
Santeri Röning

ATTACKING RSA WITH SIDE CHANNELS

A review for the attacks against RSA

Bachelor of Science Thesis

Faculty of Information Technology and Communication Sciences

Examiners: Tiina Schafeitel-Tähtinen

August 2021

i

ABSTRACT

Santeri Röning: Attacking RSA with side channels
Bachelor of Science Thesis
Tampere University
Computing Sciences
August 2021

The current world requires a safe and secure method of transporting data through the internet.
One of the oldest, still secure and most used methods currently in use is the public-key crypto-
graphic system concocted by Rivest, Shamir and Adleman (RSA). As the systems methods of
encrypting data are known, there have been a lot of attacks to it and this thesis aims to review
the attacks on RSA via side-channel attacks. Side-channel attacks are attacks that focus not on
cracking the encryption itself but on collecting data from other sources. These sources might in-
clude but are not limited to sound, timing, electricity draw and electromagnetic radiation. From
this leaked data researchers have been able to extract the required decryption keys to decrypt the
RSA protection.

This work is divided into three parts. First is the general information about RSA, how it works,
why it works and the math behind the encryption. The purpose is to give the reader an introduction
to RSA and a bit of background knowledge behind the attacks. The second part is about side-
channel attacks. This includes how they work in general, how these attacks can be classified and
as examples recent side-channel attacks, spectre and meltdown. The third part aims to gather
these first two parts together and create a review about what attacks were successful, how these
attacks worked and how to defend against these kinds of attacks.

This thesis concludes that the side-channel attacks are here to stay on the threat radar and a
generalization of how we can defend against them. This defending is opened via examples and
what it means to the user using these defences against side-channel attacks, as usually, these
require additional resources to defend against.

Keywords: RSA, side-channel

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

TIIVISTELMÄ

Santeri Röning: Sivukanavahyökkäykset RSA:ta vastaan
Kandidaatintyö
Tampereen yliopisto
Tietotekniikka
Elokuu 2021

Yhteiskuntamme vaatii toimiakseen tietoturvallisen keinon siirtää dataa käyttäjältä toiselle in-
ternetin yli. Yksi vanhimmista, yhä turvallisista ja eniten käytetyistä metodeista tähän on julkisen
avaimen salausalgoritmi RSA. RSA:n nimi tulee keksijöiltään Rivestiltä, Shamirilta ja Adlemanilta.
Salausalgoritmin ollessa tunnettu sitä vastaan on ollut monia hyökkäyksiä ja tämä työ keskittyy
tuomaan katselmuksen sivukanavahyökkäyksiin RSA:n algoritmia vastaan. Sivukanavahyökkäyk-
set ovat hyökkäyksiä, jotka eivät keskity itse algoritmin hajoittamiseen, vaan keskittyvät kerää-
mään tarvittavaa dataa salauksen oikeaoppiseen purkamiseen. Erilaisia lähteitä ovat esimerkiksi
aika, äänet, sähkönkulutus tai sähkömagneettinen säteily, jota syntyy tietokoneen purkaessa al-
goritmiä. Näistä lähteistä saadulla tiedoilla tutkijat ovat onnistuneesti purkaneet RSA:n salauksen.

Tämä työ on jaoteltu kolmeen osaan. Ensimmäisenä on yleiskatsaus RSA:han, kuinka se toi-
mii, miksi sitä pidetään vielä turvallisena ja matematiikkaan itse algoritmissä. Yleiskatsauksen
tarkoituksena on tuoda lukijan tietoon RSA:n eri osat ja antaa hieman taustatietoja miksi sivuka-
navahyökkäykset toimivat. Toisena osana ovat itse sivukanavahyökkäykset. Tämä pitää sisällään
miten ne toimivat, kuinka näitä hyökkäyksiä voidaan luokitella sen mukaan mihin hyökkäys koh-
distuu ja esimerkkinä työ tuo esille vuonna 2017 julki tulleet hyökkäykset spectre ja meltdown.
Kolmannen osan tarkoituksena on yhdistää kaksi aiemmin mainittua osaa ja tehdä selostus siitä,
miten hyökkäykset RSA:ta vastaan ovat toimineet ja kuinka puolustautua sivukanavahyökkäyksiä
vastaan.

Työn loppupäätelmänä on, että sivukanavahyökkäykset ovat jo osa ja pysyvät osana hyök-
käyskenttää. Tämän lisäksi työ tuo esille yleistyksen miten näitä hyökkäyksiä vastaan voidaan
puolustautua. Puolustautumista myös avataan hieman esimerkkien avulla ja käydään läpi miten
sivukanavahyökkäyksiä vastaan puolustautuminen näkyy käyttäjälle, sillä usemmiten puolustau-
tuminen vaatii lisäresursseja tietokoneelta.

Avainsanat: RSA, side-channel

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.

iii

CONTENTS

1. Introduction . 1

2. Rivest–Shamir–Adleman . 2

2.1 The math of RSA . 3

2.2 Key generation. 3

2.3 Encryption and Decryption . 4

3. Side-Channel Attacks . 5

3.1 Timing-based . 5

3.2 Access-based . 6

3.3 Trace-based . 6

3.4 Spectre and Meltdown. 6

4. Attacking and defending . 8

4.1 Attacks against RSA . 8

4.1.1 Attack one: Timing-based attack 9

4.1.2 Attack two: Access-based attack 9

4.1.3 Attack three: Trace-based attack 10

4.2 Defending against side-channel attacks 10

4.2.1 Attack one: Timing-based attack 10

4.2.2 Attack two: Access-based attack 11

4.2.3 Attack three: Trace-based attack 11

4.3 Defending against side-channels and future 12

5. Conclusions . 13

References . 14

1

1. INTRODUCTION

From the start of the internet, there has been a need to transmit data without other users

knowing the contents of the data. One of the oldest and still secure ways of transmitting

this data is the public key algorithm Rivest–Shamir–Adleman (RSA). Even as this encryp-

tion is said to be secure, there still have been some successful attempts in breaking it.

These have been mostly via so-called side-channels. These side-channels are a way to

gather data from the cryptographic process via different means to get information on what

is happening in it. These means can be time, power draw, noise or any other of multiple

different things. This data is usually some sort of difference, for example, time difference.

From this difference, the attacker can deduce the right decryption key.

This thesis aims to be a review of the different styles of successful attacks against RSA,

how these attacks came to be, how they worked and how these side-channels were and

can be defended against.

This thesis will go through three different chapters. Chapter two being the first one focus-

ing on the basic principle of using RSA, how RSA is encrypted, why and how RSA works

and how RSA is decrypted. After this, in chapter 3 this paper delves into side-channels,

what are side-channels, how side-channels are created and will introduce the three dif-

ferent styles of side-channel attacks, timing-based, access-based and trace-based. And

for chapter 4 these two previous topics will be brought together and will cover how the

existence of side-channels have made the attacks possible against RSA and how these

side-channels helped researchers to crack the RSA encryption. This will be viewed from

said three different styles of attack. After the attacks have been covered, this paper will

consider the defences against these three styles of attacks before concluding with con-

clusions.

2

2. RIVEST–SHAMIR–ADLEMAN

Rivest–Shamir–Adleman shortened to RSA is a widely used public-key cryptosystem for

secure data transmission and it is one of the oldest currently in use. The name for this

cryptosystem comes from the surnames of Ron Rivest, Adi Shamir and Leonard Adle-

man the inventors of the algorithm. They described the algorithm publicly in 1977 at the

Communications of the ACM [1].

RSA is a public-key cryptosystem. Public-key meaning that one part of the key, usually

the encryption key is public information and can be sent to all without the fear of losing

security. The other key, called the private key is kept secret. One can decrypt messages

encrypted with the public key with the private key and vice versa. This is if a sender

would send a message to a receiver encrypted with the receivers public key the receiver

can decrypt the message with their private key. This interchangeability of the keys gives

us the possibility of sending secure data and the important ability to verify the origin of

data if it is encrypted with a private key and if the issuer of the public key is known. This

is called signing or signatures. [2]

RSA being one of the oldest and one of the first still secure public-key cryptosystems

in use is an important backbone in our current interconnected world. RSA has a part

in nearly all current activities online, from credit-card transactions, securing e-mail and

authenticating phone calls. [3] With this interconnectivity to our virtual world, it is easy to

see why breaking this algorithm is appeasing, especially if one could find a way to break

it consistently and within a reasonable time frame. If a proven method would be found

of breaking this algorithm, then most of our internet backbone should be reassessed

on its security and probably would need at least a change of algorithm. Interestingly

enough, we are currently searching for an alternative for RSA or addition to RSA to make

it less susceptible against quantum computing as quantum computing gives us numerous

different tools against the core of RSA, its math [4].

The algorithm itself is a continuation of Diffie and Hellmans [2] work with their public-key

cryptosystem, which presented with an idea of the function that would be a "trap-door

one-way function". The "one-way" offers us the knowledge that the function is efficient

and easy to compute in one direction, but hard to compute in the other direction. The

"trap-door" gives us the knowledge that the message will be easy to compute if the re-

3

ceiver knows certain private information, which is the key to either decrypt or encrypt the

message. The idea is not to have a purely secure algorithm, but an algorithm that is

computationally infeasible.

2.1 The math of RSA

RSA fundamentally works with two chosen large, distinct prime numbers, that should be

chosen with random and a third number that is a combination of these two. The specifics

of how this combination is made will be explained below. The security of the two randomly

chosen prime numbers comes from the observation that it is very hard and usually not

feasible with the current computing capabilities to find these two randomly chosen large

prime numbers and is, like Diffie and Hellman [2] suggested infeasible to compute. [1]

Below is the basic idea of the RSA algorithm. Here we have the public key represented

by the integers n and e, the private key with the integer d and the message with m.

(me)d ≡ m (mod n) [1] The equivalence sign is denoting modular congruence.

Here knowing all of the other parts of this equation, except for d, it can be extremely hard

to find the correct answer for d thus extremely hard to crack the message.

Due to the operation of modulo, we can also exchange the order of the exponentiations

and so the following also applies:

(md)e ≡ m (mod n)

That is to say, if the message is encrypted with the public key, it can be easily decrypted

with the private key and vice versa.

2.2 Key generation

The key generation starts with the user choosing two distinct large prime numbers, let

them be p and q. To create their keys first, the user calculates n = pq.

The n that one calculates here is used as a modulus for both the private key and the public

key. The length of the n is also the indication of the key length when expressed in bits.

This key length is typically between 2048 to 4096 bits. As the key length increases, so

does the safety against attacks but so does the time to encrypt and decrypt the message.

After this the user picks the integer d to be a large, random integer which is relatively

prime to (p− 1) · (q − 1), that is that d satisfies the following function:

gcd(d, (p− 1) · (q − 1)) = 1. [1]

Here the "gcd" means the greatest common divisor.

4

After these have been computed the integer e is to be computed from p, q and d to be the

"multiplicative inverse" of d, modulo (p− 1) · (q − 1). Thus we have

e · d ≡ 1(mod(p− 1) · (q − 1)).

In this example, our public key would be a pair of positive integers (e, n) and our decryp-

tion key the pair of positive integers (d, n). Here even as the n is released as a part of

the public key, the factors p and q will remain hidden as the factoring of n is enormously

difficult. The same factoring problem also hides the way that d can be derived from e.

And as the private key is purely (d, n) it is easy to see why d is to be kept a secret. [1]

2.3 Encryption and Decryption

To encrypt a message M first one must represent the message as an integer between 0

and n − 1 using standard representation, that is not to encrypt the message, but only to

get it into the numeric form necessary for the encryption. This form should be uniform for

both the encrypter and the decrypter as if they use different representations the encrypted

message will come out as scrambled text.

Then one must encrypt the message by raising it to eth power modulo n. That is, the

result (the ciphertext C) is the remainder when M e is divided by n. [1]

To decrypt the ciphertext, it is to be raised to another power d, again modulo n.

C ≡ E(M) ≡ M e(mod n), for the message M.

D(C) ≡ Cd(mod n), for the ciphertext C.

These operations can be done reasonably quick via different modular exponentiation

methods.

5

3. SIDE-CHANNEL ATTACKS

This work will condense the side attacks to the parts that conclude inside the chosen

scope, that is within the decryption of wanted secrets that were encrypted with RSA. This

will remove some of the available and possible attacks and such shouldn’t be taken as a

list of all attacks possible on a system.

As computers are physical machines, these will have physical properties. These prop-

erties include but are not limited to time, sound, electricity draw and electromagnetic

radiation. All of these properties can be used by an attacker on a system to reveal the

internal states of algorithms and so they may leak critical information about the system

and the data that it is using and storing. In addition to this, the processor may leak critical

information about the cache that it is in charge of, more about this later. Side-channel at-

tacks generally do not focus on compromising the chosen algorithm itself, but the leakage

of information that can be gathered from the algorithm via means that aren’t usual for the

hardware or software itself. This information then can be used to crack the secured algo-

rithms. As the attacks get only pieces of information, for example, the timing of a part of

the algorithm, the attackers require multiple probes to gather all the required information

for exploiting the system.

Side-channel attacks, in general, can be classified as Szefer [5] did in three main cate-

gories. These categories are timing-based, access-based and trace-based attacks.

3.1 Timing-based

Timing-based attacks rely on the timings and the differences of various operations to leak

information. These timing differences may appear for various reasons, but especially in

recent years, the processor manufacturers aim to optimize their products have given birth

to various timing differences. One example of these different timings is the difference

between execution trees of correct and incorrect inputs. This is if the correct tree has for

example less timing intensive calculations and the incorrect one has more intensive, the

attackers may gather information from this difference. One way of forcing these timings

to appear to an attacker is by forcing the processor to operate multiple operations, for

example, multiple memory accesses in a short amount of time. This will cause the other

processes to be slowed down and the timings can be found out with better clarity. [5]

6

3.2 Access-based

Access-based attacks rely on accessing information directly. Even though some access is

required for these attacks to be viable, usually these do not require the attacker to have full

access to the machine. These attacks might require for example the access to run their

code in a less privileged user and using this code in different ways to open the system

or to gather vital information of the system that is running. One of the most recent and

newsworthy of these kinds of access-based attacks was the Spectre [6] and Meltdown [7]

attacks. These attacks will be explained at the end of this chapter. Usually, these use the

latency of the cache to determine if the data was a hit or a miss in the cache, which then

clues the attack in on what is being used and thus help with opening the attacked system

[5].

3.3 Trace-based

Trace-based attacks rely on the exact execution of a program and the measuring of it. The

attacker in question might obtain the sequence of memory accesses that the encryption

or decryption uses and whether they are hits or misses in the cache based on the power

usage, sound differences or other ways. [8] Usually these attacks require the attacker to

be present on the attacked machine.

Even as these attacks are presented alone as attacks, one should notice that multiple

side-channels can be combined into a single attack. One of these most recent and most

powerful combined attacks would be the Meltdown [7] and Spectre [6] attacks that were

introduced in 2017. These attacks used a combination of timing-based and access-based

attacks to gather data from within the victims’ machine to the data from the kernel.

3.4 Spectre and Meltdown

Spectre is a family of attacks that work on inducing the victims’ machine to speculatively

execute operations. This speculative execution is done to get more performance out of

the CPU and it is done by every major manufacturer. These speculative executions in

spectre aim to violate memory isolation boundaries and such read data that shouldn’t

be available for the attacker. Usually, speculative execution isn’t visible to anyone and is

discarded when this speculative execution is seen not to be needed. Here is where the

spectre attack uses another side-channel attack to transmit the data from the cache to

usable data. [6]

Meltdown is a related attack to the spectre family, except meltdown uses so-called out-of-

order execution. Out-of-order execution is where the CPU predicted the branching exe-

cution and ran the predicted before verifying the execution. The out-of-branch execution

7

was exploited by trying to access inaccessible kernel addresses causing an exception.

This exception is raised and should stop the execution of the following commands. But

as the CPU uses out-of-order execution, there is a possibility that the CPU might have

already executed the following instructions. These shouldn’t cause any harm as there are

no architectural effects on the CPU, but as the commands have already been executed

there will be microarchitectural effects. As the inaccessible kernel addresses have been

read and so cached, there is a possibility to use another attack to detect what cache is

used by using a timing difference on the cache read times. This data is then collected

with another side-channel attack, also an access based attack. The meltdown attack used

similar techniques to the "Flush+Reload" attack, where they successfully transferred the

data from the cache to the accessible memory. [7]

8

4. ATTACKING AND DEFENDING

As we now have a general understanding of RSA and the side-channel attacks, three

differing attacks will be examined. Firstly there will be a discussion of the attacks in

general against RSA with side-channels, then specify the chosen three attacks which

correlate to the three different classifications that were outlined in chapter 3.

After the information of the attack styles and the weakness that the attacks focused on,

we’ll move on to defending against these attacks, what can be done to migrate the poten-

tial of these side-channels, and quickly touch upon the similarities of these attacks, that

is what was the culprit and how we might be able to see these before these happen.

4.1 Attacks against RSA

As RSA is seen as being secure with a long enough key length, the attacks on it are

not focused on compromising the algorithm itself, but on the inherent faults of machines

running the algorithm, the people that create the code, the optimizations that are made

inside the machine and the fact that the current machines running have their computing

units, memory and other components shared to multiple users. [9]

One of the most notable creators of side-channel attacks has been the optimization that

is being done within the processors. This optimization has lead to more than one way

of exploiting the processor. Firstly the processor manufacturers have unwittingly created

so-called fast and slow execution paths, this is a simple addition that might take much

less time to execute than a harder to run multiplication operation. [9] This simple timing

difference will cause the attacker that can call the decryption algorithm to have a clue

on what operations the defenders processor is running at that time. This will lead to

the attacker being able to deduce the different paths that the processor is going through.

Armed with a knowledge of the processor and the knowledge of the algorithm that is being

run on it attackers can with multiple probing of the machine can piece together when they

are close to the proper key.

Other optimizations that cause side-channel attacks to appear can be seen in the current

predictive computing. As the requirement for faster computing has steadily risen, most

manufacturers of processors have optimize their processors what operations usually fol-

9

low other ones and what part of the cache is usually called after each operation. [10] This

optimization has provided malicious actors with a way to see what the correct answer will

be and so cause weaknesses in the encryption without attacking the algorithm itself [11].

4.1.1 Attack one: Timing-based attack

As described above, some attacks take the fact that different operations take different

times to compute on the processor. The reasons include, but are not limited to optimiza-

tions, branching, conditional statements, cache and instruction differences. This differ-

ence can be used as described by Kocher [9] and demonstrated by Brumley and Boneh

[12] to crack the encryption. In short, these kinds of attacks require the attacker to be

aware of the information of the receiving system, that is the way that RSA is being used

and what paths the encryption and decryption take and how they differ. The attackers

start by guessing a key to the system and by monitoring the difference between the call

and response can deduce how close the guessed key is to the correct key. With this

the attackers can start deciphering the key from the gathered information from the most

significant bit to the least. [9]

This was the way that OpenSSL calculated the same operation with two different algo-

rithms, Karatsuba and normal multiplications depending on the input it received. And this

caused it to be a viable target to side-channel attacks. A more specific explanation can

be found from Brumleys [12] paper.

4.1.2 Attack two: Access-based attack

Access-based attacks such as cache attacks focus on the fact that most computers being

used are used with multiple users and so the processing is happening simultaneously

with all the users. This leads to the processor using its L1 cache, which will be filled

with the knowledge of the operations called by the user that is being attacked and so the

attackers can filter out what is and isn’t being used by the user, as the used instructions

will be in the cache [10]. This will create a disparity between uncalled instruction call time

and a called instruction call time as the already called instruction will be in the cache and

the uncalled will have to be loaded from memory.

If the attackers can then "flush" the cache, that is to clear the cache before the victim uses

their system, the attackers can then decipher what was used. With a few decryptions the

attackers can decode the wanted key from the user’s system. [13] This was the way that

researchers Zhou et. al. [13] got the RSA encryption key with their paper.

10

4.1.3 Attack three: Trace-based attack

For trace-based attacks, the example was chosen to be an acoustic attack on RSA as

specified by Genkin et. al. [8]. This attack requires, as most trace-based attacks require,

physical interaction or observation of the device. In this case, the observation of the

device is done via sound waves.

In their attack, Genkin et al. [8] noticed that the computer they were attacking emitted

constantly a high-pitched noise during operation, which was caused due to vibrations in

the electronic components. The team then caused the attacked computer to cycle through

the encryption and decryption process multiple times whilst listening via a microphone

next to the computer. This microphone output was captured and analyzed to see where

GnuPG implementation of RSA switched between exponentiation modulo of the secret p

to the exponentiation modulo of the secret q. The differing noise was then attributed to

the same differences in decryption and encryption as seen in the Brumleys and Bonehs

[9] paper and so the same techniques on guessing and applying the leaked information

can be used to crack the key.

4.2 Defending against side-channel attacks

Most of the defences against side-channel attacks of all classifications are the migration

of the part that causes the differences, whatever the differences may be [5]. The defences

might include standardizing the actions that the decrypting algorithm does whether it is

given the correct key or the incorrect one [12], revoking other users access to the machine

that is being attacked, flushing the cache itself after decrypting [13] or shielding the whole

attacked machine within a sound-proof, electromagnetically sealed cage and causing the

machine to draw constant load from the power line [8].

These defences do come at a cost, as there might need to be the need to remove the

optimization to reduce the differences, the defending against side-channels might cause

a drop in performance [5]. But some may require extra security over the most optimal per-

formance, especially when dealing with critical information such as currency or personal

data.

4.2.1 Attack one: Timing-based attack

As Brumley and Boneh [12] wrote in their paper, the defence against timing-based at-

tacks is a standardization of the timing or randomization of the timing. They suggest a

technique called RSA blinding, which calculates x = reg mod N before decryption, where

r is random, e is the RSA encryption exponent, and g is the ciphertext to be decrypted,

followed by division by r. As the r is randomly chosen here, this will cause the timing of

11

the decryption not to be linked with the decryption key and so their chosen attack vector

will be negated.

Suggestions from Brumley and Boneh [12] included the quantization of the RSA computa-

tions as suggested by Wenxue et. al. [14] in their paper, which will cause the calculations

to take the same time. Other suggestion was the modification of existing code via causing

it to calculate all the required operations, even if the given key is correct. Though Brumley

and Boneh [12] speculated that this might be optimized away by the compiler.

As noted in section 4.2 all of the defences against different attacks will cause a drop in

performance, with RSA blinding causing a calculated 2% - 10% drop in expected perfor-

mance.

4.2.2 Attack two: Access-based attack

As access-based attacks require access to the machine that is being attacked to be able

to read the cache and modify it to the needs of the attacker, the easiest way of defeating

these attacks would be the virtualization of the machines with one user per machine. If

multiple access to a machine is required Percival [11] suggested other ways of defending

against this data leak, most including changes in the way that cache is handled. One is

to cache eviction strategy, this is to make the cache eviction logic in the CPU be made

thread-aware and only to allow the cache owned by the thread in question to evict it.

Other ways are using the operating systems kernel scheduler to cause the cached data

to be safe from tampering and the standardization of the code path and sequence of

memory access, whether it uses the cache or not. Other suggested methods included

the rewriting of some existing algorithms or in the case of the "sliding window" method of

modular exponentiation to be thrown out.

All of the suggested defences for access-based attacks cause some performance drop,

for example, the rewriting of the existing algorithms for RSA can be as little as 10%. But

as this multi-threading is an integral part of computing, in the case of the kernel thread-

aware suggestion, this might cause unwanted bugs and locking of the kernel data as the

credentials of the thread can be changed during a system call. [11]

4.2.3 Attack three: Trace-based attack

Trace-based attacks can seem the most trivial to defend against. As these usually require

physical access to the machines in question a simple lockdown of the machine, the power

supply and emissions should be sufficient to close this side-channel. [8]

There is still some consideration to be had against attacks that target the power-draw as it

can be monitored outside of this imaginary Faraday’s cage. But the machines power-draw

12

can be hidden within the general noise of a buildings power supply.

4.3 Defending against side-channels and future

As we have discovered, most of the attacks require a difference of some sort to be viable

attacks. With this in mind, the easiest way of defeating these attacks would be the dis-

covery and destruction of these differences, whether they might be sound, power draw,

timing or other.

Even though the attacks were discussed one by one, as said in chapter 3, these attacks

can be combined. Schindler [15] researched the possibility of combining a Timing-based

and a Trace-based attack to create a sturdier, better attack with fewer measurements

required to crack open the key. This idea of combination attacks seems to be the future

of side-channels as we could see in chapter 3 with the attacks Meltdown and Spectre,

which used multiple side-channels to create a more efficient attack against the whole

system. These mentioned attacks were patched out with software updates and with later

CPU’s architectural reviews. Both of these brought with them a noticeable impact on

performance. [6] As a note, the timing defence of quantization of the computations may

not be enough against combination attacks as the different commands draw a differing

amount of power and such will cause the data to appear to the attackers.

There is an interesting dilemma here to be seen, the constantly growing requirement of

processing power and performance from the machines and the security that will cause the

performance of the machine to drop. The requirement of this performance has caused

these side-channels to appear to the defender, whether it may be a faster way to approx-

imate large primes or the invention and use of predictions in the processor.

13

5. CONCLUSIONS

As the technologies for secure transfers of data come into use, so do the attackers meth-

ods of cracking these secure methods of data transfer. But as we saw in this thesis, most

if not all of the methods that have been used to crack the RSA cryptosystem can be de-

feated with proper planning of the systems, algorithms and environments used. As is, we

can say that the RSA is still and should be until the arrival of the quantum computers a

safe and sound cryptosystem with sufficient key length. There is still the question of how

much processing power should be reserved from the system for inefficient ways of han-

dling data for the quest of better security. As we saw in chapter 4, each security defence

will raise the requirements from the machine using it. Usually, this isn’t much but as these

add on, these might cause some performance deficiencies on different hardware.

This was a review of the different styles of successful side-channel attacks against RSA

looked through the different research papers, how they managed to become into exis-

tence and how these attacks were dwarfed with new and improved defences. The open-

ing of the side-channels were the results of either the optimization and the search for the

best performance or the realities of the physical world. The attacks themselves focused

on the differences that the system leaked with different inputs, whatever these differences

might have been. The defence with RSA was and still seems to be eliminating these

differences, wherever the differences appear.

The work itself would’ve enjoyed a more comprehensive look at the specifics of the ex-

ploits, such as the math behind the timing-based side-channel attacks and more exam-

ples of the different styles of side-channels attacks, with each examined thoroughly and

compared to another. Future research should and is being done on deepening the under-

standing of different side-channels, uncovering more of them and there is some promising

research being made with machine-learning for detecting possible side-channels before

they can be exploited by malicious actors.

14

REFERENCES

[1] Rivest, R. L., Shamir, A. and Adleman, L. A Method for Obtaining Digital Signatures

and Public-Key Cryptosystems. Communications of the ACM 21.2 (1978), pp. 120–

126.

[2] Diffie, W. and Hellman Martin, E. New Directions in Cryptography. IEEE Transac-

tions on Information Theory 22.6 (1976), pp. 644–654.

[3] Robinson, S. Still Guarding Secrets after Years of Attacks, RSA Earns Accolades

for its Founders. SIAM News 36 (2003), pp. 1–4.

[4] Bernstein, D. et al. Post-quantum RSA. PQCrypto 2017. Lecture Notes in Computer

Science 10346 (2017), pp. 311–329.

[5] Szefer, J. Survey of Microarchitectural Side and Covert Channels, Attacks, and

Defenses. Journal of Hardware and Systems Security 3 (2018), pp. 219–234.

[6] Spectre Attacks: Exploiting Speculative Execution. 2018. URL: https://spectreattack.
com/spectre.pdf.

[7] Meltdown: Reading Kernel Memory from User Space. 2018. URL: https://meltdownattack.
com/meltdown.pdf.

[8] Genkin, D. et al. RSA Key Extraction via Low-BandwidthAcoustic Cryptanalysis. Tel

Aviv University. Tel Aviv, Israel, 2013. URL: https://www.tau.ac.il/~tromer/
papers/acoustic-20131218.pdf/.

[9] Kocker, P. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and

Other Systems. Koblitz N. (eds) Advances in Cryptology — CRYPTO ’96. CRYPTO

1996. Lecture Notes in Computer Science 1109 (1996), pp. 104–113.

[10] Malishevsky, A. et al. Dynamic Branch Prediction. Course material for ECE 570

High Performance Computer Architecture. Oregon State University. Oregon, 2019.

URL: https://web.archive.org/web/20190717130447/http://web.engr.
oregonstate.edu/~benl/Projects/branch_pred/.

[11] Percival, C. Cache Missing for Fun and Profit. 2005. URL: http://www.daemonology.
net/hyperthreading-considered-harmful/.

[12] Brumley, D. Remote timing attacks are practical. Computer Networks 48.5 (2005),

pp. 701–716.

[13] Zhou, P. et al. Analysis on the Parameter Selection Method for FLUSH+RELOAD

Based Cache Timing Attack on RSA. China Communications 12.6 (2015), pp. 33–

45.

https://spectreattack.com/spectre.pdf
https://spectreattack.com/spectre.pdf
https://meltdownattack.com/meltdown.pdf
https://meltdownattack.com/meltdown.pdf
https://www.tau.ac.il/~tromer/papers/acoustic-20131218.pdf/
https://www.tau.ac.il/~tromer/papers/acoustic-20131218.pdf/
https://web.archive.org/web/20190717130447/http://web.engr.oregonstate.edu/~benl/Projects/branch_pred/
https://web.archive.org/web/20190717130447/http://web.engr.oregonstate.edu/~benl/Projects/branch_pred/
http://www.daemonology.net/hyperthreading-considered-harmful/
http://www.daemonology.net/hyperthreading-considered-harmful/

15

[14] Wenxue, T. et al. A mechanism of quantitating the security strength of RSA key.

2010 Third International Symposium on Electronic Commerce and Security (2010),

pp. 357–361.

[15] Schindler, W. A Combined Timing and Power Attack. Public Key Cryptography. PKC

2002. Lecture Notes in Computer Science 2274 (2002), pp. 263–279.

	Introduction
	Rivest–Shamir–Adleman
	The math of RSA
	Key generation
	Encryption and Decryption

	Side-Channel Attacks
	Timing-based
	Access-based
	Trace-based
	Spectre and Meltdown

	Attacking and defending
	Attacks against RSA
	Attack one: Timing-based attack
	Attack two: Access-based attack
	Attack three: Trace-based attack

	Defending against side-channel attacks
	Attack one: Timing-based attack
	Attack two: Access-based attack
	Attack three: Trace-based attack

	Defending against side-channels and future

	Conclusions
	References

