mechanical 

problem is solved with the finite element method. The granitic rock material, consisting of 

Quartz, Feldspar and Biotite minerals, is taken as linear elastic but heterogeneous and 

anisotropic. Temperature dependence of material properties is neglected. The simulation 

demonstrates that the secondary stresses arising from converse piezoelectric effect are three 

orders of magnitude smaller than the primary thermal stresses, which means that the 

piezoelectric effect is negligible.    

1.  Introduction 

Electrification effects, such as piezoelectricity and seismoelectricity, in rocks have important 

applications in the field of geophysical exploration. Moreover, piezoelectric properties and the thermal 

drillability of rocks containing piezoelectric minerals are interrelated to some extent [1]. Therefore, the 

drillability of, e.g Quartz bearing rocks, could be predicted based on their piezoelectric properties. 

Parkhomenko [1] hypothesised that there is an inverse secondary piezoelectric effect present in 

thermal drilling, accentuating the primary thermal stresses by secondary stresses arising from the 

electric charges due to thermal expansion of the quartz grains.   

The principle of thermal drilling based on spallation phenomenon is illustrated schematically in 

Figure 1.  Accordingly, when a rock surface is exposed to an intensive heating the resulting thermal 

gradient induces a compressive stress state, which leads to crack growth in the rock surface layer. 

When the cracks reach the critical length, spallation, i.e. ejection of rock chips, occurs. The minimal 

required temperature for spallation to occur in granitic rocks is about 500-600 C [2]. Now, the Quartz 

grains in granite rock generate electric charges by the direct piezoelectric effect. This in turn, as 

hypothesised by Parkhomenko, accentuates the thermal stress states due to secondary piezoelectric 

stresses.  

The present study addresses this topic by a numerical study. More specifically, the piezoelectric 

effect of Quartz is tested in rapid surface heating of a granite-like rock. For this end, a numerical 

method, based on finite elements, for solving the governing piezoelectro-thermo-mechanical problem 

is developed. The axisymmetric model, with the strong (local) form of the partial differential 

equations, is discretized with polygonal finite elements. Only the heat equation, having the external 

heat influx as the load term, depends on time and it is solved with the implicit Euler time integrator, 

while the quasi-static piezoelectric and mechanical balance equations are time independent. The 
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generic granite like rock is modelled as heterogeneous and anisotropic linear elastic material, and it 

consist of Quartz, Feldspar and Biotite minerals.   

 
Figure 1. Principle of thermal spallation drilling of Quartz bearing rocks. 

 

2.  Theory of the modelling approach 

The relevant theory of the modelling approach is described here. First, the strong form of the 

governing set of differential and constitutive equations is given. Then, the finite element discretized 

form and the solution method for the piezoelectro-thermo-mechanical problem is outlined. Finally, the 

heterogeneous and anisotropic description of rock material is detailed. 

2.1.  Strong form of the piezoelectro-thermo-mechanical problem 

The strong form of equations governing the thermal drilling of piezoelectric rock are written as 

follows (tensor component notation): 
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where symbols’ meanings are as follows:  is the density; c is the specific heat capacity;  is the 

temperature; qi is the heat flux vector; Q is the term including mechanical heat production through 

dissipation and strain rate, which are ignored here as insignificant in comparison to external heat 

influx; Di is the electric displacement; e is the electric charge; ij is the stress tensor; B

if  is the 

volume force vector; k is the thermal conductance; ijklC is the elasticity tensor; kl is the mechanical 

strain tensor; is the thermal expansion coefficient; ij is the Knocker delta symbol; kije is the 

piezoelectric coupling tensor; Ek is the electric field vector;
e
ij  is the dielectric constants tensor;  is 

the electric potential.  

The first three equations in (1) are the heat balance, electro-static balance, and the elasto-static 

balance equations while the rest of the equations are the constitutive equations for linear thermo-

elasto-piezoelectric material. The rock damage and plasticity effects are thus ignored and only stresses 

arising from thermal and piezoelectric effects are considered in this study. Moreover, temperature 

dependence of the material properties is ignored for simplicity. It should be noted that the only time 
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dependent equation in (1) is the heat equation. This is a justified choice due to the fact that inertia 

effects are negligible in thermal drilling.    

2.2.  Finite element discretized form of the piezo-thermo-mechanical problem 

 

The finite element form of the problem described in Eq. (1) can be derived in standard techniques [3, 

4] and reads at time t + t (ignoring the irrelevant terms): 
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where the symbol meanings are as follows: uK is the stiffness matrix; t t+u is the nodal displacement 

vector; t t+θ and 0θ  are the nodal temperature and initial temperature, respectively; t t+  is the nodal 

electric potential; C  and K are the capacitance and conductance matrices, respectively; t t



+f  is the 

external heat flux vector; A is the standard finite element assembly operator; u
e

B  is the kinematic 

matrix (mapping the nodal displacement into element strains); θ

e
N  is the temperature interpolation 

matrix; qn is the normal component of the heat flux; θ

e e

=B B  is the gradient of θ

e
N ; e and ε are the 

piezoelectric coupling and dielectric constant matrices, respectively. Furthermore, in term 1 , 1 is 

the Voigt version of the second order unit tensor and   is a special operator which gives the average 

of a scalar field, the temperature in the present case, at the nodes of a finite element.   

The solution of system (1) is as follows. First, the temperature is solved from the heat equation, as 

it does not depend on the other field variables in the present case, employing the backward Euler 

scheme for time discretization. Then, the electric potential is eliminated from the second equation by 

using the third equation. After, some algebra, the final solution scheme is as follows:  
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This system is solved in this order. 

2.3.  Heterogeneous and anisotropic rock material description 

The numerical granitic rock, consisting of -Quartz (33%), Feldspar (59%) and Biotite (8%), is 

described as heterogeneous anisotropic linear elastic material. The crystal systems for these minerals 

are trigonal (-Quartz), triclinic (Plagioclase Feldspar) and monoclinic (Biotite) [5-8]. However, 

Biotite is considered here as pseudo-hexagonal and the hexagonal values measured by Alexandrov and 

Ryzhov [5] are used. The corresponding elasticity matrices and piezoelectric constants matrix d (e = 

CedT) for Quartz are in 2D axisymmetry [8]: 
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where the coefficients numbering refers to the 3D elasticity tensor in Voigt’s notation with the 

component ordering [11 22 33 23 13 12], while the ordering here is such that the terms corresponding 

to the hoop stress are on the 4th row and column.  

The rock heterogeneity is described by random clusters of finite elements in the mesh so that each 

mineral is allotted the percentage of elements in the mesh corresponding to the percentage of each 

mineral in the rock.  

3.  Numerical examples 

The numerical simulations of intensive surface heating of rock are carried out here. As mentioned, the 

rock heterogeneity is accounted for by random clusters of polygonal finite elements representing three 

different rock constituent minerals (see Figure 2). For the theory of polygonal finite elements and their 

application in numerical modelling of rock fracture, see Saksala and Jabareen [9]. The material 

properties for the minerals used in the simulations are given in Table 1 and 2. 

 

                           Table 1. Elasticity constants for rock minerals in GPa [5-7] 

Quartz C11 C33 C12 C13 d11*  

 87.3 105.8 6.6 12.0 2.27  

Biotite C11 C33 C12 C13   

 186.0 54.0 32.4 11.6   

Feldspar C11 C22 C33 C66 C12 C13 

 104.8 190.1 169.3 35.6 50.2 42.2 

 C16 C23 C26 C36   

 -4.3 18.6 -4.6 -5.2   
                                      *Unit pC/N 

 

        Table 2. Material and model parameters for simulation. 

Parameter/mineral Quartz Feldspar Biotite 

 [kg/m3] 2650 2630 3050 

 [1/K] 1.60E-5 0.75E-5 1.21E-5 

k [W/mK] 4.94 2.34 3.14 

c [J/kgK] 731 730 770 

 [F/m] 4.50 6.30 7.750 

   0 = 8.854E-12 F/m  

 

The boundary conditions and the finite element mesh are shown in Figure 2. The model surfaces are 

assumed thermally insulated. In order to make a “fair case” for the piezoelectric hypothesis, it is quite 

unrealistically assumed that all the Quartz grains, represented here by polygonal finite elements, are 
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left-handed and display a perfectly oriented texture with the mineral optical c-axis conforming to the 

global z-axis of the 2D axisymmetric coordinates. Finally, the heating time and the flux intensity are, 

respectively, specified as 1s and qn = 1 MW/m2. These values are chosen for demonstrative purposes 

only and they do not necessarily represent practical values. 

 

 
Figure 2. Boundary conditions and the finite element mesh (1500 polygons, 1 = Quartz, 2 = 

Feldspar, 3 = Biotite) for thermal shock simulations. 
 

Simulation results are presented in Figure 3.  

 

 
Figure 3. Simulation results for thermal surface shock (T = 1s, qn = 1 MW/m2): temperature (a), 

axial stress (c), radial stress (c), electric potential (d), and electric field strength (d) distribution at the 
end of simulation. 

 

According to the results in Figure 3a, the temperature at the surface reaches 500 C, i.e. the lower limit 

for spallation to occur. This high temperature naturally induces thermal stresses of extremely high 

magnitudes. The compressive stress in z-direction and the tensile stress in r-direction reach 700 MPa 
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and 100 MPa, respectively. Such tresses surely generate substantial charge via direct piezoelectric 

effect. Indeed, the maximum voltage induced is almost 4 kV (Figure 3d) and electric field strength 

exceeds 2.5E6 V/m at some locations (Figure 3e).   

Now, if Equation (2)2 is solved for displacement while neglecting the thermal coupling term and 

using the voltage in Figure 3d as a loading (converse piezoelectric effect) instead, the magnitude of the 

secondary stress field can be estimated. The values of radial and axial stresses thus solved barely reach 

0.5 MPa, i.e. three orders of magnitude lower that the stresses induced by the thermal shock. The same 

result is obtained by inspection of the diagonal entries of matrices in the l.h.s of Equation (3)2 uK  and 
1

u u  

−
K K K  − the diagonal entries of the former are three orders of magnitude larger than those of the 

latter.  

4.  Conclusions 

The numerical study on the possible piezoelectric effect of Quartz in thermal drilling of granite was 

presented. Despite the simplifying assumptions, i.e. linear elastic material with temperature 

independent material properties, the results suggest that piezoelectric effect has no role in thermal 

drilling. More precisely, the secondary stresses arising from converse piezoelectric effect in thermal 

drilling are three orders of magnitude smaller than the primary thermal stresses. 
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