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Abstract. This paper is focused on improving the performance of quantitative phase imaging 

via phase-shifting digital holographic microscope. The development of the interferometric 

techniques is important for technology and biomedicine, since the surface and structure of 

samples can be monitored in real-time by non-destructive investigations. The novelty of the 

optical arrangement is that in the reference beam of the digital holographic microscope a liquid 

crystal variable retarder is introduced. Thus, it became possible to actively control the 

polarization state of light for realizing the necessary phase-shifts. In addition, a spatial light 

modulator is integrated in the optical setup to produce computer-controlled compensation of 

the spatial distortion. An ad hoc hologram processing technique was developed to execute the 

numerical correction of the physical phase-shifting errors. Topographical investigations of 

phase masks recorded on carbazol-based azopolymers provided the experimental testing of the 

achieved accuracy in phase reconstruction.  

1. Introduction 

Nowadays, various interferometric imaging techniques (IIT) as differential interference contrast, 

Fourier phase microscopy, Hilbert phase microscopy, and digital holographic microscopy (DHM) 

have been developed to obtain full field, absolute and quantitative phase imaging, especially for life 

sciences and biomedical applications [1-4]. The major advantage of IIT compared to conventional 

phase microscopy systems (i.e. phase contrast microscopy) is the real-time and non-destructive 

imaging performance that employs the principle of interferometry to measure the optical field [5]. 

Interferometric approach is remarkable since it enables recording of complex object wavefront named 

hologram that encodes phase and amplitude information of the specimen. The hologram is obtained by 

interference of the wave that passes through the object under study and the reference wave set under 

an angle in off-axis setup, or in-line in case of the phase-shifting configuration. The delivered 

quantitative phase data make interferometric systems the key instrument for 3D investigation of 

transparent samples [6,7]. In addition, digitalization of the interferograms open the access to the 

numerical processing of the complex object wavefront for revealing the phase, amplitude and 3D map 

of the sample. Nevertheless, a major disadvantage has been identified in accurate measurement of 

specimen phase, namely wavefront aberrations introduced by the optical components of the setup 

(microscope objective, lenses, etc.), which may corrupt the contrast, resolution and sensitivity of IIT 

[8]. 
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Existing solutions for the phase reconstruction improvement of IIT result from the dependence of 

the resolving power on the wavelength and numerical aperture (NA) of the microscope objective (MO) 

described by the Abbe criterion. The limited NA of the microscope restricts the spatial-frequency 

content of the object arrived at the image plane. Previous attempts to apply a short-wavelength laser 

(UV range) proved to be destructive and phototoxic for investigation of biological objects [9]. Other 

works demonstrated enlarged spatial frequency coverage by creating a synthetic numerical aperture 

[10,11]. For this purpose, M. Paturzo and P. Ferraro introduced a diffraction grating between the 

object and the CCD sensor in the lensless DHM setup [12]. Later, successful integration of spatial 

light modulators (SLMs) in the DHM optical setup permitted fast and precise operation of the object 

wavefront for generating the desired structured patterns [13-16].  

The aim of this work is to achieve compensation of object wavefront deviations in a phase-shifting 

(P-S) DHM arrangement. For this purpose, digital modulation of light in the object beam is operated 

by the spatial light modulator (SLM). The use of the digital approach to wavefront modulation 

provided by SLM offered several advantages compared to beam shaping by a phase mask recorded on 

a thin film. First, it permits accurate control and strikethrough alignment of the required phase 

modulation. Second, it gives quick access to a variety of pattern parameters and shapes that are 

difficult, or sometimes impossible, to inscribe on a physical diffraction grating. The optimal 

modulation shape of the object wave is determined by testing three types of phase masks (sinusoidal 

and blazed diffraction gratings, and binary Fresnel lens) via computer simulations. The phase-shifts in 

the reference arm of the set-up are computer-controlled by the liquid crystal variable retarder (LCVR). 

The utilisation of LCVR allows to overcome the probable P-S errors present in the typical P-S scheme 

resulted from mechanical movements, made by a piezoelectric transducer that may suffer from 

nonlinearity, hysteresis, and sensibility to temperature [8-10]. In addition, the automatic control of the 

LCVR permits the hologram registration in a very short period of time (milliseconds). This overcomes 

the temperature instability and reduces the sequential noise usually affecting the image quality.  

2. Simulation results 

Simulation parameters correspond to the values of the parameters of the optical setup built in the 

laboratory: a laser source CW DPSS single mode with the wavelength of 532 nm, barbara test image 

as test object figure 1(a), a sinusoidal figure 1(b) and blazed diffraction grating figure 1(c) and a 

Fresnel zone lens figure 1(d) were examined as object wavefront modulation phase-masks, the SLM 

with the pixel size of 34m, and the CMOS sensor with the pixel size of 3.45 µm and maximum 

resolution of 2448 × 2048. The distance between the phase masks (imaged on SLM) and the object 

was set x=3 cm. At this distance, the diffraction orders are not superimposed.  The optimal phase-

masks parameters are determined by varying the diffraction gratings period P and angle α in relation to 

the optical axis of the imaging system and the number of concentric rings in the experiment with a 

Fresnel zone lens. For matching the real laboratory conditions Poisson and Gauss distribution noise 

was introduced in the setup.  

a)  b)  c)  d)  

Figure 1. (a) Barbara test image, (b) sinusoidal diffraction grating, (c) blazed diffraction grating and 

(d) Fresnel zone lens phase-mask. 

 

The accuracy of the phase reconstruction is evaluated by the relative root mean square error 

(RRMSE): 

 RRMSE =
‖𝜑0−𝜑0̂‖F

‖𝜑0‖F
  (1) 
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where 𝜑0 and 𝜑0̂are the phases of initial and reconstructed object, and  ‖∙‖F is the Frobenius 

norm. When RRMSE<0.11 the reconstruction is considered to be successful [17]. 

a)  b)  

c)  
Figure 2. (a) RMSE dependance on the sinusoidal and blazed gratings period; (b) RMSE dependance 

on the sinusoidal and blazed gratings angle in relation to the optical axis of the imaging system; (c) 

RMSE dependance on the number of concentrinc rings of Fresnel zone lens. 

a) b)  

Figure 3. Illustration of (a) initial phase and b. the best phase reconstruction of barbara test image 

resulted from the modulation of the object wavefront by a blazed grating with the period P=90 

Pixel/fringe and angle α=900, with respect to the optical axis of the DHM. 
 

Through the simulation experiments the optimal shaping of the object wavefront was determined. 

figure 2(a) shows that the best reconstruction can be obtained for the blazed grating when the grating 

period is equal 35 and 80 pixels/fringe. At these values, the phase reconstruction quality is improved if 

compared to the experiment without the wavefront modulation by the blazed grating. From figure 2(b) 

it can be determined that the optimal angle is α=90
0
 with respect to the optical axis of the DHM. Also, 

better reconstruction results are obtained when α is in the range of 60-90
0
. The relation between 

RRMSE and number of concentric rings of the Fresnel zone lens is inversly proportional. The most 

accurate results are obtained in the experiment with a single ring. To sum up, the computational 

simulation results suggest that application of a blazed wavefront provide the best compensation for the 
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wavefront deviations in the modeled setup. Therefore, with regards to the practical experiments 

described in this paper a blazed grating with the determined optimal parameters was set on the SLM 

display. 

3. Physical Experiments 

The setup of the proposed P-S interferometer is shown in figure 4. This configuration offers the 

advantage of simultaneously capturing 3D information about the sample under study. The lateral 

resolving power of the optical system is diffraction-limited according to Abbe criterion. 

 
Figure 4. DHM setup: TEM00 DPSS laser (λ=532nm, 100 mW), BS-beam splitter, λ/2- half-wave 

plates, M-mirror, MO-microscope objective x20, NA=0.40, SLM- HoloEye LC2002 spatial light 

modulator, O-object, BS-beam splitter, L-lens, CMOS- “Imaging source DMK33UX264” camera -

resolution 2,448×2,048 (5 MP), LCVR- “Meadowlark optics” liquid crystal variable retarder LCVR-

100. 

 

In the experiment, the laser beam is divided by a beam-splitter into the reference wave with the 

intensity IRw and the object signal with the intensity IOw. Since the LCVR and SLM exhibit 

birefringence properties, a half-wave plate is introduced in each arm to ensure similar polarization 

directions of both beams and so to increase the contrast of interference pattern. For precise phase 

control, these devices were preliminary calibrated. To produce specific phase shifts equal to 𝜑1 = 0, 

𝜑2 = π/2, 𝜑3 = π, 𝜑4 = 3π/2 a linear approximation of the LCVR phase shift in the region 2-3.2V of 

the applied voltages was built to exclude their temperature dependence. It was determined that the four 

required phase changes correspond to the voltages V1 = 2.02V, V2  = 2.39V, V3 = 2.76V, V4  = 3.14V, 

respectively. 

 
Figure 5. Flowchart of reconstruction method from phase-shifting holograms. 

The digital hologram recorded by the CMOS camera is a result of the interference of the object 

beam 𝐼𝑂𝑤 = 𝐴𝑂exp(i𝛷𝑂) and reference beam 𝐼𝑅𝑤 = 𝐴𝑅exp(i𝛷𝑅 + 𝜑𝑁), whose intensity is given as 

 𝐼𝐻 = |𝐼𝑂𝑤 + 𝐼𝑅𝑤|
2 (2) 
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where, 𝐴𝑂, 𝐴𝑅 and 𝛷𝑂, 𝛷𝑅 are the amplitudes and the phases of the object and reference waves, 

respectively, and φN represents the phase changes N=1, 2, 3, 4 in the reference arm created by the 

LCVR. The object phase can be quantitatively reconstructed from the four recorded interferograms 

using the formula  

 ΔΦ = tan−1 [
𝐼1−𝐼3

𝐼2−𝐼4
]  (3) 

where, I1, I2, I3, I4 are the four recorded intensities under corresponding phase shifts. Fast hologram 

acquisition (within 30 milliseconds) was performed for ensuring real time phase imaging.  

The numerical reconstruction algorithm illustrated in figure 5 executes the correction of the phase 

shifts in case of distorted tilt produced by LCVR. This step is important when the appropriate 

laboratory conditions (temperature, excessive building vibrations, etc.) cannot be maintained. A small 

phase shift is added during the phase reconstruction stage until the object phase is successfully revealed. 

4. Results and Discussions 

The feasibility of the developed system was tested on a phase mask recorded on the thin film of 

azopolymer - polyepoxypropil carbazole: disperse orange. Figure 6. and figure 7. illustrate the 3D 

topography of the reconstructed phase and the surface cross-section of the phase mask in the 

experiment where the phase imaging is made in preliminary P-S DHM configuration and in the case of 

corrected object wave performed via SLM, respectively. The measurements effectuated by the P-S 

DHM indicate the depth of the mask relief that equals to 400 nm and the close to rectangular shape of 

the surface profile. The obtained relief depth corresponds to the theoretical data about the phase mask. 

By analyzing both initial and after phase correction experiments (figure 6 and figure 7, respectively), 

we observe a better accuracy of recovered phase in the second scenario, where the phase image is 

sharper without using additional noise filtering. The improved imaging system resolves the side peaks 

that have appeared in the areas of depth minima figure 6.  

a)                                        b) 

Figure 6. Initial results- (a) 3D topography, (b) Cross-section of the phase mask recorded on carbasol-

based  azopolimer. 

a) b) 

Figure 7. Performance results of the experiment including the compensation stage implemended by 

the SLM- (a) 3D topography, (b) Cross-section of the phase mask recorded on carbasol-based  

azopolimer. 
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These peaks are related to the shape of the dual-range diffraction grating recorded on the 

polymer material. By this way, for validating the simulation results the designed optical system 

was tested on previously unknown objects, and new features of recorded gratings were noticed. 

5. Conclusion 

In summary, this work proves the feasibility of the modified P-S DHM technique as a tool for 

quantitative phase measurements of phase objects. In particular, we have demonstrated that by utilizing 

liquid crystal devices (SLM and LCVR) in the interferometric setup we can control the precision of the 

phase reconstruction. Due to the independent phase control of the object wave and the reference wave, 

significantly improved 3D phase images are obtained. In addition, the proposed method involves the 

compensation of the system noise (aberration of optical components, shot noise of the camera and 

SLM), and the environmental noise, which are usually present even in laboratory conditions. 
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