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TIIVISTELMÄ

Digitaalisen median määrä ja käyttö on kasvanut eksponentiaalisesti johtuen digi-
taalisten kameroiden ja kamerapuhelimien määrän kasvusta. Suuresta määrästä jo-
htuen kuvien ja videoiden manuaalinen käsittely ja analysointi ei enää ole mahdol-
lista. Automaattista käsittelyä ja analyysia varten kehitetään jatkuvasti parempia
tietokonenäköalgoritmeja. Yksi tärkeä analyysiongelma on visuaalinen kohteiden
seuraaminen, jossa seurattava kohde on merkitty vain ensimmäiseen videon ruutuun
ja menetelmän pitää pystyä seuraamaan sitä läpi videon. Kohteiden seuraamista on
tutkittu laajasti ja hyviä menetelmiä löytyy erityisesti perinteisten värikameroiden
(RGB-kamera) tuottamille videoille. Viime aikoina ovat kuitenkin myös RGBD-
kamerat yleistyneet ja näissä on värikuvan lisäksi myös syvyystieto (etäisyystieto)
käytettävissä. Syvyystieto auttaa mallintamaan kohteen liikettä 3D-ympäristössä
ja tekee esim. kohteiden peittymisen (eng. "occlusion") ja 3D-muodonmuutosten
havaitsemisen helpommaksi.

Tämä väitöskirjatyö käsittelee visuaalista kohteenseurantaa RGBD-kameroiden
tuottamalle videolle ja tekee kaksi merkittävää tieteellistä kontribuutiota. Ensim-
mäisenä kontribuutiona työ esittelee uuden RGBD-menetelmän kohteenseurantaan.
Menetelmä pohjautuu spatiaalisesti rajoitettuun korrelaatiosuotimeen, joka on ollut
menestyksekäs menetelmä RGB-kohteenseurannassa. Uusi menetelmä on kuitenkin
ensimmäinen, jossa syvyystieto on yhdistetty korrelaatiosuotimiin. Menetelmä hyö-
dyntää syvyysdataa kohteen peittymisen havaitsemisessa. Peittymisen havaitsemi-
nen mahdollistaa kohteen mallin päivittämisen vain niiltä osin kuin kohde on näkyvissä.
Esitelty menetelmä saavuttaa parhaat kirjallisuudessa tunnetut tulokset julkisilla tes-
taustietokannoilla. Väitöskirjan toinen tärkeä kontribuutio on uusi testaustietokanta
RGBD-kohteenseurantaan. Uusi tietokanta paikkaa aikaisemmissa tietokannoissa
olleita puutteita ja näin mahdollistaa entistä parempien menetelmien kehittämisen.

ix



x



CONTENTS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Visual Object Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1 Trackers According to the Duration of Tracking . . . . . . . . . . . . . 23

2.1.1 Short-Term Trackers . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.2 Long-Term Trackers . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Multi-Object Trackers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.1 Online Trackers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.2 Batch Trackers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Trackers According to the Representation of the Targets . . . . . . . . 31

2.3.1 Generative Trackers . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.2 Discriminative Trackers . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 RGBD Trackers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.1 Generative Trackers . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.2 Discriminative Trackers . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Tracking Datasets and Performance Measures . . . . . . . . . . . . . . . 36

2.5.1 RGB Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.2 RGBD Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5.3 Single Object Short-Term Tracking Measures . . . . . . . . . . 39

2.5.4 Single Object Long-Term Tracking Measures . . . . . . . . . . . 41

2.5.5 Multi-Object Tracking Measures . . . . . . . . . . . . . . . . . . . 41

3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1 The Original Discriminative Correlation Filter Based Tracking . . . . 43

xi



3.2 The Relationship Between Ridge Regression and Discriminative Cor-
relation Filter Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Spatially Constrained Discriminative Correlation Filters . . . . . . . . 46

3.4 Spatially Constrained Discriminative Correlation Filters With Reli-
ability Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 P1 Depth Masked Discriminative Correlation Filter . . . . . . . . . . . 53

4.2 P2 How to Make an RGBD Tracker ? . . . . . . . . . . . . . . . . . . . . . 58

4.3 P3 Object Tracking by Reconstruction with View-Specific Discrim-
inative Correlation Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 P4 CDTB: A Color and Depth Visual Object Tracking Dataset and
Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Publication I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Publication II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Publication III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Publication IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

xii



List of Figures

1.1 Aim of Visual Object Tracking. The target location is known only

in the first frame and the VOT algorithm tries to locate it in the fol-

lowing frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1 Short Term Tracking Process With Correlation Filters c©2017 IEEE 24

2.2 Boundary effects as a result of canonical correlation operation. Green

boxes represent the positive and red boxes represent the negative im-

plicit training samples respectively [40] c©2015 IEEE . . . . . . . . . . 26

2.3 Building blocks of long-term tracker structure prposed by Kalal et

al. [55] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 An example precision plot [123] . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5 An example success plot [123] . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 The overview for the proposed algorithm in [P1]. . . . . . . . . . . . . 55

4.2 The top row is the tracking results for the proposed algorithm whereas

the bottom row is for the baseline tracker that works on RGB chan-

nels. The baseline algorithm drifts in the presence of an occluder

while the proposed algorithm is able to detect the occlusion and starts

the re-detection module using the depth information and localizes

the target once it becomes visible [P1]. . . . . . . . . . . . . . . . . . . . . 57

4.3 The overview for the proposed algorithm in [P2]. . . . . . . . . . . . . 59

4.4 The overview of the proposed algorithm in [P3]. . . . . . . . . . . . . . 63

4.5 Examples of images captured with different hardware setups. a and

b are from the ToF-RGB pair, (c) the stereo-camera sensor and (d)

from the Kinect sensor [P4]. . . . . . . . . . . . . . . . . . . . . . . . . . . 68

xiii



List of Tables

3.1 Uniform notation set for the commonly used variables. . . . . . . . . . 43

4.1 Experiments on the Princeton Tracking Benchmark using the PTB

protocol. Numbers in the parenthesis are the ranks[P1]. . . . . . . . . 54

4.2 Comparison of short-term RGB and RGBD tracking methods on the

Princeton Tracking Benchmark (PTB) [113]. DCF [40] and three

state-of-the-art trackers were used within the framework – ECOgpu [31],

ECOhc [31] and CSR-DCF [80]; their level-one RGBD extensions

are denoted DCF-rgbd, ECO-rgbd and CSR-DCF-rgbd, the level-

two CSR-DCF integration where the original RGB-based mask is

replaced by the proposed foreground mask is denoted CSR-DCF-

rgbd++. (The table shows results for the Princeton Benchmark as

of June 15, 2018) [P2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Experiments on the Princeton Tracking Benchmark using the PTB

protocol. Numbers in the parenthesis are the ranks [P3]. . . . . . . . . 63

4.4 The normalized area under the curve (AUC) scores computed from

one-pass evaluation on the STC Benchmark [135] [P3]. . . . . . . . . . 64

xiv



4.5 Comparison of CDTB with related benchmarks in the number of

RGBD devices used for acquisition (NHW), presence of indoor and

outdoor sequences (In/Out), per-frame attribute annotation (Per-frame),

number of attributes (Natr), number of sequences (Nseq), total num-

ber of frames (Nfrm) average sequence length (Navg), number of frames

with target not visible (Nout), number of target disappearances (Ndis),

average length of target absence period (Navgout), number of times a

target rotates away from the camera by at least 180◦(Nrot), average

number of target rotations per sequence (Nseqrot) and tracking per-

formance under the PTB protocol (Ω0.5) [P4]. . . . . . . . . . . . . . . . 66

xv



xvi



ORIGINAL PUBLICATIONS

Publication I U. Kart, J.-K. Kämäräinen, J. Matas, L. Fan and F. Cricri. Depth
Masked Discriminative Correlation Filter. (2018).

Publication II U. Kart, J.-K. Kämäräinen and J. Matas. How to Make an RGBD
Tracker ?: (2018).
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1 INTRODUCTION

Recent decades have seen an exponentially grown amount of digital media thanks to
the availability of the affordable devices with video recording capabilities. However,
this enormous increase also came with a price which is the difficulty of analyzing
the data automatically within a reasonable period of time. To address this problem,
many different computer vision algorithms have been developed.

Visual Object Tracking (VOT) is one of the fundamental problems in computer
vision where the aim is to automatically localize the target object whose location is
”only” known in the first frame of a given video sequence as illustrated in Fig. 1.1.

Due to its intuitive interpretation, it has numerous applications in real-life scenar-
ios. For example, sports [75], robotics [25], military [21], surveillance [128] among
others. Therefore, it has taken the attention of the computer vision community
from an early stage and has been researched in depth since then [62, 64, 65, 66, 87,
88, 112, 133].

The earliest attempts to solve this problem employed relatively simple approaches.
In general, they assumed minimal displacement between image frames and relatively
constant illumination [77]. Although these methods worked to a certain extent,
they were insufficient to provide a reliable solution in the ”wild” where challeng-
ing appearance changes and scenes are common. With the advent of the powerful
processors thanks to the developments in semiconductor technologies, more com-
plex methods have been adopted to successfully solve this problem [31, 32, 80, 81].
However, there is still plenty of room to improve.

Despite the excellent results obtained in the public benchmarks [62, 63], the vast
majority of the VOT literature still focuses on the RGB channels. This can be at-
tributed to the fact that until recently, depth acquiring sensors were not affordable
and widespread. However, within the last decade, this situation has changed dras-
tically thanks to the cheap and good quality depth sensors. Nowadays, it is even
possible to find depth sensors in mobile phones such as iPhone X, Huawei P30 pro
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Figure 1.1 Aim of Visual Object Tracking. The target location is known only in the first frame and the

VOT algorithm tries to locate it in the following frames.

etc. This reality brings in new opportunities to VOT by adopting depth channel as
a fourth information channel in addition to the RGB channels when designing novel
algorithms.

Depth is an important information source that helps human beings understand
the 3D world around us. Hence, it is natural to include it in the computer vision
algorithms where we try to bring this understanding to the computers. In VOT,
depth can be used for detecting occlusions, out-of-plane rotations and also to have
more discriminative features by leveraging the 3D structure of the target object and
its background.

In this thesis, we propose novel VOT algorithms which use depth channel as a
fundamental information source to address some of the problems mentioned above.
We claim and experimentally support that depth information provides significant
gains when added to RGB trackers and it enables new research opportunities to ex-
plore even more accurate tracking performance.

The objectives of this thesis are given as;

• To conduct a comprehensive literature survey on RGB and RGBD trackers

• To propose novel algorithms for VOT on RGBD sequences

• To clarify the importance of depth in VOT by comparing depth augmented
trackers against their RGB baselines

• To propose a novel and extensive RGBD tracking benchmark for facilitating
further developments in the field

20



The remainder of this thesis is organized as follows; in Chapter 2, an in-depth
review of the existing VOT modalities, algorithms and their performance measures
are provided. Chapter 3 presents the historical development and the mathematical
foundations of the tracking paradigm adopted in this thesis. Chapter 4 offers the
contributions of the author to this thesis and finally Chapter 5 concludes the thesis
and makes the final remarks.
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2 VISUAL OBJECT TRACKING

In this chapter, an in-depth review of the existing VOT literature will be provided
with trackers divided into families according to their common properties. However,
please note that a tracker can be included in multiple families since it can have features
from different classes. For example, a tracker can be included in both short-term
trackers and generative trackers. Since the majority of the literature is about single
object, single target, RGB trackers, we found it suitable to provide separate sections
for multi-object trackers and RGBD trackers.

Our taxonomy consists of tracking duration in Section 2.1, multi-object trackers
in Section 2.2 representation of the target object in Section 2.3, usage of depth infor-
mation in Section. 2.4. Following the taxonomy, commonly used datasets and the
performance measures are also introduced in Section 2.5.

2.1 Trackers According to the Duration of Tracking

There are two main groups in terms of tracking duration in the field of VOT. First
group consists of short-term trackers which do not have any target loss detection
and re-detection capabilities. This family of trackers are initialized with a bounding
box on the first frame and they try to localize the target object in the rest of the
sequence without knowing whether the tracker has drifted or not. On the other
hand, the second group focuses on trackers that can detect the target object loss and
take action accordingly e.g. stopping model updates and target re-detection [62]. In
this chapter, these two families of trackers will be examined in detail.

2.1.1 Short-Term Trackers

Short-term object tracking is the most commonly studied family of trackers as it
creates the basis for VOT. In general, the short term trackers are initialized on the

23



Figure 2.1 Short Term Tracking Process With Correlation Filters c©2017 IEEE

first frame with an axis-aligned bounding box and they try to localize the target
object in the next frames. To achieve this, three main building blocks are commonly
adopted in all trackers although of their inner workings can differ; initialization,
localization and model update. This process is illustrated below in Fig. 2.1.

The initialization stage is when the target object is represented in terms of ex-
tracted features such as pixel values [13], HOG features [80] or recently deep fea-
tures [31, 32]. These extracted features are later used to identify the target object
location in the other frames. After the initialization is completed, the tracker is fed
with a new input frame where the target needs to be localized. The tracker searches
for similar features in the vicinity of the previous location since the inter-frame lo-
cation displacement is assumed to be minimal. Once the target is found, a new set
of features are extracted from the new location and the target model is updated with
the new feature set to maintain an up-to-date target appearance.

One of the earliest methods to tackle short-term tracking problem is Lucas-Kanade
tracker [77]. In this seminal paper, the authors propose to localize the target object
by adopting an affine transformation matching scheme. Lucas et al. take advantage
of spatio-temporal derivatives to cope with the changes in scale, rotation and trans-
lation. Another template matching based algorithm was proposed by Briechle et
al. [18] in a normalized cross-correlation framework where a direct matching be-
tween the target object and candidate regions is performed. Region with the maxi-
mum matching score is considered as the new target position. Comaniciu et al. pro-
posed a mean shift tracking algorithm [27] in which the target is represented with
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an RGB color histogram and the matching is performed using Bhattacharrya metric.
Adoption of histogram provides immunity against rotation. However, it also makes
it vulnerable against illumination changes.

An important development in short-term tracking was the introduction of dis-
criminative correlation filters (DCF) which was pioneered by Bolme et al. [13]. The
authors proposed to use circular correlation in Fourier Domain where the correla-
tion can be performed as a term-by-term multiplication between two matrices thanks
to the properties of Fourier Transform. In this paper, Bolme et al. train DCF by
minimizing the sum of squared error between the actual correlation error and the
desired target which is usually a 2D Gaussian distribution. The localization is then
performed by simply applying correlation in Fourier Domain between the region
of interest (ROI) and the trained filters. Once the target is localized, the model is
updated as a weighted average of the previous and the current filters.

This simple, efficient yet very successful method captured the attention of the
visual object tracking community and a plethora of trackers have been proposed by
capitalizing on the correlation filters since then. Henriques et al. [48] analytically
showed the relationship between regularized correlation filters and the circulant ma-
trices. This derivation provided an important insight to the success of the method
proposed by Bolme et al. [13] as by their nature, circulant matrices implicitly create
significant amount of training samples by circular shifts. Moreover, Henriques et
al. also showed that it is possible to adopt more powerful non-linear filters using
the "kernel trick" similar as in Support Vector Machine(SVM) [28]. Danelljan et
al. [30] first extended correlation filter tracking to be scale-adaptive to tackle target
size changes and later proposed a method to tackle features with different resolutions
via an implicit interpolation [32]. As a further improvement for [32], Danelljan et
al. proposed an efficient convolution framework where the authors addressed the
speed and efficiency problems arose from the adoption of deep features by using cre-
ating a small set of base filters which are then linearly combined for creating feature
layers [31].

A well-know issue in correlation filter tracking is the boundary effects as illus-
trated in Fig. 2.2 .This problem stems from the implicit creation of the spatially
shifted training samples by the circular correlation operation which then causes un-
realistic negative training samples. Galoogahi et al. tackled this problem by adding
an augmented spatial objective to the correlation filter formula [40]. In practice,
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Figure 2.2 Boundary effects as a result of canonical correlation operation. Green boxes represent

the positive and red boxes represent the negative implicit training samples respectively [40]

c©2015 IEEE

this meant adding a very large binary mask that represents the active parts of the
signal to the filter training formula. However, this addition also imposed the con-
straint that the problem is needed to be solved in the spatial domain and hence, the
complexity changed from � (N D l o g D) to � (D3+N D2) because the usual closed-
form solution for the correlation tracker training is no longer valid. To circumvent
this, Galoogahi et al. posed this as an optimization problem by adopting an Aug-
mented Lagrangian Framework [16]. Despite its novelty, the method proposed by
Galoogahi et al. still represented the spatial support as an axis-aligned bounding box.
Recently, Lukezic et al. adopted a graph-cut based approach to precisely estimate the
spatial support for the target object [80]. Instead of using an axis-aligned bound-
ing box, the authors created foreground masks by using a per-pixel segmentation
approach.
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2.1.2 Long-Term Trackers

Long-term tracking can be considered as a superset of short-term tracking. However,
its literature is far more limited [62]. In order to be a long-term tracker, the method
should have either an implicit or explicit awareness of the tracking quality. By using
this measure, the tracker then can decide whether to stop updating its appearance
model and/or enter into a re-detection state.

Pernici et al. [103] adopted a Scale Invariant Feature Transform (SIFT) [74] based
bag-of-words [111] approach for representing the local object appearance along with
a non-parametric learning method that avoids target model updates in case of occlu-
sions. Grabner et al. [41] proposed an online, semi-supervised boosting approach to
avoid target model corruption while updating. Chang et al. [23] proposed to imitate
human visual system to detect tracker failures and hence, stopping tracker model
updates to prevent drifting. Kwak et al. [116] divided the target into grids and pro-
duced a per-grid occlusion probability map which is then used for deciding whether
to fallback onto a motion based tracking.

Pioneered by Kalal et al. [55], a three-component, long-term tracker paradigm
has started to gain attraction recently. These components can be named as; a short-
term tracker for target localization under normal circumstances, a target detector
to re-detect the target object in case of its disappearance/reappearance and a third
block that decides which component (short-term tracker or target detector) to be
used at any given frame [55, 62, 81]. An overview of this family of trackers’ internal
structure can be found in Figure. 2.3 below.

Kalal et al. [55] used a p-n learning scheme where p expert detects the false neg-
atives and n expert detects the false positives. Ma et al. [84] proposed the usage of
random fern classifier [102] as the target re-detector and it is enabled in case of a
failure detection which is determined by analyzing the response score from the cor-
relation filter. The fern classifier is then applied in a sliding window manner on the
whole image plane. As a further expansion to their work, Ma et al. [83] adopted a
multi-correlation filter tracker based approach where the authors used one tracker
with large filter update rate for taking inter-frame appearance changes into account,
one tracker for scale change detection and one tracker with small filter update rate to
create a long-term appearance memory. By analyzing the response scores obtained
from this long-term memory, tracker failures are detected. Hong et al. [50] used
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Figure 2.3 Building blocks of long-term tracker structure prposed by Kalal et al. [55]

cognitive psychology principles by proposing a short-term and long-term memory
based tracker. An integrated correlation filter tracker is adopted for short-term lo-
calization while a keypoint matching and RANSAC [120] based algorithm used for
keeping track of long-term changes. They detect the occlusion by considering the
keypoints that belong to the background but inside the target bounding box. This
detection is used for deciding whether to update the appearance model or not. Fan et
al. [35] proposed a correlation filter tracker based method supervised by a DNN to
verify and if needed, correct the tracker results. As an another correlation filter based
long-term tracker, Lukezic et al. [81] proposed a fully-correlational approach. The
tracker is built upon a short-term correlation tracker and a long-term correlation de-
tector. The long-term component stores multiple correlation filters that are updated
at different temporal rates. In case of target loss, an adaptive search region growth is
also adopted to take target displacement into account.
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2.2 Multi-Object Trackers

Another important classification for the tracker algorithms is their taxonomy ac-
cording to the number of simultaneously tracked objects. So far, the trackers we
have presented have all been designed to track a single target. In this section, we will
explore the multi-object tracker in which the goal is matching the observations (e.g.
detections) to the target states in an image sequence usually solved as a probabilistic
estimation problem [82]. Luo et al. [82] divide the aim of MOT into three main
parts; localization of the target objects, avoiding target identity swaps and tracking
the target objects successfully between frames in presence of frequent occlusions.

Although there are many sub-categories for MOT algorithms, we will present
two main families in scope of this thesis which are online and batch trackers. Online
trackers process frames sequentially as it is received and has no information about
the future frames whereas batch trackers process multiple frames (batches) at once.

We invite the reader to read [82] for a more detailed analysis of MOT literature.

2.2.1 Online Trackers

Online trackers can be considered similar to the single-object trackers in terms of
how the information is processed. On every frame, the tracker tries to match the
current states of the target objects to the observations extracted from the frame and
update its model. Hence, this family of trackers is more suitable for certain real-life
applications such as autonomous driving.

Kim et al. [60] proposed a multiple hypothesis approach and introduced a delayed
data association mechanism where numerous hypotheses are stored for each track un-
til they are pruned as a result of divergence from a global hypothesis. Naiel et al. [96]
adopted a flock of single object trackers coupled with a motion model within a par-
ticle filter framework. Bae et al. [4] used tracklet confidence scores for tracklet asso-
ciation. Xiang et al. [134]modelled the objects with a Markov Decision Process [5].
Ristani et al. [105] proposed a real-time algorithm in which the MOT problem is
posed as a graph partitioning problem that is solved in a two-stage cascade manner
for computational complexity concerns. Zhu et al. [139] employed a short-term
tracker and used it along with an object detector to continuously monitor the possi-
ble track losses. Bergmann et al. [7] adopted only an object detector based on Faster
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R-CNN [104] to use as the tracker. The authors proposed a two-level pipeline to
regress object trajectories and kill/start tracks. Voigtlaender et al. [125] solves MOT
problem jointly within a detection, tracking and segmentation framework by ex-
tending Mask R-CNN [45] into temporal domain.

2.2.2 Batch Trackers

Contrary to the online trackers, batch trackers fetch previous and future frames to
construct an optimal trajectory for each object. Zamir et al. [106] globally asso-
ciates appearance and motion using the full temporal span by adopting a generalized
minimum clique graphs framework. Berclaz et al. [6] divides the scene into discrete
grids and calculates a probabilistic occupancy map for each grid using an object de-
tector. Per frame individual detections are then connected using a K-Shortest Path
algorithm [117]. Chari et al. [24] added pairwise costs and solved the tracking prob-
lem within a min-cost network flow framework [69]. Milan et al. [93] defined a
global continuous energy function on the whole sequence by taking into account
not only appearance cues but also the physical limitations for every object available.
This energy function is then optimized by alternating between conjugate gradient
descent [49] and five different discontinuous jumps. Wen et al. [129] proposed to
use an undirected hierarchical relation hypergraph based method in which the track-
ing is reduced to a search for the optimal candidate in multiple dense neighboring
nodes [71]. Feichtenhofer et al. [36] extended an object detector [29] to train an
end-to-end fully convolutional deep neural network (DNN) for jointly solving de-
tection and tracking problem. The authors adopted ResNet-101 [46] to extract con-
volutional features which are used for calculating the cross-correlation between the
adjacent frames. Maksai et al. [85]were first to propose a non-Markovian global opti-
mization to take behavioral patterns into account to further improve the traditional,
tracklet-based MOTs. Wang et al. [126] tackled the suboptimality of the generic min-
cost network usage in MOT algorithms by proposing a Minimum Update Successive
Shortest Path which provides an exact, optimal solution.

30



2.3 Trackers According to the Representation of the Targets

In terms how the target objects are represented, the trackers can be grouped under
two families namely generative and discriminative. Generative trackers creates an ap-
pearance model of the target object and try to match this model in the next frame (e.g.
template matching) whereas discriminative trackers continuously train a classifier to
be evaluated on the candidate locations to separate foreground from background.

2.3.1 Generative Trackers

Briechle et al.’s Normalized Cross Correlation [18], Comaniciu et al. [27] and Lukas-
Kanade’s Lukas-Kanade Tracker [77] can be considered few of the earlier works be-
longing to this family of trackers. Nguyen et al. [99] proposed an adaptive appear-
ance based method in which a 20 x 20 template is used to represent the target. Each
value in this template is linked to a separate Kalman Filter [56] with shared parame-
ters to produce temporally smoothed results. Rivlin et al. [1] proposed a part based
method similar to bag-of-words [111]where the comparison between the patches are
made using histogram and the results of each patch are aggregated. Oron et al. [101]
established a similarity metric by jointly considering the pixels in spatial and ap-
pearance domains. The authors calculated the similarity between two patches by
adopting the Earth Moving Distance [108]. Ross et al. [107] adopted an adaptive ap-
proach using Principal Component Analysis [119] by extracting eigenvalues of the
target template and kept these values in a shifting window manner. This allowed
tracker to store a larger variation of target appearances spread over a long time pe-
riod. Kwon et al. [67] proposed a method based on particle filter framework on
2-D affine transformation group and a Gaussian sampling. In another work from
Kwon et al. [54], a flock of trackers method is adopted where the number of track-
ers is dynamically changed depending on the target status (e.g. occlusions or strong
appearance changes). The authors proposed to not only sample the target status but
also the trackers themselves. Cehovin et al. [22] tackled fast appearance changes by
coupling global and local visual cues in a part based manner. While the local layer
provides fast adaptation to the changes in the target appearance and geometry, the
global level ensures the consistency of the addition/removal of local patches by im-
posing color, motion and shape constraints. Mei et al. [89] sparsely represented the
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target as a linearly combined set of templates constructed from a set of base templates
via L1 minimization [130] and adopted a particle filter for sampling templates. In
order to handle the occlusions, they proposed to use trivial templates where there
is only one non-zero element. To further improve the efficiency, Mei et al. [90]
proposed to use an early pruning method to alleviate the computational complexity
issues arose from L1 minimization. In this work, the authors also proposed an ex-
plicit occlusion detection mechanism to avoid leaking the trivial templates into the
template set.

2.3.2 Discriminative Trackers

Discriminative trackers pose the tracking problem as a foreground/background clas-
sification. To this end, they train a classifier using the previously observed measure-
ments and evaluate it on the new frame to localize the target. Due to their proven
success, this family of trackers have seen a surge in recent years. For example, 76%
and 79% of the short-term trackers submitted to Visual Object Tracking Challenge
2018 and 2019 were from this family [62, 63].

Hare et al. [44] proposed a kernelized structured output SVM [12, 122] based
method and treated the tracking problem as regression rather than classification.
This allowed to alleviate the problems in the traditional discriminative trackers re-
lated to the binary labelling such as the equally weighted training samples regardless
of their positions. The prediction function is then solved by minimizing a convex
objective function using [14, 15]. Instead of solving a single ridge regression as com-
mon in most DCF trackers, Bertinetto et al. [9] proposed to train two templates;
one with HOG [95] and one with color histograms and then, linearly combine the
results of the two for two main reasons. First is the fact that HOG and color his-
tograms are complementary features since HOG represents the shape and robust
against illumination. However, it is also vulnerable to deformations. Color his-
tograms on the other hand are susceptible to changes in the illumination however,
they are invariant to deformations. The immense success of DNN in computer vi-
sion [110] has naturally caught the attention of the researchers working on tracking
as well. Held et al. [47] trained an offline classifier by optimizing over the inter-frame
displacement on successive frames using L1 loss. Tracking is performed by first ap-
plying convolutional layers on both the previous and the current frame which are
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then connected to a fully-connected layer to predict the target location. Bertinetto et
al. [10] interpreted the tracking problem as a similarity learning problem and pro-
posed to use a Siamese DNN architecture [19, 118, 136]. The authors trained a
network on ILSVRC15 [110]which is used for extracting features from the previous
and the current frames. These features are then correlated to obtain the target loca-
tion. Valmadre et al. [124] further improved the work from Bertinetto et al. [10] and
provided a closed-form solution to the correlation filter to be inherently included in
the learning process of a Siamese DNN architecture. Nam et al. [97] trained a convo-
lutional neural network (CNN) with multiple of fully-connected, final layers which
share common initial layers (three convolutional and two fully connected). At each
iteration, only a single final layer is enabled to encode the sequence specific infor-
mation along with the common layers to encode the inter-sequence information. In
test time, only the last three, fully connected layers are updated to robustly adapt
into new target states.

In addition to the methods mentioned in this chapter, all previously mentioned,
DCF based trackers [13, 31, 32, 39, 40, 48, 80] and TLD [55] belong to this group as
well.

2.4 RGBD Trackers

In this section, we will examine the literature on RGBD trackers under Generative
Trackers and Discriminative Trackers since they are all single object, long-term track-
ers. Hence, a taxonomy under the target representation is deemed to be sufficient.

2.4.1 Generative Trackers

With the advent of Microsoft Kinect v1, there has been a significant increase in the
number of RGBD trackers in the literature as it has become significantly easier to
capture video sequences with precise depth data. As one of the pioneers in the field,
Song et al. [113] proposed a novel RGBD dataset and nine baseline algorithms by
combining different approaches such as 2D optical flow [20], 3D iterative closest
point [138], HOG [95], color names [127], 3D shapes [53] and the number of points
in a voxel. Among these nine methods, the one which uses RGBD data + optical
flow + occlusion handling where the occlusion handling is achieved by modelling
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the depth data with a 1-D Gaussian obtained the top performance. A new rising peak
with a smaller depth data than the target object is considered as a potential occluder.
Despite its novelty and promising accuracy, the reported speed 0.26 FPS made this
method infeasible for real-life applications.

Liu et al. [72] extended the original mean-shift tracker [27] into a 3D mean-shift
algorithm with explicit occlusion handling capabilities using a multitude of heuris-
tics. Instead of the 2D bounding box in the classical meanshift tracker [27], the au-
thors proposed to use a 3D bounding sphere to construct the color histogram. Each
point in this sphere then contributed to the histogram according to its 3D euclidean
distance.

Meshgi et al. [92] used a particle filter framework where they represented the oc-
clusions with a latent variable with which they take actions such as expanding the
search region to re-detect the target object. The resampling stage of the particle filter
is modified on the fly according to the occlusion state and different motion models
are adopted. To tackle with the partial occlusions, the authors proposed to use a 2D
projection confidence map for reducing the contamination from the background.
They first used a background detection algorithm [73] to remove the background
pixels. Then the foreground pixels in the tracker bounding box is divided into a 3
x 3 grid. For each cell of this grid, the ratio of foreground pixels to the number of
all pixels is calculated and the confidence score is obtained by drawing from empir-
ically obtained distributions. The representation of the target is achieved by com-
bining adaptive histogram of colors [91], histogram of depth, template of edges [52],
HOG [95], 3D shape parameters [53] and Local Binary Patterns [100]. Despite its
impressive accuracy, 0.9 FPS reported by the authors is slow for many real-world
applications.

Another particle filter tracker was proposed by Bibi et al.in [11]. The authors
adopted a 3D part based method and detected the occlusions using the sudden de-
creases of 3D points in the sampled particles. To obtain a feasible number of par-
ticles, they divided each particle cuboid into fixed number of overlapping 3D win-
dows. Then a 13 dimensional feature vector is extracted from each part; 10 color
names [127] and 3 3D shape features [53]. Due to the nature of the point clouds,
some parts might be empty or near-empty. In order to impose a temporal constraint
on the parts, each particle also has an N −D binary vector to encode the emptiness.
During particle sampling in the next frame, hamming distance [42] is used for fil-
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tering out the unlikely particles. In the absence of occlusion, the authors adopted
a 2D optical flow [51] to obtain a rough transformation matrix which is then used
for particle sampling. When the target is occluded, a zero-mean motion model is
applied. Explicit occlusion detection is achieved by observing the decrease in the 3D
points in all particles by using a depth-normalized measure.

Xiao et al. [135] proposed a two-layer target representation where a global layer
represents the full appearance while the local layer acts as a part based template. In
each frame, first the global layer evaluates the candidate regions to find a clear match.
In case this condition does not hold, the local layer is used for a part based matching.
Two separate KCFs [48] are adopted to apply tracking in the global layer on color
and depth images individually where color names [127] and HOG [95] are used as
features respectively.

2.4.2 Discriminative Trackers

Camplani et al. [86] proposed to use the depth data within a DCF framework in or-
der to achieve fast tracking with explicit occlusion handling. The authors built their
tracker upon Kernelized Correlation Filters (KCF) [48] where they used the depth
information as an additional target representation, for occlusion detection and for
helping accurate scale estimation. To achieve this, a 1-D K-Means clustering simi-
lar to [121] is applied to the target region depth histogram which is followed by a
connected component analysis to further refine the region separation and outlier ex-
clusion. The occlusion detection is done in a similar spirit with [113] by employing
a Gaussian to model the target object’s depth distribution and detecting the occlud-
ing objects by finding the points that do not fit into this model. However, occlusion
recovery significantly differs from [113] by taking advantage of KCF [48]’s speed.
Instead of following the occluder with optical flow [20], creating a list of segmented
regions and applying SVM [28] to re-detect the target, Camplani et al. tracks the oc-
cluding object with a separate KCF [48]. A search region is then created using the
tracked occluder and depth regions are clustered within. A mean depth value and
a tracker response value are calculated from each of these clusters. Tracker resumes
tracking the target in case of either the overlap between the best candidate and the
tracked occluder drops below a certain threshold or the tracker response on the best
candidate is above a threshold. Even though the proposed method achieves real-time
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speed, it lags behind significantly in terms of accuracy.
Hannuna et al. [43] further extended the work presented in [86] by facilitating a

Kalman Filter [56] during occlusion handling and adding a shape analysis stage for
better bounding box regression. The authors proposed to add a Kalman Filter to
the system and update it during normal tracking by using image plane coordinates
and the depth data. This 2.5D information is employed for providing a more pre-
cise search space in case of occlusion by using the position and the velocity of the
centroids as state variables. Shape analysis on the other hand is done by fitting a
bounding box to the depth based foreground segmentation so that the aspect ratio
changes can be addressed.

An et al. [2] proposed a detection-learning-segmentation framework to tackle the
tracking problem in RGBD domain. The authors used KCF [48] as the base tracker
for localization and a 1-D Gaussian for modelling the target depth distribution in the
segmentation stage. Occlusion is estimated by using the extracted foreground mask
by calculating the ratio of the foreground pixels to the total number of pixels in the
region of interest.

2.5 Tracking Datasets and Performance Measures

To evaluate different algorithms fairly, publicly available, standard datasets and eval-
uation protocols have the utmost importance. In this section, we will first introduce
the frequently used benchmark datasets and then the evaluation protocols used for
measuring the success of the trackers.

2.5.1 RGB Datasets

Earlier attempts for creating tracking datasets focused on surveillance use case due
to its real-life applicability. Collins et al. [26] compiled a set of sequences along with
a GUI based evaluation website. The dataset is comprised of 9 sequences which are
mostly captured from the air. Fisher et al. [38] created a dataset of 28 sequences
varying between 500 - 1400 frames each in a public surveillance setting. Ferryman et
al. [37] proposed 11 sets where each set consists of with a number of views between
4 - 8. The authors also provided the calibration data between the cameras which fa-

36



cilitates the usage of this dataset as a multi-view benchmark. Mueller et al. [94] pro-
posed a UAV target tracking benchmark with 123 high resolution sequences. These
sequences are then annotated with axis-aligned bounding boxes and attributes; As-
pect Ratio Change, Background Clutter, Camera Motion, Fast Motion, Full Occlusion,
Illumination Variation, Low Resolution, Out-of-View, Partial Occlusion, Similar Ob-
ject, Scale Variation, Viewpoint Change.

Despite these efforts, the aforementioned datasets lack the variety in terms of
targets and scenarios. Hence, a need for creating benchmarks that would suit the
needs of VOT community arose. In this regard, Wu et al. [131, 132] proposed a
novel dataset and a unified evaluation methodology specifically suited for generic,
single object trackers. The authors collected and axis-aligned annotated 100 tar-
gets (the actual number of sequences is smaller than 100 since some sequences have
more than one target) in various scenarios. Each sequence is classified with 11 at-
tributes, namely; Illumination Variation, Scale Variation, Occlusion, Deformation,
Motion Blur, Fast Motion, In-Plane Rotation, Out-of-Plane Rotation, Out-of-View, Back-
ground Clutter, Low Resolution.

Smeulders et al. [112] created the large scale Amsterdam Library of Ordinary
Videos for tracking, ALOV++, which is comprised of 315 sequences mostly crawled
from YouTube. A ball, an octopus and microscopic cells are among the 64 differ-
ent target types. 13 attributes; Light, Surface Cover, Specularity, Transparency, Shape,
Motion Smoothness, Motion Coherence, Clutter, Confusion, Low Contrast, Occlusion,
Moving Camera, Zooming Camera are used to annotate the sequences and the major-
ity of the sequences are relatively short with a mean of 9.2 seconds and maximum
35 seconds. Total number of 89364 frames are annotated on every fifth frame with
axis-aligned bounding box unless the motion is extreme. In cases when every fifth
frame is insufficient, a denser annotation was preferred.

Recently, Kristan et al. [66] started the effort to unify the VOT community
by further standardizing the VOT evaluation protocol and organizing annual chal-
lenges [61, 62, 63, 65, 87, 88]. The authors proposed a benchmark dataset by gather-
ing commonly used tracking sequences in the community and prepared a compact
set of 16 sequences. Each frame is then annotated with axis-aligned bounding boxes
and the following visual attributes; occlusion, illumination change, motion change,
size change, camera motion. If none of these attributes apply to a given frame, it is
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labelled as non-degraded. Even though the VOT Challenge started as a short-term
tracking evaluation, it has evolved to cover different types of tracking over the years
such as long-term tracking, real-time tracking, RGBT (thermal imaging) tracking and
RGBD tracking [63].

2.5.2 RGBD Datasets

Due to the difficulty of capturing reliable RGBD data, the literature on it is sig-
nificantly more limited than its RGB counterpart. An early work in tracking on
RGBD videos was proposed in [76, 114] by providing only a single sequence with
1132 frames. As the affordable, active RGBD capturing devices have become more
accessible, the interest in the field was ignited. First major attempt to create a large
scale and diverse benchmark for RGB-D tracking was proposed by Song et al. [113].
The authors used a Microsoft Kinect v.1 to capture 100 sequences and manually an-
notated them with axis-aligned bounding boxes. The videos include a field-of-view
between 0.5 to 10 meters with various objects such as humans, toys, animals as the
targets. Five attributes were defined as per-sequence attributes; Target Type: Human,
Animal, Rigid, Target Size: Large, Small, Movement: Slow, Fast, Occlusion: Yes, No,
Motion Type: Passive, Active. Song et al. [113] provided the ground truth only for
the 5 training sets while sequestering the remaining 95 sets for the evaluation. They
created a website 1 where the results can be uploaded to be evaluated by the system
and compared against the other entries in the list as a means to prevent overfitting.

Xiao et al. [135] proposed a novel RGBD dataset of 36 sequences to further im-
prove the shortcomings of [113] such as compactness and camera motion. The au-
thors used two Asus Xtion devices to capture each scene simultaneously within a
range of 0.5 - 8 meters. The mean length of the sequences is 300 frames with 700
frames as maximum. Xiao et al. [135] also captured scenes outdoor scenes which
was missing in [113] due to the limitations of active RGBD capturing devices. How-
ever, since these sequences were also captured with an active sensor, they are rather
limited. The sequences then were manually annotated with axis-aligned bounding
boxes. Each frame was also labelled with the following attributes; Illumination Vari-
ation, Depth Variation, Scale Variation, Color Distribution Variation, Depth Distri-
bution Variation, Surrounding Depth Clutter, Surrounding Color Clutter, Background

1https://tracking.cs.princeton.edu/index.html
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Color Camouflages, Background Shape Camouflages, Partial Occlusion.

2.5.3 Single Object Short-Term Tracking Measures

Since unified benchmarks are a relatively new phenomenon in the VOT community,
many different measures have been proposed in the literature. Primitive measures
such as Center Error [107] is defined as the L2 norm between the ground truth and
the tracking result centroids, Tracking Success Probability [70]was proposed by Li et
al. similar to PASCAL methodology [34]. To provide a better insight for the tracking
performance, more complex measures have also been proposed. Nawaz et al. [98]
fused the tracking failure and tracking accuracy measures into a single number.

Among the more commonly used measures is Precision Plots [3]. Precision plots
are used to visualize the percentage of frames in which the tracker center error is
within a certain threshold. The reason to adopt this measure instead of mean center
error is the fact that once a tracker lost the target, the mean center error will be
arbitrarily large and will not reflect the true performance. An example can be seen
in Figure. 2.4.

Figure 2.4 An example precision plot [123]

Second common visualization is the Success Plots where the average overlap [34]
is plotted over a multitude of thresholds to create an Area Under Curve (AUC) as it
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Figure 2.5 An example success plot [123]

is illustrated in Figure. 2.5.
The overlap is defined as

S(t ) =
r t

p ∩ r t
g

r t
p ∪ r t

g
(2.1)

where r t
p is the region predicted by the tracker and r t

g is the ground truth region
at time t .

An easy way to evaluate tracking algorithms is the One Pass Evaluation (OPE) [131,
132]. This paradigm initializes the tracker on the first frame and lets it run until the
end of the sequence. However, to tackle with the possible initialization sensitivity
issues, Wu et al. also proposed to use two more metrics namely temporal robustness
evaluation and spatial robustness evaluation respectively. These metrics aim to per-
turb the initialization in the spatial and temporal domain to evaluate the trackers
more fairly.

Instead of an OPE approach Kristan et al. [64] proposed to adopt a multi-pass
approach where the tracker is reinitialized once the overlap as given in Eq. 2.1 is
zero. This was justified by the fact that the tracker performance can be biased if
the target is lost at an earlier stage of the sequence. As the measures, the authors
used accuracy and robustness due to the weak correlation between them. Accuracy is
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defined as the average overlap over a sequence and the robustness is defined as how
many times the tracker had to be re-initialized.

2.5.4 Single Object Long-Term Tracking Measures

The most commonly used long-term measure for single object trackers was proposed
by Lukezic et al. [79] and later adopted by the VOT community [62]. The authors
proposed to merge three long-term tracking measures into a single number. To this
end, they adopted F-Score as the primary measure. Eq. 2.1 is extended to include a
classification threshold τθ whereθt is the confidence score from the tracker at time t .
In case θt < τθ, the prediction is considered invalid. Hence, Eq. 2.1 is reformulated
as S(r t

p (τθ), r t
g ).

Precision at a specific threshold τθ is defined as

P r (τθ) =
1

Np

∑

t∈{t :θt>τθ}
S(r t

p (τθ), r t
g ) (2.2)

Re(τθ) =
1

Ng

∑

t∈{t :r t
g �=	}

S(r t
p (τθ), r t

g ) (2.3)

where S represents the overlap between two regions, Ng is the number of frames
with a ground truth and Np is the number of predictions.

F-measure is then defined as;

F (τθ) =
2P r (τθ)Re(τθ)

P r (τθ)+Re(τθ)
(2.4)

2.5.5 Multi-Object Tracking Measures

The standard evaluation metrics for multiple object trackers are defined within the
classification of events, activities, and relationships protocol [8]. The first metric
defined in this framework are multiple object tracking precision (MOTP)

M OT P =
∑

i ,t d t
i∑

t c t
(2.5)

which calculates the total error for the predicted positions averaged by the total
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number of matches. c t is the number of matches at time t , d t
i is the distance between

the object and its hypothesis and g t is the total number of objects present in all
frames.

M OT A= 1−
∑

t (mt + f pt +mmet )∑
t gt

(2.6)

with mt is the number of misses, f pt is the false positives and mmet is the mis-
matches.
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3 PRELIMINARIES

This section focuses on the mathematical fundamentals used in DCF based track-
ing by providing an in-depth historical development of it. We first explain the most
primitive DCF tracking approach proposed by Bolme et al. [13] then proceed to
the mathematical connection between DCF tracking and ridge regression proven
by Henriques et al. [48] followed by spatially constrained DCFs proposed by Ga-
loogahi et al. [40]. Finally, we explain the building blocks of the baseline single
object tracking paradigm used in this thesis proposed by Lukezic et al. [80].

For the sake of readability, we define our own notation for the commonly used
variables in Table 3.1 to express the papers uniformly. In addition to the variables
defined in Table 3.1,
 symbolizes term-by-term product, ∗ stands for complex con-
jugate operation and M is the binary mask used in spatially constrained correlation
filters.

Table 3.1 Uniform notation set for the commonly used variables.

Variable Spatial Domain Fourier Domain

Features x X

Regression Targets / Correlation Results y Y

Correlation Filter h H

3.1 The Original Discriminative Correlation Filter Based

Tracking

DCF based tracking localizes the target by correlating a trained filter with an image
patch in which the target is sought. This is achieved by taking the spatial location
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with the maximum correlation response score. Due to the duality of correlation as
term-by-term multiplication in Fourier domain, tracking is often done with Fourier
transformations of the filter and image patch for computational efficiency. Hence,
it is defined as;

Y =X 
H ∗ (3.1)

In its most basic form [13], assume that we are given a sequence S with an axis-
aligned bounding box as the target location BBt a r g e t on the initial frame at t = 0. A
DCF can be trained over samples Xi by minimizing the following equation;

min
H ∗
∑

i

|Xi 
H ∗ −Yi |2 (3.2)

Training set Xi are obtained by cropping a region around BBt a r g e t and applying
small affine transformations. Yi is the set of desired ground truth which are generally
2D Gaussians with small variance (e.g. σ = 2.0) and their peaks correspond to the
target’s spatial location.

Solving Eq. 3.2 can be achieved via the closed-form solution;

H ∗ =
∑

i Yi 
X ∗i∑
i Xi 
X ∗i

(3.3)

On the following frames, the localization is then achieved by applying Eq. 3.1
and selecting the point with the maximum score.

Since the target undergoes appearance changes due to illumination, rotation etc.
during tracking, it is important to update the tracker to maintain an up-to-date model
of the target. This is done by adopting a moving average approach to combine past
and present appearances. Consequently on every frame, the following is calculated
similar to Eq. 3.3;

H ∗t =
At

Bt
(3.4)

At = ηYt 
X ∗t + (1− η)At−1 (3.5)

Bt = ηXt 
X ∗t + (1− η)Bt−1 (3.6)
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where η is the learning rate.
Please note that as pre-processing, l o g transformation is applied to the pixel-

values and followed by a normalization between 0.0 and 1.0 for low-contrast sce-
narios. Additionally, the normalized values are multiplied with a cosine window to
reduce the boundary effects caused by the nature of DFT as proposed by Bolme et
al. [13]. Boundary effects happen since DFT by definition works on periodic signals
and applies circular convolution. Therefore, the signal is convolved in a toroid-like
structure which connects edges of the image in 2D case. Thus, to avoid discontinu-
ity at the edges, applying a cosine window effectively assigns zero to boundary pixels
which facilitates a smooth transition between two periods.

3.2 The Relationship Between Ridge Regression and

Discriminative Correlation Filter Tracking

Following Bolme et al. [13], Henriques et al. [48] showed that DCF tracking is a
special case of ridge regression. Assume that we have a ridge regression problem
defined as the following;

min
w

∑

i

( f (xi )− yi )
2+λ||w||2 (3.7)

where xi are the training samples, yi are the regression targets, f (z) = wT z and
λ is the regularization parameter. The closed-form solution to Eq. 3.7 is provided by
Rifkin et al. [68] as;

w = (x̂T x̂ +λI )−1 x̂T ŷ (3.8)

with xi constitutes the rows of x̂, yi constitutes the rows of ŷ and I is the identity
matrix. In Fourier domain, this equation becomes

w = (X̂ H X̂ +λI )−1X̂ H Ŷ (3.9)

with X̂ H = (X̂ ∗)T .
Henriques et al. [48] points to the fact that if x̂ is a circulant matrix, e.g. xi are

spatially shifted versions of a base sample x, then applying DFT converts X into a
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diagonal matrix.

X ′ = F diag(X )F H (3.10)

where F is DFT matrix. Then X ′H X ′ becomes

X ′H X ′ = F diag(X ∗)F H F diag(X )F H (3.11)

which can be further simplified to

X ′H X ′ = F diag(X ∗)diag(X )F H (3.12)

Since F H F = I and element-wise products can be used on diagonal matrices,
Eq. 3.12 can be rewritten as

X ′H X ′ = F diag(X ∗ 
X )F H (3.13)

where X ∗ 
X is the auto-correlation of x.
Putting Eq. 3.13 into Eq. 3.9,

W =
X ∗ 
Y

X ∗ 
X +λ
(3.14)

is obtained.
One can immediately see the similarity between Eq. 3.3 and Eq. 3.14 and the

main difference here is that Eq. 3.3 is solved over multiple training samples whereas
Eq. 3.14 is solved over a single sample. However, more importantly, Henriques et
al. [48] proves mathematically that DCF tracking in Fourier domain is actually ridge
regression whereas Bolme et al. [13] provides a formula in Fourier domain in an ad-
hoc way. Please note that spatially shifted training samples xi are implicitly provided
by the nature of circular correlation/convolution operation.

3.3 Spatially Constrained Discriminative Correlation Filters

Despite the mathematical elegance of Henriques et al. [48]’s proposal, Eq. 3.7 suf-
fers from so-called boundary effects. Boundary effects defines the phenomenon of
spatial circularity of the training samples during DCF training which results with
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unrealistic negative samples as it can be seen in Figure. 2.2.
To show this more clearly, Galoogahi et al. [40] first explicitly expressed the ridge

regression problem in the spatial domain as following;

E(h) =
1
2

N∑

i=1

D∑

j=1

||yi ( j )− hT xi [Δτ j ]||22+ λ2 ||h||
2
2 (3.15)

where yi ∈ �D are the regression targets for the i -th sample, xi ∈ �D is the i -th
sample and λ is the regularization parameter while � = [Δτ1, ...,ΔτD] stands for
the cyclic shifts of the input signal. Solution for Eq. 3.15 then becomes

h =H−1
N∑

i=1

D∑

j=1

yi ( j )xi [Δτ j ] (3.16)

with

H = λI +
N∑

i=1

D∑

j=1

xi [Δτ j ]xi [Δτ j ]
T (3.17)

which has a complexity of � (D3+N D2).
On the other hand, in order to avoid the boundary effects, a training signal x ∈
�T larger than the filter h ∈ �D can be adopted via using a binary masking matrix
M where T > D .

Then Eq. 3.15 can be written as

E(h) =
1
2

N∑

i=1

T∑

j=1

||yi ( j )− hT M xi [Δτ j ]||22+ λ2 ||h||
2
2 (3.18)

In case when T >> D , the boundary effects can be avoided for the most of the
training samples at a computational cost of � (D3+NT D).

Solving Eq. 3.15 in Fourier Domain produces the same result as Eq. 3.14 with the
complexity of � (N D l o g D). Applying Fourier Transformation to Eq. 3.18 results
with

E(h) =
1
2

N∑

i=1

||Yi − diag(Xi )
T


DF M T h||22+ λ2 ||h||
2
2 (3.19)

However, because of the spatial constraint, h must be solved in spatial domain
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with a complexity of � (D3+N D2).
To solve Eq. 3.19 efficiently, Galoogahi et al. [40] proposed to adopt the Aug-

mented Lagrangian Method [16]. With the help of an auxiliary variable G, Eq. 3.19
is reformulated as

E(h,G) =
1
2

N∑

i=1

||Yi − diag(Xi )
T G||22+ λ2 ||h||

2
2

G =


DF M T h

(3.20)

Lagrangian then becomes;

L(G, h,Z) =
1
2

N∑

i=1

||Yi − diag(Xi )
T G||+ λ

2
||h||22

+ZT (G−DF M T h)

+
μ

2
||G−DF M T h||22

(3.21)

with μ is the penalty constant and Z is Fourier transform of the Lagrangian vec-
tor.

Subproblem g can be solved as following

G∗ = argmin L(G; H ,Z)

= (Sxy +μH −Z)
−1 (Sx x +μ�)
(3.22)

where Sx x and Sxy are defined as

Sx x =
N∑

i=1

Xi 
X ∗i & Sxy =
N∑

i=1

Yi 
X ∗i (3.23)

H =


DF M T h and 
−1 is element-wise division. However, H is estimated by
FFT of h and padding from M T .
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Subproblem h on the other hand can be defined as

h∗ = argmin L(h; g , l )

= (μ+
λ
D
)−1(μg + l )

(3.24)

with g = 1
D

M F T G and l = 1
D

M F T Z . Similar to g , h is estimated by an
inverse FFT and applying the lookup table from M .

Lagrangian multiplier update is then defined as

Z (i+1)← Z (i ) +μ(G(i+1)−H (i+1)) (3.25)

where i is the i − t h iteration.
Finally μ is calculated by

μ(i+1) =min(μmax,βμ(i )) (3.26)

with β is a constant.
Putting all together, pseudocode for finding h using Alternating Direction Method

of Multipliers (ADMM) is given below;

Algorithm 1 Calculating h using ADMMs [40]

Initialize h (0), l (0)

Pad with zeros and apply FFT:


DF M Th (0)→H (0)

Apply FFT:


DF l (0)→ Z (0)

Calculate Sx x and Sxy via Eq. 3.23
i = 0
while G, h,Z has not converged

Calculate G(i + 1) via Eq. 3.22, H (i) & Z (i)

IFFT and crop 1
D

M F TG(i + 1)→ g (i + 1)

IFFT and crop 1
D

M F TZ (i + 1)→ l (i + 1)

Calculate h (i + 1) via Eq. 3.24 g (i + 1) & l (i)

Pad and apply FFT:


DF M Th (i + 1)→H (i + 1)

Update Lagrange vector via Eq.3.25
Update μ via Eq. 3.26
i = i + 1

end
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3.4 Spatially Constrained Discriminative Correlation Filters

With Reliability Maps

Building on top of Galoogahi et al. [40]’s idea of using spatial constraints, Lukezic et
al. [80] proposed to adopt color cues in the images to obtain a probabilistic spatial
reliability map instead of a fixed, rectangular region. To this end, they swapped the
binary mask M in Eq. 3.18 with an adaptive, appearance model based reliability map.

Assume a per-pixel reliability map M ∈ [0,1]W xH with each element M ∈ {0,1},
then reliability is calculated via

p(M = 1|y, x)∝ p(y|M = 1, x)p(x|M = 1)p(M = 1) (3.27)

where y is the appearance of pixel x and p(y|M = 1, x) is calculated via Bayes rule
based on the foreground/background histograms that are extracted during the track-
ing process. p(x|M = 1) is the probability of a pixel belonging to the foreground
(mask value is 1) and p(M = 1) is the ratio of foreground/background region size at
the time of histogram extraction.

As a robustness measure against the deformations, rotations etc. the authors adds
more emphasis to the central elements with a prior

p(x|M = 1) = k(x;σ) (3.28)

with k(x;σ) a modified Epanechnikov kernel defined as

k(x;σ) = 1− (r/σ)2 (3.29)

where σ is a tunable parameter.

As a further improvement to Galoogahi et al. [40], Lukezic et al. [80] also pro-
poses to take advantage of response scores from individual feature channels as chan-
nel reliability scores at learning and detection stages. The calculation of individual
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channels’ reliability scores for learning stage then becomes;

wd = Z max( fd ∗ hd ) (3.30)

where d symbolizes the d − t h feature channel, f stands for the features, h is
the correlation filter, ∗ symbolizes correlation operation and Z is the normalization
factor with

∑

d

wd = 1 (3.31)

Detection stage channel reliability score on the other hand is calculated similar
to Bolme et al. [13]’s Peak to Side Lobe Ratio (PSR) based approach. Assume that
ρmax1 and ρmax2 are the highest two peaks in the response map obtained as a result
of fd ∗hd. Channel reliability score in detection mode is calculated as

w (d e t )
d

= 1− argmin(ρmax2/ρmax1,
1
2
) (3.32)

Pseudocode for the tracking process is then

Algorithm 2 Tracking with Spatial and Channel Reliability

Require:
It: Image at time t , pt−1: target position at t −1, st−1: scale at t −1, ht−1: filter

at t − 1, ct−1: color histograms at t − 1, wt−1: channel reliability at t − 1
Localization and Scale Estimation:

pt: estimated using ht−1 and ft : features at t and wt−1
st: scale at t is estimated using the pt

Update:
Extract foreground and background histograms c̃f, c̃b

Update the histograms
ct

f = (1− ηc )c
f
t−1+ ηc c̃

f

ct
b = (1− ηc )c

b
t−1+ ηc c̃

b

Calculate the spatial reliability map Mt at t
Calculate the new filter h̃ using Mt

Calculate the new channel reliability w̃ using h̃
Update the filter ht = (1− η)ht−1+ ηh̃
Update the channel reliability wt = (1− η)wt−1+ ηw̃
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4 CONTRIBUTIONS

This thesis proposes three novel long-term, discriminative, RGBD, single object
tracker methods to include depth information in DCF tracking and one novel RGBD
dataset. As a compendium type of doctoral thesis, this chapter will summarize the
main findings of the publications enclosed with the thesis while the details can be
found in the publications. The publications are explained in chronological order
and will be referred as [P1], [P2], [P3] and [P4].

4.1 P1 Depth Masked Discriminative Correlation Filter

In this paper, spatially constrained DCF with reliability maps that was explained in
Chapter 3.3 are extended into RGBD domain. This is accomplished by leveraging the
depth data which provides accurate information about the object’s 3D position [58].

The contributions are twofold;

• Spatial constraints using depth masking

• A novel occlusion handling method based on object’s distribution and DCF
response history to avoid target model pollution

The first contribution is achieved by replacing probabilistic distribution for spa-
tial support defined in Eq. 3.27 by the depth value distributions of foreground and
background pixels. The distributions are modelled using separate single Gaussians
Pf g ∝� (μ f g ,σ2

f g ) and Pb g ∝� (μb g ,σ2
b g ) which are updated per-frame basis to

maintain an up-to-date models using the following;

μ(t ) =μ(t )θ+ (μ(t−1)(1−θ))
σ (t ) = σ (t )γ + (σ (t−1)(1− γ )) (4.1)
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where θ and γ are fixed hyperparameters. This formulation of DCF tracking pro-
vides an inherent adoption of depth data in spatially constrained DCF framework.

As the second contribution, occlusion detection is implemented as a combina-
tion of two weak classifiers; tracker response values and depth based segmentation.

Basis of tracker response value approach is defined as;

r (t+1)
max = r (t )max +

r c u r r
max − r t

max

t
(4.2)

where r c u r r
max is the maximum response value of the tracker output on the latest

frame. This approach is intuitive however, it also risks false negatives/positives if the
tracker model has already been corrupted before an occlusion event.

To further strengthen the failure detection mechanism, a depth segmentation trig-
ger is also added. In the ideal case, all pixels in the tracker bounding box should be-
long to the target (foreground). Leveraging this information, a 10% threshold as the
minimum viable ratio of foreground pixels to the bounding box area is defined.

The overall structure of the proposed algorithm is given in Figure. 4.1.
Pseudocode for the proposed tracker given in Algorithm 3.
The proposed algorithm has been evaluated on the Princeton RGBD benchmark [113]

using an online evaluation protocol which is based on PASCAL VOC measure [34]
provided by Song et al. [113] and the results on the day of paper submission are given
as follow in Table 4.1;

Table 4.1 Experiments on the Princeton Tracking Benchmark using the PTB protocol. Numbers in the

parenthesis are the ranks[P1].

Avg Rank Tracking Category

Method Human Animal Rigid Large Small Slow Fast Occ. No-Occ. Passive Active FPS

3D-T [11] 2.81 0.81 (1) 0.64 (4) 0.73 (5) 0.80 (1) 0.71 (3) 0.75 (5) 0.75 (1) 0.73 (1) 0.78 (5) 0.79 (3) 0.73 (2) N.A

RGBDOcc+OF [113] 3.27 0.74 (4) 0.63 (5) 0.78 (1) 0.78(3) 0.70 (4) 0.76 (2) 0.72 (3) 0.72 (2) 0.75 (6) 0.82 (2) 0.70 (4) 0.26

OAPF [92] 3.45 0.64 (6) 0.85 (1) 0.77 (3) 0.73 (5) 0.73 (2) 0.85 (1) 0.68 (6) 0.64 (6) 0.85 (1) 0.78 (4) 0.71 (3) 0.9

Our 3.63 0.76 (3) 0.58 (6) 0.77 (2) 0.72 (6) 0.73 (1) 0.75 (4) 0.72 (4) 0.69 (3) 0.78 (4) 0.82 (1) 0.69 (6) 8.3

DLST [2] 3.63 0.77 (2) 0.69 (3) 0.73 (6) 0.80 (2) 0.70 (6) 0.73 (6) 0.74 (2) 0.66 (4) 0.85 (2) 0.72 (6) 0.75 (1) 4.6

DS-KCF-Shape [43] 4.18 0.71 (5) 0.71 (2) 0.74 (4) 0.74 (4) 0.70 (5) 0.76 (3) 0.70 (5) 0.65 (5) 0.81 (3) 0.77 (5) 0.70 (5) 35.4

CSR-DCF [80] 10.55 0.53 (9) 0.56 (11) 0.68 (12) 0.55 (12) 0.62 (9) 0.66 (12) 0.56 (10) 0.45 (14) 0.79 (6) 0.67 (12) 0.56 (9) 13.6
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Figure 4.1 The overview for the proposed algorithm in [P1].

As it can be seen from the Table 4.1, the depth information drastically improves
the results compared to the baseline tracker CSR-DCF [80]while providing a decent
frame rate. This proves that adopting depth information in spatially constrained
DCF context has significant potential for RGBD tracking since it provides an ad-
ditional discriminative layer to the tracking framework. A visual example for the
benefits of depth is given in Figure. 4.2.
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Algorithm 3 Depth Masked DCF [58]

Require: Current frame I t ; Occlusion state S t−1; Foreground and background
depth distributions P t−1

f g
, P t−1

b g
; Tracker response threshold τ; K last responses


r
if S t−1 is f a l s e then {** Tracker part **}

Run DCF tracker (ht−1) on I t

Calculate maximum filter response r t
max

Run occlusion detection to obtain S t

Calculate depth mask Mt

else {** Detector part **}
Run full frame detection and obtain r t

max
if r t

max > τ ∗mean(
r ) then
S t ← f a l s e

else
S t ← t r ue

end if
end if
if S t is f a l s e then {** Mask update part **}

Update distributions P t
f g and P t

b g using Mt

Update ht using Mt

Update tracker response history 
r mod (t ,K)← r t
max

end if
Proceed to the next frame
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Figure 4.2 The top row is the tracking results for the proposed algorithm whereas the bottom row is

for the baseline tracker that works on RGB channels. The baseline algorithm drifts in the

presence of an occluder while the proposed algorithm is able to detect the occlusion and

starts the re-detection module using the depth information and localizes the target once it

becomes visible [P1].
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4.2 P2 How to Make an RGBD Tracker ?

In this paper, a novel, generic framework to convert any short-term RGB tracker
into an RGBD tracker is proposed [57]. In order for an RGB tracker to be minimally
compatible with this framework, two mild assumptions are done;

• Short-term tracker provides a bounding box

• Tracker’s model update can be stopped and restarted

Additionally, if the baseline tracker accepts an external mask for the foreground
region similar to the spatially constrained DCFs, the second-level (full) integration
can be achieved.

The first level of integration works as a tracking supervisor via a foreground seg-
mentation approach. Similar to [P1], the tracker model update is stopped if the ratio
of foreground pixels to the tracker bounding box region drops below a certain thresh-
old and the tracker goes into recovery mode to search for the target. This search is
done using three principles; (i) target object must be close to the latest known loca-
tion, (ii) the latest reliable tracker response should not differ significantly from the
recovered object’s, (iii) the search region is expanded proportionally to the object’s
latest known speed. This adaptive approach is more efficient and drastically different
to the one adopted in [P1] since [P1] used a naive, full-frame search.

The foreground segmentation is achieved by building on top of [P1]; the pro-
posed framework takes advantage of multiple information sources instead of only
depth to obtain an accurate segmentation for the foreground object. To efficiently
compute this, the energy minimization formula proposed in [17] is used;

E( f ) = Es moot h ( f )+ Edat a( f ) (4.3)

where the aim is to label each pixel by minimizing the energy. Es moot h is the
smoothness prior which assigns a high energy if neighboring pixels have different
labels [33], Edat a is based on RGBD and formulated as;

Edat a( f ) = Ecol o r ( f )+ Ed e pt h ( f )+ Es pat ial ( f ) (4.4)

The overview of the proposed algorithm is illustrated in Figure. 4.3.
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Figure 4.3 The overview for the proposed algorithm in [P2].
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To evaluate the proposed framework’s effectiveness, experiments on Princeton
RGBD Dataset [113] are conducted and the results can be found in Table 4.2.

Table 4.2 Comparison of short-term RGB and RGBD tracking methods on the Princeton Tracking Bench-

mark (PTB) [113]. DCF [40] and three state-of-the-art trackers were used within the framework

– ECOgpu [31], ECOhc [31] and CSR-DCF [80]; their level-one RGBD extensions are denoted

DCF-rgbd, ECO-rgbd and CSR-DCF-rgbd, the level-two CSR-DCF integration where the orig-

inal RGB-based mask is replaced by the proposed foreground mask is denoted CSR-DCF-

rgbd++. (The table shows results for the Princeton Benchmark as of June 15, 2018) [P2]

Avg Rank Tracking Category

Method Human Animal Rigid Large Small Slow Fast Occ. No-Occ. Passive Active

CSR-DCF-rgbd++ 3.64 0.77(2) 0.65(5) 0.76(6) 0.75(4) 0.73(1) 0.80(3) 0.72(3) 0.70(3) 0.79(5) 0.79(5) 0.72(3)

OAPF [92] 5.27 0.64(14) 0.85(1) 0.77(4) 0.73(6) 0.73(2) 0.85(1) 0.68(8) 0.64(8) 0.85(1) 0.78(9) 0.71(4)

3D-T [11] 5.36 0.81(1) 0.64(7) 0.73(15) 0.80(1) 0.71(6) 0.75(8) 0.75(1) 0.73(1) 0.78(11) 0.79(6) 0.73(2)

RGBDOcc+OF [113] 5.55 0.74(5) 0.63(9) 0.78(2) 0.78(3) 0.70(7) 0.76(5) 0.72(4) 0.72(2) 0.75(17) 0.82(2) 0.70(5)

ECOhc-rgbd 6.18 0.70(7) 0.55(15) 0.81(1) 0.69(9) 0.72(4) 0.78(4) 0.68(7) 0.65(6) 0.79(6) 0.83(1) 0.66(8)

DSKCF-Shape [43] 6.64 0.71(6) 0.71(3) 0.74(11) 0.74(5) 0.70(8) 0.76(6) 0.70(6) 0.65(7) 0.81(4) 0.77(11) 0.70(6)

DLST [2] 6.73 0.77(3) 0.69(4) 0.73(16) 0.80(2) 0.70(9) 0.73(14) 0.74(2) 0.66(5) 0.85(2) 0.72(16) 0.75(1)

DM-DCF [58] 6.73 0.76(4) 0.58(12) 0.77(5) 0.72(8) 0.73(3) 0.75(10) 0.72(5) 0.69(4) 0.78(13) 0.82(3) 0.69(7)

DSKCF [86] 9.36 0.67(10) 0.61(10) 0.76(8) 0.69(10) 0.70(10) 0.75(9) 0.67(9) 0.63(9) 0.78(12) 0.79(7) 0.66(9)

ECOgpu-rgbd 9.82 0.66(11) 0.58(11) 0.76(7) 0.65(14) 0.71(5) 0.81(2) 0.64(14) 0.62(10) 0.77(14) 0.78(8) 0.65(12)

DSKCF-CPP [86] 10.36 0.65(12) 0.64(8) 0.74(12) 0.66(13) 0.69(12) 0.76(7) 0.65(13) 0.60(12) 0.79(7) 0.80(4) 0.64(14)

RGBD+OF [113] 11.36 0.64(15) 0.65(6) 0.75(9) 0.72(7) 0.65(17) 0.73(15) 0.66(10) 0.60(13) 0.79(8) 0.74(15) 0.66(10)

hiob [115] 11.64 0.53(19) 0.72(2) 0.78(3) 0.61(16) 0.70(11) 0.72(16) 0.64(15) 0.53(16) 0.85(3) 0.77(12) 0.62(15)

CSR-DCF-rgbd 11.91 0.68(9) 0.57(13) 0.74(10) 0.68(11) 0.68(14) 0.74(12) 0.65(12) 0.62(11) 0.75(16) 0.77(10) 0.64(13)

ECOhc [31] 12.18 0.69(8) 0.56(14) 0.72(17) 0.67(12) 0.68(13) 0.74(11) 0.65(11) 0.59(14) 0.78(9) 0.74(14) 0.65(11)

ECOgpu [31] 15.36 0.58(16) 0.54(16) 0.73(13) 0.59(18) 0.65(15) 0.73(13) 0.58(17) 0.51(17) 0.78(10) 0.69(17) 0.60(17)

DCF-rgbd 15.45 0.64(13) 0.54(17) 0.73(14) 0.65(15) 0.65(16) 0.71(17) 0.63(16) 0.59(15) 0.74(18) 0.76(13) 0.61(16)

DCF [40] 18.09 0.56(17) 0.52(19) 0.66(18) 0.60(17) 0.59(19) 0.65(18) 0.57(18) 0.48(18) 0.74(19) 0.68(18) 0.56(18)

CSR-DCF [80] 18.36 0.54(18) 0.53(18) 0.64(19) 0.56(19) 0.59(18) 0.61(19) 0.56(19) 0.44(19) 0.76(15) 0.64(19) 0.55(19)

Table 4.2 clearly shows that adding depth data to the state-of-the-art RGB trackers
(level one integration) provides a significant performance boost in terms of accuracy.
Moreover, adopting the second level integration when possible increases the perfor-
mance further and outperforms state-of-the-art trackers.
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4.3 P3 Object Tracking by Reconstruction with

View-Specific Discriminative Correlation Filters

Despite the state-of-the results, the tracker proposed in [P2] still treated the 3D target
objects on a 2D plane. This approach has major limitations and cannot cope well
with the out-of-plane rotations.

Consider a book as the target object and assume that we initialize the tracker with
its front cover. Once the book starts rotating around itself, gradually the initially
seen view (the front cover) will be replaced by its narrow sideways and we will end
up with the back cover being visible. Continuous model updating mechanisms pro-
posed in modern trackers including [P2] will first replace the previously seen view
(the front cover) with the narrow sideways and finally with the back cover. Thus, the
tracker currently only recognizes the back cover as the target object. Assume that
after this rotation, the target is occluded and the tracker goes into the occlusion state
in which it continuously tries to re-locate the target in a similar manner to what is
proposed in [P2]. In case the target has rotated during occlusion and now only the
front cover is visible, it is highly possible that the tracker will not be able to re-detect
the target since from the tracker’s point of view, the appeared object is a completely
different object than what it has previously seen.

Detecting this change in 2D is inherently difficult since it is hard to distinguish
the appearance changes (blur, illumination etc.) and occlusions from out-of-plane
rotation. However, with the help of 3D information, this can be achieved with rela-
tive ease. In this paper [123]([P3]), a 3D object representation is employed to address
these issues by modelling the target object as a set of surfels; 3D points with color, ra-
dius and the normal. Surfel based approaches have already been successfully adopted
in Simultaneous Localization and Mapping (SLAM) community [109] in which It-
erative Closest Point (ICP) is used for updating the 3D structure.

The main contribution in this paper is the idea of using 3D object models in
conjunction with a spatially constrained DCF formulation. The benefits to this ap-
proach are two-fold;

• 2D projections from 3D models provide better target region representation
for the tracker updates

• Detecting out-of-plane rotations using these projections facilitates a multi-view
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DCF framework which helps more accurate tracking and re-detection capabil-
ity

To achieve these, a two-level abstraction for the target model is adopted. First
level consists of a set of view-specific DCFs, {hs}Ss=1, that are stored throughout the
tracker’s life cycle and each one of them encodes a specific view of the target object.
Additionally, color and depth statistics belonging to the foreground and background
are stored as a part of the first level abstraction.

Second level abstraction on the other hand is a pre-image,Θt = {Pt ,Rt ,Tt }where
Pt is the set of surfels modelling the 3D target in target’s coordinate system while
{Rt ,Tt } represents the target’s position in camera coordinate system.

The interaction between the two is defined as follows; the first level abstraction
localizes the target and extracts a foreground region. This region is then used for
updating the second level abstraction by attempting to update the 3D model via
ICP [109]. In case of a successful 3D model update, it is projected back onto the
2D image plane as the spatial support for the DCF update. Afterwards, in case a
significant aspect ratio change is detected in the projected region compared to the
reference region, currently used filter is added to {hs}Ss=1. On every N t h frame, all
filters in {hs}Ss=1 are evaluated on the given image and if another filter hs than the
one in use ht produces the maximum correlation filter, hs is taken into use. This
approach ensures the usage of correct filter for possible view changes and minimizes
the possibility of false positive/negative occlusions, target model corruptions etc.
An overview of the approach is given in Figure. 4.4.

The proposed approach is evaluated on two widely used benchmarks; the first
one is the PTB [113] with the results provided in Table 4.3 and the second one is
STC [135] with the results provided in Table 4.4.

The results clearly show that the proposed approach is superior and provides
state-of-the-art performance on both benchmarks. One category where the pro-
posed approach struggles is Animal where non-rigid deformations is common. How-
ever, this is expected since the 3D pre-image cannot handle those cases well.
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Figure 4.4 The overview of the proposed algorithm in [P3].

Table 4.3 Experiments on the Princeton Tracking Benchmark using the PTB protocol. Numbers in the

parenthesis are the ranks [P3].

Avg Rank Tracking Category

Method Human Animal Rigid Large Small Slow Fast Occ. No-Occ. Passive Active

OTR 2.36 0.77(2) 0.68(6) 0.81(2) 0.76(4) 0.77(1) 0.81(2) 0.75(1) 0.71(3) 0.85(2) 0.85(1) 0.74(2)

ca3dms+toh [72] 4.55 0.66(9) 0.74(2) 0.82(1) 0.73(7) 0.74(2) 0.80(4) 0.71(7) 0.63(9) 0.88(1) 0.83(2) 0.70(6)

CSR-rgbd++ [57] 5.00 0.77(3) 0.65(8) 0.76(7) 0.75(5) 0.73(3) 0.80(3) 0.72(4) 0.70(4) 0.79(8) 0.79(6) 0.72(4)

3D-T [11] 5.64 0.81(1) 0.64(9) 0.73(12) 0.80(1) 0.71(6) 0.75(9) 0.75(2) 0.73(1) 0.78(11) 0.79(7) 0.73(3)

PT [113] 6.09 0.74(6) 0.63(11) 0.78(3) 0.78(3) 0.70(7) 0.76(5) 0.72(6) 0.72(2) 0.75(13) 0.82(4) 0.70(7)

OAPF [92] 6.09 0.64(12) 0.85(1) 0.77(6) 0.73(8) 0.73(5) 0.85(1) 0.68(9) 0.64(8) 0.85(3) 0.78(9) 0.71(5)

DLST [2] 6.45 0.77(4) 0.69(5) 0.73(13) 0.80(2) 0.70(9) 0.73(11) 0.74(3) 0.66(6) 0.85(4) 0.72(13) 0.75(1)

DM-DCF [58] 6.91 0.76(5) 0.58(13) 0.77(5) 0.72(9) 0.73(4) 0.75(8) 0.72(5) 0.69(5) 0.78(10) 0.82(3) 0.69(9)

DS-KCF-Shape [43] 7.27 0.71(7) 0.71(4) 0.74(9) 0.74(6) 0.70(8) 0.76(6) 0.70(8) 0.65(7) 0.81(6) 0.77(11) 0.70(8)

DS-KCF [86] 9.91 0.67(8) 0.61(12) 0.76(8) 0.69(10) 0.70(10) 0.75(10) 0.67(11) 0.63(10) 0.78(12) 0.79(8) 0.66(10)

DS-KCF-CPP [43] 10.09 0.65(10) 0.64(10) 0.74(10) 0.66(12) 0.69(12) 0.76(7) 0.65(12) 0.60(12) 0.79(9) 0.80(5) 0.64(12)

hiob-lc2 [115] 10.18 0.53(13) 0.72(3) 0.78(4) 0.61(13) 0.70(11) 0.72(12) 0.64(13) 0.53(13) 0.85(5) 0.77(12) 0.62(13)

STC [135] 10.45 0.65(11) 0.67(7) 0.74(11) 0.68(11) 0.69(13) 0.72(13) 0.68(10) 0.61(11) 0.80(7) 0.78(10) 0.66(11)
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Table 4.4 The normalized area under the curve (AUC) scores computed from one-pass evaluation on

the STC Benchmark [135] [P3].

Attributes

Method AUC IV DV SV CDV DDV SDC SCC BCC BSC PO

OTR 0.49 0.39 0.48 0.31 0.19 0.45 0.44 0.46 0.42 0.42 0.50

CSR-rgbd++ [57] 0.45 0.35 0.43 0.30 0.14 0.39 0.40 0.43 0.38 0.40 0.46

ca3dms+toh [72] 0.43 0.25 0.39 0.29 0.17 0.33 0.41 0.48 0.35 0.39 0.44

STC [135] 0.40 0.28 0.36 0.24 0.24 0.36 0.38 0.45 0.32 0.34 0.37

DS-KCF-Shape [43] 0.39 0.29 0.38 0.21 0.04 0.25 0.38 0.47 0.27 0.31 0.37

PT [113] 0.35 0.20 0.32 0.13 0.02 0.17 0.32 0.39 0.27 0.27 0.30

DS-KCF [86] 0.34 0.26 0.34 0.16 0.07 0.20 0.38 0.39 0.23 0.25 0.29

OAPF [92] 0.26 0.15 0.21 0.15 0.15 0.18 0.24 0.29 0.18 0.23 0.28
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4.4 P4 CDTB: A Color and Depth Visual Object Tracking

Dataset and Benchmark

A major problem of generic visual object tracking in RGBD has been the lack of
available datasets to evaluate the algorithms. To the best of our knowledge, only
PTB [113] and STC [135] fit to this task. In spite of their usefulness in the early
RGBD tracking algorithm development, these aforementioned benchmarks have
their shortcomings which we believe hamper the RGBD tracker development. Some
of these issues can be named as the diversity of the target objects, sensors and scenar-
ios (e.g. long-term occlusions, out of frame occlusions etc.). Thus, it gradually has
become clear that a more sophisticated and diverse RGBD dataset was necessary to
address these shortcomings for facilitating further RGBD tracking improvements.

In [P4], we propose a novel RGBD tracking benchmark with the visual object
tracking community’s requirements in mind. Our contributions are as follows;

• Usage of multiple sensors with different modalities consisting of active and
passive sensors

• Including outdoors sequences as well as indoor sequences to evaluate the effec-
tiveness of the algorithms in different environments

• Capturing sequences with significant object pose changes for challenging the
algorithms to their maximum

• Having sequences with long occlusions and out of view scenarios

• Comparison of state-of-the-art RGB, their RGBD extensions and native RGBD
trackers

For capturing an extensive set of sequences with different properties, three dif-
ferent setups have been used.

The first setup is a Kinect v2 which outputs a 24-bit 1920 x 1080 RGB images
along with 512 x 512 32-bit floating point depth images at 30 FPS.

The second setup is a Time-of-Flight (ToF) - RGB pair with Basler tof640-20gm
ToF and Basler acA1920-50gc color camera. ToF camera provides 640 x 480 pixels
resolution at maximum 20 FPS and the color camera outputs 1920 x 1200 pixels at
maximum 50 FPS with an external synchronisation used as trigger. This setup was
mounted on a CNC machined aluminum base to avoid calibration errors.
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Table 4.5 Comparison of CDTB with related benchmarks in the number of RGBD devices used for ac-

quisition (NHW), presence of indoor and outdoor sequences (In/Out), per-frame attribute an-

notation (Per-frame), number of attributes (Natr), number of sequences (Nseq), total number of

frames (Nfrm) average sequence length (Navg), number of frames with target not visible (Nout),

number of target disappearances (Ndis), average length of target absence period (Navgout),

number of times a target rotates away from the camera by at least 180◦(Nrot), average num-

ber of target rotations per sequence (Nseqrot) and tracking performance under the PTB protocol

(Ω0.5) [P4].

Dataset NHW In Out Per-frame Natr Nseq Nfrm Navg Nout Navgout Ndis Nrot Nseqrot Ω0.5

CDTB 3 � � � 13 80 101,956 1,274 10,656 56.4 189 358 4.5 0.316

STC [135] 1 � � � 12 36 9,195 255 0 0 0 30 0.8 0.530

PTB [113] 1 � � � 5 95 20,332 214 846 6.3 134 83 0.9 0.749

The last setup is a stereo Basler acA1920-50gc color camera pair. This setup en-
abled extraction of depth information in outdoors sequences without any degrada-
tion due to the sunlight contrary to the active depth sensor setups. It is a significant
difference than the previous benchmarks since none of them includes this type of
sequences to the best of our knowledge. Example images from each capturing setup
is given in Figure 4.5.

Our benchmark was manually annotated using VOT Aibu annotation tool 1 with
axis-aligned bounding boxes by adopting the VOT [65] definition. A summary for
the features of the proposed benchmark is given in Table 4.5.

In order to validate the benchmark, 16 trackers in three categories were evalu-
ated; (i) state-of-the-art short-term RGB trackers (KCF [48], NCC [66], BACF [59],
CSRDCF [80], SiamFC [10], ECOhc [31], ECO [31] and MDNet [97]), (ii) state-of-
the-art long-term RGB trackers; (TLD [55], FuCoLoT [81] and MBMD [137]) and
(iii) state-of-the-art native RGBD trackers; (OTR [123] and Ca3dMS [72]). Similar
to [P2], RGBD augmented versions of a few state-of-the-art RGB trackers; ECOhc-
D [57], CSRDCF-D [57] and KCF-D2 are also included.

An important finding of the experiments is the fact that the top performers, MD-
Net [97], MBMD [137], were both RGB trackers with strong re-detection capabili-
ties. Even though MDNet was proposed as a short-term tracker, its CNN-based clas-
sifier and selective update mechanism equipped it with long-term capabilities. This
led to the conclusion that despite they lack the extra information from the depth

1https://github.com/votchallenge/aibu
2Uses depth as a feature channel
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channel, they are able to compensate this using the deep features since the state-of-
the-art native RGBD trackers OTR [123] and CSRDCF-D [57] use hand crafted
features such as HOG [95] and color names [127].

Overall, this paper provided multiple important cues for the development of
RGBD trackers.

• Using deep networks on depth channel may provide significant performance
gain as they are able to capture appearance changes better than the hand crafted
features

• Depth information provides strong clues for successful failure detection

• Adding depth information complements traditional RGB based approaches
as it provides important cues regarding 3D target appearance and foreground
detection
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Figure 4.5 Examples of images captured with different hardware setups. a and b are from the ToF-RGB

pair, (c) the stereo-camera sensor and (d) from the Kinect sensor [P4].
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5 CONCLUSIONS

Generic visual object tracking aims to provide efficient solutions to a fundamental
computer vision problem which is to localize a target object in videos with its lo-
cation known only in the first frame. Having many real-life applications such as
augmented reality, surveillance, sports, robotics etc. makes it an attractive research
field and the last few years have seen a surge in the number of proposed algorithms.
Thanks to the easy and cheap accessibility of the depth information in recent years,
it is intuitive to use the additional depth information to further improve the tracker
performances by coping with long-term occlusions and appearance changes. With
that in mind, this thesis proposes three novel, generic visual RGBD tracking algo-
rithms [P1, P2, P3] and a novel RGBD tracking benchmark [P4].

The first proposed method [P1] adds the depth information into a spatially con-
strained DCF formulation. The experiments conducted on a well-known RGBD
tracking benchmark showed that using the depth channel indeed significantly in-
creases the tracker performance compared to the baseline tracker while obtaining
on par results with the state-of-the-art at a fraction of its computational complexity.
However, lack of color information in the mask generation stage prohibits further
performance boost.

The second proposed method [P2] addressed the mask generation issues in [P1]
and offered a generic, two-stage framework for converting any short-term RGB tracker
into an RGBD tracker with re-detection capabilities. The results of the experiments
validated the effectiveness of the depth channel by consistently improving the tracker
performances in all RGB trackers while the full integration (two-stage) of the frame-
work outperformed the state-of-the-art by a large margin on the day of its submis-
sion. However, the algorithm proposed in [P2] was not able to cope with certain
appearance changes such as out-of-plane rotation since it still models the target ob-
ject on a 2D plane.

To cope with out-of-plane rotations, the third proposed method [P3] fused SLAM
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approach with spatially constrained DCF formulation by using the reprojections of
a selectively updated 3D model as a spatial constraint and a cue for creating a set
of target views to alleviate the issues related to the 2D plane based target modelling.
This approach outperformed the state-of-the-art on both well-known RGBD datasets
on the day of its submission and showed the efficiency of the proposed method.

During the development of [P1], [P2] and [P3], it was seen that the existing
RGBD datasets were insufficient to facilitate further RGBD tracking development.
This is mainly due to the lack of different sensor modalities and the diversity of
the scenarios. In order to address these issues, a novel RGBD tracking dataset was
proposed in [P4]. Extensive experiments using RGB, native RGBD and depth aug-
mented RGBD trackers showed that despite the significant improvements in RGBD
trackers in recent years, they still lag behind the state-of-the-art RGB trackers. This
can be attributed to the fact that the state-of-the-art RGB trackers use deep features
which have superior discriminative capabilities whereas RGBD trackers still use hand
crafted features. Thus, [P4] offers an important insight for future RGBD tracker de-
velopment and makes a valuable addition to the tracking community with a novel
dataset.

In conclusion, this thesis contributes to the RGBD tracking field with three novel
trackers with two of them achieving state-of-the-art results on the day of their sub-
missions. The experiments show that the depth channel provides important cues and
improves the results significantly. However, it is clear that the future RGBD track-
ers have to adopt deep networks for feature generation since they learn the target
appearance significantly better than the hand crafted features.
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[87] Matej Kristan, Ales Leonardis, Jǐr’i Matas, Michael Felsberg, Roman Pflugfelder
and et al. The Visual Object Tracking VOT2017 Challenge Results. IEEE/CVF
International Conference on Computer Vision (ICCV) Workshops. 2017.
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Abstract—Depth information provides a strong cue for occlu-
sion detection and handling, but has been largely omitted in
generic object tracking until recently due to lack of suitable
benchmark datasets and applications. In this work, we propose
a Depth Masked Discriminative Correlation Filter (DM-DCF)
which adopts novel depth segmentation based occlusion detection
that stops correlation filter updating and depth masking which
adaptively adjusts the spatial support for correlation filter. In
Princeton RGBD Tracking Benchmark, our DM-DCF is among
the state-of-the-art in overall ranking and the winner on multiple
categories. Moreover, since it is based on DCF, “DM-DCF” runs
an order of magnitude faster than its competitors making it
suitable for time constrained applications.

I. INTRODUCTION

Generic short-term object tracking has been a popular
research topic in computer vision for the last few years
and trackers based on the Discriminative Correlation Filter
(DCF) [12] have been particularly successful for applications
with time constraint [24], [11], [7], [15]. However, in RGB
tracking, there are fundamental difficulties that can be solved
with the help of depth (D) information, occlusion handling
being the most obvious. Additionally, RGBD sensors are
popular in robotics where 3D object tracking also has many
important applications, e.g., object manipulation and grasping.

There have been surprisingly small number of works on
RGBD tracking since the introduction of the first dedicated
benchmark for RGBD tracking: Princeton RGBD Tracking
dataset [21]. The dataset authors also proposed baseline track-
ers for 2D (depth as an additional cue) and 3D tracking (3D
bounding box). More recently, particle filter based methods
have been proposed by Meshgi et al. [16] and Bibi et al.
[2], but they are both slow for real-time applications. Instead,
we adopt the Discriminative Correlation Filter (DCF) approach
since it is proven to be fast and successful in RGB tracking.
The two other DCF based RGBD works to our best knowledge
are Hannuna et al. [10] and An et al. [1] which are both among
the top performers in the Princeton dataset.

In aforementioned RGBD tracking methods, depth has been
used as a mere additional cue for tracking, but intuitively the
most important role for the depth information is in accurate

?Uğur Kart was supported by two projects: Business Finland Project ”360
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Leonidas and Business Finland - FiDiPro Project ”Pocket - Sized Big Visual
Data”
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P103/12/G084. c© 2018 IEEE

Fig. 1. Overview of our DM-DCF method. Depth cue is used in parallel with
DCF tracking by inherently adopting depth based masks into DCF formulation
which allows altering the filter supports. Moreover, combination of DCF and
depth segmentation mitigates the possible errors stemming from individual
observations. (Mt and Mt+1 are the masks used for filter training where the
slight differences between the masks of two consecutive frames are visible)

and robust occlusion handling. In our work, instead of sepa-
rating occlusion handling and tracking, we unite the two pro-
cesses by integrating occlusion handling with correlation filters
in the sense that the spatial filter supports are dynamically
altered using the depth based segmentation. In this work we
make the following novel contributions:
• We propose a novel occlusion handling mechanism based

on object’s depth distribution and DCF’s response his-
tory. By detecting strong occlusions, our tracker avoids
corrupting the object model.

• We propose depth masking for DCF which avoids using
the occluded regions in matching and therefore provides
more reliable tracking scores.

• We experimentally validate Depth Masked Discriminative
Correlation Filter (DM-DCF) tracker on the Princeton
RGBD Tracking benchmark where it ranks among the
state-of-the-art algorithms with ranking first in multiple
categories while being faster than the other top perform-
ing methods in the benchmark.



Fig. 2. Example results of our DM-DCF tracker (top row) that uses depth
cue (middle row) to construct depth masks. Depth helps detecting occlusions
as the third dimension provides a strong clue and hence, the tracker stops
updating the object model. However, RGB tracker (CSR-DCF [15], bottom
row) is not able to detect the occlusions and continues learning occluding
object and consequently, loses the target object.

Our code will be made publicly available to facilitate fair
comparisons.

II. RELATED WORK

Object Tracking – Existing trackers for generic short-
term object tracking on RGB videos can be grouped under
two main categories, Generative (matching with updated target
model) or Discriminative (classifier based) methods, depend-
ing on how a tracked object (target region) is modelled and
localized [20]. A generative tracker represents the target as
a collection of features from previously tracked frames and
matches them to search region in the current frame. A few
prominent examples of this family of trackers are Incremen-
tal Visual Tracking (IVT) [19], Structural Sparse Tracking
(SST) [23] and kernel-based object tracking (mean shift) [5].
Generative trackers build a model from the positive examples,
e.g. tracked regions, but false matches occur if the background
or other objects have similar texture properties. This issue is
addressed in discriminative trackers by continuously learning
and updating a classifier that distinguishes the target from
background. In recent years, discriminative approach has been
more popular and it has produced many well-performing
trackers such as Tracking-Learning-Detection (TLD) [13],
Continuous Convolutional Operators Tracking (C-COT) [8],
Multi-Domain Convolutional Neural Network (MDNet) [17],
ECO [7], CSR-DCF [15]. Due to its mathematical simplicity,
efficiency and superior performance, we adopted the DCF
based approach as our baseline to allow us to achieve fast
throughput rate while retaining an accuracy comparable to
more complicated algorithms as it is proven in VOT 2017 [24].

Object Tracking with Depth – The number of research
papers on generic RGBD (color + depth) object tracking is

surprisingly limited despite the fact that depth sensors are
ubiquitous and the apparent application of the problem in
robotics. One of the reasons is the lack of suitable datasets
until recent years. In 2013 Song et al. [21] introduced the
Princeton Dataset for RGBD tracking and nine variations of a
baseline tracker. They presented two main approaches; depth
as an additional cue and point cloud tracking. In the first
case, depth is added as an additional dimension to Histogram
of Oriented Gradients (HOG) feature space and in the second
case tracking is based on 3D point clouds producing also a 3D
bounding box. Their best method performs well, but contains
heuristic processing stages and its speed (0.26 FPS) makes the
algorithm unsuitable for real-time applications.

Another RGBD method was recently proposed by Meshgi
et al. [16] who tackled the problem with an occlusion-aware
particle filter framework employing a probabilistic model.
Although their algorithm is among the top performers on
Princeton Benchmark, the complexity of their model, the num-
ber of parameters to be tuned and the slowness of the algorithm
(0.9 FPS) makes it unpractical for many applications.

Bibi et al. [2] suggested a part-based sparse tracker within
a particle filter framework. They represented particles as 3D
cuboids that consist of sparse linear combination of dictionary
elements which are not updated over the time. In case of no
occlusion, their method first finds a rough estimate of the
target location using 2D optical flow. Following this, particles
are sampled in rotation R and translation T space. To detect
the occlusions, they adopted a heuristic which states that
the number of points in the 3D cuboid of the target should
decrease below a threshold. Their method sets currently the
state-of-the-art on Princeton benchmark however, computation
times are not mentioned in the original work.

To the authors’ best knowledge there are only two RGBD
trackers based on DCF which is used in our method. The first
one was proposed by Hannuna et al. [10] who use depth
for occlusion handling, scale and shape analysis. To this end,
they first apply a clustering scheme on depth histogram which
is followed by formation of a single Gaussian distribution
based depth modelling where they assume the cluster with
the smallest mean must be the object (similar heuristic used
in Song et al. [21]). Another shortcoming of their algorithm
is that their occlusion handling allows tracking of occluding
region which introduces same problems as in [21].

Second method was proposed by An et al. [1]. They used
depth based segmentation in parallel to Kernelized Correlation
Filter (KCF) [11] detection and then interpreted the results
to locate the target and determine the occlusion state with a
heuristic approach.

The rest of the paper is organized as follows; Section III
provides an overview for the proposed tracking method, Sec-
tion IV reports the results of our tracker, its comparison against
the state-of-the-art RGBD trackers and also discusses the
ablation studies to evaluate the impacts of our design choices.
Finally Section V sums up our proposed method with remarks
for the future work. The overview of the proposed method can
be seen in Fig. 1 and Alg. 1.



III. DEPTH MASKED DCF

Our approach is inspired by the recent work of Lukezic
et al. [15] who robustified standard DCF by introducing
filter masks and won VOT 2017 challenge in real-time track.
However, their method is plain RGB and our RGBD tracker
differs from their work significantly in the following terms.
Firstly, their method is an RGB tracker without occlusion
handling mechanism. Secondly, we update correlation filter
mask using depth cues instead of spatial 2D priors and color
segmentation. As we show in Section IV-D, our approach is
clearly superior which can be attributed to the power of depth
cue.

An overview of our DM-DCF algorithm is given below
while Section III-A provides an introduction to DCF based
tracking, Section III-B reports how the depth based DCF
masks are created, Section III-C discusses the optimization
of correlation filters with spatial constraints and Section III-D
introduces our occlusion handling mechanism.

Algorithm 1 Depth Masked DCF
Require: Current frame It; Occlusion state St−1; Foreground

and background depth distributions P t−1
fg , P t−1

bg ; Tracker
response threshold τ ; K last responses r
if St−1 is false then {** Tracker part **}

Run DCF tracker (ht−1) on It

Calculate maximum filter response rtmax

Run occlusion detection to obtain St

Calculate depth mask Mt (Sec. III-B)
else {** Detector part **}

Run full frame detection and obtain rtmax

if rtmax > τ ∗mean(r) then
St ← false

else
St ← true

end if
end if
if St is false then {** Mask update part **}

Update distributions P t
fg and P t

bg using Mt

Update ht using Mt

Update tracker response history rmod(t,K) ← rtmax

end if
Proceed to the next frame

A. Correlation Filters

The problem to be solved in correlation filter based tracking
is to find a suitable filter h at discrete time point t and sample
point i that provides desired output yi for given input image
xi which includes the target object. Desired output, yi, can be
constructed by using a small, dense, 2D gaussian at the centre
of a tracked object image [3]. Optimization of the filter can
be formulated as a ridge regression problem:

1

2

∑
i

||yi − hTxi||2 +
λ

2
||h||2 (1)

where λ is the regularization parameter that is used to avoid
overfitting to the current object appearance. A widely used
technique is to assume circular repetitions of each input xi as
xi(∆τj) where ∆τj represents all circular shifts of xi. This
assumption leads to a fast filter optimization in the Fourier
domain [11]:

ĥ =

∑
i x̂i
∗ � ŷi∑

x̂i
∗ � x̂i + λ

(2)

where ĥ, x̂ and ŷ are the Fourier transforms of the corre-
lation filter, input image and the desired output respectively.
� is the element-wise Hadamar product and ∗ denotes the
Hermitian conjugate. Computation in Fourier domain reduces
the complexity from O(D3 + ND2) in the spatial domain
to O(ND logD) for the images of the size D pixels and N
examples as it is reported in [9]. However, this also enforces
a special form of (1):

1

2

∑
i

∑
j

||yi(j)− hTxi(∆τj)||2 +
λ

2
||h||2 (3)

where j runs over the all D circular shifts of each input xi.
Henriques et al. [11] also extended the above to include kernel
functions that can make tracker even more effective without
any loss in computation speed.

Another important part of correlation filter based tracking is
time averaging for online adaptation where previous appear-
ances are retained in “tracker memory” [3]

ĥt = ψĥt + (1− ψ)ĥt−1 (4)

B. Depth Masking

The masking approach in our work to select active pixels
(i.e. pixels that are used for DCF updates) for the DCF
tracker was inspired by the work of Lukezic et al. [15]
who constructed an RGB cue driven mask by forming a
pixel graph where the foreground was segmented by graph
cut approach using color histograms and spatial relationships.
However, their method is deemed to fail in the cases where
background and foreground are of similar color and it cannot
detect occlusions as it can be observed in Fig. 2 and Fig. 3.
On the other hand, in our method the depth cue turns out to be
clearly better in mask generation and also provides an intuitive
way to detect occlusion and switching from the tracking to
detection mode which provides superior performance in long-
term occlusions as in Fig. 2. In the case of foreground masking
of a tracked object, the correlation filter is changed to a masked
correlation filter, hM = M � h, which replaces h in (1) or
(3). The mask M has value 1 to mark the visible (active)
region of a tracked object and value 0 to inactivate pixels in
the background. Another advantage of masked correlation is
the fact that the border effects in cyclic correlation can be
removed if the mask is made larger than the current bounding
box [9] (up to the size of the whole input frame).

We construct our mask using probabilistic representations
Pfg and Pbg of foreground object and background (note that
background in our case means scene elements both closer and



further away from the object) respectively. In its simplest form,
the mask can be generated from foreground probability ratios

M(x) =

{
1, if Pfg

Pbg
> Ω

0, if Pfg

Pbg
≤ Ω

(5)

However, we found another approach based on adaptive
thresholding to work better since it avoids setting the threshold
τ . We assign each mask pixel a probability ratio value log

Pfg

Pbg

which produces a “foreground probablity image” and the
probability image is thresholded to form a binary foreground
mask by the adaptive method of Otsu [18].

For the probability distribution estimation we tested both
single Gaussian and Gaussian Mixture Models, but found
single Gaussians to perform better and another additional
benefit is their fast online update rules. Our distributions
are Pfg ∝ N (µfg, σ

2
fg) and Pbg ∝ N (µbg, σ

2
bg) whose

parameters are updated by the following rules:

µ(t) = µ(t)θ + (µ(t−1)(1− θ))
σ(t) = σ(t)γ + (σ(t−1)(1− γ))

(6)

where θ and γ are fixed update rates.
To construct the new distribution for the foreground, the

depth values that are in the current mask are picked. In the
first frame however, the ground truth bounding box provided
by the dataset is used to create the initial distributions.

C. Filter Optimization

A mask generated by the procedure in Section III-B changes
the target function (1) to find the optimal correlation filter h
into

1

2

∑
i

||yi − hTMxi||2 +
λ

2
||h||2 (7)

and the circular function (3) into

1

2

∑
i

∑
j

||yi(j)−MhTxi(∆τj)||2 +
λ

2
||h||2 (8)

that can be written in the Fourier domain as [9]

E(h) =
1

2

∑
i

||ŷi − diag(x̂i)
T
√
DFMTh||2 +

λ

2
||h||2 (9)

where MTh are defined in the spatial domain and DF is
the Fourier operator matrix F multiplied by the number of
dimensions D in the signal. This solution is very inefficient
in the Fourier domain (O(D3 + ND2)) and therefore the
primal solution in the spatial is faster. However, (9) is in the
form where the Lagrangian multiplier ĝ can be introduced
and Alternating Direction Method of Multipliers (ADMM)
adopted [4]:

minimize
1

2

∑
i

||ŷi − diag(x̂i)
T ĝ||2 +

λ

2
||h||2

subject to ĝ =
√
DFMTh

(10)

The augmented Lagrangian method uses the following uncon-
strained objective

minimize
1

2

∑
i

||ŷi − diag(x̂i)
T ĝ||2 +

λ

2
||h||2

+
µ

2

(
ĝ −
√
DFMTh

)2
+ ξ

(
ĝ −
√
DFMTh

) (11)

where µ is the penalty term affecting the convergence and ξ is
the Lagrange multiplier updated on each iteration. Optimiza-
tion iteratively updates the estimates ĝt+1 and ht+1 and the
multiplier using the rule

ξt+1 = ξt − µ
(
ĝt+1 −

√
DFMTht+1

)
(12)

D. Occlusion Detection

Detecting heavy occlusions (≥ 90%) and consequently
stopping model updates is a vital part of occlusion-aware
tracking. This process allows DCF to avoid possible model
pollution which eventually leads to drifting. In RGB-based
DCF, the main source of information for occlusion handling
is a correlation filter response at the maximum location rmax

since a rapid decrease can be considered as an evidence of oc-
clusion [1], [10]. To include tracker based occlusion detection,
we calculate running mean of the maximum responses where
the maximum of the current frame rcurrmax is added iteratively:

r(t+1)
max = r(t)max +

rcurrmax − r
(t)
max

t
(13)

The main drawback of the above tracker response based
occlusion detection is the implicit assumption that occlusions
occur faster than model appearance changes. This does not
have to be true and might cause false occlusion detections.

To compensate the weakness of filter response based oc-
clusion handling, we introduce a depth cue based occlusion
detection which is simple and efficient. Intuitively, all pixels
that pass through our probability based mask generation in
Section III-B represent depth values where the target object
appears. We can easily define the amount of occlusion to
be allowed by enforcing a threshold for the visible pixels in
M (10% in all our experiments). This depth based occlusion
detection comes without any extra cost since the information
is already available from the masking stage.

Our final occlusion detection combines both the filter re-
sponse based occlusion detection and depth based occlusion
detection where an occlusion is declared if both detectors
are triggered, i.e. filter response falls below 65% of moving
average and number of pixels supporting object depth falls
as well below 10% of bounding box regions. If occlusion is
detected, the filter update is stopped and the system switches
into full image detection mode (occlusion recovery). Occlusion
recovery model does not make any assumptions on object’s
reappearance probability and it is run as long as the target
object is absent in the scene.



IV. EXPERIMENTS

In this section, we present an extensive evaluation of
the proposed method. Section IV-A provides implementation
details, Section IV-B overviews the dataset and the metrics
used for the evaluation, Section IV-C discusses the results
and Section IV-D compares different variants of the proposed
method in an ablation study.

A. Implementation Details

To make our results directly comparable to the state-of-the-
art, we selected the same three RGB features in [15] (CSR-
DCF): HOG [6], Color Names [22] and gray level pixel values.
We also adopt the same parameter values as in the original
CSR-DCF except DCF filter update rate (ψ) is set to 0.03.
Update rates (θ, γ) for probability distributions Pfg and Pbg

are set to 0.95 and 0.20 respectively. The parameters were
kept fixed in our experiments that were run on non-optimized
Matlab code with Intel Core i7 3.6GHz laptop and Ubuntu
16.04 OS. Our processing speed is calculated according to an
average sequence where the number of occluded frames makes
25% of all frames.

B. Dataset and Evaluation Metrics

Princeton RGBD dataset [21] consists of 100 sequences
from 11 categories and the authors provide ground truth only
for five videos. Methods are evaluated by uploading them
to a specific evaluation server. Results for other methods
were taken from the online leaderboard table at the Princeton
website with the exception of An et al. [1] who have not
registered their method. Therefore, we took their numbers
directly from the respective paper.

Bibi et al. [2] and Hannuna et al. [10] reported that 14%
of Princeton RGBD dataset videos have synchronization errors
between the RGB and depth frames. In addition, 8% of the
sequences require bounding box re-alignment as pixel corre-
spondences between RGB and depth frames were erroneous. In
their experiments, Hannuna et al. and Bibi et al. used rectified
versions of the dataset and therefore we found it fair to use
their corrected sequences in our evaluations.

The evaluation uses the widely adopted Intersection over
Union (IOU) metric proposed by the authors of the Princeton
dataset similar to the one used in VOT RGB dataset [14].

C. Results

The results of our and the best performing other trackers
for the Princeton RGBD dataset are given in Table I. As it
can be seen below, our method performs on par with the top
performing RGBD trackers (OAPF, RGBDOcc+OF and 3D-T)
and is an order of magnitude faster. Out of the fast trackers
(ours, DLST, DS-KCF and CSR-DCF) ours and DLST are
the best with equal average rank, but our method is faster.
In addition to that, our method wins in two categories: Small
and Passive. These results indicate that our depth masked DCF
is a suitable tracker for applications where balance between
performance and speed is important.

The advantages of using the depth channel to complement
2D information are evident as our DM-DCF outperforms its
RGB competitor, CSR-DCF, in almost all categories with
a clear margin. The only category that CSR-DCF performs
better is the “no occlusion” category where benefits of depth
cue are understandably not necessary. Compared to the other
DCF based methods DS-KCF-Shape [10] and DLST [1],
DM-DCF performs considerably better in Occlusion category.
This shows that our occlusion handling mechanism is more
powerful as we use a maximum DCF response score history in
conjunction with foreground segmentation using two separate
probability distributions instead of a single frame response
score and single distribution.

Fig. 3. Our method (top) can handle the challenging cases where the
state-of-the-art DCF based RGB tracker (CSR-DCF [15]) fails due to the
color similarity of a tracked object and back/foreground (bottom). Depth cue
(second row) is used to generate a filter mask (third row) which is both used
for filter generation and occlusion handling (note detected occlusion in the
last frame when detection mode is switched on).

D. Ablation Study
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Fig. 4. Ablation study of the components of our methods.(Numbers represent
the average accuracy over 11 categories in the dataset)

We conducted a set of ablation studies to support our design
choices. Moreover, we also evaluated our algorithm on the
original Princeton Dataset which has considerable amount of



TABLE I
COMPARISON OF THE BEST PERFORMING METHODS (ONLINE EVALUATION) FOR PRINCETON RGBD DATASET [21].

Alg. Avg Rank Human Animal Rigid Large Small Slow Fast Occl. ¬Occl. Pass. Motion Act. Motion FPS

3D-T [2] 2.81 0.81 (1) 0.64 (4) 0.73 (5) 0.80 (1) 0.71 (3) 0.75 (5) 0.75 (1) 0.73 (1) 0.78 (5) 0.79 (3) 0.73 (2) N.A
RGBDOcc+OF [21] 3.27 0.74 (4) 0.63 (5) 0.78 (1) 0.78(3) 0.70 (4) 0.76 (2) 0.72 (3) 0.72 (2) 0.75 (6) 0.82 (2) 0.70 (4) 0.26
OAPF [16] 3.45 0.64 (6) 0.85 (1) 0.77 (3) 0.73 (5) 0.73 (2) 0.85 (1) 0.68 (6) 0.64 (6) 0.85 (1) 0.78 (4) 0.71 (3) 0.9
Our 3.63 0.76 (3) 0.58 (6) 0.77 (2) 0.72 (6) 0.73 (1) 0.75 (4) 0.72 (4) 0.69 (3) 0.78 (4) 0.82 (1) 0.69 (6) 8.3
DLST [1] 3.63 0.77 (2) 0.69 (3) 0.73 (6) 0.80 (2) 0.70 (6) 0.73 (6) 0.74 (2) 0.66 (4) 0.85 (2) 0.72 (6) 0.75 (1) 4.6
DS-KCF-Shape [10] 4.18 0.71 (5) 0.71 (2) 0.74 (4) 0.74 (4) 0.70 (5) 0.76 (3) 0.70 (5) 0.65 (5) 0.81 (3) 0.77 (5) 0.70 (5) 35.4
CSR-DCF [15] 10.55 0.53 (9) 0.56 (11) 0.68 (12) 0.55 (12) 0.62 (9) 0.66 (12) 0.56 (10) 0.45 (14) 0.79 (6) 0.67 (12) 0.56 (9) 13.6

registration and synchronization errors. We report the accuracy
for the following variants:
• CSR-DCF State-of-the-art RGB tracker by Lukezic et al.

[15]
• DM-DCF– Our method with the all proposed components

switched off.
• +occ Depth based occlusion handling switched on.
• +mask Depth based masking added i.e. full DM-DCF.

As it can be seen in Fig. 4, adding depth based masking and
occlusion handling improve the results almost %15.

E. Summary

An important finding for the future work is that in general,
different algorithms favor certain categories and motion types.
As compared the results of all methods in Table I, most of the
methods favor rigid motion over non-rigid motion (rigid vs.
animal categories). This can be explained by the fact that the
parameters are kept constant for all 95 test sequences and the
adopted parameters favors rigid object tracking. Shape changes
and adaptation speeds are different for non-rigid objects such
as animals.

Another similar problem can be seen in occlusion vs. no
occlusion. Again, improvement in the occlusion sequences
means slight degradation in tracker performance in no occlu-
sion cases. These observations suggest us to adopt adaptive
parameters in our future work so that the tracker would adjust
its parameters on the fly according to the target object.

V. CONCLUSION

In this paper, we proposed a Depth Masked Discriminative
Correlation Filter (DM-DCF) RGBD tracker that uses the
depth cue to detect occlusions (enable switching from the
tracking to the detection mode) and to construct a spatial
mask that improves DCF tracking. To this end, we are the
first to use depth based segmentation masks inherently in
DCF formulation extracting target regions for filter updates.
Comparison and ablation studies on the publicly available
Princeton RGBD Benchmark dataset verified that our trackers
is on pair with the state-of-the-art while providing clearly
better frame rate as compared to the top performers.
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Abstract. We propose a generic framework for converting an arbitrary
short-term RGB tracker into an RGBD tracker. The proposed framework
has two mild requirements – the short-term tracker provides a bound-
ing box and its object model update can be stopped and resumed. The
core of the framework is a depth augmented foreground segmentation
which is formulated as an energy minimization problem solved by graph
cuts. The proposed framework offers two levels of integration. The first
requires that the RGB tracker can be stopped and resumed according
to the decision on target visibility. The level-two integration requires
that the tracker accept an external mask (foreground region) in the tar-
get update. We integrate in the proposed framework the Discriminative
Correlation Filter (DCF), and three state-of-the-art trackers – Efficient
Convolution Operators for Tracking (ECOhc, ECOgpu) and Discrimina-
tive Correlation Filter with Channel and Spatial Reliability (CSR-DCF).
Comprehensive experiments on Princeton Tracking Benchmark (PTB)
show that level-one integration provides significant improvements for all
trackers: DCF average rank improves from 18th to 17th, ECOgpu from
16th to 10th, ECOhc from 15th to 5th and CSR-DCF from 19th to 14th.
CSR-DCF with level-two integration achieves the top rank by a clear
margin on PTB. Our framework is particularly powerful in occlusion
scenarios where it provides 13.5% average improvement and 26% for the
best tracker (CSR-DCF).

Keywords: Visual Object Tracking · RGBD Tracking

1 Introduction

Short-term visual object tracking has been an active research topic in computer
vision due to its widespread application areas. In recent years, the community
has witnessed rapid development and seen many successful trackers emerging
thanks to standardized evaluation protocols and publicly available benchmarks
and competitions [1–6]. In order to adapt to target appearance changes, short-
term trackers update their tracking models over time. However, that makes them
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prone to model corruption and drifting in case of persistent occlusions when the
tracker adapts to the occluding object and starts to track it.

To avoid corruption, a tracker should be able to discriminate between the
target object and the rest of the scene so that it can stop model updating if the
target is occluded. However, this is a challenging task in the RGB space if there
are occluders with similar visual appearance. To alleviate this issue, adding the
depth cue to short-term trackers is intuitive; even if a tracked object is occluded
by another object with similar appearance, the difference in their depth levels will
be distinctive and will help to detect the occlusion. The availability of affordable
depth sensors makes adoption of the depth cue even more attractive.

Since the depth channel lacks texture, depth itself may not provide useful
information for visual tracking. On the other hand, RGB trackers perform com-
petitively as long as no occlusions occur (see Table. 1). Therefore, our work aims
at benefiting from the huge amount of effort that has been put on generic short-
term RGB trackers and adopts depth as means for occlusion detection. As a
novel solution, we propose a generic framework that can be used with any VOT
compliant [6] short-term tracker to convert it into an RGBD tracker with depth-
augmented occlusion detection. By applying the proposed framework through a
clear interface and not changing the internal structure of a short-term tracker, a
fast integration is ensured and the framework will benefit from ever improving
short-term tracker performance in the future.

The proposed framework contains two main components: short-term failure
detection and recovery from occlusion. Short-term failure detector continuously
evaluates the target region to decide whether to allow the short-term tracker to
update its model or switch to the recovery from occlusion mode. The framework
also contains an optional, powerful third component which can be used with
RGB trackers that accepts foreground masks that explicitly indicate occluded
regions that do not belong to the target(e.g. CSR-DCF [7]).

The main contributions of this paper are:
– A generic framework to convert an arbitrary RGB short-term tracker into

an RGBD tracker.
– Formulation of the framework’s core component - non-occluded foreground

segmentation - as an energy function of three terms, depth, color and spatial
prior, which is optimized using graph cuts.

– RGBD versions of one baseline and three state-of-the-art short-term RGB
trackers: DCF [8], ECO (ECOhc and ECOgpu variants) [9] and CSR-DCF [7]
The rest of the paper is organized as follows; Section 2 summarizes existing

literature on generic, short-term tracking and RGBD trackers, Section 3 explains
the proposed framework in detail, Section 4 provides the experiments and finally
Section 5 concludes the paper.

2 Related Work

The aim of the provided generic framework is to convert any existing short-term
RGB tracker into an RGBD tracker. We are motivated by the facts that the field
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Fig. 1. Overview of the proposed framework. The short-term RGB tracker provides
bounding box coordinates to the framework to be used for segmenting the visible target
region with the help of depth. Using the ratio of the visible region to the bounding box,
occlusions are detected hence, short-term tracker update is stopped and recovery mode
is started. If the object is re-detected during recovery, the RGB tracker is resumed.

of short-term RGB tracking progresses on a steady basis and RGB provides a
strong cue for tracking. On the other hand, we also believe that depth can be
used as a complementary cue to instruct when a short-term tracker should be
stopped and switched to recovery mode. In this sense, the proposed framework
benefits from state-of-the-art short-term trackers which are briefly surveyed in
addition to the recent RGBD trackers.
RGB Trackers – generic, short-term visual object tracking on RGB videos is a
well-established research topic in computer vision and the main approaches can
be grouped under two main categories. In Generative Trackers, a target model
is stored and the goal is to find the best matching region in the next frame.
A few descriptive examples for this category are Incremental Visual Tracking
(IVT) [10], Structural Sparse Tracking (SST) [11] and kernel-based object track-
ing [12]. On the other hand, Discriminative Trackers continuously train a clas-
sifier using positive and negative samples that are acquired during the tracking
process. Prominent examples of this category are Tracking-Learning-Detection
(TLD) [13], Continuous Convolutional Operators Tracking (CCOT) [14], Multi-
Domain Convolutional Neural Networks (MDNet) [15], Efficient Convolution
Operators for Trackers (ECO) [9], and Discriminative Correlation Filter with
Channel and Spatial Reliability (CSR-DCF) [7]. Due to their success in the last
few years, discriminative trackers have been widely adopted in the recent works.
For example, in the VOT 2017 challenge, 67% of the submissions were from
this category [6]. However, training a classifier can be computationally expen-
sive which has prompted the adoption of simple yet powerful methods for the
training stage. Starting with the seminal work of Bolme et al. [16], Discrim-
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inative Correlation Filter (DCF) based trackers have gained momentum due
to their performance, fast model update (training) and mathematical elegance.
Henriques et al. [17] proposed a method for efficient training of multiple sam-
ples that improves performance while providing very high FPS. To suppress the
border artefacts resulting from circular correlation, Galoogahi et al. [8] posed
the DCF learning as a more complex optimization problem which can still be
efficiently solved with the help of the Augmented Lagrangian Method (ALM).
Lukezic et al. [7] further improved their idea by introducing spatial reliability
maps to extract unpolluted foreground masks. In VOT 2017, DCF based algo-
rithms constitute almost 50% of the submitted trackers [6] with ECO [9] and
CSR-DCF [7] being among the top performers while CSR-DCF C++ implemen-
tation won the best real-time tracker award.

RGBD Trackers – as compared to generic, short-term tracking on RGB,
RGBD tracking is a relatively unexplored area. This can be partly attributed to
the lack of datasets with groundtruths until recently. Song et al. [18] captured
and annotated a dataset consisting of 100 videos with an online evaluation system
and their benchmark is still the largest available. They also provided multiple
baseline algorithms under two main categories; depth as an additional cue and
point cloud tracking. Depth as an additional cue trackers treat depth as an extra
channel to HOG features [19] whereas point cloud tracking methods use 3D point
clouds for generating 3D bounding boxes. Among the ten proposed variations
the one with RGBD HOG features and boosted by optical flow and occlusion
detector achieved the best performance.

The seminal work of Song et al. inspired many followups. Meshgi et al. [20]
proposed an occlusion-aware particle filter based tracker that can handle persis-
tent occlusions in a probabilistic manner. Bibi et al. [21] also used a particle
filter framework with sparse parts for appearance modeling. In their model, each
particle is a sparse, linear combination of 3D cuboids which stays fixed during
the tracking. Without occlusion, they first make a coarse estimation of the target
location using 2D optical flow and then sample particles over the rotation R and
translation T spaces. Occlusion is detected by counting the number of points
in the 3D cuboid representation. Success of the DCF approach naturally caught
the attention in the RGBD community as well. To the best of our knowledge, the
first DCF based RGBD tracker was proposed by Camplani et al. [22]. They first
cluster the depth histogram and then apply a single Gaussian distribution to
model the tracked object in the depth space. To extract the foreground object,
they assume that the cluster with the smallest mean is the object. The second
method using DCF was proposed by An et al. [23] where Kernelized Correlation
Filters (KCF) are used in conjunction with depth based segmentation for target
localization. Heuristic approaches were adopted for detecting whether an object
is in the occlusion state or not.

Recently, Kart et al. [24] proposed an algorithm for using the depth as a
means to generate masks for DCF updates. Although this work is in a similar
spirit, our method differs from theirs in multiple, fundamental aspects; first of all,
the authors incorporate neither color nor spatial cues for the mask creation. This
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results with the loss of very vital information sources. Especially in sequences
where the target object and the occluding object have similar depth levels, it is
very likely that the algorithm will not be able to discriminate in between even
if they have different colors. Secondly, their foreground segmentation consists of
a simple thresholding of depth probabilities which is an ad-hoc approach that
requires careful fine tuning. Finally, the authors propose a brute force, full-frame
grid search for recovering from the occlusion state whereas we propose to use the
motion history of the target object to adaptively generate significantly smaller
search areas to avoid redundant computational complexity.

3 RGBD Converter Framework

The proposed framework offers two levels of integration with the level-two be-
ing optional for trackers that can use a foreground mask in their model update.
In the level-one integration, the framework continuously calculates the visibil-
ity state of a target object by casting the visibility problem as a pixel-wise
foreground-background segmentation from multiple information sources: color,
spatial proximity and depth. The segmentation result is the foreground mask.
Without interfering with the internal structure of an RGB tracker, the frame-
work uses the tracker output and bounding box to obtain a region of interest
(ROI) for the segmentation step. If the ratio between the visible and occluded
pixels is below a threshold, model updating of the RGB tracker is stopped and the
framework goes into occlusion recovery mode. In the occlusion recovery mode,
model update is stopped and the search region is continuously expanded around
the last known location of the target. The search is performed by running the
RGB tracker in a coarse-to-fine manner to find its maximum response r in the
search region. The score is compared to the mean of last N valid responses (Sec-
tion 3.4, Alg. 1). Once the target is detected, RGB tracker updating resumes.
The level-two integration is available for trackers that use foreground masks in
their model update.

For foreground segmentation, we adopt the energy minimization formulation
in [25]:

E(f) = Esmooth(f) + Edata(f) (1)

The goal is to find a pixel-wise labeling f (foreground/background) that mini-
mizes the energy. Esmooth represents smoothness prior that penalizes neighboring
pixels being labeled differently and Edata represents the observed data based en-
ergy. For Esmooth, we adopt the efficient computation of smoothed priors in [26]
and Edata we formulate as

Edata(f) = Ecolor(f) + Espatial(f) + Edepth(f) (2)

where Ecolor measures the likelihood of observed pixel color given the target
color model, Edepth models target region’s depth and finally Espatial the spatial
prior which is driven by the tracker location in the current frame. At the core of
our approach are proper formulations of Ecolor (Section 3.1), Edepth (Section 3.2)
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Fig. 2. The workflow diagram of the proposed framework. The framework uses bound-
ing box coming from the RGB tracker and the depth frame to make a decision whether
the target object is visible or not. In case it is visible, it allows the RGB tracker to
update its model and continue tracking. If the target disappears, the framework runs
the occlusion recovery module where the target object is searched using the last valid
target model of the RGB tracker.

and Espatial (Section 3.3) so that the global optimum can be computed efficiently
using the graph cuts algorithms [25, 27].

An example of the segmentation process is given in Fig. 3. As it can be seen,
color based segmentation assigns both the target and the occluding object high
confidence. However, the depth component is able to discriminate between the
two while spatial component ensures high probability for the pixels that are close
to the center of the tracking window.

3.1 Color-Based Target-Background Model Ecolor

In our formulation, Ecolor represents conditional dependencies between random
variables (pixel fg/bg labels) for which we adopt a conditional random field
formulation. The formulation uses the foreground/background probabilities as

Ecolor =
∑
i∈V

ψi(xi) (3)

where i is a graph vertex index (pixel) and xi its corresponding label. ψi is
encoded as a probability term

ψi(xi = 0) = − log (p(xi /∈ fg))

ψi(xi = 1) = − log (p(xi ∈ fg))
(4)

Since tracking is a temporal process, we need to add the frame number indicator

to our notation xi ⇒ x
(t)
i where (t) is the current and (t−1) the previous frame.

The probabilities p(·) can be efficiently computed using the color histograms
of the foreground and background, hf and hb, respectively. It should be noted
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Fig. 3. Energy components in (2) and the segmentation output. The depth provides a
strong cue even if the tracked and the occluding object have a very similar appearance.

that these histograms are updated after processing every frame for adapting to
appearance changes. Therefore during processing frame t, the most recent color
histograms are represented as ht−1

f and ht−1
b . Now, the color probability term is

p
(
xt
i ∈ fg

)
= p

(
xt
i = 1 | hsv(xt

i), h
(t−1)
f , h

(t−1)
b

)
. (5)

where the hsv(·) function returns the HSV color space value of the pixel corre-
sponding the label xi in the current frame. The histograms are computed in 3D
using 8× 8× 8 = 512 uniformly distributed bins.

3.2 Depth-Based Target-Background Model Edepth

We model the depth induced energy Edepth similar to color using depth his-

tograms ĥf and ĥb

p
(
xt
i ∈ fg

)
= p

(
xt
i = 1 | depth(xt

i), ĥ
(t−1)
f , ĥ

(t−1)
b

)
(6)

where the depth probability is defined via the Bayesian rule (we use d to denote

depth(x
(t)
i ) for more compact representation)

p
(
x
(t)
i = 1 | d, ĥ(t−1)

f , ĥ
(t−1)
b

)
=

p
(
x
(t)
i = 1 | d, ĥ(t−1)

f

)

p
(
x
(t)
i = 1 | d, ĥ(t−1)

f

)
+ p

(
x
(t)
i = 0 | d, ĥ(t−1)

b

) (7)

The above depth histograms are computationally efficient, but strongly bi-
ased against unseen depth levels. To be more precise, since probabilities for
previously seen depth levels are high, the current frame (t) pixels with the same
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depth levels are more likely to be assigned to the foreground and the model easily
fails to introduce new depth levels. For tackling this problem, we add foreground
and background distribution priors in the spirit of Bayesian estimation theory.
For the foreground histogram estimation prior, we adopt the triangle function
which has a maximum at the foreground depth mode (d denotes depth(xi) for
more compact notation and || · || is the length of the histogram)

Ψf (d) = tri(d) =

(
1− |d−mode(ĥ

(t−1)
f )|

||ĥ(t−1)
f ||

)
∗ γ (8)

and for the background histogram estimation, we adopt the uniform distribution
as a non-informative prior

Ψb(d) = unif(xi) =
1

||ĥ(t−1)
b ||

∗ θ (9)

γ and θ are constants that control the prior gains. The choice of using a triangle
distribution for foreground and uniform distribution for background stems from
the following; in case of the foreground depth levels, it is expected that the newly
seen depth levels will be similar to the current depth (e.g. a rotating object) and
depth values in general are concentrated around the mode/mean. However, we
cannot make any assumptions about the background and therefore we adopt the
non-informative prior in (9).

To ensure continuous depth levels while not compromising from quick up-
dates, we propose to apply a smoothening filter gt(d) to the observed histogram
in the updating stage where gt(d) is a single Gaussian function centered at the
histogram mode. By suppressing depth values that are highly unlikely to be-
long to the current observation, it provides a safety mechanism against wrong
detections and drifting. Thus, the depth histogram updating process takes the
following online update form:

ĥ
(t)
f = αĥ

(t−1)
f +

(
(1− α)ĥ

(t)
f

)
� gt(d)

ĥ
(t)
b = αĥ

(t−1)
b +

(
(1− α)ĥ

(t)
b

) (10)

3.3 Spatial Prior Espatial

The third energy term in our model is a spatial prior that gives preference to
foreground labels near the object center suggested by the short-term tracker;

p
(
xt
i ∈ fg

)
= p

(
xt
i = 1 | x(xt

i)
)
= k

(
x(xt

i);σ
)

(11)

where x(·) provides the spatial location (x,y) of the label xi and k(x;σ) is a
clipped Epanechnikov kernel commonly used in kernel density estimation.
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3.4 Occlusion Recovery

Given the energy terms Ecolor, Edepth and Espatial, graph cut [25] provides label-
ing of each pixel in the tracker window by minimizing the energy. If the number
of foreground pixels falls below a threshold τ , the tracker is stopped and recovery
process started. To this end, we propose to use the trained RGB model M t as
an object detector since the depth information is no longer reliable, especially
when the occlusion is persistent.

The proposed recovery strategy is based on three principles: (i) target ob-
ject will be found again near the spatial location where it was previously seen,
(ii) tracker response of a recovered object must be similar (proportional by Ω)
to the previous tracked frames (N = 30 in our experiments), and (iii) each re-
gion must be expanded with a speed proportional to the object’s average speed
before the object was lost. By expanding the search region adaptively, computa-
tional redundancy of processing irrelevant spatial regions is avoided. Algorithm 1
summarizes the occlusion recovery process.

Algorithm 1 Occlusion Recovery

Require: Current frame It, response threshold constant Ω and target information
before occlusion: {xi, bbi, ri}i=t−1,...,t−10 (centroid, bounding box and response)
Initialization: n = 0 {# of frames in recovery mode}
Compute target speed S = max

(
5,

t−1∑
i=t−10

||xi − xi−1||
)

while max response rn < Ω ∗mean(ri) do
Expand Wn = n ∗ S + 2 ∗ bb(1)
Expand Hn = n ∗ S + 2 ∗ bb(2)
Extract patch IW

n×Hn ⊂ It centered at xt−1

n = n+ 1
Find the tracker maximum response rn in IW

n×Hn

Move to the next frame t+ 1
end while
Reset depth histograms: ĥ

(t)
f and ĥ

(t)
b

Resume tracking with the short-term RGB tracker

3.5 Target-Background Mask Extension for CSR-DCF

This section is related to the level-two integration explained in the beginning of
Section 3 and as the example case we use the CSR-DCF tracker in [7]. Since
the original idea of Discriminative Correlation Filter (DCF) for tracking [28, 16],
many improvements have been proposed. An efficient solution in the Fourier do-
main was proposed by Henriques et al. [29] and their work was followed by an
important extension by Galoogahi et al. [8] who relaxed the assumption of cir-
cular symmetrical filters. These extensions were adopted in CSR-DCF [7] which
constructs a reliability mask that is used to mask out background regions during
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tracker updates. Intuitively, the CSR mask can be replaced with the proposed
foreground mask which is the output of graph cuts optimization (see Figure 3
for an example mask). In our experiments, it turns out that this significantly
improves the performance of CSR-DCF since the proposed depth-based mask
avoids model pollution more effectively. The level-two integration of our frame-
work to CSR-DCF is simple: CSR mask is replaced with the mask produced by
minimizing (1).

4 Experiments

In this section, we present the results for various trackers augmented with the
proposed framework. Four generic, short-term trackers due to their proven suc-
cess and efficiency are chosen; DCF [8], ECO [9] and CSR-DCF [7]. Since ECO
has two variants, we applied the proposed framework to both ECO-gpu (deep
features) and ECO-hc (hand crafted features).

4.1 Experimental Setup

Implementation Details – All experiments were run on a single laptop using a
non-optimized Matlab code with Intel Core i7 3.6GHz and Ubuntu 16.04 OS. The
parameters for the proposed algorithm were empirically set and kept constant
during the experiments. Tracking parameters were as in the original works with
the exception of DCF and CSR-DCF filter learning update rates were set to 0.03
and the number of bins for color histograms to 512. The rest of the parameters
can be found in the publicly available code of our framework. [32]
Dataset – For validating the proposed framework we conducted experiments on
the Princeton Tracking Benchmark (PTB) [18]. The dataset consists of 95 eval-
uation sequences and 5 validation sequences from 11 tracking categories, namely
human, animal, rigid, large, small, slow, fast, occlusion, no occlusion, passive mo-
tion and active motion. The videos have been recorded with a standard Kinect
1.0 device and all frames annotated manually.
Evaluation Metrics – We use the metrics as they are provided by PTB [18].

However, the evaluation sequences do not contain publicly available ground
truths except for the initial frame. To facilitate a fair comparison, Song et al. [18]
also provide an online system where the resulting coordinates are uploaded for
obtaining the final scores and ranking. The results of other methods in our paper
were taken from the online system’s website with the exception of DLST [23] who
have not registered their methods. DLST scores were obtained from its paper.
Bibi et al. [21] depth images are adopted in the experiments.

4.2 Comparison to State-of-the-Art

The results of the converted short-term trackers and the other top performing
trackers on the PTB dataset are given in Table 1. Since the evaluation server
did not allow multiple simultaneous submissions, we submitted each method
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Table 1. Comparison of short-term RGB and RGBD tracking methods on the Prince-
ton Tracking Benchmark (PTB) [18]. DCF [8] and three state-of-the-art trackers were
used within the framework – ECOgpu [9], ECOhc [9] and CSR-DCF [7]; their level-one
RGBD extensions are denoted DCF-rgbd, ECO-rgbd and CSR-DCF-rgbd, the level-two
CSR-DCF integration where the original RGB-based mask is replaced by the proposed
foreground mask (Section 3.5) is denoted CSR-DCF-rgbd++. (The table shows results
for the Princeton Benchmark as of June 15, 2018)

Avg Rank Tracking Category
Method Human Animal Rigid Large Small Slow Fast Occ. No-Occ. Passive Active

�CSR-DCF-rgbd++ 3.64 0.77(2) 0.65(5) 0.76(6) 0.75(4) 0.73(1) 0.80(3) 0.72(3) 0.70(3) 0.79(5) 0.79(5) 0.72(3)
OAPF [20] 5.27 0.64(14) 0.85(1) 0.77(4) 0.73(6) 0.73(2) 0.85(1) 0.68(8) 0.64(8) 0.85(1) 0.78(9) 0.71(4)
3D-T [21] 5.36 0.81(1) 0.64(7) 0.73(15) 0.80(1) 0.71(6) 0.75(8) 0.75(1) 0.73(1) 0.78(11) 0.79(6) 0.73(2)
RGBDOcc+OF [18] 5.55 0.74(5) 0.63(9) 0.78(2) 0.78(3) 0.70(7) 0.76(5) 0.72(4) 0.72(2) 0.75(17) 0.82(2) 0.70(5)
◦ECOhc-rgbd 6.18 0.70(7) 0.55(15) 0.81(1) 0.69(9) 0.72(4) 0.78(4) 0.68(7) 0.65(6) 0.79(6) 0.83(1) 0.66(8)
DSKCF-Shape [30] 6.64 0.71(6) 0.71(3) 0.74(11) 0.74(5) 0.70(8) 0.76(6) 0.70(6) 0.65(7) 0.81(4) 0.77(11) 0.70(6)
DLST [23] 6.73 0.77(3) 0.69(4) 0.73(16) 0.80(2) 0.70(9) 0.73(14) 0.74(2) 0.66(5) 0.85(2) 0.72(16) 0.75(1)
DM-DCF [24] 6.73 0.76(4) 0.58(12) 0.77(5) 0.72(8) 0.73(3) 0.75(10) 0.72(5) 0.69(4) 0.78(13) 0.82(3) 0.69(7)
DSKCF [22] 9.36 0.67(10) 0.61(10) 0.76(8) 0.69(10) 0.70(10) 0.75(9) 0.67(9) 0.63(9) 0.78(12) 0.79(7) 0.66(9)
�ECOgpu-rgbd 9.82 0.66(11) 0.58(11) 0.76(7) 0.65(14) 0.71(5) 0.81(2) 0.64(14) 0.62(10) 0.77(14) 0.78(8) 0.65(12)
DSKCF-CPP [22] 10.36 0.65(12) 0.64(8) 0.74(12) 0.66(13) 0.69(12) 0.76(7) 0.65(13) 0.60(12) 0.79(7) 0.80(4) 0.64(14)
RGBD+OF [18] 11.36 0.64(15) 0.65(6) 0.75(9) 0.72(7) 0.65(17) 0.73(15) 0.66(10) 0.60(13) 0.79(8) 0.74(15) 0.66(10)
hiob [31] 11.64 0.53(19) 0.72(2) 0.78(3) 0.61(16) 0.70(11) 0.72(16) 0.64(15) 0.53(16) 0.85(3) 0.77(12) 0.62(15)
�CSR-DCF-rgbd 11.91 0.68(9) 0.57(13) 0.74(10) 0.68(11) 0.68(14) 0.74(12) 0.65(12) 0.62(11) 0.75(16) 0.77(10) 0.64(13)
◦ECOhc [9] 12.18 0.69(8) 0.56(14) 0.72(17) 0.67(12) 0.68(13) 0.74(11) 0.65(11) 0.59(14) 0.78(9) 0.74(14) 0.65(11)
�ECOgpu [9] 15.36 0.58(16) 0.54(16) 0.73(13) 0.59(18) 0.65(15) 0.73(13) 0.58(17) 0.51(17) 0.78(10) 0.69(17) 0.60(17)
•DCF-rgbd 15.45 0.64(13) 0.54(17) 0.73(14) 0.65(15) 0.65(16) 0.71(17) 0.63(16) 0.59(15) 0.74(18) 0.76(13) 0.61(16)
•DCF [8] 18.09 0.56(17) 0.52(19) 0.66(18) 0.60(17) 0.59(19) 0.65(18) 0.57(18) 0.48(18) 0.74(19) 0.68(18) 0.56(18)
�CSR-DCF [7] 18.36 0.54(18) 0.53(18) 0.64(19) 0.56(19) 0.59(18) 0.61(19) 0.56(19) 0.44(19) 0.76(15) 0.64(19) 0.55(19)

separately and generated the leaderboard using the official protocol; methods
were first ranked in each category and then the average rank was calculated.

The symbols •, �, �, and ◦ in Table 1 mark the trackers that our framework
applied to. As it can be observed, the proposed method clearly has a big impact
on overall rankings for all three trackers. Especially in sequences with occlusions,
this impact becomes more visible. CSR-DCF improves 8 ranks, ECOgpu ranking
sees 7 ranks improvement and ECOhc rank improves by 8. In terms of accuracy,
the improvement is as strong as in rankings. When the proposed framework
(without foreground masked updates) is applied to CSR-DCF, its performance
in occlusion sequences increases 18% while ECOhc grows by 6% and ECOgpu
11%. The level-two integration further boosts occlusion sequences accuracy for
CSR-DCF to a total of 26%.

Unlike other top performing methods, CSR-DCF-rgbd++ also maintains a
well-balanced performance over all the categories by staying among the top in
every one. This suggests that it does not overfit to specific categories but it pro-
vides similar performance for different scenarios which makes it a very suitable
candidate for real-life applications.

Fig. 4 shows that the proposed framework adds to tracker’s occlusion re-
silience to both short-term and long-term occlusions. For example, ECOhc-rgbd
was able to detect the occlusion and it also re-detected the target object when
it reappeared in the scene instead of drifting due to model pollution. As a good
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Fig. 4. Short-term and long-term occlusion examples comparing the original meth-
ods(red) and their RGBD versions(green). Top row – DCF, second row – ECOgpu,
third row – ECOhc, bottom row – CSR-DCF.

example of long-term recovery example, CSR-DCF-rgbd++ was able to recover
even after 35 frames of occlusion state since it avoided model corruption and
expanded the search region gradually.

The reason why CSR-DCF-rgbd++ performs better than the other RGBD
methods can be possibly explained by its masked DCF update mechanism which
uses the foreground provided by the framework. In the discriminative tracking
paradigm, the tracker’s target model is updated over the time for coping with
the visual changes. However, when a rectangular bounding box is used for this
purpose, it is likely to include background and occluding object’s pixels as well.
This results with learning of irrelevant information that may cause drifting.
Whereas in the masked update approach, the updates are done only using the
pixels that are confidently belong to the target object. Thus, the target model
stays uncorrupted which results with better performance.
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5 Conclusions

A generic framework was proposed for converting existing short-term RGB track-
ers into RGBD trackers. The framework is easy to adopt as it only requires
control of model updating (stop/resume) and a tracking bounding box which
are both provided in any tracker that is VOT compliant [6]. At the core of
the framework is a foreground model which uses depth, color and spatial cues
to efficiently detect occluded regions which are utilized at two-levels: occlusion
detection and optionally, masked tracker updates. In all experiments, existing
RGB trackers improved their ranks in the publicly available Princeton tracking
benchmark [18]. CSR-DCF tracker which allows level-two integration of the pro-
posed foreground model achieved state-of-the-art accuracy and was ranked the
best on the day of submission. The full source code of the framework is publicly
available. [32]
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Jǐŕı Matas was supported by the OP VVVMEYS project CZ.02.1.01/0.0/0.0/16 019/
0000765 ”Research Center for Informatics”.



14 U. Kart, J-K. Kämäräinen and J. Matas
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Abstract

Standard RGB-D trackers treat the target as a 2D struc-
ture, which makes modelling appearance changes related
even to out-of-plane rotation challenging. This limitation is
addressed by the proposed long-term RGB-D tracker called
OTR – Object Tracking by Reconstruction. OTR performs
online 3D target reconstruction to facilitate robust learn-
ing of a set of view-specific discriminative correlation filters
(DCFs). The 3D reconstruction supports two performance-
enhancing features: (i) generation of an accurate spatial
support for constrained DCF learning from its 2D pro-
jection and (ii) point-cloud based estimation of 3D pose
change for selection and storage of view-specific DCFs
which robustly localize the target after out-of-view rotation
or heavy occlusion. Extensive evaluation on the Princeton
RGB-D tracking and STC Benchmarks shows OTR outper-
forms the state-of-the-art by a large margin.

1. Introduction

Visual object tracking (VOT) is one of the core prob-
lems in computer vision; it has many applications [18, 8].
The field has progressed rapidly, fueled by the availabil-
ity of large and diverse datasets [39, 34] and the annual
VOT challenge [22, 23]. Until recently, tracking research
has focused on RGB videos, largely neglecting RGB-D
(rgb+depth) tracking as obtaining a reliable depth map at
video frame rates has not been possible without expensive
hardware. In the last few years, depth sensors have become
widely accessible, which has lead to a significant increase of
RGB-D tracking related work [6, 1, 26]. Depth provides im-
portant cues for tracking since it simplifies reasoning about
occlusions and facilitates depth-based object segmentation.
Progress in RGB-D tracking has been further boosted by

Figure 1. The OTR – Object Tracking by Reconstruction – ob-
ject model consists of a set of 2D view-specific DCFs and of an
approximate 3D object reconstruction. The OTR thus copes well
with out-of-view rotation with a significant aspect change, while a
state-of-the-art tracker CSR-rgbd++ [19] drifts and fails.

the emergence of standard datasets and evaluation proto-
cols [35, 40].

In RGB-D tracking, direct extensions of RGB methods
by adding the D-channel as an additional input dimension
have achieved considerable success. In particular, discrimi-
native correlation filter (DCF) based methods have shown
excellent performance on the Princeton RGB-D tracking
benchmark [35], confirming the reputation gained on RGB
benchmarks [22, 23, 19, 20, 6, 1]. Furthermore, DCFs
are efficient in both learning of the visual target appear-
ance model and in target localization, which are both im-
plemented by FFT, running in near real time on a standard
CPU.

A major limitation of the standard RGB and RGB-D
trackers, regardless of the actual method (e.g. DCF [4],
Siamese deep nets [2], Mean shift [9], Lucas Kanade [27]),
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is that they treat the tracked 3D object as a 2D structure.
Thus even a simple rotation of a rigid 3D object is inter-
preted as potentially significant appearance change in 2D
that is conceptually indistinguishable from partial occlu-
sion, tracker drift, blurring and ambient light changes.

Consider a narrow object, e.g., a book, with its front
cover facing the camera, that rotates sideways and ends with
its back side facing the camera (Figure 1). From the per-
spective of a standard RGB tracker, the object has deformed
and the appearance has completely changed. Since most of
the standard trackers cannot detect (do not model) aspect
changes, the target bounding box and the appearance model
contain mostly pixels belonging to the background when
the narrow side of the book is facing the camera. Further-
more, the model update is carried out by implicit or explicit
temporal averaging of the tracked views. Consequently, the
appearance observed in the earlier frames is lost after a cer-
tain time period, limiting re-detection capability in situation
when the target is completely occluded, but later re-appears,
since its appearance no longer matches the last observed
view. The above-mentioned problems are almost trivial to
solve if a 3D model with attached photometric information
is available for the tracked object.

We exploit the opportunity of using the depth component
in RGB-D signal to build a simple, yet powerful 3D object
representation based on the surface splat model, i.e., the ob-
ject surface is approximated by a collection of 3D points
with color, radius and the normal – surfels. This model has
been proven very powerful in the context of SLAM [33].
The 3D model is aligned and updated to the current 2D
target appearance during tracking by an ICP-based match-
ing mechanism [33] – thus a pre-image of the 2D target
projection is maintained during tracking. The 3D object
pre-image significantly simplifies detection and handling of
(self-)occlusion, out-of-plane rotation (view changes) and
aspect changes.

The ICP-based 3D pre-image construction [33] requires
accurate identification of the object pixels in the current
frame prior to matching, and it copes with only small mo-
tions due to a limited convergence range. A method from
a high-performance RGB-D DCF tracker [19] is thus used
to robustly estimate potentially large motions and to iden-
tify object pixels for the pre-image construction. The DCF
learning is improved by generating appearance constraints
from the pre-image. Object appearance changes result-
ing from out-of-view rotation are detected by observing
the pre-image 3D motion and a set of view-specific DCFs
is generated. These 2D models are used during tracking
for improved localization accuracy as well as for target re-
detection using the recent efficient formulation of the DCF-
based detectors [30]. The resulting tracker thus exhibits a
long-term capability, even if the target re-appears in a pose
different from the one observed before the occlusion.

Contributions The main contribution of the paper is a
new long-term RGB-D tracker, called OTR – Object Track-
ing by Reconstruction that constructs a 3D model with
view-specific DCFs attached. The DCF-coupled estima-
tion of the object pre-image and its use in DCF model
learning for robust localization has not been proposed be-
fore. The OTR tracker achieves the state-of-the-art, outper-
forming prior trackers by a large margin on two standard
RGB-D tracking benchmarks. An ablation study confirms
the importance of view-specific DCF appearance learning
that is tightly connected to the 3D reconstruction. We will
make the reference implementation of OTR available at
https://github.com/ugurkart.

2. Related Work

RGB Tracking Of the many approaches proposed in the
literature, DCF-based methods have demonstrated excel-
lent performance – efficiency trade-off in recent tracking
challenges [24, 22, 23]. Initially proposed by Bolme et
al. [4], DCF-based tracking captured the attention of the
vision community due to its simplicity and mathemati-
cal elegance. Improvements of the original method include
multi-channel formulation of correlation filters [12, 15], fil-
ter learning using kernels exploiting properties of circular
correlation [17] and scale estimation with multiple one-
dimensional filters [11]. Following these developments,
Galoogahi et al. [14] tackled the boundary problems that
stem from the nature of circular correlation by proposing a
filter learning method where a filter with size smaller than
the training example is adopted. Lukezic et al. [28] further
improved this idea by formulating the filter learning process
using a graph cut based segmentation mask as a constraint.

RGB-D Tracking The most extensive RGB-D object
tracking benchmark has been proposed by Song et al. [35]
(Princeton Tracking Benchmark). The benchmark includes
a dataset, evaluation protocol and a set of baseline RGB-
D trackers. Several RGB-D trackers have been proposed
since. Meshgi et al. [31] used an occlusion-aware parti-
cle filter framework. A similar approach was proposed by
Bibi et al. [3] but using optical flow to improve localiza-
tion accuracy. As an early adopter of DCF based RGB-D
trackers, Hannuna et al. [16] used depth as a clue to detect
occlusions while tracking is achieved by KCF [17]. An et
al. [1] performed a depth based segmentation along with a
KCF tracker. Kart et al. [20] proposed a purely depth based
segmentation to train a constrained DCF similarly to CSR-
DCF [28] and later extended their work to include color in
segmentation [19]. Liu et al. [26] proposed a context-aware
3-D mean-shift tracker with occlusion handling. At the time
of writing this paper [26] is ranked first at Princeton Track-
ing Benchmark. Xiao et al. [40] recently proposed a new
RGB-D tracking dataset (STC) and an RGB-D tracker by
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adopting an adaptive range-invariant target model.

3D Tracking Klein et al. [21] proposed a camera pose
tracking algorithm for small workspaces which works on
low-power devices. The approach is based on tracking key-
points across the RGB frames and bundle adjustment for
joint estimation of the 3D map and camera pose. New-
combe et al. [32] proposed an iterative closest point (ICP)
based algorithm for depth sequences for dense mapping of
indoor scenes. In a similar fashion, Wheelan et al. [38] used
surfel-based maps and jointly optimized color and geomet-
ric costs in a dense simultaneous localization and mapping
(SLAM) framework. All three methods are limited to static
scenes and are inappropriate for object tracking. This limi-
tation was addressed by Rünz et al. [33], who extended [38]
by adding the capability of segmenting the scene into multi-
ple objects. They use a motion consistency and semantic in-
formation to separate the object from the background. This
limits the method to large, slow moving objects.

Lebeda et al. [25] combined structure from motion,
SLAM and 2D tracking to cope with 3D object rotation.
Their approach reconstructs the target by tracking keypoints
and line features, however, it cannot cope with poorly-
textured targets and low-resolution images.

3. Object tracking by 3D reconstruction

In OTR, object appearance is modeled at two levels of
abstraction which enables per-frame target localization and
re-detection in the case of tracking failure. The appearance
level used for localizing the target in the image is modelled
by a a set of view-specific discriminative correlation filters,
i.e., a DCF ht that models the current object appearance,
and a set of snapshots {h(s)}Ss=1 modelling the object from
previously observed views. In addition to the filters, the
object color and depth statistics are modelled by separate
color and depth histograms for the foreground and the back-
ground.

The second level of object abstraction is a model of
the object pre-image Θt = {Pt,Rt,Tt}, where Pt is
the surfel-based object 3D model specified in the object-
centered coordinate system and {Rt,Tt} are the rotation
and the translation of the 3D model into the current object
position.

The two models interact during tracking for improved
DCF training and 3D pose change detection (e.g., rotations).
We describe the DCF framework used by the OTR tracker in
Section 3.1, the multi-view DCFs with the pre-image model
is detailed in Section 3.2, Section 3.3 details target loss re-
covery and Section 3.4 summarizes the full per-frame track-
ing iteration.

3.1. Constrained DCF

The core DCF tracker in the OTR framework is the re-
cently proposed constrained discriminative correlation fil-
ter CSR-DCF [29], which is briefly outlined here. Given a
search region of size W × H a set of Nd feature channels
f = {fd}Nd

d=1, where fd ∈ RW×H , are extracted. A set of
Nd correlation filters h = {hd}Nd

d=1, where hd ∈ RW×H ,
are correlated with the extracted features and the object po-
sition is estimated as the location of the maximum of the
weighted correlation responses

r =
∑Nd

d=1
wd(fd � hd), (1)

where � represents circular correlation, which is efficiently
implemented by a Fast Fourier Transform with {wd}Nd

d=1 be-
ing the channel weights. The target scale can be efficiently
estimated by another correlation filter trained over the scale-
space [11].

Filter learning is formulated in CSR-DCF as a con-
strained optimization that minimizes a regression loss

ε(h) =

Nc∑
d=1

‖fd �hd−g‖2+λ‖hd‖2 ; hd ≡ m�hd, (2)

where g is a desired output and m is a binary mask m ∈
{0, 1}W×H that approximately separates the target from the
background. The mask thus acts as a constraint on the filter
support, which allows learning a filter from a larger training
region as well as coping with targets that are poorly approx-
imated by an axis-aligned bounding box. CSR-DCF applies
a color histogram-based segmentation for mask generation,
which is not robust to visually similar backgrounds and illu-
mination change. We propose generating the mask from the
RGB-D input and the estimated pre-image in Section 3.2.1.

Minimization of (2) is achieved by an efficient ADMM
scheme [5]. Since the support of the learned filter is con-
strained to be smaller than the learning region, the maxi-
mum response on the training region reflects the reliabil-
ity of the learned filter [28]. These values are used as per-
channel weights wd in (1) for improved target localization
(we refer the reader to [29] for more details).

3.2. A multi-view object model

At each frame, the current filter ht is correlated within a
search region centered on the target position predicted from
the previous frame following (1). To improve localization
during target 3D motion, we introduce a ”memory” which is
implemented by storing captured snapshots {h(s)}Ss=1 from
different 3D view-points (i.e., a set of view-specific DCFs).
At every NR-th frame, all view-specific DCFs are evalu-
ated, and the location of the maximum of the correlation
response is used as the new target hypothesis xt. If the max-
imum correlation occurs in the set of snapshots, the current
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filter is replaced by the corresponding snapshot filter. Target
presence is determined at this location by the test described
in Section 3.3.1. In the case the test determines target is
lost, the tracker enters a re-detection stage described in Sec-
tion 3.3.

If the target is determined to be present, the current filter
ht is updated by a weighted running average

ht+1 = (1− η)ht + ηh̃t, (3)

where h̃t is a new filter estimated by the constrained filter
learning in Section 3.1 at the estimated position xt and η is
the update factor.

In addition to updating the current filter, the object color
and depth histograms are updated as in [19], the object pre-
image is updated as described in Section 3.2.2 and the set
of view-specific DCFs {h(s)}Ss=1 is updated following Sec-
tion 3.2.3.

3.2.1 Object pre-image-based filter constraint

The binary mask m used in the constrained learning in (2)
is computed at the current target position at filter learn-
ing stage. In the absence of other inputs, the mask is
estimated by a recent segmentation approach from [19].
This approach uses an MRF segmentation model from
CSR-DCF [29] within the filter learning region and es-
timates per-pixel unary potentials by color and depth
(foreground/background) histograms backprojection in the
RGB-D image.

However, the pre-image Θt can be used to better out-
line the object in the filter training region, leading to a more
accurately learned filter. Thus, at DCF training stage, the
pre-image is generated by fitting the object 3D model Pt

onto the current object appearance (Section 3.2.2). If the fit
is successful, the segmentation mask used in filter learning
(2) is replaced by a new mask generated as follows. The 3D
model Pt is projected into the 2D filter training region. Pix-
els in the region corresponding to the visible 3D points are
set to one, while others to zero, thus forming a binary ob-
ject occupancy map. The map is dilated to remove holes in
the object mask and only the largest connected component
is retained, while others are set to zero to reduce the ef-
fect of potential reconstruction errors in the 3D model. An
example of the 2D mask construction from the 3D object
pre-image is demonstrated in Figure 2.

3.2.2 Object pre-image update

The object pre-image Θt is updated from the object position
estimated by the multi-view DCF (Section 3.2). Pixels cor-
responding to the target are identified by the color+depth
segmentation mask from Section 3.2.1. The patch is ex-
tracted from the RGB-D image and used to update the ob-
ject 3D model Pt. The 3D model Pt is first translated to

Figure 2. A 2D DCF localizes the target (top-left), the target
color+depth pixels are approximately segmented (top-right) and
used to update the 3D pre-image (bottom-left). The pre-image is
projected to 2D generating an occupancy map (bottom-right). The
resulting mask better delineates the object, which improves the
constrained DCF learning.

the 3D position determined by the target location from the
multi-view DCF. The ICP-based fusion from [33], that uses
color and depth, is then applied to fine align the 3D model
with the patch and update it by adding and merging the cor-
responding surfels (for details we refer to [33]). The up-
dated model is only retained if the ICP alignment error is
reasonably low (i.e., below a threshold τICP), otherwise the
update is discarded.

3.2.3 A multi-view DCF update

Continuous updates may lead to gradual drift and fail-
ure whenever the target object undergoes a significant ap-
pearance change. Recovery from such situations essen-
tially depends on the diversity of the target views captured
by the snapshots {h(s)}Ss=1 and their quality (e.g., snap-
shots should not be contaminated by the background). The
following conservative update mechanism that maximizes
snapshot diversity and minimizes contamination is applied.

The current filter is considered for addition to the snap-
shots only if the target passed the presence test (Sec-
tion 3.3.1) and the object pre-image Θt is successfully up-
dated (Section 3.2.2). Passing these two tests, the target is
considered visible with the pre-image accurately fitted. A
filter is added if the object view has changed substantially
and results in a new appearance (viewpoint). The change
is measured by a difference between the reference aspect ρ0
(i.e., a bounding box width-to-height ratio) and the aspect ρt
obtained from the current 2D projection of the object pre-
image. Whenever this difference exceeds a threshold, i.e.,
‖ρ0 − ρt‖ > τρ, a new snapshot is created and the current
ratio becomes a new reference, i.e., ρ0 ← ρt. In our pre-
liminary experiments, we tested using Euler angles of the
estimated rotation matrix R, but this was found sensitive to
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Figure 3. Examples of view-specific DCFs creation. The tracker
was initialized on the images in the left-most column, while the
remaining images represent frames in which a new view was de-
tected and stored in the set of view-specific DCFs.

ICP estimation errors and therefore aspect ratio test proved
to be more robust. Examples of images used to create sepa-
rate DCF views are shown in Figure 3.

3.3. A multi-view DCF target detection

Target presence is determined at each frame using the
test described in Section 3.3.1. Whenever the target is lost,
the following re-detection mechanism is activated. At each
frame all filters in the snapshot set {h(s)}Ss=1 are corre-
lated with features extracted from a region centered at the
last confident target position. To encode a motion model,
the search region size is gradually increased in subsequent
frames by a factor αΔt

s , where αs > 1 is a fixed scale fac-
tor and Δt is the number of frames since the last confident
target position estimation. The correlation is efficiently cal-
culated by padding the snapshots with zeros to the current
search region size and applying FFT [30].

Since the target may change the size, a two-stage ap-
proach for re-detection is applied. First, the hypothesized
target position is estimated as the location of the maximum
correlation response and the filter h(m) that yielded this re-
sponse is identified. The current object scale is then com-
puted as the ratio sf = D0

Dt
between the depth of the target

in the first frame (D0), and the depth Dt at the current posi-
tion. The depth is calculated by the median of the D channel
within the target bounding box. The filter that yielded the
best correlation response (h(m)) is correlated again on the
search region scaled by sf and target presence test is carried
out (Section 3.3.1). In case the test determines the target is
present, the current filter is replaced, i.e., ht ← h(m), and
the re-detection process is deactivated.

3.3.1 Target presence test

Recently, a target presence test has been proposed for long-
term discriminative correlation filters [30]. The test is based
on computing tracking uncertainty value as a ratio qt =

Rt

R

between the maximum correlation response in the current
frame (Rt) and a moving average of these values in the re-
cent Nq frames when the target was visible. The test con-
siders target lost whenever the ratio exceeds a pre-defined
threshold qt > τq . It was showed in [30] that the test is
robust to a range of thresholds.

To allow early occlusion detection, however, [19] intro-
duce a test that compares the area of the segmentation mask
with the area of the axis-aligned bounding box of the DCF.
This test improves performance during occlusion, but grad-
ual errors in scale estimation result in disagreement between
the bounding box and the actual object and might lead to a
reduced accuracy of the test.

The two tests are complementary and computationally
very efficient, and the target presence is reported only if the
considered target position passes the both tests.

3.4. Object tracking by reconstruction

Our object tracking by reconstruction approach (OTR) is
summarized as follows.

Initialization. The tracker is initialized from a bounding
box in the first frame. Color and depth histograms are sam-
pled as in [19] and a segmentation mask m is generated.
The segmentation mask m is used to learn the initial filter
h0 according to (2), as well as to identify target pixels in the
RGB-D model to initialize the pre-image Θ0 by [33]. The
set of snapshots is set to an empty set.

Localization. A tracking iteration at frame t starts with
the target position xt−1 from the previous frame. A region
is extracted around xt−1 in the current image and the po-
sition xt with maximum correlation response is computed
using the current filter ht−1 (along with all snapshots every
NR frames) as described in Section 3.2. The position xt

is tested using the target presence test from Section 3.3.1.
If the test is passed, the target is considered as well local-
ized, and the visual models (i.e., filters and pre-image) are
updated. Otherwise, target re-detection (Section 3.3) is ac-
tivated in the next frame.

Update. A color+depth segmentation mask m is com-
puted within a region centered at xt according to [19] to
identify target pixels. The corresponding RGB-D pixels are
used to update the pre-image Θt, i.e., the 3D surfel repre-
sentation along with its 3D pose (Section 3.2.2).

The filter ht−1 is updated (3) by the filter learned at
the current position (2) with support constraint computed
from the pre-image (Section 3.2.1). Finally, the target as-
pect change is computed using the updated pre-image and
the set of snapshots are updated if significant appearance
change is detected (Section 3.2.3)

4. Experimental analysis

In this section, we validate OTR by a comprehensive ex-
perimental evaluation. The implementation details are pro-
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Table 1. Experiments on the Princeton Tracking Benchmark using the PTB protocol. Numbers in the parenthesis are the ranks.

Method

Avg.
Rank

Avg.
Success Human Animal Rigid Large Small Slow Fast Occ. No-Occ. Passive Active

OTR 2.36 0.769(1) 0.77(2) 0.68(6) 0.81(2) 0.76(4) 0.77(1) 0.81(2) 0.75(1) 0.71(3) 0.85(2) 0.85(1) 0.74(2)
ca3dms+toh [26] 4.55 0.737(5) 0.66(9) 0.74(2) 0.82(1) 0.73(7) 0.74(2) 0.80(4) 0.71(7) 0.63(9) 0.88(1) 0.83(2) 0.70(6)
CSR-rgbd++ [19] 5.00 0.740(3) 0.77(3) 0.65(8) 0.76(7) 0.75(5) 0.73(3) 0.80(3) 0.72(4) 0.70(4) 0.79(8) 0.79(6) 0.72(4)
3D-T [3] 5.64 0.750(2) 0.81(1) 0.64(9) 0.73(12) 0.80(1) 0.71(6) 0.75(9) 0.75(2) 0.73(1) 0.78(11) 0.79(7) 0.73(3)
PT [35] 6.09 0.733(6) 0.74(6) 0.63(11) 0.78(3) 0.78(3) 0.70(7) 0.76(5) 0.72(6) 0.72(2) 0.75(13) 0.82(4) 0.70(7)
OAPF [31] 6.09 0.731(7) 0.64(12) 0.85(1) 0.77(6) 0.73(8) 0.73(5) 0.85(1) 0.68(9) 0.64(8) 0.85(3) 0.78(9) 0.71(5)
DLST [1] 6.45 0.740(4) 0.77(4) 0.69(5) 0.73(13) 0.80(2) 0.70(9) 0.73(11) 0.74(3) 0.66(6) 0.85(4) 0.72(13) 0.75(1)

DM-DCF [20] 6.91 0.726(8) 0.76(5) 0.58(13) 0.77(5) 0.72(9) 0.73(4) 0.75(8) 0.72(5) 0.69(5) 0.78(10) 0.82(3) 0.69(9)
DS-KCF-Shape [16] 7.27 0.719(9) 0.71(7) 0.71(4) 0.74(9) 0.74(6) 0.70(8) 0.76(6) 0.70(8) 0.65(7) 0.81(6) 0.77(11) 0.70(8)
DS-KCF [6] 9.91 0.693(11) 0.67(8) 0.61(12) 0.76(8) 0.69(10) 0.70(10) 0.75(10) 0.67(11) 0.63(10) 0.78(12) 0.79(8) 0.66(10)
DS-KCF-CPP [16] 10.09 0.681(12) 0.65(10) 0.64(10) 0.74(10) 0.66(12) 0.69(12) 0.76(7) 0.65(12) 0.60(12) 0.79(9) 0.80(5) 0.64(12)
hiob-lc2 [36] 10.18 0.662(13) 0.53(13) 0.72(3) 0.78(4) 0.61(13) 0.70(11) 0.72(12) 0.64(13) 0.53(13) 0.85(5) 0.77(12) 0.62(13)
STC [40] 10.45 0.698(10) 0.65(11) 0.67(7) 0.74(11) 0.68(11) 0.69(13) 0.72(13) 0.68(10) 0.61(11) 0.80(7) 0.78(10) 0.66(11)

vided in Section 4.1. Performance analysis on two challeng-
ing RGB-D datasets, Princeton Tracking Benchmark (PTB)
and STC, is reported in Section 4.2 and Section 4.3, respec-
tively. Ablation studies are presented in Section 4.4 to ver-
ify our design choices.

4.1. Implementation details

We use HOG features [10] and colornames [37] in our
tracker. The parameters related to the tracker are taken
from [19]. The ICP error threshold is empirically set to
τICP = 5 · 10−4 and the aspect ratio change threshold is
set to τρ = 0.20. Maximum filter evaluation period is equal
to NR = 5 frames and αs = 1.07. All experiments are
run on a single laptop with Intel Core i7 3.6GHz and the
parameters for both tracking and 3D reconstruction are kept
constant throughout the experiments. Our non-optimized
implementation runs at 2 fps.

4.2. Performance on PTB benchmark [35]

The Princeton Tracking Benchmark [35] is the most
comprehensive and challenging RGB-D tracking bench-
mark to date. The authors have recorded and manually an-
notated 100 RGB-D videos in real-life conditions using a
Kinect v1.0. Ground truth bounding boxes of five sequences
are publicly available whereas the ground truth for the re-
maining 95 sequences are kept hidden to prevent overfitting.
Tracking performance is evaluated on the 95 sequences with
the hidden ground-truth. The sequences are grouped into
11 categories: Human, Animal, Rigid, Large, Small, Slow,
Fast, Occlusion, No Occlusion, Passive and Active. We use
Bibi et al. [3] protocol with improved depth registration in
the experiments.

The performance is measured by employing a PASCAL
VOC [13] type of evaluation. Per-frame overlap ot is de-
fined as

ot =

⎧⎪⎨
⎪⎩

area(BTR∩BGT )
area(BTR∪BGT )

, if both BTR and BGT exist

1, if neither BTR and BGT exists
0, otherwise

(4)

where BTR is the output bounding box of the tracker and

BGT is the ground truth bounding box. Tracking perfor-
mance is given as success rate which represents average
overlap [7]. The PTB evaluation protocol sorts the track-
ers according to the primary performance measures with re-
spect to each object category and computes the final ranking
as the average over these ranks. In addition, the overall suc-
cess rate is reported for detailed analysis.

The OTR tracker is compared to all trackers available on
the PTB leaderboard: ca3dms+toh [26], CSR-rgbd++ [19],
3D-T [3], PT [35], OAPF [31], DM-DCF [20], DS-KCF-
Shape [16], DS-KCF [6], DS-KCF-CPP [16], hiob lc2 [36]
and we added two recent trackers STC [40] and DLST [1].
Results are reported in Table 1.

OTR convincingly sets the new state-of-the-art in terms
of both overall ranking and the average success by a large
margin compared to the next-best trackers (Table 1). In
terms of average success, OTR obtains a 4.3% gain com-
pared to the second ranking tracker ca3dms+toh [26], which
tracks the target in 3D as well, but without reconstruction.
This result speaks in favour of our 3D-based pre-image con-
struction and its superiority for RGB-D tracking.

In addition to being the top overall tracker, the perfor-
mance of OTR is consistent across all categories. OTR is
consistently among the top trackers in each category and
achieves the top rank in three categories and the second best
in five categories. This suggests that our tracker does not
overfit to a certain type of scenario and it generalizes very
well unlike some other methods in the benchmark.

A closely related work to our own is recent CSR-rgbd++,
which combines a single CSR-DCF with color and depth
segmentation and implements a target re-detection. OTR
obtains a significant 6.6% increase over CSR-rgbd++ in
Rigid category, which speaks in favor of our DCFs ap-
proach with several views connected to a 3D pre-image that
localizes the target more precisely. On the No-Occ. cat-
egory, OTR outperforms CSR-rgbd++ by a 7.6% success
rate. This can be attributed to the advantage of using a pre-
image Θ for DCF training described in Section 3.2.1.
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Table 2. The normalized area under the curve (AUC) scores computed from one-pass evaluation on the STC Benchmark [40].
Attributes

Method AUC IV DV SV CDV DDV SDC SCC BCC BSC PO

OTR 0.49 0.39 0.48 0.31 0.19 0.45 0.44 0.46 0.42 0.42 0.50

CSR-rgbd++ [19] 0.45 0.35 0.43 0.30 0.14 0.39 0.40 0.43 0.38 0.40 0.46
ca3dms+toh [26] 0.43 0.25 0.39 0.29 0.17 0.33 0.41 0.48 0.35 0.39 0.44
STC [40] 0.40 0.28 0.36 0.24 0.24 0.36 0.38 0.45 0.32 0.34 0.37
DS-KCF-Shape [16] 0.39 0.29 0.38 0.21 0.04 0.25 0.38 0.47 0.27 0.31 0.37
PT [35] 0.35 0.20 0.32 0.13 0.02 0.17 0.32 0.39 0.27 0.27 0.30
DS-KCF [6] 0.34 0.26 0.34 0.16 0.07 0.20 0.38 0.39 0.23 0.25 0.29
OAPF [31] 0.26 0.15 0.21 0.15 0.15 0.18 0.24 0.29 0.18 0.23 0.28

4.3. Performance on STC benchmark [40]

The STC benchmark [40] has been recently published
to complement the PTB benchmark in the number of
categories and diversity of sequences. 36 sequences are
recorded indoors and outdoors using Asus Xtion sensors
and the authors annotated every frame of every video with
10 attributes; Illumination variation (IV), Depth varia-
tion (DV), Scale variation (SV), Color distribution vari-
ation (CDV), Depth distribution variation (DDV), Sur-
rounding depth clutter (SDC), Surrounding color clutter
(SCC), Background color camouflages (BCC), Background
shape camouflages (BSC), Partial occlusion (PO). These
attributes were either automatically computed or manually
annotated.

The tracking performance is measured by precision and
success plots computed from a one-pass evaluation akin
to [39]. Success plot shows the portion of correctly tracked
frames with respect to the different values of the overlap
thresholds. Tracking performance is measured by a non-
normalized area under the curve on this graph, i.e., the sum
of values on the plot. The standard AUC measure [39] is
obtained by dividing the non-normalized AUC by the num-
ber of overlap thresholds. The number of thresholds is the
same for all evaluated trackers and only scales the non-
normalized AUC to interval [0, 1]. We therefore report the
standard AUC values, which is the more familiar measure in
the tracking community. Precision plot is constructed sim-
ilarly to success plot, by measuring the portion of frames
with center-error smaller than a threshold. The overall mea-
sure on precision plot is computed as the value at 20 pixels
error threshold.

The OTR tracker is compared to the following trackers:
CSR-rgbd++ [19], ca3dms+toh [26], STC [40], DS-KCF-
Shape [16], PT [35], DS-KCF [6] and OAPF [31]. The
results are presented in Table 2 and Figure 4. As on PTB
benchmark (Section 4.2), OTR outperforms the state-of-
the-art by a large margin not only in the overall score but
in most of the categories except CDV (Color Distribution
Variation) and SCC (Surrounding Color Clutter), where it
is ranked among top three trackers. The overall top per-
formance and excellent per-attribute performance support

our observations on PTB benchmark that OTR is capable
of handling various tracking scenarios and generalizes well
over the different datasets. Qualitative tracking results on
the four sequences from STC dataset are shown in Fig-
ure 5. The computing times for the three best performing
trackers are 2 fps (OTR), 6 fps (CSR-rgbd++) and 34 fps
(ca3dms+toh).

Figure 4. Success and precision plots on STC benchmark [40].

4.4. Ablation studies

The main components of our tracker are (i) the 3D-based
pre-image, which provides an improved target segmenta-
tion, (ii) the set of multiple view-specific target DCFs and
(iii) the interaction between the former two components. An
ablation study is conducted on the PTB [35] dataset to eval-
uate the extent of contribution of each component. We im-
plemented three variants of the proposed tracker with the
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Table 3. Ablation studies on the PTB benchmark [35].

Method

Avg.
Success Human Animal Rigid Large Small Slow Fast Occ. No-Occ. Passive Active

OTR 0.769 0.77 0.68 0.81 0.76 0.77 0.81 0.75 0.71 0.85 0.85 0.74

OTR−3D 0.747 0.76 0.62 0.80 0.75 0.75 0.80 0.72 0.69 0.82 0.84 0.71
OTR−VS 0.743 0.75 0.66 0.77 0.74 0.74 0.79 0.72 0.67 0.84 0.81 0.72
OTR−3D−VS 0.740 0.78 0.61 0.76 0.75 0.73 0.79 0.72 0.71 0.78 0.79 0.72

Figure 5. Tracking results on four sequences from STC
dataset [40]. The proposed OTR tracker confidently tracks the
target undergoing a substantial pose change. Two state-of-the-art
RGB-D trackers (CSR-rgbd++ [19] and cs3dms+toh [26]), that do
not apply the multi-view DCFs nor target 3D pre-image, result in
less accurate localization or failure.

3D pre-image and view-specific DCFs. The first variant is
the tracker without the 3D pre-image, denoted as OTR−3D.
The second variant is the tracker without the view-specific
DCFs (OTR−VS) and the third variant is the tracker with-
out the view-specific DCFs and without the 3D pre-image
(OTR−3D−VS).

The results of the ablation study are reported in Table 3.
The proposed OTR with all components achieves a 0.769
success rate. Removing the view-specific target represen-
tation (OTR−VS) or 3D pre-image (OTR−3D) result to ap-
prox. 3% success rate drop in tracking performance (0.747
and 0.743). Removing both view-specific and 3D pre-image
representation (OTR−3D−VS) further reduces the tracking
performance to 0.740 success rate.

On the Occlusion category the OTR tracker outperforms
the version without a view-specific formulation (OTR−VS)
by 6% increase in the success rate. The view-specific set
of DCFs remembers the target appearance from different
views, which helps in reducing drifting and improves re-
detection accuracy after occlusion. On average, 4 views
were automatically generated by the view-specific DCF in
OTR per tracking sequence. The tracker version without
the view-specific formulation forgets the past appearance,
which reduces the re-detection capability.

In situations without occlusion, the 3D pre-image plays

a more important role than the view-specific DCF formula-
tion. Removing the 3D pre-image creation from the tracker
results in 7% success rate reduction, which indicates the sig-
nificant importance of using the 3D pre-image for robust
DCF learning.

Overall, the addition of 3D pre-image and view-specific
target representation improves performance of the baseline
version OTR−3D−VS by approximately 4% in tracking suc-
cess rate. The ablation study results conclusively show that
every component importantly contributes to the tracking
performance boost.

5. Conclusions

A new long-term RGB-D tracker, called OTR – Object
Tracking by Reconstruction is presented. The target 3D
model, a pre-image, is constructed by a surfel-based ICP.
The limited convergence range of the ICP and the require-
ment to automatically identify object pixels used for recon-
struction is addressed by utilizing a DCF for displacement
estimation and for approximate target segmentation. The
3D pre-image in turn constrains the DCF learning, and is
used for generating view-specific DCFs. These are used
for localization as well as for target re-detection, giving the
tracker a long-term tracking quality.

The OTR tracker is extensively evaluated on two chal-
lenging RGB-D tracking benchmarks and compared to
12 state-of-the-art RGB-D trackers. OTR outperforms all
trackers by a large margin, setting a new state-of-the-art
on these benchmarks. An ablation study verifies that the
performance improvements come from the 3D pre-image
construction, the view-specific DCF set and the interaction
between the two.

The view-specific DCF formulation allows long-term
tracking of poorly textured and small objects over large dis-
placements. Our future work will focus on extension to
model-based tracking with pre-learned models on realistic,
open-world scenarios. In addition, we plan to consider im-
provements by ICP robustification and deep features.
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A. Lukežič, U. Kart, J. Käpylä, A. Durmush, J.-K. Kämäräinen, J. Matas and

M. Kristan

IEEE/CVF International Conference on Computer Vision (ICCV)2019

Publication reprinted with the permission of the copyright holders





CDTB: A Color and Depth Visual Object Tracking Dataset and Benchmark
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Abstract

We propose a new color-and-depth general visual object
tracking benchmark (CDTB). CDTB is recorded by several
passive and active RGB-D setups and contains indoor as
well as outdoor sequences acquired in direct sunlight. The
CDTB dataset is the largest and most diverse dataset for
RGB-D tracking, with an order of magnitude larger number
of frames than related datasets. The sequences have been
carefully recorded to contain significant object pose change,
clutter, occlusion, and periods of long-term target absence
to enable tracker evaluation under realistic conditions. Se-
quences are per-frame annotated with 13 visual attributes
for detailed analysis. Experiments with RGB and RGB-D
trackers show that CDTB is more challenging than previ-
ous datasets. State-of-the-art RGB trackers outperform the
recent RGB-D trackers, indicating a large gap between the
two fields, which has not been detected by the prior bench-
marks. Based on the results of the analysis we point out
opportunities for future research in RGB-D tracker design.

1. Introduction

Visual object tracking has been enjoying a significant in-
terest of the research community for over several decades
due to scientific challenges it presents and its large practi-
cal potential. In its most general formulation, it addresses
localization of an arbitrary object in all frames of a video,
given a single annotation specified in one frame. This is a
challenging task of self-supervised learning, since a tracker
has to localize and carefully adapt to significant target ap-
pearance changes, cope with ambient changes, clutter, and
detect occlusion and target disappearance. As such, general
object trackers cater a range of applications and research
challenges like surveillance systems, video editing, sports
analytics and autonomous robotics.

Fuelled by emergence of tracking benchmarks [40, 44,
27, 25, 37, 36] that facilitate objective comparison of differ-
ent approaches, the field has substantially advanced in the
last decade. Due to a wide adoption of RGB cameras, the
benchmarks have primarily focused on color (RGB) track-

Figure 1. RGB and depth sequences from CDTB. Depth offers a
complementary information to color: two identical objects are eas-
ier to distinguish in depth (a), low illumination scenes (b) are less
challenging for trackers if depth information is available, tracking
a deformable object in depth simplifies the problem (c) and a sud-
den significant change in depth is a strong clue for occlusion (d).
Sequences (a,b) are captured by a ToF-RGB pair of cameras, (c)
by s tereo-camera sensor and (d) by a Kinect sensor.

ers and trackers that combine color and thermal (infrared)
modalities [28, 26, 23, 24].

Only recently various depth sensors like RGB-D, time-
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of-flight (ToF) and LiDAR have become widely accessible.
Depth provides an important cue for tracking since it simpli-
fies reasoning about occlusion and offers a better object-to-
background separation compared to only color. In addition,
depth is a strong cue to acquire object 3D structure and 3D
pose without a prior 3D model, which is crucial in research
areas like robotic manipulation [5]. The progress in RGB-
D tracking has been boosted by the emergence of RGB-D
benchmarks [41, 45], but the field significantly lags behind
the advancements made in RGB-only tracking.

One reason for the RGB – RGB-D general object
tracking performance gap is that existing RGB-D bench-
marks [41, 45] are less challenging than their RGB counter-
parts. The sequences are relatively short from the perspec-
tive of practical applications, the objects never leave and
re-enter the field of view, they undergo only short-term oc-
clusions and rarely significantly rotate away from the cam-
era. The datasets are recorded indoor only with Kinect-like
sensors which prohibits generalization of the results to gen-
eral outdoor setups. These constraints were crucial for early
development of the field, but further boosts require a more
challenging benchmark, which is the topic of this paper.

In this work we propose a new color-and-depth track-
ing benchmark (CDTB) that makes several contributions to
the field of general object RGB-D tracking. (i) The CDBT
dataset is recorded by several color-and-depth sensors to
capture a wide range of depth signals. (ii) The sequences
are recorded indoor as well as outdoor to extend the domain
of tracking setups. (iii) The dataset contains significant ob-
ject pose changes to encompass depth appearance variabil-
ity from real-world tracking environment. (iv) The objects
are occluded or leave the field of view for longer duration
to emphasize the importance of trackers being able to report
target loss and perform re-detection. (v) We compare sev-
eral state-of-the-art RGB-D trackers as well as state-of-the-
art RGB trackers and their RGB-D extensions. Examples of
CDTB dataset are shown in Figure 1.

The reminder of the paper is structured as follows. Sec-
tion 2 summarizes the related work, Section 3 details the
acquisition and properties of the dataset, Section 4 summa-
rizes the performance measures, Section 5 reports experi-
mental results and Section 6 concludes the paper.

2. Related work

RGB-D Benchmarks. The diversity of the RGB-D
datasets is limited compared to those in RGB tracking.
Many of the datasets are application specific, e.g., pedes-
trian tracking or hand tracking. For example, Ess et
al. [11] provide five 3D bounding box annotated sequences
captured by a calibrated stereo-pair, the RGB-D People
Dataset [42] contains a single sequence of pedestrians in
a hallway captured by a static RGB-D camera and Stanford
Office [8] contains 17 sequences with a static and one with

a moving Kinect. Garcia-Hernando et al. [13] introduce an
RGB-D dataset for hand tracking and action recognition.
Another important application field for RGB-D cameras is
robotics, but here datasets are often small and the main ob-
jective is real-time model-based 3D pose estimation. For
example, the RGB-D Object Pose Tracking Dataset [7]
contains 4 synthetic and 2 real RGB-D image sequences
to benchmark visual tracking and 6-DoF pose estimation.
Generating synthetic data has become popular due to re-
quirements of large training sets for deep methods [39], but
it is unclear how well these predict real world performance.

Only two datasets are dedicated to general object track-
ing. The most popular is Princeton Tracking Benchmark
(PTB) [41], which contains 100 RGB-D video sequences
of rigid and nonrigid objects recorded with Kinect. The
choice of sensor constrains the dataset to only indoor sce-
narios. The dataset diversity is further reduced since many
sequences share the same tracked objects and the back-
ground. More than half of the sequences are people track-
ing. The sequences are annotated by five global attributes.
The RGB and depth channels are poorly calibrated. In ap-
proximately 14% of sequences the RGB and D channels are
not synchronized and approximately 8% are miss-aligned.
The calibration issues were addressed by Bibi et al [3]
who published a corrected dataset. PTB addresses long-
term tracking, in which the tracker has to detect target loss
and perform re-detection. The dataset thus contains sev-
eral full occlusions, but the target never leaves and re-enters
the field of view, thus limiting the evaluation capabilities of
re-detecting trackers. Performance is evaluated as the per-
centage of frames in which the bounding box predicted by
tracker exceeds a 0.5 overlap with the ground truth. The
overlap is artificially set to 1 when the tracker accurately
predicts target absence. Recent work in long-term tracker
performance evaluation [43, 33] argue against using a sin-
gle threshold and [33] further show reduced interpretation
strength of the measure used in PTB.

The Spatio-Temporal Consistency dataset (STC) [45]
was recently proposed to address the drawbacks of PTB.
The dataset is recorded by Asus Xtion RGB-D sensor,
which also constrains the dataset to only indoor scenarios
and a few low-light outside scenarios, but care has been
taken to increase the sequence diversity. The dataset is
smaller than PTB, containing only 36 sequences, but an-
notated by thirteen global attributes. STC addresses short-
term tracking scenario, i.e., trackers are not required to per-
form re-detection. Thus the sequences are relatively short
and the short-term performance evaluation methodology is
used. This makes the dataset inappropriate for evaluating
trackers useful in many practical setups, in which target loss
detection and redetection are crucial capabilities.

RGB Trackers. Recent years have seen a surge in Short-
term Trackers (ST) and especially Discriminative Correla-
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tion Filter (DCF) based approaches have been popular due
to their mathematical simplicity and elegance. In their sem-
inal paper, Bolme et al. [4] proposed using DCF for visual
object tracking. Henriques et al. [16] proposed an efficient
training method by exploiting the properties of circular con-
volution. Lukezic et al. [32] and Galoogahi et al. [12]
proposed a mechanism to handle boundary problems and
segmentation-based DCF constraints have been introduced
in [32]. Danelljan et al. [10] used a factorized convolu-
tion operator and achieved excellent scores on well-known
benchmarks.

As a natural extension of the ST, Long-term Trackers
(LT) have been proposed [18] where the tracking is de-
composed into short-term tracking and long-term detection.
Lukezic et al. proposed a fully-correlational LT [31] by stor-
ing multiple correlation filters that are trained at different
time scales. Zhang et al. [46] used deep regression and ver-
ification networks and they achieved the top rank in VOT-LT
2018 [25]. Despite being published as an ST, MDNet [38]
has proven itself as an efficient LT. MDNet uses discrimi-
natively trained Convolutional Neural Networks(CNN) and
won the VOT 2015 challenge [26].

RGB-D Trackers. Compared to RGB trackers, the body
of literature on RGB-D trackers is rather limited which can
be attributed to the lack of available datasets until recently.
In 2013, the publication of PTB [41] ignited the interest in
the field and there have been numerous attempts by adopt-
ing different approaches. The authors of PTB have pro-
posed multiple baseline trackers which use different com-
binations of HOG [9], optical flow and point clouds. As
a part of particle filter tracker family, Meshgi et al. [34]
proposed a particle filter framework with occlusion aware-
ness using a latent occlusion flag. They pre-emptively pre-
dict the occlusions, expand the search area in case of oc-
clusions. Bibi et al. [3] represented the target by sparse,
part-based 3-D cuboids while adopting particle filter as their
motion model. Hannuna et al. [14], An et al. [1] and Cam-
plani et al. [6] extended the Kernelized Correlation Filter
(KCF) RGB tracker [16] by adding the depth channel. Han-
nuna et al. and Camplani et al. proposed a fast depth im-
age segmentation which is later used for scale, shape anal-
ysis and occlusion handling. An et al. proposed a frame-
work where the tracking problem is divided into detection,
learning and segmentation. To use depth inherently in DCF
formulation, Kart et al. [20] adopted Gaussian foreground
masks on depth images in CSRDCF [32] training. They
later extended their work by using a graph cut method with
color and depth priors for the foreground mask segmenta-
tion [19] and more recently proposed a view-specific DCF
using object’s 3D structure based masks [21]. Liu et al. [30]
proposed a 3D mean-shift tracker with occlusion handling.
Xiao et al. [45] introduced a two-layered representation of
the target by adopting a spatio-temporal consistency con-

straints.

3. Color and depth tracking dataset

We used several RGB-D acquisition setups to increase
the dataset diversity in terms of acquisition hardware. This
allowed unconstrained indoor as well as outdoor sequence
acquisition, thus diversifying the dataset and broaden the
scope of scenarios from real-word tracking environment.
The following three acquisition setups were used: (i) RGB-
D sensor (Kinect), (ii) time-of-flight (ToF)-RGB pair and
(iii) stereo cameras pair. The setups are described in the
following.

RGB-D Sensor sequences were captured with a Kinect
v2 that outputs 24-bit 1920 × 1080 RGB images (8-bit per
color channel) and 512×424 32-bit floating point depth im-
ages with an average frame rate of 30 fps. JPEG compres-
sion is applied to RGB frames while depth data is converted
into 16-bit unsigned integer and saved in PNG format. The
RGB and depth images are synchronized internally and no
further synchronization was required.

ToF-RGB pair consists of Basler tof640-20gm time-of-
flight and Basler acA1920-50gc color cameras. The ToF
camera has 640x480pix resolution and maximum 20 fps
frame rate whereas color camera has 1920x1200pix resolu-
tion and 50 fps maximum frame rate at full resolution. Both
cameras can be triggered externally using the I/O’s of the
cameras for external synchronisation. The cameras were
mounted on a high precision CNC-machined aluminium
base in a way that the baseline of the cameras are 75.2mm
and camera sensor center points are on the same level. The
TOF camera has built in optics with 57◦ × 43◦ (HxV) field-
of-view. The color camera was equipped with a 12mm fo-
cal length lens (VS-1214H1), which has 56.9◦×44◦ (HxV)
field-of-view for 1” sensors, to match the field-of-view of
the ToF camera. The cameras were synchronised by an ex-
ternal triggering device at the rate of 20 fps. The color cam-
era output was 8-bit raw Bayer images whereas ToF cam-
era output was 16-bit depth images. The raw Bayer images
were later debayered to 24-bit RGB images (8-bit per color
channel).

Stereo-cameras pair is composed of two Basler
acA1920-50gc color cameras which are mounted on a high
precision machined aluminium base with 70mm baseline.
The cameras were equipped with 6mm focal length lenses
(VS-0618H1) with 98.5◦ × 77.9◦ (HxV) field-of-view for
1” sensors. The cameras were synchronised by an exter-
nal triggering device at the rate of 40 fps at full resolution.
The camera outputs were 8-bit raw Bayer images which
were later Bayer demosaiced to 24-bit RGB images (8-bit
per color channel). A semi-global block matching algo-
rithm [17] was applied to the rectified stereo images and
converted to metric depth values using the camera calibra-
tion parameters.
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3.1. RGB and Depth Image Alignment

All three acquisition setups were calibrated using the
Caltech Camera Calibration Toolbox1 with standard mod-
ifications to cope with image pairs of different resolution
for the RGB-D sensor and ToF-RGB-pair setups. The cal-
ibration provides the external camera parameters, rotation
matrix R3×3 and translation vector t3×1, and the intrin-
sic camera parameters, focal length f2×1, principal point
c2×1, skew α and lens distortion coefficients k5×1. The
forward projection is defined by [15]

m = P(x) = (Pc ◦ R)(d), (1)

where x = (x, y, z)T is the scene point in world coordi-
nates, m is the projected point in image coordinates and
d = Idepth(m) is the depth. R is a rigid Euclidean trans-
formation, xc = R(x), defined by R and t, and Pc is the
intrinsic operation Pc(xc) = (K ◦ D ◦ ν̂)(xc) of the per-
spective division operation ν̂, distortion operation D using
k and the affine mapping K of f and α.

The depth images of RGB-D Sensor and ToF-RGB pair
were per-pixel aligned to the RGB images as follows. A 3D
point corresponding to each pixel in the calibrated depth
image was computed using the inverse of (1) as x =
P−1(m, d). These points were projected to the RGB image
and a linear interpolation model was used to estimate miss-
ing per-pixel-aligned re-projected depth values. For further
studies we provide the original data and calibration param-
eters upon request.

3.2. Sequence Annotation

The VOT Aibu image sequence annotator2 was used
to manually annotate the targets by axis-aligned bound-
ing boxes. The bounding boxes were placed following the
VOT [28] definition by maximizing the number of target
pixels within the bounding box and minimizing their num-
ber outside the bounding box. All bounding boxes were
checked by several annotators for quality control. In case
of a disagreement the authors consolidated and reached an
agreement on annotation.

All sequences were annotated per-frame with thirteen
attributes. We selected standard attributes for short-term
tracking (partial occlusion, deformable target, similar tar-
gets, out-of-plane rotation, fast motion and target size
change) and for the long-term tracking (target out-of-view
and full occlusion). We additionally included RGBD
tracking-specific attributes (reflective target, dark scene and
depth change). The following attributes were manually an-
notated: (i) target out-of-view, (ii) full occlusion, (iii) par-
tial occlusion, (iv) out-of-plane rotation, (v) similar objects,
(vi) deformable target, (vii) reflective target and (viii) dark

1http://www.vision.caltech.edu/bouguetj/calib_doc
2https://github.com/votchallenge/aibu

scene. The attribute (ix) fast motion was assigned to a frame
in which the target center moves by at least 30% of its size
in consecutive frames, (x) target size change was assigned
when the ratio between maximum and minimum target size
in 21 consecutive frames3 was larger than 1.5 and (xi) as-
pect ratio change was assigned when the ratio between the
maximum and minimum aspect (i.e., width / height) within
21 consecutive frames was larger than 1.5. The attribute
(xii) depth change was assigned when the ratio between
maximum and minimum of median of depth within target
region in 21 consecutive frames was larger than 1.5. Frames
not annotated with any of the first twelve attributes were an-
notated as (xiii) unassigned.

4. Performance Evaluation Measures

Tracker evaluation in a long-term tracking scenario in
which targets may disappear/re-appear, requires measuring
the localization accuracy, as well as re-detection capability
and ability to report that target is not visible. To this end we
adopt the recently proposed long-term tracking evaluation
protocol from [33], which is used in the VOT2018 long-
term challenge [25]. The tracker is initialized in the first
frame and left to run until the end of the sequence without
intervention.

The implemented performance measures are tracking
precision (Pr) and recall (Re) from [33]. Tracking pre-
cision measures the accuracy of target localization when
deemed visible, while tracking recall measures the accuracy
of classifying frames with target visible. The two measures
are combined into F-measure, which is the primary mea-
sure. In the following we briefly present how the measures
are calculated. For details and derivation we refer the reader
to [33].

We denote Gt as a ground-truth target pose and At(τθ)
as a pose prediction given by a tracker at frame t. The evalu-
ation protocol requires that the tracker reports a confidence
value besides the pose prediction. The confidence of the
tracker in frame t is denoted as θt while confidence thresh-
old is denoted as τθ. If the target is not visible in frame t,
then ground-truth is an empty set i.e., Gt = ∅. Similarly, if
tracker does not report the prediction or if confidence score
is below the confidence threshold, i.e., θt < τθ, then the
output is an empty set At(τθ) = ∅.

From the object detection literature, when intersection-
over-union between the tracker prediction and ground-truth
Ω(At(τθ), Gt), exceeds overlap threshold τΩ, the predic-
tion is considered as correct. This definition of correct pre-
diction highly depends on the minimal overlap threshold
τΩ. The problem is in [33] addressed by integrating track-
ing precision and recall over all possible overlap thresholds

3We observed that target size and aspect ratio change are reliably de-
tected differentiating values at 10 frames before and after the current
timestep - thus the discrete temporal derivative considers 21 frames.
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which results in the following measures

Pr(τθ) =
1

Np

∑
t∈{t:At(τθ) �=∅}

Ω(At(τθ), Gt), (2)

Re(τθ) =
1

Ng

∑
t∈{t:Gt �=∅}

Ω(At(τθ), Gt), (3)

where Ng is number of frames where target is visible, i.e.,
Gt �= 0 and Np is number of frames where tracker made a
prediction, i.e., At(τθ) �= ∅. Tracking precision and recall
are combined into a single score by computing tracking F-
measure F (τθ) =

(
2Re(τθ)Pr(τθ)

)
/
(
Re(τθ)+Pr(τθ)

)
.

Tracking performance is visualized on precision-recall and
F-measure plots by computing scores for all confidence
thresholds τθ. The highest F-measure on the F-measure
plot represents the optimal confidence threshold and it is
used for ranking trackers. This process also does not re-
quire manual threshold setting for each tracker separately.

The performance measures are directly extended to per-
attribute analysis. In particular, the tracking Precision, Re-
call and F-measure are computed from predictions on the
frames corresponding to a particular attribute.

5. Experiments

This section presents experimental results on the CDTB
dataset. Section 5.1 summarizes the list of tested trackers,
Section 5.2 compares the CDTB dataset with most related
datasets, Section 5.3 reports overall tracking performance
and Section 5.4 reports per-attribute performance.

5.1. Tested Trackers

The following 16 trackers were chosen for evaluation.
We tested (i) RGB baseline and state-of-the-art short-
term correlation and deep trackers (KCF [16], NCC [29],
BACF [22], CSRDCF [32], SiamFC [2], ECOhc [10],
ECO [10] and MDNet [38]), (ii) RGB state-of-the-art long-
term trackers (TLD [18], FuCoLoT [31] and MBMD [46])
and (iii) RGB-D state-of-the-art trackers (OTR [21] and
Ca3dMS [30]). Additionally, the following RGB track-
ers have been modified to use depth information: ECOhc-
D [19], CSRDCF-D [19] and KCF-D4.

5.2. Comparison with Existing Benchmarks

Table 1 compares the properties of CDTB with the
two currently available datasets, PTB [41] and STC [45].
CDTB is the only dataset that contains sequences captured
with several devices in indoor and outdoor tracking scenes.
STC [45] does in fact contain a few outdoor sequences, but
these are confined to scenes without direct sunlight due to

4KCF-D is modified by using depth as a feature channel in a correlation
filter.

infra-red-based depth acquisition. The number of attributes
is comparable to STC and much higher than PTB. The
number of sequences (Nseq) is comparable to the currently
largest dataset PTB, but CDTB exceeds the related datasets
by an order of magnitude in the number of frames (Nfrm).
In fact, the average sequence of CDTB is approximately six
times longer than in related datasets (Navg), which affords a
more accurate evaluation of long-term tracking properties.

A crucial tracker property required in many practical ap-
plications is target absence detection and target re-detection.
STC lacks these events. The number of target disappear-
ances followed by re-appearance in CDTB is comparable to
PTB, but the disappearance periods (Nout) are much longer
in CDTB. The average period of target absent (Navgout)
in PTB is approximately 6 frames, which means that only
short-term occlusions are present. The average period of
target absent in CDTB is nearly ten times larger, which al-
lows tracker evaluation under much more challenging and
realistic conditions.

Pose changes are much more frequent in CDTB than in
the other two datasets. For example, the target undergoes
a 180 degree out-of-plane rotation less than once per se-
quence in PTB and STC (Nseqrot). Since CDTB captures
more dynamic scenarios, the target undergoes such pose
change nearly 5 times per sequence.

The level of appearance change, realism, disappearances
and sequence lengths result in a much more challenging
dataset that allows performance evaluation more similar to
the real-world tracking environment than STC and PTB. To
quantify this, we evaluated trackers Ca3dMS, CSR-D and
OTR on the three datasets and averaged their results. The
trackers were evaluated on STC and CDTB using the PTB
performance measure, since PTB does not provide ground
truth bounding boxes for public evaluation.

Table 1 shows that the trackers achieve the highest per-
formance on PTB, making it least challenging. The perfor-
mance drops on STC, which supports the challenging small
dataset diversity paradigm promoted in [45]. The perfor-
mance further significantly drops on CDTB, which confirms
that this dataset is the most challenging among the three.

5.3. Overall Tracking Performance

Figure 2 shows trackers ranked according to the F-
measure, while tracking Precision-Recall plots are visual-
ized for additional insights. A striking result is that the over-
all top-performing trackers are pure RGB trackers, which
do not use depth information at all. MDNet and MBMD
achieve comparable F-score, while FuCoLoT ranks third.
It is worth mentioning that all three trackers are long-term
with strong re-detection capability [33]. Even though MD-
Net was originally published as a short-term tracker, it
has been shown that it performs well in a long-term sce-
nario [33, 35, 43] due to its powerful CNN-based classi-
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Table 1. Comparison of CDTB with related benchmarks in the number of RGB-D devices used for acquisition (NHW), presence of indoor
and outdoor sequences (In/Out), per-frame attribute annotation (Per-frame), number of attributes (Natr), number of sequences (Nseq), total
number of frames (Nfrm) average sequence length (Navg), number of frames with target not visible (Nout), number of target disappearances
(Ndis), average length of target absence period (Navgout), number of times a target rotates away from the camera by at least 180◦(Nrot),
average number of target rotations per sequence (Nseqrot) and tracking performance under the PTB protocol (Ω0.5).

Dataset NHW In Out Per-frame Natr Nseq Nfrm Navg Nout Navgout Ndis Nrot Nseqrot Ω0.5

CDTB 3 � � � 13 80 101,956 1,274 10,656 56.4 189 358 4.5 0.316
STC [45] 1 � � � 12 36 9,195 255 0 0 0 30 0.8 0.530
PTB [41] 1 � � � 5 95 20,332 214 846 6.3 134 83 0.9 0.749

fier with selective update and hard negative mining. An-
other long-term tracker, TLD, is ranked very low despite
its re-detection capability, due to a fairly simplistic visual
model which is unable to capture complex target appear-
ance changes.

State-of-the-art RGB-D trackers, OTR and CSRDCF-D,
using only hand-crafted features, achieve a comparable per-
formance to complex deep-features-based short-term RGB
trackers ECO and SiamFC. This implies that modern RGB
deep features may compensate for the lack of depth infor-
mation to some extent. On the other hand, state-of-the-art
RGB trackers show improvements when extended by depth
channel (CSRDCF-D, ECOhc-D and KCF-D). This means
that existing RGB-D trackers lag behind the state-of-the-art
RGB trackers which is a large opportunity for improvement
by utilizing deep features combined with depth information.

Overall, both state-of-the-art RGB and RGB-D trackers
exhibit a relatively low performance. For example, tracking
Recall can be interpreted as the average overlap with ground
truth on frames in which the target is visible. This value is
below 0.5 for all trackers, which implies the dataset is par-
ticularly challenging for all trackers and offers significant
potential for tracker improvement. Furthermore, we calcu-
lated tracking F-measure on sequences captured with each
depth sensor. The results are comparable – 0.30 (ToF), 0.33
(Kinect) and 0.39 (stereo) – but they also imply that ToF
is the most challenging and stereo is the least challenging
sensor.

Precision-recall analysis. For further performance in-
sights, we visualize the tracking Precision and Recall at the
optimal tracking point, i.e., at the highest F-measure, in Fig-
ure 3. Precision and Recall are similarly low for most track-
ers, implying that trackers need to improve in target detec-
tion as well as localization accuracy. FuCoLoT, CSRDCF-
D and TLD obtain significantly higher Precision than Re-
call, which means that mechanism for reporting loss of tar-
get is rather conservative in these trackers – a typical prop-
erty we observed in all long-term trackers. The NCC tracker
achieves significantly higher precision than recall, but this
is a degenerated case since the target is reported as lost for
most part of the sequence (very low Recall).

Another interesting observation is that tracking preci-

Figure 2. The overall tracking performance is presented as tracking
F-measure (top) and tracking Precision-Recall (bottom). Trackers
are ranked by their optimal tracking performance (maximum F-
measure).

Figure 3. Tracking precision and recall calculated at the optimal
point (maximum F-measure).

sion of the FuCoLoT is comparable to the top-performing
MDNet and MBMD which shows that predictions made
by FuColoT are similarly accurate to those made by top-
performing trackers. On the other hand, top-performing
MDNet and MBMD have a much higher recall, which
shows that they are able to correctly track much more
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Figure 4. Tracking performance w.r.t. visual attributes. The first eleven attributes correspond to scenarios with a visible target (showing F-
measure). The overall tracking performance is shown in each graph with black dots. The attributes full occlusion and out of view represent
periods when the target is not visible and true negative rate is used to measure the performance.

frames where the target is visible, which might again be
attributed to the use of deep features.

Overall findings. We can identify several good practices
in the tracking architectures that look promising according
to the overall results. Methods based on deep features show
promise in capturing complex target appearance changes.
We believe that training deep features on depth offers an
opportunity for performance boost. A reliable failure detec-
tion mechanism is an important property for RGB-D track-
ing. Depth offers a convenient cue for detection of such
events and combined with image-wide re-detection some of
the RGB-D trackers address the long-term tracking scenario
well. Finally, we believe that depth offers a rich information
complementary to RGB for 3D target appearance model-
ing and depth-based target separation from the background,
which can contribute in target localization. None of the ex-
isting RGB-D trackers incorporates all of these architectural
elements, which opens a lot of new research opportunities.

5.4. Per-attribute Tracking Performance

The trackers were also evaluated on thirteen visual at-
tributes (Section 3.2) in Figure 4. Performance on the at-
tributes with visible target is quantified by the average F-
measure, while true-negative rate (TNR [43]) is used to
quantify the performance under full occlusion and out-of-
view target disappearance.

Performance of all trackers is very low on fast-motion,
making it the most challenging attribute. The reason for
performance degradation is most likely the relatively small
frame-to-frame target search range. Some of the long-term

RGB-D and RGB trackers, e.g., MBMD and CSRDCF-D,
stand out from the other trackers due to a well-designed
image-wide re-detection mechanism, which compensates
for a small frame-to-frame receptive field.

The next most challenging attributes are target size
change and aspect change. MDNet and MBMD signifi-
cantly outperform the other trackers since they explicitly
estimate the target aspect. Size change is related to depth
change, but the RGB-D tracker do not exploit this, which
opens an opportunity for further research in depth-based ro-
bust scale adaptation.

Partial occlusion is particularly challenging for both
RGB and RGB-D trackers. Failing to detect occlusion can
lead to adaptation of the visual model to the occluding
object and eventual tracking drift. In addition, too small
frame-to-frame target search region leads to failure of tar-
get re-detection after the occlusion.

The attributes similar objects, out-of-plane rotation, de-
formable, depth-change and dark scene do not significantly
degrade the performance compared to the overall perfor-
mance. Nevertheless, the overall performance of trackers
is rather low, which leaves plenty of room for improve-
ments. We observe a particularly large drop in ECOhc-D on
the similar-objects attribute which indicates that the tracker
locks on to the incorrect/similar object at re-detection stage.

The reflective target attribute, unique for objects such as
metal cups, mostly affects RGB-D trackers. The reason is
that objects of this class are fairly well distinguished from
the background in RGB, while their depth image is consis-
tently unreliable. This means that more effort should be put
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in information fusion part of the RGB-D trackers.
The attributes deformable and dark-scene are very well

addressed by deep trackers (MDNet, MBMD, SiamFC and
ECO), which makes them the most promising for coping
with such situations. It seems that normalization, non-
linearity and pooling in CNNs make deep features suffi-
ciently invariant to image intensity changes and object de-
formations observed in practice.

Full occlusions are usually short-lasting events. On av-
erage, the trackers detect full a occlusion with some delay,
thus a large percentage of occlusion frames are mistaken for
the target visible. This implies poor ability to distinguish the
appearance change due to occlusion from other appearance
changes. The best target absence prediction at full occlu-
sion is achieved by TLD, which is the most conservative in
predicting target presence.

Situations when the target leaves the field of view (out-
of-view attribute) are better predictable than full occlusions,
due to longer target absence periods. Long-term trackers are
performing very well in these situations and conservative
visual model update seems to be beneficial.

A no-redetection experiment from [33] was performed
to measure target re-detection capability in the considered
trackers (Figure 5). In this experiment the standard track-
ing Recall (Re) is compared to a recall (Re0) computed on
modified tracker output – all overlaps are set to zero after
the first occurrence of the zero overlap (i.e., the first tar-
get loss). Large difference between the recalls (Re − Re0)
indicates a good re-detection capability of a tracker. The
trackers with the largest re-detection capability are MBMD,
FuCoLoT (RGB trackers) and CSRDCF-D (RGB-D exten-
sion of CSRDCF) followed by OTR (RGB-D tracker) and
two RGB trackers MDNet and SiamFc.

Figure 5. No redetection experiment. Tracking recall is shown on
the bottom graph as dark blue bars. Modified tracking recall (Re0)
is shown as yellow bars and it is calculated by setting the per-frame
overlaps to zero after the first tracking failure. The difference be-
tween both recalls is shown on top. A large difference indicates
good re-detection capability of the tracker.

6. Conclusion

We proposed a color-and-depth general visual object
tracking benchmark (CDTB) that goes beyond the existing
benchmarks in several ways. CDTB is the only benchmark
with RGB-D dataset recorded by several color-and-depth
sensors, which allows inclusion of indoor and outdoor se-
quences captured under unconstrained conditions (e.g., di-
rect sun light) and covers a wide range of challenging depth
signals. Empirical comparison to related datasets shows that
CDTB contains a much higher level of object pose change
and exceeds the other datasets in the number of frames by
an order of magnitude. The objects disappear and reappear
far more often, with disappearance periods ten times longer
than in other benchmarks. Performance of trackers is lower
on CDTB than related datasets. CDTB is thus currently the
most challenging dataset, which allows RGB-D general ob-
ject tracking evaluation under various realistic conditions
involving target disappearance and re-appearance.

We evaluated recent state-of-the-art (SotA) RGB-D and
RGB trackers on CDTB. Results show that SotA RGB
trackers outperform SotA RGB-D trackers, which means
that the architectures of RGB-D trackers could benefit from
adopting (and adapting) elements of the recent RGB SotA.
Nevertheless, the performance of all RGB and RGB-D
trackers is rather low, leaving a significant room for im-
provements.

Detailed performance analysis showed several insights.
Performance of baseline RGB trackers improved already
from straightforward addition of the depth information.
Current mechanisms for color and depth fusion in RGB-
D trackers are inefficient and perhaps deep features trained
on RGB-D data should be considered. RGB-D trackers
do not fully exploit the depth information for robust object
scale estimation. Fast motion is particularly challenging for
all trackers indicating that short-term target search ranges
should be increased. Target detection and mechanisms for
detecting target loss have to be improved as well.

We believe these insights in combination with the pre-
sented benchmark will spark further advancements in RGB-
D tracking and contribute to closing the gap between RGB
and RGB-D state-of-the-art. Since the CDTB is a testing-
only dataset we will work on constructing a large 6DOF
dataset which could be used for training deep models for
RGB-D tracking in the future.
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Matej Kristan. Discriminative Correlation Filter with Chan-
nel and Spatial Reliability. In CVPR, 2017. 3, 5

[33] Alan Lukezic, Luka Cehovin Zajc, Tomás Vojı́r, Jiri Matas,
and Matej Kristan. Now you see me: evaluating performance
in long-term visual tracking. CoRR, abs/1804.07056, 2018.
2, 4, 5, 8

10021



[34] Kourosh Meshgi, Shin ichi Maeda, Shigeyuki Oba, Henrik
Skibbe, Yu zhe Li, and Shin Ishii. An Occlusion-aware Par-
ticle Filter Tracker to Handle Complex and Persistent Occlu-
sions. CVIU, 150:81 – 94, 2016. 3

[35] Abhinav Moudgil and Vineet Gandhi. Long-Term Visual
Object Tracking Benchmark. In ACCV, 2018. 5

[36] Matthias Mueller, Neil Smith, and Bernard Ghanem. A
Benchmark and Simulator for UAV Tracking. In ECCV,
2016. 1

[37] Matthias Muller, Adel Bibi, Silvio Giancola, Salman Alsub-
aihi, and Bernard Ghanem. TrackingNet: A Large-Scale
Dataset and Benchmark for Object Tracking in the Wild. In
ECCV, 2018. 1

[38] Hyeonseob Nam and Bohyung Han. Learning Multi-Domain
Convolutional Neural Networks for Visual Tracking. In
CVPR, 2016. 3, 5

[39] Stephan R. Richter, Vibhav Vineet, Stefan Roth, and Vladlen
Koltun. Playing for Data: Ground Truth from Computer
Games. In ECCV, 2016. 2

[40] Arnold W. M. Smeulders, Dung Manh Chu, Rita Cucchiara,
Simone Calderara, Afshin Dehghan, and Mubarak Shah.
Visual Tracking: An Experimental Survey. IEEE PAMI,
36(7):1442–1468, 2014. 1

[41] Shuran Song and Jianxiong Xiao. Tracking Revisited Using
RGBD Camera: Unified Benchmark and Baselines. In ICCV,
2013. 2, 3, 5, 6

[42] Luciano Spinello and Kai Oliver Arras. People detection in
RGB-D data. In IROS, 2011. 2

[43] Jack Valmadre, Luca Bertinetto, João F. Henriques, Ran Tao,
Andrea Vedaldi, Arnold W. M. Smeulders, Philip H. S. Torr,
and Efstratios Gavves. Long-term Tracking in the Wild: A
Benchmark. In ECCV, 2018. 2, 5, 7

[44] Yi Wu, Jongwoo Lim, and Yang Ming-Hsuan. Object Track-
ing Benchmark. IEEE PAMI, 37:1834 – 1848, 2015. 1

[45] Jingjing Xiao, Rustam Stolkin, Yuqing Gao, and Ales
Leonardis. Robust Fusion of Color and Depth Data for RGB-
D Target Tracking Using Adaptive Range-Invariant Depth
Models and Spatio-Temporal Consistency Constraints. IEEE
Transactions on Cybernetics, 48:2485 – 2499, 2018. 2, 3, 5,
6

[46] Yunhua Zhang, Dong Wang, Lijun Wang, Jinqing Qi,
and Huchuan Lu. Learning Regression and Verifica-
tion Networks for Long-term Visual Tracking. CoRR,
abs/1809.04320, 2018. 3, 5

10022








