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a b s t r a c t 

Background: Cardiomyocytes differentiated from human induced pluripotent stem cells (iPSC-CMs) can 

be used to study genetic cardiac diseases. In patients these diseases are manifested e.g. with impaired 

contractility and fatal cardiac arrhythmias, and both of these can be due to abnormal calcium transients 

in cardiomyocytes. Here we classify different genetic cardiac diseases using Ca 2 + transient data and dif- 

ferent machine learning algorithms. 

Methods: By studying calcium cycling of disease-specific iPSC-CMs and by using calcium transients mea- 

sured from these cells it is possible to classify diseases from each other and also from healthy controls by 

applying machine learning computation on the basis of peak attributes detected from calcium transient 

signals. 

Results: In the current research we extend our previous study having Ca-transient data from four differ- 

ent genetic diseases by adding data from two additional diseases (dilated cardiomyopathy and long QT 

Syndrome 2). We also study, in the light of the current data, possible differences and relations when ma- 

chine learning modelling and classification accuracies were computed by using either leave-one-out test 

or 10-fold cross-validation. 

Conclusions: Despite more complex classification tasks compared to our earlier research and having more 

different genetic cardiac diseases in the analysis, it is still possible to attain good disease classification 

results. As excepted, leave-one-out test and 10-fold cross-validation achieved virtually equal results. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Since their discovery induced pluripotent stem cells (iPSC) have 

een widely utilized for scientific research purposes and they hold 

reat promise for use in biomedical research and development [1] . 

atient-specific iPSC-derived cardiomyocytes (iPSC-CMs) offer an 

ttractive experimental platform to model cardiac functionality and 

iseases. 

Calcium cycling has an important role in extraction-contraction 

oupling of cardiomyocytes since it is the central regulator of in 

ardiac contraction and relaxation. Cardiac diseases often cause 

ariability and distortions in calcium cycling of cardiomyocytes and 

ffect their functionality. Such distortion abnormalities in calcium 

ransients can represent a patient’s cardiac phenotype [2] . Detec- 

ion and characterization of these distortions are important, es- 
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ecially, because they can be used in order to develop recogni- 

ion and diagnostics of cardiac diseases. Thus far, machine learn- 

ng methods have rarely been used for data associated with iPSC- 

erived cardiomyocytes. Machine learning has been applied at 

east to analyze electrophysiological effects made by chronotropic 

rugs [3] and mechanistic action of drugs in cardiology [4] . 

We started our preliminary research of calcium transients mea- 

ured from iPSC-CMs generated from genetic cardiac disease pa- 

ients in order to recognize calcium transient peaks from calcium 

ignals and classified regularly i.e. normally cycling from abnor- 

ally cycling calcium peaks by means of signal analysis and ma- 

hine learning algorithms [5] . After this we discovered that it is 

ossible to separate three different genetic cardiac diseases from 

ach other and from controls (wild type, WT) [6] . These diseases 

ere long QT syndrome 1 (LQT1), an electric disorder of the heart 

hat predisposes patients to arrhythmias and sudden cardiac death 

7] , hypertrophic cardiomyopathy (HCM), disorder that affects the 

tructure of heart muscle tissue leading to arrhythmias and pro- 

ressive heart failure [8] with a myosin -binding protein C gene 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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utation (HCMM), and catecholaminergic polymorphic tachycar- 

ia (CPVT), an exercise-induced malignant arrhythmogenic disor- 

er [9] . We also found that in order to separate between those 

iseases and healthy controls it was not necessary to differ cal- 

ium signals that were either entirely normal cycling from abnor- 

ally cycling signals. Next, we extended our existing signal data 

nd added another HCM disease mutation [10] , an α-tropomyosin 

f the β-myosin heavy chain mutation (HCMT). Our newest re- 

earch described that is possible to study effects of a drug on cal- 

ium transients and to classify and separate drug effects with ma- 

hine learning method [11] . 

In this research we extend our data set by adding transient sig- 

als of controls and cardiac diseases with two additional genetic 

ardiac diseases: dilated cardiomyopathy (DCM), a disease of the 

eart muscle, and long QT syndrome 2 (LQT2), a disease with elec- 

rical problems in cardiomyocytes. Thus, there are seven different 

lasses of genetic cardiac diseases with two mutation for HCM, two 

ypes of LQTS (LQT1 and LQT2), one mutation for DCM and several 

utations for CPVT and then healthy cardiomyocytes from control 

ndividuals which makes their computational modelling more com- 

lex than in our previous research [ 5 , 6 , 10 , 11 ]. We also compare

nd ponder the use of leave-one-out and 10-fold cross-validation 

nd their possible effects of classification accuracy while building 

odels with several different machine learning methods. 

. Materials 

Cell studies and data collection was conducted in Tampere Uni- 

ersity and was approved by the Ethics Committee of Pirkan- 

aa Hospital District in order to culture and differ human in- 

uced pluripotent stem cell lines (permit R08070). Patient-specific 

PSC lines were established and described as previously [6] . iPSC 

ines were generated from two LQT1 and two LQT2 patients, two 

CMT and two HCMM patients, six CPVT patients, two DCM pa- 

ients, and two healthy control individuals (WT). The studied 

PSC lines were UTA.05605.CPVT, UTA.05208.CPVT, UTA.07001.CPVT, 

TA.03701.CPVT, UTA.05503.CPVT, and UTA.05404.CPVT gener- 

ted from CPVT patients carrying cardiac ryanodine receptor 

RyR2) mutations; UTA.07801.HCMM, and UTA.06108.HCMM gen- 

rated from HCM patients carrying myosin-binding protein C 

MYBPC3) mutations and UTA.02912.HCMT and UTA.13602.HCMT 

enerated from HCM patients carrying α-tropomyosin (TPM1); 

nd UTA.00208.LQT1 and UTA.00118.LQT1 generated from LQT1 

atients carrying potassium voltage-gated channel subfamily Q 

ember1 (KCNQ1) mutation; UTA.03412.LQT2, UTA 03417.LQT2, 

TA.03809.LQT2 and UTA.03810.LQT2 generated from LQT2 pa- 

ients carrying the human ether-a-go-go-related gene (HERG) 

utation; UTA.12619.LMNA and UTA.12704.LMNA generated from 

CM patients with lamin A and lamin C (LMNA) mutations and 

TA.04602.WT and UTA.04511.WT generated from healthy control 

ndividuals. iPSCs were differentiated into spontaneously beating 

ardiomyocytes and dissociated into coverslips for calcium imag- 

ng studies, which were conducted in spontaneously beating Fura- 

 AM (Invitrogen, Molecular Probes) or Fluo-4 AM (Thermo Fisher 

cientific) loaded cardiomyocytes as described earlier [ 7 , 8 , 9 , 12 , 13 ]

or calcium analysis, regions of interest were selected for sponta- 

eously beating cells, and background noise was subtracted before 

urther processing. Every calcium transient signal was a record- 

ng from one cardiomyocyte. There were 90 LQT1, 270 HCMM, 149 

CMT, 233 CPVT, 138 LQT2, 67 DCM and 226 WT signals. All in all, 

here were 1173 calcium transient signals. The approximate sam- 

ling frequencies were 8 Hz for LQT1, 23 Hz for HCMM and WT, 

3 Hz for CPVT, 14 Hz for 54 HCMT and 23 Hz for 95 HCMT sig-

als, 33 Hz for LQT2 and 38 Hz for DCM signals. The sampling fre-

uency was improved (increased) in the long run while updating 

he measuring device. 
2 
. Peak attributes computed from calcium transient signals 

Categorization of iPSC-CM calcium transients to normal and ab- 

ormal signals was determined by an expert biotechnologist. In 

QT1 transient signals the share of abnormally cycling signals was 

9%, in HCMM it was 37%, in CPVT 53%, in HCMT 44%, in LQT2 

2%, in DCM 62% and in WT 14%. Abnormality was defined accord- 

ng to remarkably irregular amplitude or duration of calcium peaks 

hereas normally cycling peaks had regular amplitude and dura- 

ion of peaks. However, as said above and shown by our earlier 

esearch [ 6 , 7 ], this property, either normal or abnormal transient 

ignals, did not affect how well these transient signals could be 

lassified into different classes. Therefore, we used them as such, 

ithout computing separately abnormal and normal transient sig- 

als. Fig.1 exemplifies a normal LQT2 signal and abnormal LQT2 

ignal. Correspondingly, Fig. 1 also shows those of DCM signals. Ex- 

mples of calcium transient signals of other diseases and controls 

an be found from the figures in our two earlier articles [ 6 , 10 ]. Of-

en the forms and sizes of peaks may vary noticeably, especially in 

bnormal transient signals. 

After recognizing all acceptable peaks in a signal, attribute val- 

es of those peaks were computed. In our first research [6] for 

he machine learning classification of three genetic cardiac diseases 

nd controls, we applied the first ten attributes to be given in the 

ollowing. Later, up to our most recent research [11] and the cur- 

ent research we designed additional four attributes to obtain more 

nformation about peaks of calcium transient signals. Thus, we ap- 

lied 14 peak attributes illustrated in Fig. 2 . Left amplitude is equal 

o the difference of the peak maximum and the amplitude value 

f the peak beginning. Right amplitude was computed from the 

eak maximum and end. Left duration is equal to the time differ- 

nce from the peak beginning to the maximum, and right dura- 

ion is the time difference from the peak maximum to the peak 

nd. Next, the maximum of the approximated first derivative val- 

es from the peak beginning to the peak maximum (from the left 

eak side) was computed. Then the minimum of the first deriva- 

ive values from the peak maximum to the peak end was evalu- 

ted. To apply this as a positive value its absolute value was taken. 

he maximum of the second derivative as well as its absolute min- 

mum were computed from the right peak side only, since some- 

imes the left side of rather small peaks could be so low containing 

nly a few samples that approximating the maximum and absolute 

inimum of the second derivative values would not succeed well. 

he surface area of a peak was computed as the sum of ampli- 

ude differences of peak curve values and values from a line cal- 

ulated from the peak beginning to its end. Peak-to-peak interval 

as formed as the time difference from the maximum of the cur- 

ent peak and that of the preceding peak. In the case of the first 

eak in a signal it was estimated from the signal beginning. Next, 

ime difference was computed from the location of the first deriva- 

ive maximum of the peak left side to the peak beginning. Time 

ifference was also computed from the location of the absolute 

inimum of the peak right side to the peak maximum. Next, an 

ttribute called mean peak duration was computed in the follow- 

ng way. First, running along peak left and right amplitudes their 

mplitude halves were approximated, second the mean of those 

wo half amplitudes was calculated, and then two intersection lo- 

ations were computed for the horizontal line of this mean and 

eak curve. If rarely a peak was very asymmetric as to its left and 

ight side amplitudes so that either the left side amplitude was 

maller than the half of the right side amplitude or vice versa, the 

alf of the smaller side amplitude was not used, but its whole am- 

litude. In other words, the mean of the smaller side amplitude 

nd the half of the greater side amplitude was computed. Time 

ifference of those two intersection locations is the attribute value 

alled mean peak duration. Ultimately, peak curve length was ap- 
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Fig. 1. (A) Approximately 18 s segment of a normal LQT2 calcium transient signal with regular peak shapes and sizes. (B) Around 23 s segment of a normal DCM calcium 

transient signal with regular peak forms. (C) 23 s of an abnormal LQT2 transient signal containing irregular peak forms and delayed calcium rise. (D) 31 s of an abnormal 

DCM transient signal including rather irregular peak forms with delayed calcium decay. 

Fig. 2. Peak attributes computed: (1) left a 1 and (2) right a 2 amplitudes, (3) left D 1 and (4) right D 2 durations, approximate location L 1 of the computation of (5) first 

derivative max( s ’) for a calcium transient signal s , approximate location L 2 for (6) absolute first derivative |min( s ’)|, location L 3 for (7) second derivative |min( s ’’)| and location 

L 4 for (8) second derivative max( s ’’), (9) surface area R , (10) time interval t from the maximum of the preceding peak, (11) duration d 1 from the peak beginning to L 1 , (12) 

duration d 2 from the peak maximum to L 2 , (13) mean peak duration m , and (14) approximated peak curve length l . 

Table 1 

Numbers separately for abnormal and normal calcium transient signals, number of peaks per disease or controls, number of cell lines and signals per cell line. 

Disease or controls Number of abnormal signals Number of normal signals Total number of peaks Number of cell lines Signal numbers of cell lines 

LQT1 62 28 1635 2 45, 41 

HCMM 100 170 4413 2 66, 204 

CPVT 119 114 2311 6 42, 25, 55, 20, 59, 32 

WT 31 195 2850 2 27, 199 

HCMT 65 84 2136 2 106, 43 

LQT2 99 39 3870 4 35, 49, 28, 26 

DCM 40 27 1172 2 35, 32 
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roximated by running signal value by value from the following 

ample location after the peak beginning to the peak end, estimat- 

ng the Euclidean distance from the current location to the preced- 

ng one and summing up all these distances. 

The minimum, average and maximum lengths of all 1173 cal- 

ium transient signals were 7.7 s, 22.7 s and 46.5 s. The minimum, 

verage and maximum numbers of peaks per signal were 1, 15.7 

nd 123. Altogether, 18387 peaks were recognized in six diseases 

lasses and controls. See Table 1 . After the recognition of peaks in 

ll signals, values of the above-mentioned 14 attribute were com- 

uted. In order to study the importance of the current attributes 

or disease classification, we computed with ReliefF algorithm (in 
3 
ATLAB as all our data analysis and classification) importance val- 

es as depicted in Fig. 3 . 

In Table 2 the means and standard deviations of 14 attributes 

re presented. The means of different diseases mostly differ from 

ach other. From the attribute peak-to-peak interval t in Table 2 av- 

rage peak frequencies can be calculated as its inverse values for 

ifferent classes: 0.85 Hz for LQT1, 0.69 Hz for LQT2, 1.25 Hz for 

CMM, 0.98 Hz for HCMT, 0.88 Hz for CPVT, 0.50 for DCM and 

.52 Hz for WT. 

Naturally, different sam pling frequencies used are no ideal sit- 

ation, but this was needed when collecting them took time and 

he software used was developed along with time. The difference 
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Table 2 

Means and standard deviations for 20 cell lines: left and right side amplitudes a 1 and a 2 , left and right side durations D 1 and D 2 , left side maximum of first derivative max( s ’), right side absolute minimum |min( s ’)|, right side 

maximum max( s ’’) and absolute minimum |min( s ’’)|of second derivative, peak surface area R , peak-to-peak time interval t , duration d 1 from the peak beginning to the maximum of left side first derivative, d 2 duration from the 

peak maximum to the first derivative absolute minimum, mean peak duration m and peak curve length l. Two lowermost cell lines are from disease DCM. 

Cell lines 

UTA.00208.LQT1 189 ±81 190 ±82 0.311 ±0.180 0.750 ±0.437 910 ±477 523 ±269 1526 ±1422 1114 ±1538 68 ±45 1.245 ±1.064 0.204 ±0.143 0.158 ±0.078 0.417 ±0.159 381 ±162 

UTA.00118.LQT1 151 ±71 153 ±72 0.340 ±0.174 0.617 ±0.353 722 ±445 494 ±247 1706 ±1210 1304 ±1307 47 ±36 1.090 ±0.746 0.228 ±0.147 0.149 ±0.075 0.382 ±0.142 305 ±142 

UTA.06108.HCMM 

192 ±108 194 ±102 0.326 ±0.165 0.553 ±0.345 1741 ±852 893 ±342 4720 ±2242 3449 ±2941 58 ±51 0.986 ±0.620 0.230 ±0.139 0.121 ±0.067 0.286 ±0.103 402 ±207 

UTA.07801.HCMM 

199 ±90 202 ±91 0.258 ±0.143 0.455 ±0.233 2007 ±889 1066 ±461 6341 ±3314 3429 ±3140 49 ±41 0.753 ±0.451 0.180 ±0.115 0.114 ±0.073 0.250 ±0.116 419 ±185 

UTA.05605.CPVT 231 ±138 233 ±137 0.469 ±0.181 1.001 ±0.476 1696 ±880 746 ±394 3012 ±1944 3410 ±2824 119 ±106 1.970 ±1.224 0.269 ±0.120 0.152 ±0.083 0.460 ±0.179 498 ±299 

UTA.05404.CPVT 136 ±88 139 ±86 0.280 ±0.153 0.435 ±0.296 746 ±459 539 ±233 1857 ±1358 1491 ±1625 46 ±46 0.814 ±0.719 0.161 ±0.116 0.138 ±0.060 0.358 ±0.118 277 ±170 

UTA.07001.CPVT 285 ±179 289 ±187 0.266 ±0.127 0.560 ±0.374 1872 ±1316 1144 ±657 4414 ±3330 2583 ±3586 80 ±71 0.911 ±0.637 0.163 ±0.100 0.111 ±0.044 0.315 ±0.108 588 ±362 

UTA.03701.CPVT 291 ±229 292 ±226 0.454 ±0.250 0.762 ±0.464 1178 ±982 820 ±598 2098 ±1735 1267 ±1574 122 ±127 1.382 ±1.019 0.296 ±0.209 0.179 ±0.082 0.463 ±0.175 586 ±451 

UTA.05208.CPVT 293 ±173 296 ±175 0.338 ±0.170 0.679 ±0.324 1716 ±930 1037 ±600 3699 ±2720 1679 ±2492 89 ±64 1.047 ±0.573 0.235 ±0.153 0.151 ±0.093 0.361 ±0.115 603 ±338 

UTA.05503.CPVT 276 ±203 278 ±202 0.351 ±0.239 0.692 ±0.552 2183 ±1411 1029 ±547 4566 ±3507 4452 ±4099 128 ±219 1.306 ±1.087 0.242 ±0.153 0.145 ±0.069 0.369 ±0.208 595 ±436 

UTA.04602.WT 272 ±170 275 ±172 0.492 ±0.263 1.039 ±0.601 2131 ±1276 927 ±635 4465 ±3386 3938 ±4359 132 ±115 1.944 ±1.580 0.312 ±0.198 0.156 ±0.145 0.471 ±0.259 575 ±341 

UTA.04511.WT 159 ±69 159 ±72 0.479 ±0.279 0.951 ±0.658 1609 ±680 561 ±200 3316 ±1561 4305 ±2888 90 ±89 1.927 ±2.285 0.257 ±0.162 0.150 ±0.140 0.491 ±0.291 354 ±149 

UTA.02912.HCMT 213 ±148 217 ±152 0.373 ±0.193 0.501 ±0.348 1529 ±1153 952 ±514 4503 ±3299 3795 ±3979 67 ±77 1.003 ±0.741 0.272 ±0.177 0.110 ±0.054 0.287 ±0.100 452 ±306 

UTA.13602.HCMT 157 ±68 163 ±70 0.418 ±0.167 0.526 ±0.277 1288 ±568 757 ±315 3952 ±2109 2261 ±2019 45 ±30 1.079 ±0.609 0.343 ±0.162 0.097 ±0.045 0.260 ±0.073 331 ±144 

UTA.03412.LQT2 137 ±75 135 ±78 0.285 ±0.226 0.714 ±0.627 1656 ±950 577 ±263 3353 ±3426 3207 ±3483 55 ±68 1.150 ±1.335 0.108 ±0.093 0.132 ±0.128 0.388 ±0.298 292 ±145 

UTA.03417.LQT2 129 ±69 130 ±72 0.285 ±0.220 0.724 ±0.436 1749 ±916 566 ±255 3577 ±2341 2071 ±2337 42 ±57 1.330 ±1.973 0.189 ±0.157 0.081 ±0.097 0.280 ±0.171 273 ±138 

UTA.03809.LQT2 158 ±132 158 ±147 0.427 ±0.255 0.765 ±0.636 1170 ±870 549 ±420 3477 ±2567 3721 ±3327 96 ±115 1.803 ±2.342 0.227 ±0.161 0.236 ±0.233 0.489 ±0.312 349 ±282 

UTA.03810.LQT2 147 ±118 153 ±135 0.463 ±0.261 1.074 ±0.635 1475 ±1045 453 ±295 2516 ±1124 2976 ±2248 82 ±110 2.309 ±1.917 0.273 ±0.190 0.221 ±0.238 0.515 ±0.243 334 ±251 

UTA.12619.LMNA 62 ±53 59 ±59 0.387 ±0.238 1.127 ±0.907 611 ±569 195 ±148 1647 ±1281 1419 ±1229 39 ±46 1.994 ±1.849 0.140 ±0.083 0.314 ±0.311 0.625 ±0.450 135 ±102 

UTA.12704.LMNA 77 ±48 76 ±49 0.404 ±0.240 0.935 ±0.683 864 ±568 263 ±160 2398 ±2012 2578 ±2417 44 ±55 2.018 ±2.131 0.218 ±0.135 0.263 ±0.328 0.524 ±0.434 173 ±99 

4
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Fig. 3. Importance values for 14 attributes in the same order as described in the 

caption of Fig. 2 when the averages of 9 test runs were computed applying 9 near- 

est neighbor numbers of 3, 5, 7, 11, 15, 23, 31, 41, 51 to searching in ReliefF algo- 

rithm. The fifth attribute of first derivative max( s ’) obtained the greatest value in- 

dicating it to be more important than the other for classification. Since no attribute 

importance value was very close to 0, all these attributes are useful for classification 

of peaks. 
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E

etween the lowest frequency ( f ) 8 Hz and the highest 38 Hz is –

y time interval T = 1/ f - approximately 0.125 s – 0.026 s = 0.099

. Thinking that this difference would be distributed for measured 

alues, e.g., the beginning of a peak in a signal, the difference 

iven by these two frequencies would be from 0 to 0.099 s. When 

his type of random measuring value follows a uniform distribu- 

ion (any value between 0 and 0.099 equally probable), its mean is 

.99 s/2. When it is similar for measuring the peak maximum, we 

ould obtain mean 2 • 0.099 s/2 = 0.099 s while measuring the 

eginning and end for the duration D 1 of the left side of a peak.

 1 was one of six attributes directly depending on time. For other 

ve duration attributes D 2 , t, d 1, d 2 , and m , the differences of their

eans in Table 2 are, however, mostly greater than those of D 1 . 

herefore, in principle D 1 would be more critical than those other. 

To be more exact, the distribution of the different sampling fre- 

uencies have to be taken into account: 90 signals for 8 Hz, 233 

ignals for 13 Hz and 54 signals for 14 Hz (these two close to each

ther), 601 signals for 23 Hz, 138 signals for 33 Hz and 67 signals

or 38 Hz. Thus, only 90/1173 (total number of signals) or 7.5 % 

nd 67/1173 or 5.7 % originated from the lowest and highest sam- 

ling frequencies. This means that the difference of 0.099 s could 

nly occur in a small minority of all possible classification com- 

utations. More than half, 51.2 % of all signals were sampled at 

3 Hz as WT, HCMM and HCMT data. The approximate frequency 

3 Hz is around 15 Hz greater than 8 Hz and 15 Hz less than 38

z, i.e., approximately in the middle of minimum 8 Hz and max- 

mum 38 Hz giving approximate symmetry in the frequency dis- 

ribution around the most used frequency of 23 Hz. Mean random 

ime difference between 23 Hz and 38 Hz would be around 0.017 

 according to 1/23 Hz - 1/38 Hz. All these mean that any possible

andom difference caused by these different sam pling frequencies 

sed would be essentially smaller than the maximum 0.099 s for 

he great majority (around 87 %) of signals and, thus, their classi- 

cation. Since 51.2 % originated from “the middle” frequency of 23 

, this means that inside this largest part of the signals there is 

o difference between sampling frequencies. To conclude, any ac- 

ual average random effect for time attributes of all signals is much 

maller than that largest of 0.099 s. 

The attributes depending on amplitude (all the rest in addition 

o the five mentioned) are more complicated. However, all of them 
5 
lso depend on time. Therefore, they also partly follow the preced- 

ng analysis. 

As an example, two different cell lines of DCM disease are vi- 

ualized in Fig. 4 (A). Subject to the numbers of signals and their 

eaks this was the smallest class. There were 639 peaks in 35 sig- 

als of cell line 12619.DCM and 533 peaks in 32 signals of cell 

ine 12704.DCM. In Fig. 4 (B) there are 3870 peaks of cell lines 

341.LQT2, 03417.LQT2, 03809.LQT2 and 03810.LQT2. When the cell 

ines cover mostly the same areas in each visualization, this reflects 

uch distributions that possible differences of the peaks between 

ell lines of each disease class are minor in the current data. In 

ddition, Fig. 5 shows the presentation computed for the data by 

ll cell lines. 

. Technical specifications for classification 

The genetic cardiac disease data examined in this study is chal- 

enging. We have seven classes included (wild type and six genetic 

ardiac diseases) in our dataset and the total number of signals is 

173. Since the amount of data is still relatively small when taking 

nto account the number of classes, we cannot talk about big data 

et in this context compared to many image classification tasks 

here there are tens of thousands of annotated images available 

or research. The data collection procedure is a laborious task to 

o in practice and begins from finding the voluntary patients and 

ontrols for the research. Then the actual iPSC reprogramming pro- 

ess is made and the iPSCs are differentiated into cardiomyocytes. 

rom cardiomyocytes the calcium transient signals are measured 

hich is final the stage of data collection process. After that pre- 

rocessing of signals is made including tasks such as finding peaks 

rom signals and extracting peak-based variables. When the pre- 

rocessing of the signals has been made, classification by means 

f machine learning methods can be performed. When considering 

he practical limitations behind the classification of genetic cardiac 

iseases, the classification method must be selected and fine-tuned 

arefully. Nowadays, deep learning solutions are popular in differ- 

nt domains and have become a standard approach to use. How- 

ver, deep learning methods require large amounts of training data, 

hich is a hard constraint to overcome. For genetic cardiac disease 

lassification, interesting deep learning solutions would be to use, 

or example, RNN networks [14] and LSTM networks [15] . Never- 

heless, we have omitted deep learning solutions in this paper due 

o limited dataset and concentrated on methods, which can handle 

mall datasets well. 

Majority of the methods used were applied also in our ear- 

ier studies [ 5 , 6 , 10 , 11 , 16 , 17 , 18 ], but we have included new method

hich has not been used in aforementioned studies. Furthermore, 

e examined two different test set-ups (leave-one-signal data-out, 

0-fold cross-validation) giving new perspective to classification 

f cardiac diseases compared to earlier studies and these are ex- 

lained in subsequent subsections in detail. All experimental tests 

ere performed using Dell Precision Tower 7810 workstation hav- 

ng dual Intel Xeon E5-2640 v4 @ 2.40GHz processors, 128 GB RAM 

nd Win10 Pro operating system. Tests were made using MATLAB 

019b with Parallel Computing Toolbox and Statistics and Machine 

earning Toolbox. 

As a first method, we applied k -Nearest Neighbor ( k NN) clas- 

ifier [ 19 , 20 ] with different ( k value, distance measure, distance

eighting) triplets. We tested altogether 19 different odd values 

f k ( k ∈ {1, 3, 5, …, 37}). Justification behind testing only odd k

alues is to decrease the possibility of ending up to a tie, which 

ould again need special attention. If a tie, however, occurred 

n a classification, it was solved by random choice. In the case 

f distance measures, we examined eight alternatives. These were 

hebychev, Manhattan, correlation, cosine, Euclidean, standardized 

uclidean, Mahalanobis and Spearman distance measures. Finally, 



M. Juhola, H. Joutsijoki, K. Penttinen et al. Computer Methods and Programs in Biomedicine 210 (2021) 106367 

Fig. 4. (A) Peaks of cell lines 12619.DCM and 12704.DCM follow principally the same graphical distribution. (B) Peaks of cell lines 0341.LQT2, 03417.LQT2, 03809.LQT2 and 

03810.LQT2 are considerably concentrated in the same locations indicating their similar properties. These were computed with t-SNE algorithm (t-Distributed Stochastic 

Neighbor Embedding). 

Fig. 5. The whole peak data of 20 cell lines computed with t-SNE algorithm. This is a mapping of the 14-dimensional attribute space to the 2-dimensional space. Thus, even 

if some cell lines are somewhat overlapping each other in this planar space, their dispersion can be much greater in the attribute space where the classification tests were 

made. 
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e also tested three distance weighting schemes called equal, in- 

erse weighting and squared inverse weighting. Overall, with the 

 NN classifier 456 different triplets were tested and all of them 

ere examined with both test set-up approaches. 

Decision trees have performed well in our earlier studies and 

n this paper we applied two tree-based algorithms. Firstly, we 

sed classical CART [ 21 , 22 ] decision tree algorithm with default 

arameter values. Secondly, we examined Random Forests classi- 

er [ 23 , 24 ] where we tested 100 different values for the number

f trees in a forest ( # trees ∈ { 1 , 2 , . . . , 100 } ). Both Random Forests

nd CART classifiers were tested with similar parameter settings 

n both test set-ups. 

Discriminant analysis is a famous and traditional method for 

lassification tasks. We investigated the suitability of three dis- 

riminant analysis methods for the genetic cardiac disease clas- 
6 
ification. These methods were linear discriminant analysis [25] , 

uadratic discriminant analysis [ 25 , 26 ] and Mahalanobis discrim- 

nant analysis also known as minimum Mahalanobis distance clas- 

ifier [ 27 , 28 ]. We used the default parameter settings in all dis-

riminant analysis experiments. 

Multinomial logistic regression (MLR) [ 29 , 30 ] is an extension of 

ogistic regression applied in binary classification tasks. We used 

LR method with default parameter settings with both test set- 

ps. Next classification method was Naïve Bayes classifier [31] with 

nd without kernel smoothing density estimate (KDE). Without 

DE, Naïve Bayes has assumption of Gaussian distribution. When 

DE is applied with Naïve Bayes classifier, there are several alter- 

atives for kernel selection. In this study, we tested four kernels 

amely Epanechnikov, normal (Gaussian), triangle and box kernels. 

hese four kernels have also been examined in our previous stud- 
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es [ 6 , 10 , 11 , 16 , 17 , 18 ]. Otherwise, with Naïve Bayes classifier we ap-

lied the default parameter settings. 

Support Vector Machine (SVM) is a well-known classification 

lgorithm. The original purpose was to use it in two-class classifi- 

ation problems, but it has been extended to cover also multiclass 

ases where the number of classes is larger than two. We have 

sed binary and different multiclass extensions of Least-Squares 

upport Vector Machines (LS-SVMs) [ 32 , 33 ] in our previous studies 

 5 , 6 , 10 , 11 , 16 , 17 , 18 ]. However, in this research we have done sev-

ral modifications compared to previous researches. Firstly, we ap- 

ly now the SVM algorithm [34] instead of LS-SVMs. Secondly, ear- 

ier our LS-SVMs approaches included the use of either binary LS- 

VM classifier or tree-based multiclass LS-SVM. However, now we 

tilize one-vs.-one (OVO) [35] approach where M ( M −1 ) 
2 individual 

inary SVM classifier are constructed when M is the number of 

lasses. We are using error-correcting output codes (ECOC) frame- 

ork [36] to model OVO approach and due to the properties of 

VO, ECOC uses ternary coding [ 37 , 38 ] and loss-weighted decoding 

cheme is applied. When training an individual binary SVM clas- 

ifier, we utilize Iterative Single Data Algorithm (ISDA) [39] in hy- 

erplane optimization. ISDA algorithm is designed, especially, to be 

sed with large datasets. Moreover, with the SVM classifier Hinge 

oss function is applied. When dealing with SVMs, parameters and 

ernel selection are important issues. We tested four kernels (the 

inear, quadratic, cubic and the RBF) in this paper. A common pa- 

ameter for all kernels is boxconstraint ( C ) and we tested 21 values

or this hyperparameter ( C ∈ {2 −8 ,2 −7 ,…, 2 12 }). In the case of the

BF kernel we also examined the impact of kernel scale parame- 

er ( σ ) and we had the same parameter value space for it as for

oxconstraint. Thus, all the polynomial kernels were tested with 

1 parameter values and the RBF kernel with 21 2 parameter com- 

inations. 

The first test set-up was leave-one-signal data-out (LOSDO), 

hich is a variant from leave-one-out method. The classification 

rocess with LOSDO technique can be described as follows: 

1 Let the number of signals be N in the data. 

2 Extract data from the i th signal for test set. Notice that data 

from one signal includes several rows of data and each one of 

the rows represents data gained from one peak. 

3 Leave the data from N-1 signals to training set. 

4 Perform z-score standardization (columns to zero mean and 

unit variance) for the training set. 

5 Scale the columns of test set with the scaling parameters 

gained from the training set in step 4. 

6 Train classifier with the training set and with the given param- 

eter settings. 

7 Predict class labels for the test set data. Now, prediction is 

made at peak level. 

8 Take the mode of predictions in order to get a signal level 

prediction. If mode is not unambiguously determined, take the 

smallest value occurred in a tie. 

9 Repeat steps 2-8 for all signals in a dataset. 

0 When signal level prediction for all signals has been made, 

evaluate confusion matrix. 

1 From confusion matrix ( CM ) evaluate accuracy and TPR (true 

positive rate) for each class. 

2 If a classification method requires parameter tuning, repeat the 

process with all parameter settings and select that parameter 

combination as a final result, which receives the highest accu- 

racy. 

The other test set-up was to use 10-fold cross-validation in clas- 

ification. 10-fold- cross-validation is a standard way to perform 

lassification in machine learning, but in the case of signal classifi- 

ation, there are some special issues that need to be taken into ac- 

ount. We used stratified sampling at signal level when doing the 
7 
0-fold cross-validation division. By this means, we ensured that 

ll classes in a data are represented in each fold. Furthermore, the 

ata from one signal is included only to one-fold. In other words, 

ata from one signal is not scattered to several folds simultane- 

usly. The same cross-validation division was used with all param- 

ter settings tested and/or classification methods in order to en- 

ure fair comparison of the results. Classification procedure goes 

s follows in detail: 

1 Extract the i th fold from the data to test set. 

2 Leave the rest of the folds to training set. 

3 Perform z-score standardization (columns to zero mean and 

unit variance) for the training set. 

4 Scale the columns of the test set with the scaling parameters 

gained from the training set in step 3. 

5 Train classifier with the training set and with the given param- 

eter settings. 

6 Predict class labels for the test set ( i th fold). Now the predic- 

tions are at peak-level. 

7 Obtain a signal level prediction for each signal in a test set 

by taking the mode separately from the predicted class labels 

for each signal data. If mode is not unambiguously determined, 

take the smallest value occurred in a tie. 

8 When signal level prediction for all signals within the i th fold 

has been made, evaluate the confusion matrix ( CM i ). 

9 Repeat steps 1-8 with all folds. 

0 Calculate a combined confusion matrix ( CCM ) by summing up 

all confusion matrices together. In other words, C C M = 

10 ∑ 

i =1 

C M i . 

1 Evaluate accuracy and TPR for each class from CCM . 

2 If a classification method requires parameter tuning, repeat the 

process with all parameter settings and select that parameter 

combination as a final result, which receives the highest accu- 

racy. 

Since accuracy and TPRs are calculated from CCM , we do not 

et standard deviation for accuracy and/or TPRs. If we would calcu- 

ate accuracy and/or TPRs from each fold separately, the standard 

eviation obtained would not be comparable with accuracy/TPRs 

btained from CCM , since CCM represents evaluation measures ob- 

ained from the whole data whereas standard deviation would be 

alculated from folds (each fold is around 10% of the data). LOSDO 

rocedure presents performance measures from the whole data 

nd, thus, performance measures gained from the CCM are more 

atural choice compared to traditional 10-fold cross-validation pro- 

ess where performance measures are presented as a mean of 

en folds. Accuracy is defined in this study as follows accuracy = 

∑ 7 
k =1 

C M kk ∑ 7 
k =1 

∑ 7 
m =1 C M km 

100% whereas TPR for class i is defined with the fol- 

owing way T P R i = 

C M ii ∑ 7 
j=1 C M i j 

100% , i = 1 , 2 , . . . , 7 . 

. Comparing model building with cross-validation or 

eave-one-out techniques 

Obviously, the hold-out procedure is the simplest technique for 

omputing machine learning models and to divide an available 

ata set into two parts, a training set and a test set typically with 

he equal size or sometimes a training set is larger, e.g., 2/3 from 

n original data set. If a data set is small, a larger training set is

sed in order to attempt to build a model or classifier by apply- 

ng as representative training set as possible. Sampling for training 

nd test sets is, of course, made randomly. However, the stratified 

old-out is suggested [40] , since then the random sampling is exe- 

uted so that every class of a data set is represented in both train- 

ng and test sets approximately according to the class distribution 

f the original whole data set. Cross-validation [40] can be seen to 
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Fig. 6. The distribution of attribute max( s ’) computed from the whole peak data. 
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orm a more versatile division, when a data set is divided or ran- 

omly sampled into several ( K ) separate parts called folds of the 

qual size or as equal as possible if the number of data instances 

 is not divisible by K . Usually, K is equal to 10, i.e., 10-fold cross-

alidation is applied, but also 5- or 20-fold cross-validation may 

e utilized. Thus, the choice of 10 is chiefly an established prac- 

ice. Then one by one, K folds or subsets are used as a test set

hen the corresponding training set is formed based on other K - 

 subsets. This way, a test set is around 10% of the original data

et and its training set 90%, respectively. Leave-one-out technique 

s equal to the special cross-validation procedure in which every 

est set includes only one instance and its training set all other n - 

 instances [40] . In this sense, a maximal number of data instances 

s used for building a model. The number of models or classifiers 

uilt is equal to n (the size of the data set) which may cause high

unning times. Leave-one-out is mainly applied only to small data 

ets. 

When a classification or other machine learning problem can- 

ot be fully solved with finite (and not even infinite in princi- 

le) data sets, because this also depends on the capacity of an 

lgorithm applied to solve the learning problem, there may ap- 

ear more or less errors that are called bias that cannot be fully 

liminated and not calculated precisely in practice, but can be ap- 

roximated. The other error source stems from a practical limita- 

ion, training set applied that is always finite and limited in re- 

lity. Thus, such a training set is not able very well to represent 

he actual population of data instances. This error over all poten- 

ial training sets of the same size as well as to test sets is variance

f a machine learning technique for a problem given. The expected 

rror of a classifier is the sum of bias and variance [40] . 

Leave-one-out is seen virtually unbiased and, on the other 

and, it has high variance [41] . Classification accuracy is used to 

xpress how well a classifier can classify test data instances on av- 

rage. In a way, it is opposite to prediction error. After assuming 

ndependent and identically distributed data instances correct and 

ncorrect classifications were expressed with loss function values 1 

nd 0 [41] . Then accuracy value A for classification could be com- 

uted as follows where T is the test set, x i its instance, C a classifier

nd y i the actual (known) class of x i . Then δ( C ( x i ), y i )) is equal to 1

f C ( x i ) is equal to y i and otherwise it is 0 [41] . 

 = 

1 

| T | 
∑ 

x i ∈ T 
δ( C ( x i ) , y i ) 

K -fold cross-validation was considered by using prediction er- 

or and its expected value over training sets [42] . They studied 

ariance in the context of cross-validation starting from identically 

istributed (dependent) attributes ( ̂  H their average) containing the 

roperty asymptotically converging to a normally distributed at- 

ribute which is characterized with its expectation E( ̂  H ) and vari- 

nce as follows. 

ar 
(

ˆ H 

)
= E 

(
ˆ H 

2 
)

− E 

(
ˆ H 

)2 

Further, they used the covariance matrix of cross-validation 

rrors and found that there are much similarity in its contents 

hown in covariance matrix blocks [42] which was natural, since it 

as based on cross-validation using the same data set divided into 

olds. They formed a linear combination of three moments derived 

rom the covariance matrix. By using the moments derived it was 

ossible to show that no unbiased estimator of variance Var ( ̂  H ) 

xists. This was also proved for leave-one-out [42] . 

Independence assumptions for K -fold cross-validation and 

eave-one-out were introduced and the assumptions were uti- 

ized to derive sampling distributions for their estimators of cross- 

alidation and leave-one-out [43] . It was presented that K -fold 

ross-validation should not be executed repeatedly, since this could 

ot give a more reliable estimate since mean accuracies produced 
8 
y any two repetition are dependent. Also, the sample variance of 

eave-one-out is constant because of the characterization of it. This 

as interpreted as another explanation not to execute K -fold cross- 

alidation repeatedly [43] . 

Our current data contained 1173 signals originating from seven 

lasses and comprising different numbers of peaks from 1 to 123. 

eak sizes and shapes varied much. A signal classification was 

ade on the basis of its peaks that were first classified one by one 

ith a classifier and the class of that signal was decided according 

o the majority of its peak classifications. When the actual classi- 

ers tested were applied to peak data instances, the main process 

ocused on them. On the other hand, the results gained are given 

s classification accuracies stemming from entire signals of its own 

eaks. Accordingly, we examined their common influence. 

Peak attribute distributions are right-skewed, e.g., as in Fig. 6 . 

ll 14 attributes were right-skewed. It is natural when all these are 

iophysical attributes of non-negative real values. None was nor- 

ally distributed according to Kolmogorov-Smirnov test. They are 

ot ideal such as independently and identically distributed. 

Although 10-fold cross-validation and leave-one-out were seen 

ather different from each other [40-43] , at least as different meth- 

ds, they resemble much each other in the sense that the majority, 

pproximately 90%, of every training set of 10-fold cross-validation 

ontains the same data instances than those in any training set of 

eave-one-out. Because sampling is made randomly, any test set 

f size 10% from the whole data set in 10-fold cross-validation 

ught to mainly include data following the same distribution as 

n the corresponding training set. For these reasons, at the begin- 

ing we assumed that differences of each classification technique 

etween classification results (accuracies) computed with either 

0-fold cross-validation or leave-one-out would mostly be minor. 

hose theoretical considerations above suggest that variance asso- 

iated with leave-one-out would be extensive. Usually, all literature 

ources mention that leave-one-out should be used for small data 

ets only. Instead, it is rather indefinite what size of a data set may 

r may not be small. 

In the present research we had only one data set. Usually more 

ata sets are used, for example, six [41] or more while comparing 

achine learning methods. Often tens of them are recommended 

o obtain somewhat wide and general understanding about classi- 

cation results gained. If there are several data sets, they may be 

ather small to restrict execution times of classifications to be rea- 

onable. Nevertheless, we used one data set only, but made clas- 

ifications with numerous classification algorithms and their vari- 

tions to obtain generality but, at the same time, restricting ex- 

cution times within quite reasonable durations. This restriction 
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Table 3 

Leave-one-out: Classification results as sensitivities and accuracies for seven disease classes when C and σ are the control parameters of 

radial basis function support vector SVM RBF. The three highest accuracies are in Bold. 

Method Sensitivity % Accuracy % 

Class LQT1 LQT2 HCMM HCMT CPVT DCM WT 

Random forests, 61 trees 94.4 74.6 86.3 59.1 70.8 71.6 62.8 73.7 

ECOC-SVM linear, C = 4 83.3 73.9 71.1 46.3 38.6 73.1 44.2 57.7 

ECOC-SVM polynomial 2, C = 2 −3 86.7 75.4 84.4 61.1 57.9 74.6 45.1 67.2 

ECOC-SVM polynomial 3, C = 2 −5 93.3 76.8 79.6 59.7 64.8 70.1 44.7 67.6 

ECOC-SVM RBF, C = 1024, σ= 4 87.8 76.8 87.4 67.1 65.2 71.6 55.8 72.2 

Multinomial logistic regression 83.3 71.7 66.3 43.0 39.5 62.9 46.5 55.9 

Linear discriminant analysis 63.3 54.3 61.9 36.2 39.9 62.7 48.2 50.9 

Quadratic discriminant analysis 90.0 42.0 78.5 45.6 21.9 79.1 35.0 51.3 

Mahalanobis discriminant analysis 7.8 52.9 23.3 17.4 40.8 74.6 80.5 42.3 

CART (decision tree) 87.8 73.2 86.3 57.7 67.0 74.6 59.3 71.5 

Naïve Bayes 57.8 8.7 60.0 9.4 9.4 88.1 47.8 36.6 

Naïve Bayes normal kernel 56.7 31.2 59.6 28.9 11.2 79.1 71.2 45.9 

Naïve Bayes Epanechnikov kernel 45.6 25.4 57.0 24.8 9.4 77.6 71.7 42.9 

Naïve Bayes box kernel KNN Chebysev equal weighting 51.1 29.7 59.6 22.1 9.9 77.6 70.8 44.0 

Naïve Bayes triangle kernel 56.7 29.0 60.4 28.9 11.2 77.6 70.4 45.5 

Table 4 

Leave-one-out: Classification results as sensitivities and accuracies in which k is the number of nearest neighbor search that produced the best 

results. The highest accuracy is in Bold. 

Method Sensitivity % Accuracy % 

Class LQT1 LQT2 HCMM HCMT CPVT DCM WT 

KNN Chebysev equal weighting, k = 1 73.3 68.1 84.1 46.3 59.7 50.7 49.1 63.1 

KNN Chebysev inverse weighting, k = 1 73.3 68.1 84.1 46.3 59.7 50.7 49.1 63.1 

KNN Chebysev squared inverse weighting, k = 1 73.3 67.4 83.0 51.0 55.8 53.7 54.0 63.7 

KNN cityblock equal weighting, k = 1 86.7 70.3 86.3 59.1 62.7 58.2 53.5 68.4 

KNN cityblock inverse weighting, k = 1 86.7 70.3 86.3 59.1 62.7 58.2 53.5 68.4 

KNN cityblock squared inverse weighting, k = 1 86.7 70.3 86.3 59.1 62.7 58.2 53.5 68.4 

KNN correlation equal weighting, k = 1 83.3 73.2 81.1 56.4 63.1 55.2 51.3 66.4 

KNN correlation inverse weighting, k = 1 83.3 73.2 81.1 56.4 63.1 55.2 51.3 66.4 

KNN correlation squared inverse weighting, k = 3 85.5 71.7 79.3 53.0 64.4 56.7 54.9 66.4 

KNN cosine equal weighting, k = 1 81.1 68.1 82.6 53.0 61.4 65.7 55.8 66.7 

KNN cosine inverse weighting, k = 7 84.4 68.8 79.3 54.4 60.5 65.7 58.4 66.8 

KNN cosine squared inverse weighting, k = 7 84.4 68.8 79.3 54.4 63.5 65.7 59.7 67.6 

KNN Euclidean equal weighting, k = 1 81.1 68.1 87.8 51.0 62.7 53.7 53.1 66.7 

KNN Euclidean inverse weighting, k = 3 82.2 71.0 87.0 57.0 62.7 53.7 56.2 68.3 

KNN Euclidean squared inverse weighting, k = 3 81.1 71.7 87.8 56.4 61.4 52.2 56.6 68.1 

KNN Mahalanobis equal weighting, k = 1 90.0 71.0 86.7 58.4 63.1 53.7 52.2 68.3 

KNN Mahalanobis inverse weighting, k = 3 90.0 71.0 86.7 56.4 62.7 55.2 54.9 68.5 

KNN Mahalanobis squared inverse weighting, k = 3 90.0 71.0 86.7 58.4 63.0 53.7 52.2 68.3 

KNN standardized Euclidean equal weighting, k = 1 81.1 68.1 87.8 51.0 62.7 53.7 53.1 66.7 

KNN standardized Euclidean inverse weighting, k = 3 82.2 71.0 87.0 57.0 62.7 53.7 56.2 68.3 

KNN standardized Euclidean squared inverse weighting, k = 3 81.1 71.7 87.8 56.4 61.4 52.2 56.6 68.1 

KNN Spearman equal weighting, k = 1 88.9 64.5 78.1 55.7 57.9 52.2 50.9 63.8 

KNN Spearman inverse weighting, k = 3 85.6 69.6 78.1 56.4 57.5 62.7 54.9 65.5 

KNN Spearman squared inverse weighting, k = 3 87.8 67.4 79.6 57-0 60.1 62.7 54.9 66.3 
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as made because execution times for radial basis function sup- 

ort vector machines (RBF-SVM) took around eight weeks for 441 

ontrol parameter value combinations used in leave-one-out. In 

ddition, other SVM methods, multinomial logistic regression and 

andom forests were relatively slow and took hours or even days. 

ther, simpler methods took short times such as minutes, but be- 

ng simple methods meant that those more complicated gave bet- 

er results being able to model data better and were so necessary 

o be included in the tests. 

. Results 

Many classification methods based on machine learning were 

un for the current data to analyze how efficiently the six diseases 

nd controls were possible to differentiate from each other by ap- 

lying peaks recognized from calcium transient data. Sensitivities 

r true positive ratios and accuracies gained with the leave-one- 

ut technique are shown in Tables 3 and 4 . In Table 3 , random
9 
orests generated the highest classification accuracy of 73.7 %. SVM 

ith radial basis function (RBF) of 72.2 % and decision trees (CART) 

f 71.5 % were almost equally efficient. In Table 4 , k NN with Maha-

anobis equal weighting produced the highest accuracy of 68.5 %, 

nd several other were virtually equally good. 

Sensitivities and accuracies produced by applying 10-fold cross- 

alidation are presented in Tables 5 and 6 after having used the 

ame classification methods similarly to the tests made with leave- 

ne-out. Cross-validation test series was executed only once so 

hat every instance was run once for testing, i.e., as for leave-one- 

ut test. In Table 5 the best results are 72.5 % of random forests,

0.3 % of ECOC-SVM RBF and 69.4 % of CART. In Table 6 the best is

7.9 % of k NN Mahalanobis squared inverse weighting. 

As compared to our earlier results the current accuracies of 

even classes, that is, 6 diseases or mutations and controls (wild 

ype) the classification accuracies obtained are smaller than those 

ith 527 calcium transit signals for four classes (three diseases and 

ontrols) of 78.6 % [6] and those with 941 signals for five classes 
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Table 5 

10-fold cross-validation: Classification results as sensitivities and accuracies for seven. The three highest accuracies are in Bold. 

Method Sensitivity % Accuracy % 

Class LQT1 LQT2 HCMM HCMT CPVT DCM WT 

Random forests, 40 trees 91.1 71.0 87.0 59.7 70.0 67.2 61.1 72.5 

ECOC-SVM linear, C = 8 83.3 70.3 71.5 47.0 40.3 74.6 44.2 57.9 

ECOC-SVM polynomial 2, C = 2 −3 90.0 72.5 82.2 58.4 57.5 77.6 47.3 66.8 

ECOC-SVM polynomial 3, C = 2 −8 92.2 74.6 84.8 53.7 58.4 66.7 46.9 66.8 

ECOC-SVM RBF, C = 2 11 , σ= 4 91.1 75.4 85.2 63.8 63.9 67.2 53.1 70.3 

Multinomial logistic regression 90.0 69.6 67.8 40.9 37.3 65.7 45.6 55.8 

Linear discriminant analysis 63.3 53.6 62.6 35.6 40.8 62.7 47.8 51.0 

Quadratic discriminant analysis 90.0 44.2 77.8 47.6 22.7 77.6 33.2 51.4 

Mahalanobis discriminant analysis 7.8 52.9 23.3 18.1 42.1 71.6 79.2 42.2 

CART (decision tree) 83.3 68.1 82.3 55.7 66.1 67.2 57.5 69.4 

Naïve Bayes 58.9 9.4 61.1 8.7 9.9 88.1 49.1 37.3 

Naïve Bayes normal kernel 51.1 27.5 61.1 28.9 12.0 79.1 70.4 45.4 

Naïve Bayes Epanechnikov kernel 45.6 22.5 56.3 23.5 9.0 76.1 70.0 41.7 

Naïve Bayes box kernel KNN Chebysev equal weighting 47.8 27.5 58.1 20.1 7.7 77.6 70.8 42.5 

Naïve Bayes triangle kernel 52.2 26.8 61.9 28.9 11.6 76.1 70.0 45.2 

Table 6 

10-fold cross-validation: Classification results as sensitivities and accuracies in which k is the number of nearest neighbor search that produced 

the best results. The highest accuracy is in Bold. 

Method Sensitivity % Accuracy % 

Class LQT1 LQT2 HCMM HCMT CPVT DCM WT 

KNN Chebysev equal weighting, k = 1 73.3 68.8 83.3 47.0 58.8 44.8 49.6 62.7 

KNN Chebysev inverse weighting, k = 1 73.3 68.8 83.3 47.0 58.8 44.8 49.6 62.7 

KNN Chebysev squared inverse weighting, K = 3 71.1 66.7 83.7 49.7 56.2 49.3 52.7 63.0 

KNN cityblock equal weighting, k = 3 90.0 67.3 85.6 52.3 61.4 55.2 54.3 67.0 

KNN cityblock inverse weighting, k = 5 87.8 66.7 86.3 54.4 61.8 58.2 54.0 67.3 

KNN cityblock squared inverse weighting, K = 5 85.6 66.7 87.0 54.4 62.7 59.7 53.1 67.4 

KNN correlation equal weighting, k = 1 82.2 71.7 80.0 56.4 65.2 52.2 51.3 66.2 

KNN correlation inverse weighting, k = 1 82.2 71.7 80.0 56.4 65.2 52.2 51.3 66.2 

KNN correlation squared inverse weighting, k = 1 82.2 71.7 80.0 56.4 65.2 52.2 51.3 66.2 

KNN cosine equal weighting, k = 1 80.0 65.9 82,2 54.4 64.4 58.2 55.8 66.6 

KNN cosine inverse weighting, k = 1 80.0 65.9 82.2 54.4 64.4 58.2 55.8 66.6 

KNN cosine squared inverse weighting, k = 1 80.0 65.9 82.2 54.4 64.4 58.2 55.8 66.6 

KNN Euclidean equal weighting, k = 1 77.8 66.7 87.0 51.0 62.7 44.8 49.6 64.9 

KNN Euclidean inverse weighting, k = 3 81.1 67.4 85.9 53.7 61.8 47.8 51.8 65.7 

KNN Euclidean squared inverse weighting, k = 3 80.0 68.1 86.3 53.0 62.7 47.8 53.0 66.0 

KNN Mahalanobis equal weighting, k = 3 88.9 70.3 87.0 57.7 60.1 49.3 48.7 66.0 

KNN Mahalanobis inverse weighting, k = 3 91.1 70.3 85.9 56.4 62.7 49.3 53.5 67.8 

KNN Mahalanobis squared inverse weighting, k = 7 93.3 72.5 86.3 57.0 62.2 55.2 50.0 67.9 

KNN standardized Euclidean equal weighting, k = 1 77.8 66.7 87.0 51.0 62.7 44.8 49.6 64.9 

KNN standardized Euclidean inverse weighting, k = 3 81.1 67.4 85.9 53.7 61.8 47.8 51.8 65.7 

KNN standardized Euclidean squared inverse weighting, k = 3 80.0 68.1 86.3 53.0 62.7 47.8 52.2 66.0 

KNN Spearman equal weighting, k = 1 87.7 67.4 75.9 54.4 57.9 44.8 52.2 63.2 

KNN Spearman inverse weighting, k = 3 85.6 63.0 78.9 53.0 60.5 50.7 50.4 63.5 

KNN Spearman squared inverse weighting, k = 3 87.8 63.0 78.1 53.0 60.5 53.7 52.2 64.0 
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4 diseases or mutations and controls) of 77.8 % [10] as their best 

esults both with random forests. Now the seven classes classifica- 

ion was naturally more complicated, which affected the results. 

On the basis of the results in Tables 3-6 , LQT1 and HCMM are

mong the best separated and the controls (WT) often had the 

oorest sensitivities (true positive ratios). LQT1 and LQT2 could be 

eparated very accurately from each other. HCMM and HCMT could 

lso be separated even if these are two mutations of the same dis- 

ase. 

There are the accuracies of 40 different methods together in 

ables 3 and 4 as well as in Tables 5 and 6 . For 36 methods in

ables 3 and 5 , the accuracy results of leave-one-out are slightly 

igher than those corresponding of cross-validation in Tables 5 and 

 . For these 36 the differences are from 0.1 % to 2.6 %. For the

est four methods cross-validation gave very slightly better accu- 

acies, when the differences of leave-one-out and cross-validation 

re small being from 0.1 % to 0.7 %. Altogether, the minimum dif- 

erence is 0.1 %, maximum 2.6 % and mean 1.0 %, in other words, 

eave-one-out generated better accuracies, but the mean difference 

s rather insignificant. 
10 
Specificity values resembled roughly sensitivity values. For ex- 

mple, in association with the best accuracy result of 73.7 % in 

able 3 for random forests specificities were 79.8 % for LQT1, 73.5 

 for LQT2, 68.0 % for HCMM, 75.8 % for HCMT, 74.4 % for CPVT,

3.8 % for DCM and 76.2 % for WT. 

For the sake of comparison, we still computed with clustering 

ow the peak data were distributed while applying unsupervised 

achine learning. K-means ++ clustering method has been applied 

o the whole dataset with different parameter values. As a prepro- 

essing stage, we z-score standardized the features in a dataset. 

lustering has been repeated with 7, 8, 9 and 12 clusters. Squared 

uclidean distance measure has been used in clustering. The num- 

er of iterations was 10 0 0 and 10 0 different initializations were 

ested with all clusterings. 

Clustering was performed on a peak level and this means that 

ach peak in a signal is assigned to a certain cluster. In order 

o have a signal level clustering for specific signal, we take a 

ode (majority vote) from the peak level cluster assignments of 

 specific signal and this determines to which cluster a signal be- 

ongs. In Table 7 there are the best results given by 9 clusters, 
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Table 7 

K-means ++ results computed with 9 clusters. The most frequent class/classes in a cluster have been emphasized with bold font and the 

proportion of those classes in a cluster in percentages have also been represented. 

Class/Cluster Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9 

LQT1 24 15 16 28 0 0 0 1 6 

HCMM 50 6 106 (52.0) 39 48 (38.7) 4 0 0 17 

CPVT 47 11 24 66 (28.3) 25 22 (37.9) 0 2 36 

WT 35 33 15 16 33 15 5 9 (52.9) 65 (43.3) 

HCMT 52 (22.7) 0 21 35 16 14 0 0 11 

LQT2 19 36 (27.1) 21 36 2 3 5 1 15 

DCM 2 32 1 13 0 0 15 (60.0) 4 0 
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here the rows represent classes and columns clusters. Numbers 

n Table 7 represent the number of signals in a specific cluster 

rom a specific class. 

These results show that also unsupervised machine learning 

roduced clustering to different groups of data peaks where the 

ajority classes were found for clusters except for LQT1. Note 

hat more than one cluster may represent the same class. In 

able 7 there are two such clusters for HCMM, CPVT and WT. Class 

QT1 did not reach the signal majority in any cluster in Table 7 .

ossibly, this came partially from its relatively small number of 

eaks from among all classes ( Table 1 ). Poorer results were ob- 

ained compared with the results of the classification methods 

hich is natural and typical, since unsupervised machine learning 

ethods of clustering do not utilize the class information which 

upervised classification methods do. These clustering results sup- 

ort our preceding classification results that the classification of 

he different genetic diseases included can be possible. 

. Conclusion 

The classification accuracies are smaller than in our earlier 

tudies so that, for example, the best accuracy in Table 3 was ap- 

roximately 5 % smaller than the best one of three disease classes 

nd controls [6] or 4 % smaller than the best of four disease classes

nd controls [10] . This is rational because the current task of six 

isease classes and controls is more complicated. Nevertheless, the 

est accuracy of above 70 % gained individual sensitivities above 

9 % of random forests in Table 3 show that the six diseases classes

nd controls are possible to separate from each other by machine 

earning techniques. 

The comparison of leave-one-out and cross-validation indicated 

hat leave-one-out produced 1 % better accuracies on an average 

or the current data and test set-ups. This is virtually insignifi- 

ant. Obviously, it was caused by the essential difference of the 

wo techniques, the larger training set of leave-one-out and from 

ts almost constant character. While comparing any two different 

raining sets and the corresponding test sets in the leave-one- 

ut training process, two instances only, their test instances (one 

resent and the other absent or the opposite as to two training 

ets) are exceptional and otherwise the training sets are identical. 

nstead, 10 training sets in cross-validation are slightly more differ- 

nt, which may produce a little more variation for machine learn- 

ng models computed with the same method. For 10-fold cross- 

alidation 80 % of instances are the same for the training sets of 

wo different folds. To summarize, the results show that in princi- 

le both techniques could be applied as well for the current data 

ith these numbers: 1173 signals containing 18387 peaks used for 

raining from seven classes. Of course, applying leave-one-out for 

arge datasets would require long running times, at least for such 

ime-consuming methods as support vector machines with radial 

asis function (RBF) and random forests being also typically among 

he best, and therefore their use would not then be practical. 

This relatively large dataset utilized in this study included two 

o six hiPSC cell lines from each seven conditions (control or dis- 
11 
ase) and by using complex classification tasks we gained the 

lassification accuracy of above 70 %. We see this as an indica- 

or that these diseases could be separated from each other by 

achine learning techniques. Nevertheless, even larger datasets 

ould strengthen our finding. Abnormalities in calcium transients 

n many cases represent a patient’s cardiac phenotype [ 7 , 8 , 9 , 12 , 13 ].

owever, a known problem with hiPSC-CMs is their immature 

tructural and functional characteristics like immature calcium 

andling that differs from those of adult cardiomyocytes. In the lit- 

rature variation between hiPSC lines and in their phenotypic re- 

ponses, e.g. in baseline action potential characteristics and drug 

esponses, have been reported even between control cell lines [44- 

6] . This variability could exceed differences between parameters 

f patient and control hiPSC-CMs. Since these cells can be pheno- 

ypically immature and culture and assay methods are not stan- 

ardized, it can be a disadvantage to the development of predic- 

ive computational models [45] . One option to reduce variability 

etween cell lines, in addition to increase cell maturation with cer- 

ain techniques, is recent advances in genome-editing techniques, 

ike CRISPR/Cas9 method [47] . This allows modification of the stem 

ell genome when isogenically matched controls are generated for 

iseased hiPSC lines [45] . In the future, experimental datasets for 

achine learning should be broadened with isogenic controls and 

arger datasets of hiPSC lines to better understand the variation be- 

ween healthy and diseased lines. 

The classification tests performed here strengthens our previous 

esults showing that it is achievable to get a good classification ac- 

uracy with disease-specific iPSC-CM calcium transient data, even 

hough the number of test signals here was increased with sig- 

als of two additional diseases. The result strengthens our previ- 

us finding that the machine learning method could be utilized 

n identification of several genetic cardiac diseases, but may also 

eparate mutations in different genes resulting in the same clin- 

cal phenotype. Machine learning classification of disease-specific 

M calcium transients could be exploited to diagnose genetic car- 

iac disease and could even predict the type of disease mutation. 

or this more advanced cardiac differentiation methods would be 

eeded in the future, e.g. direct differentiation of blood cells into 

Ms, to achieve a realistic additional tool for diagnosing genetic 

ardiac diseases. 

eclaration of Competing Interests 

As to the manuscript of ‘On computational classification of ge- 

etic cardiac diseases applying iPSC cardiomyocytes’ submitted to 

omputer Methods and Programs in Biomedicine, there is no con- 

ict of interest. 

cknowledgements 

We would like to thank Academy of Finland Centre of Excel- 

ence in Body-on-Chip Research, Finnish Cardiovascular Research 

oundation, Sigrid Juselius Foundation and Pirkanmaa Hospital dis- 

rict funding. 



M. Juhola, H. Joutsijoki, K. Penttinen et al. Computer Methods and Programs in Biomedicine 210 (2021) 106367 

R

 

 

 

 

 

 

 

 

 

 

 

 

[

 

[  

 

[

[

[

[

[

[  

[

[

 

[

[  

[

[  

[  

[  

[  

[

[  

[

[

[

[

[

eferences 

[1] K. Takahashi , K. Tanabe , M. Ohnuki , M. Narita , T. Ichisaka , K. Tomoda , S. Ya-

manaka , Induction of pluripotent stem cells from adult human fibroblasts by 

defined factors, Cell 131 (2007) 861–872 . 
[2] A. Moretti , M. Bellin , A. Welling , C.B. Jung , J.T. Lam , L. Bott-Flügel , et al. , Patien-

t-specific induced pluripotent stem-cell models for long-QT syndrome, New 

Engl. J. Med. 363 (2010) 1397–1409 . 

[3] C. Heylman , R. Datta , A. Sobrino , S. George , E. Gratton , Supervised machine
learning for classification of the electrophysiological effects of chronotropic 

drugs on human induced pluripotent stem cell-derived cardiomyocytes, Plos 

One 10 (2015) e0144572 . 
[4] E.K. Lee , D.D. Tran , W. Keung , P. Chan , G. Wong , C.W. Chan , et al. , Machine

learning of human pluripotent stem cell-derived engineered cardiac tissue 
contractility for automated drug classification, Stem Cell Reports 9 (2017) 

1560–1572 . 
[5] M. Juhola, K. Penttinen, H. Joutsijoki, K. Varpa, J. Saarikoski, J. Rasku, H. Siir- 

tola, K. Iltanen, J. Laurikkala, H. Hyyrö, J. Hyttinen, K. Aalto-Setälä, Signal anal- 
ysis and classification methods for calcium transient data of stem cell derived 

cardiomyocytes, Comput. Biol. Med. 61 (2015) 1–7, doi: 10.1016/j.compbiomed. 

2015.03.016 . 
[6] M. Juhola, H. Joutsijoki, K. Penttinen, K. Aalto-Setälä, Detection of genetic car- 

diac diseases by Ca2 + transient profiles using machine learning methods, Sci. 
Rep. 8 (2018) 9355 www.nature.com/articles/s41598- 018- 27695- 5 . 

[7] A .L. Kiviaho , A . Ahola , K. Larsson , K. Penttinen , H. Swan , M. Pekkanen-Mattila ,
H. Venäläinen , K. Paavola , J. Hyttinen , K. Aalto-Setälä, Distinct electrophysio- 

logical and mechanical beating phenotypes of long QT syndrome type 1-spe- 

cific cardiomyocytes carrying different mutations, Int. J. Cardiol. Heart Vasc. 25 
(8) (2015) 19–31 . 

[8] M. Ojala , C. Prajapati , R.P. Pölönen , K. Rajala , M. Pekkanen-Mattila , J. Rasku ,
K. Larsson , K. Aalto-Setälä, Mutation-specific phenotypes in hiPSC-derived car- 

diomyocytes carrying either myosin-binding protein C or α-tropomyosin mu- 
tation for hypertrophic cardiomyopathy, Stem Cells Int (2016) . 

[9] K. Penttinen , H. Swan , S. Vanninen , J. Paavola , A.M. Lahtinen , Kimmo Kon-

tula , K. Aalto-Setälä, Antiarrhythmic effects of dantrolene in patients with cat- 
echolaminergic polymorphic ventricular tachycardia and replication of the re- 

sponses using iPSC models, Plos One 10 (5) (2015) e0125366 . 
[10] M. Juhola , H. Joutsijoki , K. Penttinen , K. Aalto-Setälä, Differentiation of genetic

cardiac diseases on the basis of artificial intelligence, Eur. J. Biomed. Inform. 
15 (3) (2019) 43–52 . 

[11] M. Juhola, K. Penttinen, H. Joutsijoki, K. Aalto-Setälä, Analysis of Drug Ef- 

fects on iPSC Cardiomyocytes with Machine Learning, Annals Biomed. Eng. 49 
(2021) (2021) 129–138, doi: 10.1007/s10439- 020- 02521- 0 . 

[12] D. Shah , L. Virtanen , C. Prajapati , M. Kiamehr , J. Gullmets , G. West , J. Kreutzer ,
M. Pekkanen-Mattila , T. Heliö, P. Kallio , P. Taimen , K. Aalto-Setälä, Modeling of

LMNA-related dilated cardiomyopathy using human induced pluripotent stem 

cells, Cells 8 (6) (2019) 594 . 

[13] D. Shah , C. Prajapati , K. Penttinen , R.M. Cherian , J.T. Koivumäki , A. Alexanova ,

J. Hyttinen , K. Aalto-Setälä, hiPSC-derived cardiomyocyte model of LQT2 syn- 
drome derived from asymptomatic and symptomatic mutation carriers repro- 

duces clinical differences in aggregates but not in single cells, Cells 7;9 (5) 
(2020) 1153 . 

[14] Y. LeCun , Y. Bengio , G. Hinton , Deep learning, Nature 521 (2015) 436–4 4 4 . 
[15] R.C. Staudemayer , E.R. Morris , Understanding LSTM – a tutorial into long short- 

-term memory recurrent neural networks, arXiv (2019) 1–42 1909.09586 . 

[16] H. Joutsijoki, K. Penttinen, M. Juhola, K. Aalto-Setälä, Separation of HCM and 
LQT cardiac diseases with machine learning of Ca2 + transient profiles, Meth- 

ods Inf. Med. 58 (04/05) (2019) 167–178, doi: 10.1055/s- 0040- 1701484 . 
[17] M. Juhola, K. Penttinen, H. Joutsijoki, K. Varpa, K. Aalto-Setälä, On the 

classification of stem cell-derived cardiomyocytes’ calcium transient sig- 
nals, Int. J. Extreme Autom. Connect. Healthcare 2 (2) (2019) 22–37 https: 

//www.igi- global.com/article/on- the- separation- of- normal- and- abnormal- 
stem- cell- derived- cardiomyocytes- calcium- transient- signals/232330 . 

[18] M. Juhola, H. Joutsijoki, K. Penttinen, K. Aalto-Setälä, Machine learning to dif- 

ferentiate diseased cardiomyocytes from healthy control cells, Inform. Med. 
Unlocked 14 (2019) 15–22, doi: 10.1016/j.imu.2019.01.006 . 

[19] L. Jiang , Z. Cai , D. Wang , S. Jiang , Survey of improving K-Nearest-Neighbor for
classification, in: Proc. Fourth Int. Conf. Fuzzy Systems and Knowledge Discov- 

ery, 2007, pp. 1–5 . 
12 
20] S.A. Dudani , The distance weighted k-nearest neighbor rule, IEEE Trans. Sys- 
tems, Man, Cybern. 6 (4) (1976) 325–327 . 

[21] R.O. Duda , P.E. Hart , D.G. Stork , Pattern Classification, 2nd Ed., John Wiley &
Sons, New York, USA, 2001 . 

22] X. Wu , V. Kumar , J.R. Quinlan , J. Ghosh , Q. Yang , H. Motoda , G.J. McLachlan ,
A. Ng , B. Liu , P.S. Yu , Z.-H. Zhou , M. Steinbach , D.J. Hand , D. Steinberg , Top 10

algorithms in data mining, Knowl. Inf. Systems 14 (2008) 1–37 . 
23] G. Biau , E. Scornet , A random forest guided tour, TEST 25 (2) (2016) 197–227 . 

24] L. Breiman , Random forests, Machine Learning 45 (1) (2001) 5–32 . 

25] A.J. Izenman , Modern Multivariate Statistical Techniques – Regression, Classifi- 
cation, and Manifold Learning, Springer, 2008 . 

26] A. Tharwat , Linear vs. quadratic discriminant analysis classifier: a tutorial, Int. 
J. Applied Pattern Recogn. 3 (2) (2016) 145–180 . 

27] G. Bohling , Classical normal-based discriminant analysis, Technical Report EECS 
833, Kansas Geol. Survey (2006) 1–24 . 

28] K.J. Cios , W. Pedrycz , R.W. Swiniarski , L.A. Kurgan , Data Mining: A Knowledge

Discovery Approach, Springer-Verlag, New York, 2007 . 
29] C. Kwak, A. Clayton-Matthews, Multinomial logistic regression, Nursing Res 51 

(6) (2002) 404–410, doi: 10.1097/0 0 0 06199-20 02110 0 0-0 0 0 09 . 
30] C.J. Petrucci , A primer for social worker researchers on how to conduct a 

multinomial logistic regression, J. Social Service Res. 35 (2) (2009) 193–205 . 
[31] T. Hastie , R. Tibshirani , J. Friedman , The Elements of Statistical Learning: Data

Mining, Inference, and Prediction, 2nd ed., Springer, New York, 2008 . 

32] J.A.K. Suykens , J. Vandewalle , Least squares support vector machine classifiers, 
Neural Processing Letters 9 (3) (1999) 293–300 . 

33] J.A.K. Suykens , T. Van Gestel , J. De Brabanter , B. De Moor , J. Vandewalle , Least
Squares Support Vector Machines, World Scientific, 2002 . 

34] C. Cortes , V. Vapnik , Support-vector networks, Machine Learning 20 (3) (1995) 
273–297 . 

35] H. Joutsijoki , M. Haponen , J. Rasku , K. Aalto-Setälä, M. Juhola , Machine learn-

ing approach to automated quality identification of human induced pluripotent 
stem cell colony images, Comp. Math. Methods Med. 3091039 (2016) 1–15 . 

36] H. Joutsijoki , M. Haponen , J. Rasku , K. Aalto-Setälä, M. Juhola , Error-correcting
output codes in classification of human induced pluripotent stem cell colony 

images, BioMed Res. Int. 3025057 (2016) 1–13 . 
37] S. Escalera , O. Pujol , P. Radeva , Separability of ternary codes for sparse de-

signs of error-correcting output codes, Pattern Recogn. Letters 30 (3) (2009) 

285–297 . 
38] S. Escalera , O. Pujol , P. Radeva , On the decoding process in ternary error-cor-

recting output codes, IEEE Trans. Pattern Analysis Machine Intell. 32 (1) (2010) 
120–134 . 

39] V. Kecman, T.-M. Huang, M. Vogt, Iterative single data algorithm for training 
kernel machines from huge data sets: Theory and performance, in: Support 

Vector Machines: Theory and Applications, Springer, 2005, pp. 255-274. 

40] I.H Witten , E. Frank , M.A. Hall , Data Mining: Practical Machine Learning Tools
and Techniques, third,ed., Morgan Kaufmann, Massachusetts, USA, 2011 . 

[41] R. Kohavi, A study of cross-validation and bootstrap for accuracy esti- 
mation and model selection, https://www.researchgate.net/publication/ 

2352264 _ A _ Study _ of _ Cross-Validation _ and _ Bootstrap _ for _ Accuracy _ 
Estimation _ and _ Model _ Selection 

42] Y. Bengio , Y. Grandvalet , No unbiased estimator of the variance of k -fold cross–
validation, J. Mach. Learn. Res. 5 (2004) 1089–1105 . 

43] T.-T. Wong , Performance evaluation of classification algorithms by k -fold and 

leave-one-out cross validation, Pattern Recogn 48 (2015) 2839–2846 . 
44] P. Machiraju, S.C. Greenway, World J. Stem Cells 11 (1) (2019) 33–43 https: 

//www.ncbi.nlm.nih.gov/pmc/articles/PMC6354100/ . 
45] L. Sala, M. Bellin, C.L. Mummery, Integrating cardiomyocytes from human 

pluripotent stem cells in safety pharmacology: has the time come? British J. 
Pharmacology 174(21) 3749-3765. https://bpspubs.onlinelibrary.wiley.com/doi/ 

full/10.1111/bph.13577 . 

46] I. Mannhardt, U. Saleem, D. Mosqueira, M.F. Loos, B.M. Ulmer, M.D. Lemoine, 
C. Larsson, C. Améen, T. de Korte, M.L.H. Vlaming, K. Harris, P. Clements, 

C. Denning, A. Hansen, T. Eschenhagen, Comparison of 10 control hPSC 
lines for drug screening in an engineering heart tissue format, Stem Cell 

Reports 15 (2020) 983–998 https://www.sciencedirect.com/science/article/pii/ 
S2213671120303775?dgcid=rss _ sd _ all . 

[47] J.D. Sander, J.K. Joung, CRISP-cas systems for genome editing, regulation and 

targeting, Nat. Biotechnol. 32 (4) (2014) 347–355 https://www.ncbi.nlm.nih. 
gov/pmc/articles/PMC4022601/ . 

http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0001
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0001
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0001
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0001
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0001
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0001
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0001
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0001
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0002
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0002
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0002
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0002
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0002
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0002
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0002
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0002
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0003
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0003
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0003
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0003
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0003
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0003
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0004
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0004
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0004
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0004
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0004
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0004
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0004
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0004
https://doi.org/10.1016/j.compbiomed.2015.03.016
http://www.nature.com/articles/s41598-018-27695-5
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0007
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0007
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0007
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0007
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0007
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0007
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0007
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0007
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0007
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0007
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0007
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0009
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0009
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0009
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0009
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0009
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0009
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0009
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0009
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0010
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0010
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0010
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0010
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0010
https://doi.org/10.1007/s10439-020-02521-0
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0012
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0012
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0012
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0012
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0012
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0012
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0012
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0012
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0012
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0012
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0012
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0012
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0012
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0013
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0013
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0013
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0013
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0013
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0013
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0013
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0013
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0013
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0014
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0014
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0014
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0014
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0015
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0015
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0015
https://doi.org/10.1055/s-0040-1701484
https://www.igi-global.com/article/on-the-separation-of-normal-and-abnormal-stem-cell-derived-cardiomyocytes-calcium-transient-signals/232330
https://doi.org/10.1016/j.imu.2019.01.006
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0019
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0019
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0019
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0019
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0019
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0020
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0020
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0021
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0021
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0021
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0021
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0022
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0022
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0022
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0022
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0022
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0022
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0022
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0022
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0022
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0022
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0022
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0022
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0022
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0022
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0022
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0023
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0023
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0023
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0024
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0024
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0025
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0025
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0026
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0026
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0027
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0027
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0028
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0028
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0028
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0028
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0028
https://doi.org/10.1097/00006199-200211000-00009
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0030
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0030
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0031
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0031
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0031
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0031
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0032
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0032
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0032
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0033
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0033
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0033
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0033
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0033
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0033
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0034
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0034
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0034
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0035
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0035
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0035
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0035
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0035
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0035
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0036
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0036
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0036
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0036
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0036
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0036
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0037
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0037
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0037
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0037
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0038
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0038
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0038
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0038
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0040
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0040
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0040
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0040
https://www.researchgate.net/publication/2352264_A_Study_of_Cross-Validation_and_Bootstrap_for_Accuracy_Estimation_and_Model_Selection
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0042
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0042
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0042
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0043
http://refhub.elsevier.com/S0169-2607(21)00441-7/sbref0043
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6354100/
https://bpspubs.onlinelibrary.wiley.com/doi/full/10.1111/bph.13577
https://www.sciencedirect.com/science/article/pii/S2213671120303775?dgcid=rss_sd_all
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4022601/

	On computational classification of genetic cardiac diseases applying iPSC cardiomyocytes
	1 Introduction
	2 Materials
	3 Peak attributes computed from calcium transient signals
	4 Technical specifications for classification
	5 Comparing model building with cross-validation or leave-one-out techniques
	6 Results
	7 Conclusion
	Declaration of Competing Interests
	Acknowledgements
	References


