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A B S T R A C T   

Early diagnosis of retinopathy is essential for preventing retinal complications and visual impairment due to 
diabetes. For the detection of retinopathy lesions from retinal images, several automatic approaches based on 
deep neural networks have been developed in the recent years. Most of the proposed methods produce point 
estimates of pixels belonging to the lesion areas and give no or little information on the uncertainty of method 
predictions. However, the latter can be essential in the examination of the medical condition of the patient when 
the goal is early detection of abnormalities. This work extends the recent research with a Bayesian framework by 
considering the parameters of a convolutional neural network as random variables and utilizing stochastic 
variational dropout based approximation for uncertainty quantification. The framework includes an extended 
validation procedure and it allows analyzing lesion segmentation distributions, model calibration and prediction 
uncertainties. Also the challenges related to the deep probabilistic model and uncertainty quantification are 
presented. The proposed method achieves area under precision-recall curve of 0.84 for hard exudates, 0.641 for 
soft exudates, 0.593 for haemorrhages, and 0.484 for microaneurysms on IDRiD dataset.   

1. Introduction 

Diabetic retinopathy (DR) is the most common complication of dia
betes mellitus and can lead to a vision loss if not treated properly [1]. 
Screening of the condition and early detection of retinal abnormalities is 
essential and consists of examining retinal images for diabetic lesions. In 
the early stages of the disease, these lesions are small, typically have low 
contrast and sometimes difficult to detect for humans. The core of the 
screening problem is, however, the amount of images that need to be 
analyzed. Thus, automatic retinal image analysis methods are required. 
One way to build an assisting system is to train an end-to-end classifier 
that processes an input image and yields a diabetic retinopathy grade 
[2]. These systems are often criticized for being black-boxes producing 
results that are difficult to interpret [3]. As an alternative, one can train 
a segmentation model that processes the input image and produces a 
segmentation map where each element represents the probability of 
being a lesion. This way the diagnosis can be inferred from the seg
mentation maps by counting the detected lesions. 

In recent years, the field of DR lesion segmentation has advanced 
with the introduction of new retinal image datasets making it possible to 

accelerate research in related computer vision methods [4]. One of the 
most widely used benchmarks is Indian diabetic retinopathy image 
dataset (IDRiD) dataset providing high-quality ground truth masks for 
hard exudates, soft exudates, haemorrhages and microaneurysms. Por
wal et al. [5] published the results of the IDRiD challenge held in 2018. 
The best performing algorithms were represented by deep convolutional 
architectures such as U-Net [6], dense fully-convolutional network 
(Dense-FCN) [7] and Mask-RCNN [8] or their variants. It should be 
noted that the data is very unbalanced and achieving high sensitivity 
was a challenge for many algorithms. To overcome this issue, the au
thors used balanced cross-entropy [9] and dice loss [10]. Due to the high 
resolution of the images, the models were trained in a patchwise 
manner. 

Guo et al. [11] proposed a multi-scale feature fusion method to 
handle issues with small lesion detection. Binary cross-entropy (BCE) 
loss with balancing coefficients was used to improve the sensitivity. The 
model was trained with full images resized to 1440 × 960 pixels without 
any further preprocessing. Yan et al. [12] proposed mutually 
local-global U-Net mitigating the problems of patchwise training which 
does not capture the global context. The proposed architecture consists 
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Fig. 1. (a) An example of IDRiD image with ground truth masks for (b) hard exudates, (c) soft exudates, (d) haemorrhages, and (e) microaneurysms.  

Fig. 2. Statistics of lesions in the train set. The number of positive pixels per image for (a) hard exudates (EX), (b) soft exudates (SE), (c) haemorrhages (HE), and (d) 
microaneurysms (MA). (e) The number of pixels for the lesions and the background. (f) The number of positive pixels for each lesion for the whole dataset. 
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of two U-Nets (global and local) that share the last layers of their de
coders. Both networks are jointly trained minimizing weighted 
cross-entropy loss to deal with the class imbalance. 

The aforementioned approaches consider only point estimates of the 
trained models and produced results. Thus, the question of reliability of 
a trained model arises. In this work, the problem is addressed by using 
Bayesian deep learning modeling a distribution over the learned pa
rameters of the model and produces the segmentation results in a form of 
posterior predictive distribution. Recently, Bayesian deep learning 
models have started finding their applications in the area of retinal 
image analysis. Leibig et al. [13] evaluated dropout based uncertainty 
measures and demonstrated improved diagnostic performance using 

uncertainty-informed decisions. Filos et al. [14] proposed a new 
benchmark for deep Bayesian models with application to DR diagnosis 
also assessing the robustness of the models to out-of-distribution ex
amples and distribution shift. 

This work extends the preceding research with Bayesian DR lesion 
segmentation. To the best of authors’ knowledge, this is the first work 
discussing the Bayesian approach for DR lesion segmentation. The aim is 
to establish a baseline that would inspire future research on the topic. 
The contributions of this work can be highlighted as follows: 

1. The introduction of a novel Bayesian baseline for DR lesion seg
mentation allowing the analysis of segmentation distributions. 

Fig. 3. Statistics of lesions in the test set. The number of positive pixels per image for (a) hard exudates (EX), (b) soft exudates (SE), (c) haemorrhages (HE), and (d) 
microaneurysms (MA). (e) The number of pixels for the lesions and the background. (f) The number of positive pixels for each lesion for the whole dataset. 
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2. An assessment and analysis of model calibration and prediction 
uncertainties.  

3. The presentation of an extended validation procedure for DR lesion 
segmentation task beyond the point estimates. 

The rest of the paper is organized as follows: Section 2 describes the 
utilized dataset and gives the information about class imbalance and the 
statistics of labels, and Section 3 explains the Bayesian image segmen
tation setup, utilized data sampling approach and training details. Sec
tion 4 explains the evaluation protocol and presents the performance 
metrics together with the visualizations of the inferred results. Section 5 
discusses faced issues and directions for future research. The results of 
the work are summarized in Section 6. 

2. IDRiD dataset 

The IDRiD dataset is a common benchmark for the diabetic reti
nopathy lesion segmentation [5]. It contains 54 train and 27 test images 
of resolution 4288 × 2848 with segmentation masks aiming to be 
spatially accurate for four lesion types: hard exudates, soft exudates, 
haemorrhages, and microaneurysms. An example image from the data
set is shown in Fig. 1. 

The class imbalance can be visualized as a bar graph with the number 
of positive pixels for lesions for each image separately as well as for the 
whole dataset. The calculated statistics for the train and test sets are 
presented in Fig. 2 and Fig. 3. 

3. Bayesian lesion segmentation 

3.1. Background 

The classical approaches give only point estimates for the class label 
probabilities and the model parameters are considered to be determin
istic. In order to capture imperfect data labeling and image noise, the 
model outputs and learned parameters can be considered as random 
variables. The first approach captures the heteroscedastic aleatoric un
certainty that depends on the input data, whereas the second represents 
the epistemic uncertainty that models a distribution of the learned pa
rameters. Here, a brief explanation for the lesion segmentation task is 
given below. More detailed explanations for the uncertainties can be 
found in Refs. [15,16]. 

Let f be a model, with parameters θ, that maps an input image x to a 
map of logits ŷ, accompanied by a map standard deviations σ of the 
logits: 

[ŷ, σ] = f (x, θ). (1)  

Then, the probabilities of the class labels can be calculated as follows: 

p̂ = sigmoid(ŷ + σ ⊙ ε), ε ∼ 𝒩(0, I), (2)  

where ⊙ stands for the Hadamard product and ε are sampled during 
inference. 

Epistemic uncertainty can be captured by considering the model 
parameters to be a random variable and making use of the following 
posterior predictive: 

p(y|x,𝒟) =

∫

p(y|x, θ)p(θ|𝒟)dθ, (3)  

where 𝒟 denotes a dataset of input-output pairs. 
Typically, the parameter’s posterior p(θ|𝒟) for complex models such 

as deep neural networks is intractable and variational approximations 
are used [16]. The posterior in (3) can be replaced by a simpler distri
bution qθ(ω) with variational parameters ω. In this work, Monte-Carlo 
dropout [16] is used as a framework to perform stochastic variational 
inference. The relation between the true and approximate posteriors is 

given by 

ω = θ ⊙ MD, (4)  

where MD is a dropout mask that randomly sets the model weights to 
zero. 

The training procedure can then be formulated as the minimization 
of the Kullback-Leibler divergence DKL between the true posterior and 
the approximation. This is equivalent to minimizing the negative vari
ational lower bound [16]: 

L VI(ω)=

∫

qθ (ω) log p (Y|X, ω) dω − DKL(qθ(ω) ‖p(ω)), (5)  

where X,Y represent the inputs and outputs of the model, respectively, 
and p(ω) is the prior for the variational parameters ω. The expectation in 
the first part of (5) is typically approximated using Monte-Carlo inte
gration [16]. In this work, it is approximated using one sample from the 
variational distribution. Therefore, the optimization objective becomes 

ℒMCD(ω) =
∑N− 1

i=0
ℒ(yi|xi,ω) + ℛ(ω), (6)  

where i is an index of the training example and N is the total number of 
samples in the training set. ℛ is a regularization term that depends on 
the form of a prior distribution over the parameters of the model. In this 
case, the prior is a normal distribution corresponding to L2 weight 
decay. The loss function chosen for this work is binary cross-entropy and 
it is summed over the aleatoric samples: 

ℒ(y|x,ω) =
∑N− 1

i=0

∑NA − 1

j=0
ℒBCE

(
yij|xi,ω

)
, (7)  

where NA is a number of aleatoric samples. 
The training scheme described above does not take into account class 

imbalance. In this work, a straightforward oversampling scheme based 
on class frequencies statistics is used and it is described in the next 
section. 

3.2. Oversampling 

One way to handle class imbalance is to perform oversampling of the 
underrepresented classes. Here, three-stage sampling is performed:  

1. Positive samples are selected with π+ probability and negative 
samples are selected with 1 − π+ probability.  

2. An image of the selected class is sampled with the probability pimage
i 

proportional to the logarithm of the pixel count of the given class, 
that is, 

pimage
i =

log max(N image
i , 1)

∑
jlog max(N image

j , 1)
, (8)  

where Nimage
i is the number of positive pixels for the class of interest in 

the image with index i.  

3. The final step is to select an image patch containing pixels of the class 
of interest. In order to select such a patch, we follow a scheme similar 
to the previous stage. The image is divided into a set of overlapping 
patches and the patch is selected with probability 

ppatch
i =

log max(Mpatch
i , 1)

∑
jlog max(Mpatch

j , 1)
, (9)  

where Mpatch
i is the number of positive pixels for the class of interest in 

the patch with index i. 
The log scale here is used in order to increase the diversity of chosen 
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Fig. 4. The Dense-FCN architecture: Dense stands for a dense convolutional block; C is a tensor concatenation; H is a block consisting of batch normalization (BN), 
rectified linear unit (ReLU) and a convolutional layer with growth rate g; Down is a transition-down block with F output feature maps; Up is a transition up with F 
output feature maps and 2 × 2 stride; logits std denotes standard deviations of logits. 

Fig. 5. Two examples of the original (left column) and enhanced (right column) images.  
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samples. π+ is a tunable hyperparameter and should be chosen 
depending on the class imbalance in a particular case. In this work, π+ =

0.5 is used as experimentally it has been found that this value provides 
the best results. 

3.3. Architecture 

The architecture utilized in this work is a Dense-FCN [17]. It has 
been shown that Dense-FCNs have less parameters and may outperform 
other fully-convolutional network (FCN) architectures in a variety of 
different segmentation tasks [17]. Here we adapt the Dense-FCN ar
chitecture for the lesion segmentation task. 

The main building block of Dense-FCNs is a dense convolutional 
block (DCB) where the input of each layer is a concatenation of the 
outputs of the previous layers. The block consists of repeating batch 
normalization (BN), rectified linear unit (ReLU), convolution and 
dropout p = 0.5 layers resulting in g feature maps (growth rate). 

The main concept of Dense-FCNs is similar to other encoder-decoder 
architectures in the sense that the input is first compressed to a hidden 
representation by the downsampling part. Thereafter the segmentation 
masks are recovered by an upsampling part. The downsampling part 
consists of DCBs and downsampling transitions with skip connections to 
the upsampling part. The upsampling part consists of DCBs and 
upsampling transitions. An example of two blocks in downsampling and 
upsampling paths of a Dense-FCN is shown in Fig. 4. 

The total number of trainable parameters is 9319778. The archi
tectural parameters used are are as follows:  

● The growth rate for all DCBs: g = 16.  
● The downsampling path consists of DCBs with depths Ddown =

[4,5, 7,10,12,15].  
● The upsampling also consists of five DCBs with depths Dup =

[12, 10,7, 5,4].  
● The first and last convolution layers are the same as in Fig. 4. 

3.4. Image preprocessing 

It was noticed in the experimental part of the work that simple 
preprocessing proposed in Ref. [18] improves the results. The pre
processing is implemented in two steps:  

1. Luminosity enhancement employs luminance gain matrix G that is 
applied in the red-green-blue (RGB) color space: 

x′

= [G ⊙ r G ⊙ g G ⊙ b], (10)  

Gi =
V′

i

max{ri, gi,bi}
, (11)  

where r, g and b are red, green and blue image channels respectively, x′

is an enhanced image, and V′

i is an enhanced luminance value at pixel 
with index i. The enhanced luminance value is calculated by converting 
the image to hue-saturation-value (HSV) color space and enhancing the 
luminance V using gamma enhancement. Here, we choose Γ = 1/ 2.2 as 
in the original work [18].  

2. Contrast enhancement is performed using Contrast Limited Adaptive 
Histogram Equalization [19] algorithm with the clip limit 0.1 and 
the grid size 8× 8. 

In order to reduce requirements for computing resources, the images 
were resized to the resolution of 2144 × 1440 pixels. Two examples of 
the original and enhanced images are presented in Fig. 5. 

3.5. Training details 

The Dense-FCN was trained for 100 epochs with 500 steps per epoch 
on random patches 224 × 224 with the batch size equal to 6. The 
patches were generated with the overlap 192× 192. Data augmentation 
by vertical and horizontal mirroring was applied. The parameter values 
were empirically tuned based on initial experiments with the IDRiD 
dataset. 

The weights were initialized using HeNormal [20]. In addition to 
dropout, L2 regularization with the weight decay factor 10− 4 was used. 
As the optimizer, Adadelta [21] with the learning rate l = 1 and the 
decay rate ρ = 0.95 was used. The learning rate was adjusted according 
to the following schedule:  

1. if 0 <= epoch < 50, l = 1;  
2. if 50 <= epoch < 70, l = 0.1;  
3. if 70 <= epoch < 85, l = 0.01;  
4. if 85 <= epoch < 100, l = 0.001. 

4. Experiments and results 

4.1. Evaluation protocol 

In [5], many authors processed images in a patchwise manner during 
the validation stage. In this work, it was noticed that with Bayesian 
neural networks this can lead to checkerboard artifacts that have a 
negative impact on the segmentation performance. Therefore, in the 
inference stage images are not divided into patches but are processed as 
full images. It is also worth to note that full-resolution processing is 
much faster and it takes approximately 14 min to process an image with 
50 epistemic and 100 aleatoric samples. The input and output images 
have the resolution of 2144 × 1440 pixels. 

In order to evaluate the segmentation performance, the following 
classification metrics are used:  

● Sensitivity (SE) is used to assess the ability of the model to discover 
lesions: 

SE =
TP

TP + FN
, (12)  

where TP and FN are the amounts of true positive and false negative 
pixels, respectively.  

● Positive predictive value (PPV) is used in addition to sensitivity but 
taking into account false positives FP: 

PPV =
TP

TP + FP
. (13)    

● Specificity (SP) is used to assess to ability of the model to correctly 
segment healthy pixels: 

SP =
TN

TN + FP
, (14)  

where TN is the amount of true negative pixels.  

● Area under receiver-operating-characteristic curve (ROC-AUC) is an 
integral metric regardless of the thresholding value. ROC-AUC is 
calculated under the area of the curve plotted as a true positive rate 
against false positive rate by varying the threshold.  

● Area under precision-recall curve (PR-AUC) is another integral 
metric regardless of the thresholding value. PR-AUC more realisti
cally represents the segmentation performance in comparison to the 
area under receiver operating characteristic ROC-AUC. 
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● Expected calibration error (ECE) is used to assess a model’s cali
bration [22]: 

ECE = E p̂ [|P(ŷ = y|p̂ = π) − π| ], π ∈ [0, 1], (15)  

where p̂ is a confidence estimate of the predicted class ŷ, y is a true label 
and π is a true probability. 

Together with ECE, reliability diagrams are also presented. These 
reliability diagrams are graphs showing the expected accuracy against 
classification confidence, thereby representing calibration quality. In 
the case of perfect calibration, the graph is an identity function. 

In the evaluation, sensitivity, specificity and positive predictive 
value are calculated by thresholding the output predictive mean with 
T = 0.5. 

In the inference, the model parameters are sampled 100 times and 
the number of inferred aleatoric samples is NA = 100. The final poste
rior predictive mean is calculated over all the predicted samples, and the 
aleatoric uncertainty UA and epistemic uncertainty UE of the outputs are 
calculated as in Ref. [23]: 

UA = Eq
[
Vp(y|x,θ)[y]

]
, (16)  

UE = Vq
[
Ep(y|x,θ)[y]

]
, (17)  

UT = UA + UE, (18)  

where E and V denote expectation and variance, respectively, and UT is 
the total predictive uncertainty. 

Apart from characterizing the total uncertainty, it is also important 
to evaluate the meaningfulness of the produced uncertainty maps. This 
is a more challenging task since only point estimates of ground truth 
labels are available. However, it is reasonable to assume that incorrectly 
segmented areas must have higher uncertainties. Mobiny et al. [24] 

proposed to use the uncertainty as a tool predict incorrect classification 
results by thresholding the output uncertainties. Camarasa et al. [25] 
analyzed different uncertainty measures for medical image segmenta
tion and concluded that the averaged variance and averaged entropy 
perform equally well and are better than other metrics. In this work, the 
standard deviation is used. We follow the same approach and use the 
following:  

1. Area under uncertainty precision-recall curve (PR-AUC) is used an 
integral metric to assess the quality of uncertainty estimates.  

2. Uncertainty sensitivity (U-SE) is used to assess the ability of the 
uncertainty estimates to discover misclassifications.  

3. Uncertainty specificity (U-SP) is used to assess the ability of the 
uncertainty estimates to correctly classify misclassifications. 

4. Uncertainty expected calibration error (U-ECE) is also used to vali
date the uncertainty calibration. 

U-SE and U-SP are calculated using the threshold which is half of the 
maximum uncertainty value. 

To summarize, the extended validation approach consists of the 
analysis of the produced segmentation masks as well as comparison of 
the produced uncertainties and the misclassification maps. 

4.2. Evaluation of segmentation results 

The precision-recall (PR) and receiver operating characteristic (ROC) 
curves are shown in Fig. 6. It is clear that the ROC curves demonstrate 
close-to-optimal classification results due to large class imbalance. On 
the other hand, the PR curves represent the classification performance 
more realistically. The corresponding performance metrics are given in 
Table 1. Based on the figures and the table, it is clear that the easiest task 
is to segment the hard exudates, whereas the most difficult one is the 

Fig. 6. Precision-recall and receiver operating characteristic curves for (a), (e) hard exudates; (b), (f) soft exudates; (c), (g) haemorrhages; (d), (h) microaneurysms.  

Table 1 
Evaluation results of the baseline training scheme. The abbreviations of the evaluation metrics are explained in the text.  

Label PR-AUC ROC-AUC Sensitivity PPV Specificity ECE 

Hard exudates 0.842 0.995 0.767 0.753 0.997 0.090 
Soft exudates 0.641 0.993 0.639 0.611 0.999 0.145 
Haemorrhages 0.593 0.977 0.464 0.670 0.997 0.066 
Microaneurysms 0.484 0.997 0.434 0.531 0.999 0.116  
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Fig. 7. Reliability diagram for (a) hard exudates; (b) soft exudates; (c) haemorrhages; (d) microaneurysms.  

Fig. 8. Visualizations of inference results for input image 5b for lesions: (a), (b), (c) hard exudates; (d), (e), (f) soft exudates; (g), (h), (i) haemorrhages; (j), (k), (l) 
microaneurysms. The first column shows the ground truth masks, the second shows the mean inferred probabilities and the third shows epistemic uncertainty masks 
(standard deviations of probabilities). 
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segmentation of microaneurysms. Low sensitivies are a common prob
lem for the DR lesion segmentation task [5]. This can be explained by the 
relatively low contrast and size of lesions. Apart from the analysis of true 
positive classifications, it is also essential to have classifiers with high 
specificity. From Table 1 it is possible to see that specificities are very 

high for all types of lesions being close to one. Nevertheless, it can be 
easily achieved due to the class imbalance. PPVs, on the other hand, give 
more insights into the problem of false positive classifications 
comparing them to true positives. It is easy to notice that in the worst 
case scenario for microaneurysms there are almost as many falsely 
classified pixels of healthy tissues as correctly discovered pixels of 
microaneurysms. This fact gives additional motivation for analyzing the 
uncertainties. 

The reliability diagrams are given in Fig. 7. It can be seen that the 
trained models are miscalibrated and the one for haemorrhages repre
sents the best result. Guo et al. [22] have shown that deep neural net
works are typically poorly calibrated and the authors proposed methods 
decreasing the degree of miscalibration. Guo et al. claimed that the ECE 
of approximately 0.01 − 0.02 can be achieved for standard classification 
benchmark datasets and Dense architectures. In this work, no methods 

Fig. 9. Visualizations of inference results for input image 5d for lesions: (a), (b), (c) hard exudates; (d), (e), (f) soft exudates; (g), (h), (i) haemorrhages; (j), (j), (l) 
microaneurysms. The first column shows the ground truth masks, the second shows the mean inferred probabilities and the third shows epistemic uncertainty masks 
(standard deviations of probabilities). 

Table 2 
Evaluation results for the estimated uncertainty maps. The abbreviations of the 
evaluation metrics are explained in the text.  

Label U-PR-AUC U-SE U-PPV U-SP U-ECE 

Hard exudates 0.336 0.031 0.566 0.999 0.104 
Soft exudates 0.257 0.113 0.388 0.999 0.195 
Haemorrhages 0.243 0.029 0.302 0.999 0.303 
Microaneurysms 0.257 0.045 0.332 0.999 0.237  
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for improving the calibration were used and the reliability is assessed for 
the baseline model. 

The segmentation results for two example images from the test set 
(shown in Fig. 5) are illustrated in Fig. 8 and Fig. 9. From the images, it is 
possible to observe visual similarities between the ground truth and 
mean inferred probability maps. Higher uncertainties are concentrated 
around the areas with high predicted confidence and false positive 
segmented pixels. A more detailed discussion about the inference results 
and the estimated uncertainties is given in the next section. 

4.3. Uncertainty quantification 

The PR curves and reliability diagrams are shown in Fig. 6 and the 
evaluation metrics are given in Table 2. From the results, it is clear that 
normalized uncertainties are not efficient predictors of mis
classifications and have low sensitivities. It is worth to note that the 
evaluation procedure is straightforward and considers only soft un
certainties against hard misclassifications. Nevertheless, the un
certainties are not necessarily high only near the misclassification areas, 
but also near the areas of relatively low confidence as shown below. This 
can also explain the uncertainty miscalibrations. The uncertainty PR 
curves are given in Fig. 10 and the uncertainty reliability diagrams are 
presented in Fig. 11. From the reliability diagrams it is clear that the 
uncertainties are mostly underestimated, since the growing confidence 
values stop matching with the increasing accuracy values. 

Inference results for hard exudates of the magnified example image 
are shown in Fig. 12. It is clear that the misclassifications and epistemic 
uncertainties are mostly concentrated around the edges of the lesions. 
This can be explained by unclear boundaries of the lesions. The aleatoric 
uncertainties acting as a learned loss attenuation are also higher around 
the borders. The boundary uncertainties are a general pattern for 

segmentation models and can be observed within a wide variety of tasks. 
It is also possible to see small yellow lesions being incorrectly classified 
as background which highlights the problems of detecting small-scale 
lesions. It is worth noting that there is a soft exudate left to the hard 
exudates cluster and the model is certain for not classifying it as a hard 
exudate. 

Inference results for soft exudates of the magnified example image 
are shown in Fig. 13. The high boundary uncertainties are presented in 
this case as well. Soft exudates typically have low contrast, no texture, 
unclear edges and can be easily confused with the background. It is 
possible to see false positive detections of soft exudates in the lower left 
part of the image which is slightly more yellow comparing to the other 
background pixels. The soft exudate in the lower right part of the image 
has uneven contrast and the low-contrast part of the lesion is incorrectly 
classified as the background. In both cases, the model yielded non- 
maximum mean confidence and the incorrectly classified pixels also 
have high uncertainties. 

In Fig. 14, the inference results for the haemorrhages of the magni
fied example image are presented. The lesion is surrounded by blood 
vessels and a part of the macula is presented in the magnified input 
image. The part with blood vessels to the left is incorrectly classified as a 
haemorrhage. It is also possible to see the model’s confusion about the 
part with the macula. Epistemic uncertainty is in general higher near the 
areas with similar colors highlighting the surrounding blood vessels and 
macula.Inference results for microaneurysms of the magnified example 
image are given in Fig. 15. Microaneurysms are the smallest of all lesions 
and the epistemic uncertainty is high over the whole area of lesions. On 
the other hand, the aleatoric uncertainties are still higher near the edges. 
Being small-scale lesions with no textures, microaneurysms are confused 
with any red small spots, which is visible on the epistemic uncertainty 
maps. 

Fig. 10. Uncertainty precision-recall curves for (a) hard exudates; (b) soft exudates; (c) haemorrhages; (d) microaneurysms.  

A. Garifullin et al.                                                                                                                                                                                                                              



Computers in Biology and Medicine 136 (2021) 104725

11

5. Discussion 

The approach presented in this work shows classification perfor
mance comparable to previously reported methods [5]. The uncertainty 
maps can be used for the visual inspection and analysis of the perfor
mance. The estimated uncertainties and the produced confidence maps 

provide more information about the model’s behaviour. Nevertheless, a 
few challenges remain and they are discussed in this section in addition 
to brief explanations of failed experiments. 

One of the main issues in lesion detection is low sensitivity of the 
segmentation model. This problem is present in the related previous 
works [4,26] and also in this study. In medical image analysis and 

Fig. 11. Uncertainty reliability diagrams for (a) hard exudates; (b) soft exudates; (c) haemorrhages; (d) microaneurysms.  

Fig. 12. Inference results for hard exudates with magnified input image 5b: (a) input image; (b) ground truth mask; (c) misclassifications; (d) mean inferred 
probabilities; (e) aleatoric uncertainties (standard deviations of probabilities); (f) epistemic uncertainties (standard deviations of probabilities). 
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segmentation, it is common to use custom heuristic loss functions [26] to 
improve sensitivity [27] or deal with lesion boundary issues [28]. We 
also experimented with other loss functions including focal loss [29], 
Tversky loss [27], generalized dice loss [28], and boundary loss [30]. 
Nevertheless, results outperforming the proposed baseline were not 
achieved. This negative outcome is likely due to omitting the tuning of 
loss functions’ hyperparameters. These objectives are typically synthetic 
in the sense that they are formulated already in the form of loss functions 
and not as log-likelihoods. This means that they are not derived from 
specific distributions encoding the information about class imbalance. 
On the other hand, binary cross-entropy is derived as a negative loga
rithm of the Bernoulli likelihood. To study the issue with low sensitivity, 
more focused research is required to evaluate modern loss functions for 
medical image segmentation in the context of Bayesian deep learning 
and model calibration. 

In this work, a straightforward scheme based on label statistics is 
used to balance the lesion and background data. A potentially more 
efficient approach would be to use Bayesian active learning [31] where 
uncertainty-based acquisition functions are used to select the training 
samples. Typically, these methods do not work well with unbalanced 
data which can be another topic for the future research. 

Model and uncertainty calibration metrics are also subjects for 
further improvements. Apart from the classical calibration methods 
described in Ref. [22], alternative ways of improving the calibration 
exist. Thulasidasan et al. [32] proposed to use mix-up augmentation to 
improve the model calibration. Seo et al. [33] proposed single-shot 
calibration by regularizing the model with the uncertainty of the out
puts. Laves et al. [34] considered the uncertainty calibration in the 
context of deep Bayesian regression and discovered that the predicted 
uncertainties are typically underestimated. The problem was solved 

Fig. 13. Inference results for soft exudates with magnified input image 5b: (a) input image; (b) ground truth mask; (c) misclassifications; (d) mean inferred 
probabilities; (e) aleatoric uncertainties (standard deviations of probabilities); (f) epistemic uncertainties (standard deviations of probabilities). 

Fig. 14. Inference results for haemorrhages with magnified input image 5b: (a) input image; (b) ground truth mask; (c) misclassifications; (d) mean inferred 
probabilities; (e) aleatoric uncertainties (standard deviations of probabilities); (f) epistemic uncertainties (standard deviations of probabilities). 
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using simple temperature scaling of aleatoric and epistemic uncertainty. 
During the development of this work, experiments with the uncertainty 
calibration using Platt scaling and isotonic regression were conducted. 
However, no improvements over the baseline were found. It is likely that 
a more systematic approach aiming to solve both calibration problems is 
required. 

6. Conclusion 

In this paper, a Bayesian baseline for the diabetic retinopathy lesion 
segmentation, allowing the analysis of segmentation distributions, 
model calibration and prediction uncertainties, is proposed. Also an 
extended validation approach consisting of the analysis of segmentation 
performance and the ability of uncertainty estimates to detect false 
classifications is provided. The presented results from the uncertainty 
quantification experiments show that the estimates are qualitatively 
similar to misclassification maps and can be used to assess issues in the 
lesion segmentation. Overall, the main challenges of the deep probabi
listic model are the small-scale lesions, areas with low contrast and 
unclear boundaries. The color information is also essential for successful 
segmentation and healthy tissues can be confused with lesions when 
being of a similar color. Further research and development is required to 
make the predicted lesion segmentation uncertainties suitable for 
numeric quantification. 
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