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ABSTRACT 

Jaakko Hautamäki: Extended reality and robotic operating system 2 
Master’s Thesis 
Tampere University 
Master’s Program in Information Technology 
August 2021 
 

Extended reality and robotic operating system 2 are technologies in an evolving state that 
have recently become popular. The development of both technologies has been rapid in the 
recent years and supported by multiple powerful companies. To adapt these technologies, in 
research and product development, their state-of-the-art should be studied and outlined regularly. 
This allows for more educated choices in planning of products and research targets, on the 
account of the technologies and the features within.  

The goals of the project were to document the state-of-the-art of extended reality and robotic 
operating system 2 as well as to identify any future research targets within those technologies. In 
addition, an important goal was to try to create an interface between these technologies and 
evaluate its features as well as present and future potential. The interface was tested and 
expanded to other platforms as extensively as possible in the available time frame. 

A comprehensive state-of-the-art of both technologies was established and an interface was 
created between them using the Unity game engine. For the creation of the interface, applicable 
software and software interfaces were researched. The creation and development process of the 
interface and the problems discovered were documented. The usability, robustness and 
expandability of the interface were evaluated, within the boundaries of the project schedule, 
through unit testing, integration testing, stress testing and feedback from demonstrations of the 
interface.The first demonstration covered the functionality and features of the interface from a 
robot into Unity, while the second demonstration presented the possibilities of the interface in 
conjunction with extended reality features. 

The project was a successful in researching and documenting the state-of-the-art and creating 
an interface between the two technologies, which received positive feedback from the 
demonstrations. The interface software ran on Unity and could successfully send and receive 
different message types to and from ROS2 environment. The second demonstration also gave a 
good example of how the combination of ROS2 and XR could be used in practicality. The interface 
was successfully expanded into robotic operating system 1 environments with ROS1_bridge 
software. Significant latency issues were discovered during the use of ROS1_bridge however. 
The issues were researched and documented. The interface was successfully compiled for 
Windows 10 and Ubuntu Linux environments, but attempts at compiling for Android failed. Multiple 
future research targets were discovered from the study as well. 

 
 
 
Keywords: Robotic operating system 2, ROS 2, Extended reality, XR, Virtual reality, VR, 

Augmented reality, AR 
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Elokuu 2021 
 

Laajennettu todellisuus (eng. Extended reality) ja robotic operating system 2 ovat 
murrosvaiheessa olevia teknologioita, jotka ovat yleistymässä. Molempien teknologioiden kehitys 
on ottanut suuria edistysaskeleita viime vuosina ja monet suuren mittaluokan yhtiöt tukevat niiden 
kehitystä. Jotta näitä teknologioita voidaan ottaa käyttöön niin tutkimus kuin tuotekehitysmielessä, 
tulee niiden kehityksen tilannetta tutkia ja dokumentoida säännöllisesti. Teknologian tilan 
tunteminen mahdollistaa valistuneempia valintoja tuotteen tai tutkimuskohteen suunnittelussa 
teknologian ja sen ominaisuuksien osalta. 

Työn tavoitteena oli kartoittaa laajennetun todellisuuden ja robotic operating system 2:sen 
nykytilan lisäksi keskeisiä tulevaisuuden tutkimuskohteita. Tämän lisäksi olennainen tavoite oli 
tutkia, olisiko mahdollista luoda rajapintaohjelmisto näiden teknologioiden välille ja minkälaisia 
ominaisuuksia ja mahdollisuuksia sillä voisi saavuttaa nyt ja tulevaisuudessa. Rajapintaohjelmisto 
testattiin ja sitä yritettiin laajentaa useille alustoille aikataulun puitteissa. 

Työssä muodostettiin kattava tilannekatsaus molemmista teknologioista ja luotiin niiden välille 
ohjelmistorajapinta käyttäen Unity-pelimoottoria. Rajapinnan luontia varten tutkittiin 
käyttötarkoitukseen soveltuvia ohjelmistoja ja ohjelmistorajapintoja. Rajapinnan luonti- ja 
kehitysprosessi sekä löydetyt ongelmat dokumentoitiin. Muodostetun rajapinnan käytettävyyttä, 
toimintavarmuutta ja laajennettavuutta arvioitiin aikataulun puitteissa yksikkötestauksella, 
integraatiotestauksella, stressitestauksella sekä palautteella, jota saatiin rajapinnan 
demonstraatio-esityksistä. Ensimmäinen Demonstraatio-esitys käsitteli itse rajapinnan toimintaa 
sekä ominaisuuksia robotista Unityyn ja toinen esitteli rajapinnan mahdollisuuksia yhdistettynä 
lisätyn todellisuuden ominaisuuksiin. 

Projektissa onnistuttiin tutkimaan ja dokumentoimaan ROS2:sen ja lisätyn todellisuuden 
nykytila sekä luomaan rajapinta näiden välille, joka sai myös positiivista palautetta 
demonstraatioista. Rajapintaohjelmisto toimi Unity:ssä ja pystyi lähettämään ja vastaanottamaan 
eri viestityyppejä ROS2-ympäristöstä. Toinen demonstraatio näytti myös onnistuneesti miten 
ROS2:sen ja lisätyn todellisuuden yhdistelmää voidaan hyödyntää käytännössä. Rajapinta saatiin 
onnistuneesti laajennettua robotic operating system 1 -ympäristöön ROS1_bridge-ohjelmiston 
avulla. ROS1_bridgen käytössä tosin huomattiin latenssi-ongelmia, jotka tutkittiin ja 
dokumentoitiin. Rajapinta käännettiin onnistuneesti Windows 10 ja Ubuntu Linux -ympäristöihin, 
mutta yritykset kääntää rajapintaa Androidille epäonnistuivat. Teknologioista löydettiin myös 
useampia tulevaisuuden tutkimusaiheita.  

 
 
 
Avainsanat: Robotic operating system 2, ROS 2, Laajennettu todellisuus, XR, 

Virtuaalitodellisuus, VR, Lisätty todellisuus, AR 
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ABREVIATIONS AND CONCEPTS 

API Application interface 
AR Augmented reality 
CAVE CAVE automatic virtual environments 
cobot Collaborative robot 
DDS Data distributed service 
DLL Dynamic link library 
DOF Degrees of freedom 
EEG Electroencephalography 
EOL End of life 
FOV Field of view 
Haptic “Digital Technology of or relating to tactile sensations and the sense 

of touch as a method of interacting with computers and electronic 
devices” [1] 

HMD Head-mounted display 
JSON Javascript object notation 
LAN Local area network 
LIDAR Light detection and ranging 
macro A keyboard shortcut or a small program or script used to automate 

common tasks [2] 
MR Mixed reality 
NDA Non-disclosure agreement 
QoS Quality of service 
RCL ROS client support library 
ROS  Robotic operating system 
ROS2-Unity library The custom software library developed during this thesis project 
(screen) burn-in A residual image left on a screen after displaying the same image 

for a long time [2] 
SLAM Simultaneous localization and mapping  
struct A struct (short for structure) is a user-defined data type that can store 

multiple related items and it is available in C based programming 
languages [2] 

subpixel Any of the units that make up a pixel. Each pixel usually has one 
red, one blue, and one green subpixel [3] 

telepresense “The use of virtual reality technology to operate machinery by remote 
control or to create the effect of being at a different or imaginary 
location” [1] 

UR Universal robotics 
VR  Virtual reality 
VTT Technical research centre of Finland (finnish. Valtion teknillinen 

tutkimuskeskus) 
WIFI “A system for connecting electronic equipment such as computers 

and electronic organizers to the internet without using wires” [4] 
WMR Windows mixed reality 
XR  Extended reality
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1. INTRODUCTION 

The thesis was done for the Technical Research Centre of Finland (VTT) and the aim 

was to study and outline the state-of-the-art of Robotic Operating System 2 (ROS2) and 

Extended Reality (XR). Additionally, the aim was to build an interface between them us-

ing Unity game engine, assuming it was feasible, practical and reusable. Some research 

has already been done on this field and also some software are available that might be 

applicable for this purpose. The features of these software were tried and evaluated as 

part of this project. In addition, any significant problems or features discovered during 

the research and development of the interface were evaluated and documented. 

XR is not a new idea, but it has become exceedingly more popular and diverse during 

the last decade, especially during the last few years, with the introduction and evolution 

of head mounted XR displays. XR has also evolved from the gaming and entertainment 

sector into the industry. With the XR technology rapidly evolving, there is a need to re-

search and document its current status from time to time. This allows more educated 

visioning and planning of future utilizations of XR as well as avoiding the pitfalls of out-

dated technology and methods. 

ROS is in the process of a major evolution step as well as it is moving from the initial 

ROS1 to ROS2, which overhauls the whole system rather extensively. The evolution has 

not been completely realized yet however. ROS1 already has a large userbase with wide 

array of software packages and translating these packages to ROS2 might not be quick 

nor trivial. Thus research is required to document the current status of ROS2 and the 

evolution from ROS1 to ROS2 in order to find any pitfalls in the evolution and ROS2 in 

general. Also same as with XR, research allows for more educated visioning and plan-

ning of future utilizations of ROS2. As a distinction, in this thesis the term ROS1 is used 

to refer to the first generation of ROS, as opposed to ROS2, while ROS is used as a term 

for the whole ROS ecosystem, consisting of both ROS1 and ROS2. 

Unity is one of the most popular game engines available. It supports wide array of differ-

ent platforms and has also supported XR development for years at the time of writing [5, 

6]. Unity technologies have also made a ROS plugin for Unity, with ROS2 integration in 

alpha testing stage [7]. This was briefly evaluated as part of this thesis. Unity was chosen 

as an essential tool for this thesis by the request of the employer. [8, 9] 
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One practical goal for the state-of-the-art and the interface would be to advance and act 

as a baseline for future research projects in these fields. As ROS2 and XR are hypothe-

sized to become widely used in the future, they are fields that should be researched. To 

do so, a baseline overview should prove valuable for anyone wishing to dive deeper into 

the fields. However, the core part of the thesis was to try and combine these two fields 

with an interface, to see if it is possible and what its capabilities are. Within the bounda-

ries of the schedule, the expansion of the interface to different platforms, such as Android 

was tried. Furthermore, the interface was tested for faults as possible. The software API 

created was named ROS2-Unity library. 

The future use cases for such combination could include surveillance or safety critical 

work with remote control of robots with strong telepresence through XR or monitoring of 

varied data from ROS2 network in an XR environment for instance. 

The state-of-the-art research is done with qualitative research through analyzing news 

articles about device and technology features and measuring them against and various 

application interface (API) documentations and scientific research papers applicable. As 

both technologies are in a state of rapid evolvement, up-to-date scientific research on 

them is scarce. 

With the rapid development of ROS2, the documentation webpage of ROS2 seems to 

be out-of-date and sparse in some parts, especially when it comes to status of the porting 

of tools and their features from ROS1 to ROS2 [10]. For this reason, some of the infor-

mation about ROS2 is devised from ROS1 documentation along with indirect deduction 

from other sources and may be uncertain in nature. 

The research of the available applicable software, as well as design and implementation 

of the interface, was done through researching the various API documentation available 

and through trial and error. As the documentation of new or rapidly evolving technologies 

often falls behind in the development process, it was necessary to sometimes read 

source code and try out different functions to successfully utilize or compile the software 

API.  

The implementation of the custom API and any problems or notable features are evalu-

ated through mixed method, interpretative research approach, as the interface is de-

signed based on the features discovered in the state-of-the-art review as well as the 

available applicable software or ROS2 API documentation and source code. The meth-

ods are picked according to the problem or feature. In addition, demonstrations of the 

capabilities of the interface are given and the interface is evaluated according to the 
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feedback received during and after the demonstrations. The feedback is given in an un-

structured way. 

The thesis is structured in the following way. Chapters 2 and 3 describe the state-of-the-

art of ROS2 and XR respectively. Chapter 4 covers the available software that could be 

applied for interfacing ROS2 with Unity and XR and evaluates them. Chapter 5 covers 

the final design of the implemented custom API in high abstraction level, while chapter 6 

describes the API software and its development process in more practical detail, includ-

ing the testing of the software during development. Chapter 7 covers the demonstration 

of the developed API and Chapter 8 summarizes the project in the light of the planned 

goals in the beginning of the project. 
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2. ROBOTIC OPERATING SYSTEM 

The Robotic Operating system, unlike its name would apply, is not an operating system, 

like Linux or Windows for instance. It is an open source middleware or software devel-

opment kit (SDK) that allows messaging between different devices through publish/sub-

scribe mechanism. As of now, it is divided into 2 different generations, ROS1 and ROS2, 

with both having numerous versions, or distributions (distros) as they are called. The 

latest distros are Noetic for ROS1 and Galactic for ROS2 at the time of writing.  [11–13] 

Initially ROS began in 2007 in Stanford University as a bundle of several robotic software 

frameworks in research projects. It has since grown into a massive community with tens 

of thousands of users ranging from hobbyists to professional industrial automation com-

panies [14]. Market estimates also expect this number to only rise in growth in the future 

[15, 16]. ROS development is also supported by some large and well-known companies 

in the industry, such as Amazon, Intel, Bosch, Microsoft, LG Electronics and Toyota Re-

search Institute among others [12]. 

Although ROS1 and ROS2 have many fundamental differences, the core concepts, de-

scribed in the Section 2.1, are the same in both of them. The most notable differences 

are covered in the Section 2.2. 

2.1 Core concepts 

Any device that uses ROS to communicate in a ROS network is called a node. Nodes 

can send and receive messages through named topics. Besides through topics, nodes 

can also interact through services, actions and parameters. According to ROS philoso-

phy, a node “should be responsible for a single, module purpose”, meaning a single robot 

would commonly have multiple nodes in it. One node in a robot could be responsible for 

the wheel motors, another node for the camera and so on. The following subsections 

describe the other core concepts and functionalities of ROS systems. These concepts 

apply to both ROS1 and ROS2. [13, 14] 

2.1.1 Topics 
When a node sends messages to other nodes, in ROS terms, it publishes a message to 

a topic. All the nodes that want to receive messages published to a topic subscribe to 

that topic. A single publish into a topic sends the message to all nodes that have sub-

scribed to the topic. As such, the messaging through a topic can be point-to-point, many-
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to-one, one-to-many or many-to-many in nature. The messaging functionality is depicted 

in the Figure 1. [13] 

 

Figure 1.  ROS messaging through topics [13] 

2.1.2 Services 
Unlike topics in the publish-subscribe model, the services are based on the call-response 

model. In other words, a service is called on a node and the calling node receives a 

single response from the called node. Multiple nodes can call the same service but there 

can be only one service server for a given service (with a given service name). ROS 

service functionality is depicted in the Figure 2.  [13] 

 

Figure 2.  ROS communication through services [13] 
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2.1.3 Actions 
Actions utilize topics and services and are intended for long running tasks. They consist 

of 3 steps: goal, feedback and result. First, a goal is sent to the action server through a 

goal service, and the action server acknowledges it by sending a response. Next, a result 

is requested from the action server through the result service, which makes the server 

start the action procedure. During the action procedure the action server gives a steady 

feedback of information through a feedback topic. Unlike services, actions can be can-

celled during the procedure. When the action is finished or interrupted, the action server 

sends a result through the result service. Action functionality is depicted in the Figure 3. 

[13] 

 

Figure 3.  ROS messaging through actions [13] 

2.1.4 Parameters 
All nodes in ROS have configuration parameters that can be accessed and changed at 

runtime. The parameters can be accessed and changed through command line tools, 

launch files or through software. The parameters can also be saved or “dumped” into a 

file to be able to save specific configurations for inspection or later use. [13, 17] 

2.1.5 ROS graph 
Any ROS system can be depicted by a ROS graph, which shows all the nodes and their 

relations with each other through publishes and subscriptions topics. In the Figure 4 is 

an example of a ROS graph. In the graph, ovals are nodes, rectangles are topics. There 

might also be rectangles that encase nodes and topics in a ROS graph. Those would 

depict namespaces. Arrows in the graph go from publisher(s), to topic, to the sub-

scriber(s) [18]. The nodes in the graph are from a Turtlebot3 Waffle Pi and a laptop. The 
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node /_ros2cli_2942 is a laptop subscribed to /imu topic through command line tools. 

Other nodes are from the Turtlebot3. [13, 14, 18] 

 

Figure 4.  ROS graph example. 

A few topics of interest in the graph above are /cmd_vel, /odom and /rosout. /cmd_vel 

(command velocity) is a topic that allows publishing linear and rotational velocities for 

the robot, which make the robot move accordingly. /odom (odometry) can be subscribed 

to receive the position and orientation of the robot in relation to its idea of a world origo 

(the (0, 0, 0) point in the world), which is commonly the position the robot was at when it 

was turned on. /rosout is a topic to subscribe for logging and debugging messages. This 

feature can be utilized in the C++ and Python APIs, when creating custom nodes in both 

ROS1 and ROS2. With Turtlebot3 however, there seems to be no messages to be re-

ceived from /rosout by default, even with all the nodes having a publisher to it. [13, 14, 

19] 

ROS is mostly used for robots, but technically it can be used for any kind of sensor or 

actuator network with or without robots as it has software packages that allow support 

for various kinds of sensors, like a Light Detection And Ranging (LIDAR) or depth camera 

for example. Some software algorithm packages are especially made for robots however, 

such as Navigation and Simultaneous Localization And Mapping (SLAM). SLAM allows 

a robot to simultaneously map its environment and position itself in it. In other words, 

with SLAM it is possible to make a map of an environment by driving the robot in the 

environment, while also getting the position of the robot in the environment. Note that 
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SLAM is the name of the algorithm, but implementations of the algorithm may vary. Nav-

igation utilizes SLAM to conduct navigation in the mapped environment using various 

different navigation algorithms. [20–23] 

ROS also includes an array of utility software for visualizing the ROS network or running 

simulated ROS environments. Most notable software for ROS are Gazebo, TurtleSim, 

RViz and RQt. Gazebo allows simulating environments populated with robots. It includes 

an OGRE graphics engine, multiple different physics engine options, multiple robot mod-

els and multiple plugins and tools. The aim is to be able to do robotics development with 

just software based simulation. An example Gazebo scene is seen in Figure 5. [13, 24] 

 

Figure 5.  An example Gazebo scene [24] 

TurtleSim is another simulation tool, but where Gazebo is for serious development, Tur-

tleSim is just a lightweight simulator meant for learning ROS. As the ROS2 documenta-

tion puts it: “It [TurtleSim] illustrates what ROS 2 does at the most basic level, to give you 

an idea of what you will do with a real robot or robot simulation later on” [13]. In TurtleSim, 

there is a 2D scene with a turtle moving in a 2D plane. The turtle in the scene is sub-

scribed to a ROS topic that allows it to move in the scene. This can be done through the 

command line tools, RQt, a custom package or a teleoperation software in the TurtleSim 

package. In Figure 6 is an example of TurtleSim scene. [13, 18] 
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Figure 6.  An example TurtleSim scene 

RViz (ROS visualization) is a 3D visualization tool, which allows visualization of what a 

robot is sensing, “thinking” and doing. It understands state and sensor information, such 

as camera, point cloud, laser scan and coordinate frame data. The different sensor in-

formation have specific displays that allow the user to choose how to visualize the data. 

RViz allows the programmer to also set visualization markers, such as custom colored 

cubes, lines and arrows, at will. The idea behind RViz is to visualize the numerical data 

in a 3D environment that would otherwise be difficult to comprehend, design and debug. 

RViz has been ported from ROS1 to ROS2 with the name RViz2 and most of the features 

of the original available. RViz2 is part of the official ROS2 installation package. Figure 7 

shows an example scene from RViz, where a robot has the camera data on upper right 

corner and laser scan data in the large picture. [14, 25] 
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Figure 7.  An example RViz scene [14] 

RQt is a plugin based graphical user interface tool for ROS2 and is included in the ROS2 

installation package. The plugins that are included in the ROS1 version of RQt are listed 

in ROS1 Wiki [26]. Arguably the most notable plugins in RQt are the node graph, topic 

monitor, message publisher, plot and image viewer, which are all also ported to ROS2. 

The node graph shows the node graph of ROS network, as explained and depicted in 

the Subsection 2.1.5. Topic monitor allows for graphical inspection of messages being 

published and message publisher allows publishing messages to any topic. Plot allows 

for plotting any message values into an X-Y graph. Image viewer, as the name implies, 

allows for subscribing to a topic of any image message type to show the images being 

published. In the Figure 8 a simple RQt scene can be seen, which shows topics of a 

TurtleSim node. The plugins shown in the figure are topic monitor, service caller and 

message publisher.  [13, 18] 
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Figure 8.  An example RQt scene with TurtleSim 

2.2 Differences between ROS1 and ROS2 

The core differences between ROS1 and ROS2 are covered in this section and listed in 

the Table 1. The list is not exclusive however, as there are too many small changes to 

cover in this thesis. 

Table 1. Core differences between ROS1 and ROS2 

 

One of the most pressing issues with ROS1 is that it doesn’t have any kind of security 

measures implemented into it. This is one core change in ROS2 that was especially 

targeted for industrial applications. ROS2 utilizes data distributed service (DDS) middle-

ware, which was already an established open source standard protocol before the adop-

tion to ROS2 and also includes many security features. DDS is maintained by Object 
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Management Group. As it is an open standard, there are multiple vendors for DDS soft-

ware, both commercial and open source. ROS2 supports a commercial DDS software 

RTI Connext and 2 open source DDS software: Eclipse Cyclone DDS and eProsima Fast 

DDS. Up to the distro Foxy, Fast DDS was the default DDS software, but in the most 

recent distro, Galactic, Cyclone DDS became the default. [11–13, 27–31] 

A ROS1 network always has a ROS master node. This node acts as a broker, registering 

node, topic, service, parameter and action names. Without it, other nodes could not find 

each other. This is considered troublesome for the robustness of the system as the ROS 

master acts as a single point of failure. If the ROS master crashes, no new connections 

between nodes can be made, unless special measures like distributed multithreaded 

checkpointing (see [32]) are taken. These kind of special measures are outside the scope 

of this thesis however. [14, 32] 

In ROS2 the DDS middleware allows dynamic discovery of nodes in the network and 

dynamic addition of publishers and subscribers into the network. With DDS networks 

there is no single point of failure, like in ROS1. [13, 27, 28] 

Another feature of DDS that is new to ROS is quality-of-service (QoS). QoS has been 

formalized as a native part of ROS2, so users can configure the QoS parameters in 

ROS2 instead of digging into the underlying DDS options. Figure 9 shows how QoS 

functions in ROS2. Publishers offer certain QoS and subscribers request specific QoS. 

If these are compatible, a subscription is created, otherwise no subscription is created. 

[13, 33] 

 

Figure 9.  QoS functionality [33] 
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QoS policies include history, durability, reliability, lifespan, deadline and liveliness. For 

publisher and subscription to be compatible, all the policies chosen must be compatible. 

History decrees how many messages are kept locally. This accounts to both subscribers 

and publishers. Durability decrees if the publishers should provide old messages to a 

fresh subscription. Reliability decrees if messages have to be delivered/received reliably, 

or if best effort is enough. Basically this comes down to the choice of using TCP or UDP 

as the network transport layer. Lifespan decrees how long should a publisher keep an 

unsent message before it is discarded as being not useful. Deadline and liveliness utilize 

a new feature called QoS event callback. This is essentially an interrupt function for when 

an event happens with QoS. Deadline decrees how often (at which frequency) should a 

publisher send messages. If a deadline is missed, a callback event is called for both the 

publisher and the subscribers. Liveliness decrees what kind of a heartbeat should a node 

or a topic give to prove it is still working (alive). If a heartbeat deadline is missed a 

callback event is called on both the publisher and the subscribers. [13, 33] 

Another requirement that the robotics industry often requires is real-time communication. 

This was not thought of in the design of the initial ROS1 and was not added into it later 

to not break the API that many members of the ROS community already relied upon. 

ROS2 however had no APIs to break when it was designed and introduced, so it allowed 

the consideration of real-time communication in the redesign process. ROS2 documen-

tation includes a brief tutorial on real-time programming on ROS2 using Xenomai or 

RT_PREEMPT with Linux. [13, 34] 

The build system and platform support are also broadened, as ROS1 was only tested on 

Ubuntu Linux platform and only supported CMake build system. ROS2 is tested on Ub-

untu, OSX and Windows 10 and officially supports Python packages besides CMake 

builds. ROS1 with Python supported Python 2, but as Python 2 has reached is end-of-

life (EOL) in 2020, ROS2 was built to only support Python 3.5 or higher [35]. The last 

ROS1 distro, Noetic, also supports only Python 3 [14]. The C++ utilization is also up-

graded as ROS1 utilizes only C++03, while ROS2 uses C++11 and some parts from 

C++14 in its API. [13, 36] 

2.3 ROS1 to ROS2 transition 

The transition from ROS1 to ROS2 was driven by new features up until May of 2020, 

when Open Robotics declared their last ROS1 distro, Noetic. This is a long term support 

(LTS) release, so it is supported with updates until May 2025, but after that, no new 
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ROS1 distros are coming and Open Robotics is concentrating all its development to-

wards ROS2 from that point onwards. This should effectively drive the ROS1 community 

towards ROS2 in the coming years. [14, 37] 

There is still room for improvement in ROS2 as reportedly in 2020 there were still many 

bugs around, tools were not always working as expected and the documentation was 

sparse [10]. Although as ROS2 development has gone a long way in the past years, 

many of the bugs and tools could be fixed already or in the near future [38, 39].  

The following subsections cover the different aspects of the ROS1 to ROS2 transition. 

2.3.1 Studies and recommendations 
Some entities are suggesting to start making the new projects in ROS2, while the porting 

of older projects to ROS2 might still be debatable in some cases [12, 40, 41]. New pro-

jects should be done in ROS2 as this will reduce future technical debt. Also as there 

have already been 2 LTS ROS2 distros, dashing and Foxy, there should not be any new 

features coming rapidly that could break the API functionality. As the last ROS1 distro 

Noetic reaches its EOL in 2025, only temporary (projects not used after 2025), hobbyist 

or academic projects in ROS1 are not considered to be in a pressure to migrate into 

ROS2. Even so, academies should start considering a ROS2 based curriculum for the 

future and even hobbyists should start slowly checking out the ROS2 ecosystem. [12] 

There doesn’t seem to be any study or report that would state that ROS2 is now ready 

for hard adoption by the industry yet. Many reports have stated that ROS2 is in the stages 

between “maybe” and “depends on what you are doing”. These reports are from around 

2019 to early 2020 however, as there seems to be no evaluation on the state of ROS2 

as a whole after that. Considering how ROS2 was around 2019 with the Dashing and 

Eloquent distros however, there have been rapid improvements. The problems these 

studies report include performance issues with the DDS layer, unavailability in features 

and bugs in essential tools like RViz and RQt, missing drivers, unmigrated software pack-

ages and sparse documentation and tutorials. [10, 42–44] 

As for the DDS layer performance problems, there have been some studies about the 

performance of different DDS implementations recently. There have been noticeable dif-

ferences in latency for the different DDS-middleware available for ROS2, while the type 

of hardware also played a part [40, 45]. One of the inducers of problems with DDS was 

reportedly the QoS parameters [10]. If a publisher would have different QoS parameters 

than the subscriber, the message would be discarded without any notice. With Foxy dis-

tro, this was fixed to give an error if QoS parameter conflict happens [46]. 
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As for RQt, there were reportedly plugins that were not migrated from ROS1 yet in Elo-

quent. Looking at RQt in Galactic, this seems to still be the case, although many of the 

essential plugins are already migrated. RViz reportedly has most of the essential features 

migrated however. In reports later than Foxy distro, there has been no complaints of 

bugs in RViz or RQt, which makes a case for them being patched. This is not conclusive 

however, as they were not extensively tested as part of this thesis. [42] 

The problem with missing drivers is slowly starting to be fixed as manufacturers have 

started porting their drivers to ROS2 and a few have already released a beta or release 

version of their ROS2 drivers. More on this in the following subsection. 

Some reports were raising the issue of important ROS packages not yet being migrated 

to ROS2. At the time many of the popular packages needed to be built from source [42]. 

Many of these are now available as debian packages for ROS2 under Ubuntu. Some 

packages, like MoveIt, were also in beta stage at the time of the reports, but have now 

come under official release. 

The documentation is still rather sparse with ROS2, with most of the tutorials covering 

simple messaging examples, but not how to expand on that. There is also a separate 

documentation for the C++ and Python APIs, but during their use on this thesis, this was 

often too sparse and sometimes out of date and the function interfaces needed to be 

checked directly from the source code [17, 47]. Nevertheless, there are also complaints 

on the documentation being of a level that expects expert programming background [10]. 

This is definitely a part of ROS2 that requires improvement in the future, to simplify and 

expand the documentation. 

2.3.2 Industry adaptation of ROS2 
ROS1 development was overseen by only one organization effectively, initially Willow 

Garage and later Open Robotics, which was created by Willow Garage [48, 49]. With 

ROS2 however, Open Robotics has decided to form ROS2 Technical Steering Commit-

tee, to set the direction ROS2 development is going. This organization had founding 

members from Microsoft, TARDEK, Amazon, Intel, LG Electronics, Bosch, Apex.AI, 

ARM, Toyota Research Institute, Open Robotics and ROBOTIS. With powerful compa-

nies in the industry investing in ROS2, the expectations for the future of ROS are high. 

[50] 

In late 2020, there were already multiple robot manufacturers supporting ROS2, includ-

ing Turtlebot3 by Robotis, ROSbot by Husarion, Rover Zero by Rover Robotics, Hadabot 

by Hadabot, e-puck by GCTronic and Open Manipulator by robotis. In April 2021, the 

first collaborative arm robot (cobot) ROS2 open source driver package in the industry 
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was released by Doosan Robotics [51]. Right after Doosan, Universal Robots (UR), Pick-

Nik, and Forschungszentrum Informatik released the beta version ROS2 drivers for UR’s 

cobot arms in May 2021. This is major news as UR is the leading developer of cobot 

arms owning roughly 40% of the entire market. [52] 

There was also a company called Acutronic Robotics released the MARA robot that uti-

lized ROS2 already in 2018. The core product of Acutronic Robotics was the H-ROS 

modules however and MARA was only sold as an example of what H-ROS can do. The 

idea of H-ROS would be that all robotic modules, such as arms, wheels, sensors etc. 

would have this hardware chip which would communicate with other modules and the 

user/controller through ROS2. This would allow completely modular design, as hardware 

from any manufacturer would work as part of a robot seamlessly as the communication 

would be through a common ROS2 network, as long as there would be an H-ROS mod-

ule available for that hardware. This would also be controllable by any ROS2 enabled 

computer. Acutronic Robotics shut down however on July 31 2019, because of lack of 

financing. The CEO of Acutronic Robotics Victor Mayoral speculated that they “hit the 

market too early and fell short of resources”. [53–57] 

NVIDIA has released a robotics simulator environment Isaac Sim in June of 2021, which 

supports ROS2. The software is built on top of NVIDIAs Omniverse simulation platform. 

The idea is rather similar to that of Gazebo allowing robot simulation with custom envi-

ronments. Isaac Sim advertises photorealistic graphics with real-time path and ray trac-

ing, domain randomization, multi-camera support, multiple robot import formats, GPU-

enabled physics simulation, material definition language support and variety of sensor 

type support.  [58, 59] 

ADLINK in cooperation with Intel and NVIDIA have released a Series of controllers that 

support ROS2. The features vary from low energy consumption with high AI computing 

capabilities to x86-64 architecture CPU with a wide array of I/O ports and integrated real-

time mechanisms. The prices of these platforms also vary from around 2100 to 5400 $, 

depending on the features [60, 61]. This effectively signals that this series is for industrial 

use rather than hobbyists. [62, 63] 

2.3.3 ROS1_bridge 
ROS1_bridge is a packet for ROS2 that translates messages from topics and services 

across ROS1 and ROS2 both ways. It has the problem of being a single point of failure 

in a system stretched across ROS1 and ROS2. In addition, it can have a high CPU load 

because of message translation and also induces latency. ROS1_bridge supports the 

built-in message and service types by default. If custom message types are required, 
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ROS1_bridge needs to be built from source. This requires naming the custom message 

packets in a way they can automatically be translated. If this is not done, or the message 

type fields are not the same in ROS1 and ROS2, there is also possibility of making cus-

tom translation of messages by defining it in mapping rules YAML file. ROS1_bridge was 

briefly tried and tested as part of this thesis. This is covered in more detail in Sections 

5.3 and 6.4. [42, 64, 65]  

Ideally, ROS1_bridge allows companies to migrate their software one module at a time 

assuming the same message types are used, as the migrated modules can communicate 

with the non-migrated ones through ROS1_bridge. If this approach is taken, the latency 

issues covered in 6.4 should be taken into account. [65, 66] 

2.4 Software interfaces 

This section covers only the official ROS2 software interfaces and their core functions. 

There is much more functionality with the various ROS2 software packages available, 

but that is beyond the scope of this thesis. 

ROS2 has 3 major programming language APIs: Python, C++ and C, although only Py-

thon and C++ are mentioned in the documentation and covered in tutorials. The APIs 

are built on top of ROS client support library (RCL) package and named accordingly as 

rclpy for python, rclcpp for C++ and rclc for C. RCL has some common core functionali-

ties for ROS2 and it is designed to “support implementation of language specific ROS 

Client Libraries”. [13, 67] 

rclc complements RCL, as RCL is also written in C. Unlike rclcpp and rclpy, rclc doesn’t 

add a layer of types on top of RCL, but provides functions to make programming with 

RCL types easier. Also unlike rclcpp and rclpy, there seems to be no separate API doc-

umentation page for rclc. [67] 

rclcpp wraps the ROS2 node into a class, where custom nodes can be inherited from. 

This is the way presented in the ROS2 documentation tutorials. The node class has 

methods for creating publishers, subscribers, service clients and service servers. Actions 

also have their own functions for creation of servers and clients, but they are wrapped in 

another package, rclcpp_actions [68]. There are also methods to make timers and to 

create and modify the node parameters. For callbacks there are also many different com-

ponents and functions. [13, 17, 67] 

rclpy also wraps the ROS2 node into a class, where custom nodes can be inherited from. 

This is also the way presented in the ROS2 documentation tutorials. Like rclcpp the rclpy 

node has similar methods for publishers, subscribers and service clients and servers, 
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timers, parameters and callbacks. In rclpy, the classes for creating action servers and 

action clients are in the same library however. [13, 47, 67] 

There are also ROS2 APIs for multiple other languages such as Ada, Java, NodeJS, Go, 

Objective C, .NET and Rust [69–75]. These are not official parts of the ROS2 yet how-

ever, but rather individual projects by the ROS community contributors. As such, there 

might be errors with them, the documentation is sparse and there is no guarantee of 

continued support for them, even though there is no reason to believe these projects 

would be shut down either any time soon. 

2.5 Build tool 

This section covers the ROS2 build tool and its core aspects. As a distinction, in this 

thesis a build system is considered to configure, build and install a single package, 

whereas build tools are considered to utilize build systems with added functionality, such 

as building multiple packages in a topological order. 

In ROS1, the original build tool was rosbuild, which got superseded by catkin_make, 

catkin_make_isolated and catkin_tools. The tools provided some additional functionality 

on top of the CMake build system. The custom build tools were deemed necessary be-

cause ROS projects are often built from numerous different packages, which have de-

pendencies on each other, and micromanaging the build order and parameters on these 

packages would have been very difficult and tedious.   

For ROS2, ament_tools was the initial build tool used up to Ardent distro, but since then 

colcon has been the build tool recommended. The core benefit of colcon, compared to 

its predecessors, is the support for multiple different build systems besides CMake, 

which, together with RCL, allowed adoption of other programming languages and pack-

ages that were not made for CMake. [76, 77] 

The design goals of colcon are to make building, testing and using multiple packages 

easy, to enable any kind of build system support through extensions, allowing any kind 

or package to be built without altering the sources and to make built packages immedi-

ately usable. There are a few features specifically stated to be outside the scope of col-

con however. These include fetching the sources of packages, installing dependencies 

of packages and creating of package level binary packages. Reason stated is that tools 

for those tasks already exist. [76, 77] 

In ROS2 documentation the build procedure suggested is to check possible missing de-

pendencies with rosdep and then invoke the colcon build command, which builds the 

package. rosdep is a separate tool for checking package dependencies and it only works 



19 
 

on Linux. By default colcon build will only show the status of the build when running and 

list the return value and build time of packages built. If any package should fail to build, 

colcon will abort the rest of the packages and exit without giving any additional infor-

mation about the error. The output log of the build can be checked from log folder in the 

package root folder or it can be received directly to the console window by invoking col-

con build with a specific parameter. [13, 76, 77] 
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3. EXTENDED REALITY 

Extended reality, sometimes also referred to as cross reality, is an umbrella term, includ-

ing virtual reality (VR), augmented reality (AR) and mixed reality (MR). VR is a completely 

computer generated environment with no real world aspects included while AR and MR 

are mixes of real world and virtual aspects. The difference between AR and MR is the 

immersivity. In AR the virtual aspects do not need to necessarily blend in with the real 

world or be interactable, while in MR the goal is to completely blend the virtual aspects 

into the real world. This is illustrated in Figure 10. [78, 79] 

 

Figure 10. XR, VR, AR and MR [78] 

These are still rather ambiguous concepts on a scale from the perceived real world reality 

to completely immersive virtual reality as seen in the Figure 11. 

 

Figure 11. The Reality-Virtuality continuum [80] 

Note that in Figure 11, the name Mixed Reality was suggested as the umbrella term for 

AR and VR in 1994, but as of 2021, the name Extended Reality has been adopted in-

stead [79, 80]. As opposed to AR, Figure 11 also introduces the term Augmented Virtu-

ality, meaning a virtual environment augmented with real world aspects. It has not be-

come a common term however in the general discussion of XR. While the XR technology 

can be made with any kind of sensory input that immerses the user, most product inno-

vations in 2021 are done on visual or audio-visual virtuality. In 2021 the head mounted 
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display (HMD) seems to be the most common type of interface in XR, allowing audio-

visual immersion. Other interface types are often composed of traditional computer dis-

plays in various forms as seen in the Section 3.2.  

XR systems aim to serve multiple different customer segments, including simulation, sur-

veillance, planning, design, gaming, entertainment in general, training and maintenance 

[81]. The reasons to why XR is so lucrative are many. With just the human need of ex-

periencing different scenes and worlds with high immersion, lies a huge market for en-

tertainment and games. However, in 2019 the industry had already overtaken the game 

industry on XR spending according to IDC ([82] as cited by [83]). The possibilities of XR 

in the industry are vast. In many different fields, training can be done much more effec-

tively, safely and sometimes even cheaper with XR than traditional methods. Simulation 

of events and design objects as interactable virtual 3D objects is much more descriptive 

than a traditional 2D model on a display. Also material consumption in many areas, such 

as scenery/interior architecture or any other design heavy area, are diminished, as de-

sign iteration can be made virtually without needing physical prototyping. Less material 

consumption might also lead to increased sustainability. Furthermore, safety is also im-

proved with XR, as many safety critical procedures can be rehearsed with XR before the 

real thing. [84, 85] 

A major problem with XR technology, which has persisted, is simulator sickness, also 

known as cybersickness. These are terms used when users of XR devices feel eye 

strain, nausea or disorientation during or after the use. The causes of cybersickness are 

not known exclusively, but there are multiple suggested causes. The most widely cited 

theory is sensory conflict, where a mismatch between the signals that the visual, audi-

tory, tactile, kinesthetic, and vestibular sensory systems give induces discomfort. There 

are multiple ways to reduce cybersickness, such as better displays and more natural 

locomotion or lack of locomotion in virtual environment. One popular design trick, used 

to move around in VR without actual locomotion, is teleporting. Display features are de-

scribed in the Section 3.1, while some locomotion innovations are covered in the Section 

3.3. [86–89] 

As of now, XR as a technology is still in an evolving state with displays, sensors and 

networking technologies being refined year-by-year. Especially 5G technology is ex-

pected to heavily improve XR prospects in coming years [83, 90]. The trend of XR is 

however on the rise as the global market value of XR is expected to multiply in the coming 

years [91–93]. This can also be seen in the news as many powerful companies like Qual-

comm, are investing in the evolution of XR [94]. 
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3.1 Head mounted displays 

On one hand, HMDs may be either see-through or closed systems and on the other hand 

they may be either tethered or standalone. In see-through systems the users can see 

the real-world through glass-like goggles, as opposed to closed systems which do not 

use see-through material for visualization. Tethered displays are connected to a sepa-

rate PC or another computer device with a cable, whereas untethered systems are 

standalone without cables or outside computing. The tethered system’s PC’s also have 

rather high computing requirements [95]. In the Figure 12 are examples of see-through 

(Microsoft hololens2) and closed (HTC VIVE Pro) HMDs. 

 

Figure 12. Example HMDs: Microsoft Hololens2 (left) and HTC VIVE Pro 
(right) [96, 97] 

The interaction methods with HMD’s are also varied, with some systems allowing hand 

or eye tracking, while other systems operate with specific, often hand-held, controllers. 

The capabilities of the wide range of devices and accessories are usually very specific 

for the use case that they are designed for, like gaming. Some high-end devices aim to 

be more general in their use case however and cater to a wide array of use cases, like 

Varjo devices and Microsoft Hololens 2 for example. There are also multiple ways for the 

hardware to interact with the user. This is called feedback and it includes visual cues, 

sound feedback and various kinds of haptic feedback. Some high-end devices even al-

low spatial mapping, which allows 3D digitization and registration of the real-world into a 

virtual 3D model, opening a variety of new ways to implement augmented and mixed 

reality. 

See-through systems are suitable for AR/MR solutions by desing, as the user can see 

the real world through the lenses in addition to the added virtual content. Some modern 

closed displays can also work as AR/MR devices if they have external cameras allowing 

the user to “see through” the display. Closed displays allow also full VR solutions. 
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The benefit of see-through HMDs is that the user can commonly see the real world 

through the glasses in higher resolution than is achievable with cameras and displays, 

while still including virtual elements. Because of the nature of see-through HMDs as of 

now, the rendered objects are all transparent, like holograms, while with closed head-

sets, one can see also solid looking objects. 

Closed HMD’s in AR have a rather high computational need, as they need to have ex-

tensive camera stream with low latency from the outside of the headset, while adding 

virtual graphical objects on top of that. The advantage is that, compared to see-through 

solutions, the virtual objects can look solid, which adds to the immersion. Closed HMD’s 

with cameras thus allow a free spectrum of applications from the reality through a camera 

to a complete virtual reality.  

3.1.1 Refresh rate and resolution 
The displays in headsets have a few important metrics to consider. A common refresh 

rate for VR displays is around 90 Hz, while it does range from 70 to even 180 Hz. The 

refresh rate is perceived by the users as how smooth is the motion of objects is in the 

display. Refresh rate is more important in XR than in regular displays, as lower refresh 

rates of 75 Hz or below are reported to induce simulator sickness [98]. [87] 

The resolution of the screen is another major factor in displays, as it is also associated 

with simulation sickness. Studies show that a resolution lower than 960 x 1080 pixels per 

eye are likely to induce simulator sickness [98, 99]. The effects between high and very 

high resolutions are not mentioned in this study however, as very high resolution HMDs 

are a rather recent phenomenon. The modern HMD resolutions vary from around fullHD 

resolutions (1920 x 1080) to UltraHD resolutions (3840 x 2160) per eye. The aspect 

ratios vary too from the traditional display ratio of 16:9 to 1:1 ratio. A high resolution also 

creates a clearer picture, which increases immersion. However, there are also other met-

rics that account to the picture quality, such as subpixel layout, colour reproduction and 

lens optics [100]. [101] 

The resolution is closely tied to the field of view (FOV), which is the angle of view in the 

display around the eyes. This can be measured separately in horizontal and vertical axis 

or diagonally. An accurate value of FOV is hard to measure in a headset, as the fit and 

facial features are varied in every individual and they affect the perceived FOV. Still the 

FOV values that manufacturers publish give some indication on the matter, as there are 

HMDs with claimed FOV values ranging from 90° to 200°. Studies show that a FOV of 

less than 110° might induce simulator sickness in VR [98].  A larger FOV is not all good 

however, as there is a set resolution for the screen and a larger FOV spreads that across 
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the display, which makes the picture look more granular. Therefore another metric of 

angular pixel resolution is used to accommodate the connection between resolution and 

FOV. This measures the amount of pixels per degree and is therefore a more accurate 

measurement unit for the quality of the picture in XR. [100, 101] 

3.1.2 Color 
Besides the different forms, resolution and smoothness of the displays, the colour quality 

also plays a pivotal role in immersion. The displays used in HMD’s are in this sense the 

same as traditional monitors. The metrics to pay attention with colour are colour gamut, 

colour resolution and display panel type. Colour gamut tells how large area of the human 

discernible colours can be produced by the display, as seen in Figure 13. There are a 

few colour gamut standards to help comparing displays, like sRGB and Adobe RGB. 

These are usually used as reference with display specifications, such as “covers 98% 

sRGB”, means the display covers most of the sRGB standard area of colours. The colour 

resolution describes in essence how many different shades of colours are available, 

higher resolution resulting in more unique colour shades. In other words, it tells into how 

many different usable shades is the whole color gamut divided into. Common colour 

resolutions are 6-, 8- and 10-bit, meaning the amount of bits used to encode each color 

channel. For example, 8-bit color encoding uses 8 bits for red, green and blue channels, 

totaling 24 bits per pixel.  

 

Figure 13. Common colour gamut standards [102] 

The display panel types used for HMD’s are commonly divided into LCD and OLED pan-

els. Furthermore, LCD panels are divided into TM-, IPS- and VA-panels. Roughly gen-

eralizing, TM-panels are very fast in response time and cheaper, but have poor colours, 

VA-panels have slow response times, good contrast ratio and mid-range colour quality, 

IPS-panels have mid-range response times, mid-range contrast ratios and good colours. 

OLED panels on the other hand have great contrast and great colour but increased cost, 
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shorter lifespan and a risk of screen burn-in. With VR headsets OLED displays are com-

monly made with the PenTile matrix pixel layout, which has less sharp picture quality 

compared to same resolution LCD or OLED screens with the RGB pixel layout as a Pen-

Tile display has 33% less subpixels compared to an RGB display. A PenTile OLED dis-

play has lower production cost as an RGB OLED display however. There are a few head-

sets with OLED RGB design as well, such as the Play Station VR. [101, 103–106] 

3.1.3 Tethered and untethered HMDs 
Whether a device is tethered or untethered is a major design choice with XR headsets. 

The untethered HMD’s give more physical freedom for the end-user, as no cables are 

attached to the headset that could hinder the user’s movement. The trade-off is that they 

also include a battery, which generally makes them more heavy and cumbersome, while 

also sacrificing some computing power. As the devices are limited by the energy capacity 

and cooling capabilities of the headset, standalone headsets often have less computa-

tional power compared to tethered headsets. The battery in untethered headsets also 

includes a time limit until the battery needs to be recharged. 

The cooling and energy availability are key aspects when comparing a rendered software 

in a mobile processor chips or in PC powered tethering. The power that the computer 

consumes, mostly comes off as excess heat, and desktop computers consume much 

more power than mobile platforms. As a power comparison, a modern mobile processor 

spends only around a few to several watts of power in gaming [107], while a high-end 

PC running a high-graphics game can spend close to 500 W [108]. This gives some 

perspective as to why heat dissipation and power availability are bottlenecks with 

standalone headsets. While PC hardware can utilize large heatsinks and fans, mobile 

solutions, including standalone XR headsets, are limited by the weight and usability fac-

tors. A heavy headset would be more cumbersome and unwieldy for long sessions and 

fanning solutions for cooling have a noise factor, which limits the usability and immersion. 

Additionally, higher power consumption in mobile device would require a larger battery 

for the same use time. 

3.2 Other XR solutions 

Although HMDs are the most common way of achieving XR, there are other solutions 

available. Other immersive XR solutions include stereoscopic 3D screens, Cave Auto-

matic Virtual Environments (CAVE), mobile (phone) AR and different physical platforms.  
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3.2.1 Stereoscopic screens 
Stereoscopic screens have varying techniques, but they all aim at giving each eye a 

picture from its own perspective. Thus, the human brain can combine those pictures into 

a perception of a 3D object or world. An example of this is the Nintendo DS game con-

sole. The DS screen projects a different image for each eye by projecting them onto 

different directions. This only works when the face is at a certain distance from the dis-

play and directly in front of it however. [109] 

CAVE’s consist of 3 to 6 screens that are often in cubic form around the user. The 

screens can be rear projection screens with projectors, large displays or arrays of bezel-

less displays. The screens are also usually stereoscopic screens, allowing 3D scenery 

in every screen. To get a large cave to work with stereoscopy, the viewer’s eyes or head 

needs to be tracked in the cave environment to ensure the screen picture adapts accord-

ing to the perspective of the user. Even with the popularity of HMD’s, there are multiple 

companies offering CAVE and similar XR solutions. In the Figure 14 is an example of a 

CAVE solution by IGI. The benefit that the providers market is the complete freedom of 

movement and the natural interaction with the system [110]. The downside of CAVEs is 

the high price and space requirements. [111] 

 

Figure 14. A CAVE solution by IGI [112] 

3.2.2 Mobile AR 
Mobile AR might refer to any portable AR system, but more often it refers to AR made 

for mobile phones. One good example of this is the IKEA Place app, which allows the 

creation of a scan of a room and then trying of different IKEA products to see how they 

would look in the room, as seen in the Figure 15. The app also scales the IKEA products 
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according to the scan. Another famous AR app for smartphones is the Pokemon Go 

game, but there are also numerous others applications available [113]. [114] 

 

Figure 15.  IKEA’s Place app displaying a sofa in AR (Inter IKEA Systems as 
cited by [114]) 

3.3 Interaction methods 

There are many ways to interact with XR systems. The most common way is to use 

separate controllers that often come with the various HMDs, although some headsets 

include integrated controls in the headset itself. The integrated controls are normal but-

tons, of which one could find in any electronic device. The controllers and the headset 

itself are tracked in orientation and often in position too. 

Additional forms of interaction have become available however. Hand and eye tracking 

follow the user’s hands or eyes and acts accordingly, voice commands obey certain key 

word commands, wearables are accessories that track the body part they are worn on, 

platforms and cockpits are elaborate, use case specific controllers, Treadmills aim to let 

the user move in XR in a natural way, by foot and Electroencephalography (EEG) allows 

the user to interact with the XR environment via brainwaves. 
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3.3.1 Tracking methods 
As separate XR controllers are all wireless they need a tracking method for position and 

orientation (6 degrees of freedom or 6DOF). In addition, the headset in itself needs track-

ing. Some older headsets and controllers only had tracking for the orientation (3DOF), 

but according to the specifications of modern HMDs, 6DOF seems to be the common 

standard currently in headset as well as control tracking. [115] 

There are effectively two different types of tracking used with XR. The inside-out method 

uses the cameras and sensors placed in the headset to track the surroundings, control-

lers and/or hands, while outside-in method uses sensors, often cameras, outside the 

headset to track the controllers, the user and the headset. The inside-out method is fur-

ther divided into Lighthouse method and the SLAM method. [116] 

In the lighthouse method, special base stations (lighthouses) are used. They sweep the 

room repeatedly horizontally and vertically with infrared lasers. The headsets and con-

trollers have arrays of IR sensors and measure the time it takes between sweeps to get 

the position and orientation of the headset. SLAM utilizes cameras on the headset to see 

the surroundings and using computer vision algorithms, gyroscope and accelerometer 

the position of the headset can be determined. Commonly the SLAM headsets sense 

the controllers with separate IR cameras, as the controllers have a specific “constellation” 

of IR LEDs. The constellation’s orientation and position determines the position and ori-

entation relative to the headset. [116] 

The outside-in and lighthouse methods require external devices, wiring and setup, which 

make them more cumbersome and expensive. The lighthouse method however is con-

sidered to be the most accurate and reliable tracking method available at the moment. 

SLAM method is cheaper, less restrained and requires almost no setup, but loses track 

of the controllers/hands, if they are not in the vision of the cameras, behind the users 

back for instance. [116]  

3.3.2 Controllers 
The most common modern controllers are the HTC Vive controller, the Valve Index con-

troller, the Oculus Touch controller and the Windows Mixed Reality (WMR) controllers. 

The HTC Vive controller is also called wand, for its distinctive elongated shape compared 

to other controllers. It is inside-out lighthouse tracked, has a USB-charged battery, grip 

button, trigger button, menu button, system button and a trackpad. There have been a 

few evolutions of these controllers with different headsets and only the VIVE Pro control-

ler supports the latest Valve base station 2.0 tracking [117]. All of the evolutions have 

had the same form and functionality however. [118] 
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The Oculus Touch controller is an AA-battery powered, inside-out SLAM tracked con-

troller for the Oculus quest 2 headset. Separate editions of the controller are available 

for different headsets and are not interchangeable, even though the form and function-

ality is the same in all of them. The Touch controllers have a trigger button, a grip button, 

a menu button, a thumbstick and 2 buttons. All the buttons and the thumbstick are also 

capacitive, so they sense if the user has their finger on them [119]. This allows the user 

to point at things in VR with the index finger or give a thumbs-up in a natural way for 

instance. Although the buttons do not actually sense the finger position, only if it is on 

the button or not. [118, 120] 

Microsoft has made a reference controller design for its WMR framework for XR manu-

facturers to base their controllers on [121]. Samsung and HP among others have made 

their own controller models for WMR. Samsung odyssey+ controllers are rather close to 

the reference design with menu, windows, trigger and grip buttons, a trackpad and a 

thumbstick [122]. They have more refined ergonomics compared to the original however. 

HP Reverb G2 controllers on the other hand are very similar to the Oculus Touch con-

troller in shape and ergonomics. G2 controllers also have the same buttons as the Touch 

controllers plus a windows button. [123] 

Valve index controllers are inside-out, lighthouse tracked and have a thumbstick, track-

pad with force sensor, system button, trigger button, grip force sensor, 2 buttons and 

accurate finger tracking. The finger tracking allows the user to do even complex hand 

gestures or actions and to pick up objects in a natural motion. The pressure sensors on 

the grip also allow the user to “squeeze” objects. The controllers are powered by USB-

charged battery. [124, 125]  

Of the current mainstream controllers, only the Sony Play Station VR controllers are out-

side-in tracked. The system works with the Play Station Camera tracking the Play Station 

Move or Play Station VR aim controllers. However, even Sony is moving into the direction 

of inside-out tracking with their oncoming VR system [126, 127]. [128] 

3.3.3 Hand gestures 
Hand tracking and gestures are under much research, specifically for interaction in XR. 

As stated by Karam [129], hands are the most suitable part of the body for human-com-

puter interaction, even though gestures can be implemented with other limbs as well. 

Oculus has integrated hand tracking as an official feature in its headsets [130]. Recently, 

using deep-learning, Oculus has also advanced the state-of-the-art in hand tracking 

[131]. Their method relies on four monochromatic camera streams attached to the outer 

surface of the headset. For successful tracking, the user’s hands need to be in the field 
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of view of the outer cameras. The method provides accurate 3D hand pose estimation 

and runs at 60Hz on modern PC or 30Hz on the integrated mobile processor. Similar 

hand pose estimation methods have also been implemented by HTC in VIVE headset 

series. However, based on the headsets’ computing power, different headset models 

offer different hand tracking capabilities, with the less powerful models offering simple 

hand position estimation (no finger tracking) and simplified gesture recognition, instead 

of a full hand pose estimation capability. The accuracy of hand tracking, especially when 

fingers/hands are occluding each other and standardization of certain gestures to spe-

cific functions are a few ongoing hot research topics. [43, 44] 

Gestures can also be categorized by the implementation method used for the gesture, 

including wearable sensor devices, touch devices and computer vision. Touch device 

gestures are familiar from smartphones, while wearable and computer vision gestures 

are not that common in modern applications. Wearable smart watches have some ges-

ture controls and step counters, which are often implemented by sensing swishing hands 

[132]. In addition, the Valve Index controllers are technically wearable hand gesture sen-

sors, while simultaneously serving as controllers. Computer vision has been around for 

decades, but its use in hand gestures is still under research. [133]  

Microsoft Hololens 2 has support and documentation for several hand gestures, includ-

ing touch, hand ray and air tap. The gestures are implemented with computer vision. In 

addition to hand gestures Hololens 2 supports gaze controls with its 2 infrared cameras. 

[134, 135] 

Leap Motion by Ultraleap is another device for accurate hand controls and is popular 

especially among researchers. Leap Motion is a binocular RGB camera that can be used 

for more accurate hand tracking than a monocular camera. There have been applications 

using Leap Motion on a table or attached to an HMD for hand gesture recognition. [133, 

136] 

3.3.4 Eye and gaze tracking 
In addition to hand tracking, many applications utilize gaze tracking. This can be divided 

into head tracking and eye tracking. As Microsoft has designed it for their Hololens 2, 

with head tracking there is a pointer in the middle of the displays and it moves by turning 

the head. With eye tracking, no pointer is needed. By just looking at an object, the device 

senses what is looked at. Although eye tracking is faster, lower effort (from the user) and 

doesn’t require a cursor, it is also not a smooth in movement (not good for drawing lines 

etc.) and also has difficulties with small objects. Head tracking on the other hand can 

provide smooth, controlled movement, is more reliable with precision and doesn’t require 



31 
 

eye tracking hardware, which is usually expensive [106]. Gaze tracking is often used like 

a mouse in traditional systems, while the mouse clicks are implemented by gazing at the 

target for a set amount of time, with hand gestures, voice commands or controller but-

tons. [137]  

Regarding eye tracking, most recent headsets that support this capability, usually utilize 

IR technologies, either integrated on the headset or as a separate extra module such as 

7invensun’s eye tracking module utilized in Pimax’s headsets [138]. The technology used 

in Varjo’s devices utilizes two IR cameras for each eye that operate at 100 fps with a 

1280 x 800 resolution, and project a complex IR illumination pattern, advertised to result 

in a highly robust eye tracking system [139].  

3.3.5 Voice commands 
Voice is another interface that is fast popularizing with computers and XR. As virtual 

assistants like Siri, Google and Cortana are becoming more able and ubiquitous, speech 

recognition is fast evolving. Hololens 2 and WMR platform in general support specific 

voice commands by default. There is also an option to make custom commands in WMR, 

speech dictation or use Microsoft virtual assistant Cortana with speech commands. Voice 

commands are singular preconfigured command words mapped to specific functions, 

while speech dictation is meant for using speech to type text without keyboard. Magic 

Leap One AR glasses and Oculus headsets also support voice commands and Oculus 

also supports speech dictation. There are also XR platform independent softwares such 

as Voice Bot and Voice Attack available for voice commands and speech dictation in any 

PC environment, including XR environments. These allow the user to save macros for 

specific custom voice commands. [140–144] 

3.3.6 Platforms and cockpits 
Physical platforms for XR include treadmills (covered separately in 3.3.7), cockpits and 

some specialized solutions. An example of a specialized XR platform is the Birdly de-

picted in the Figure 16. Birdly is a physical VR platform for flying in VR, including a fan 

for wind simulation, wing control with arms and hands and a moving platform for tilt and 

yaw. The platform is used in conjunction with a HMD, which is responsible for the 3D 

audio and visuals. [145] 
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Figure 16. Birdly platform in use [146] 

The VR cockpit platforms are usually very use-case specific. They range from racing 

seats, for racing simulator games to aeroplane cockpits for training and simulation pur-

poses. There are also multiple do-it-yourself projects on VR seats and platforms. Many 

of them aim to be more general, so they can be used with car or flying simulation as 

needed. In the Figure 17 is an example of an aeroplane specific cockpit platform. [147–

149] 

 

Figure 17.  A Full cockpit for VR [147] 

Platforms and cockpits allow for elaborate ways to interact with an application, but are 

commonly very costly compared to the default controllers. 



33 
 

3.3.7 Wearables 
Kat-VR has made wearable set of sensors, which are designed for moving in VR. The 

idea is to “walk in place” to move forward in VR. The direction of movement is tied to the 

user’s lower body, not the direction the headset is pointing. This is done with calibration 

of three disk shaped sensors, one for the waist and 2 for the ankles. Another wearable 

solution is the kickstarter project Cybershoes. This solution involves 3 pivotal parts, (Cy-

bershoes) that are strapped onto the feet, either without shoes or on top of shoes, a 

carpet (Cybercarpet) and a swiveling stool. The user sits on the stool, which is on the 

center of the round carpet. The cybershoes have a roller on the bottom, that senses 

when the user “walks in place” while sitting on the stool. The carpet ensures optimal 

operation with the rollers. The experience is reported to not be like walking, but rather “a 

step in the right direction for more immersive VR”. [150–152] 

3.3.8 Treadmills 
The treadmill platforms come in two variations, either a mechanical omnidirectional 

treadmill, like Infinadeck platform, or a low-friction platform to be used with low-friction 

shoes like Kat Walk, Virtuix Omni and Cyberith Virtualizer platforms. In the Figure 18 is 

an example of a treadmill by Virtuix. Treadmill platforms are advertised to feel more nat-

ural when moving in a VR environment and also reduce simulator sickness, which is 

usually involved with movement in VR environments. [150, 153–155] 

 

Figure 18. Virtuix Omni treadmill [156] 
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3.3.9 Electroencephalography (EEG) 
There are a few accessories for XR headsets out there that claim to sense the brain 

activity of the user. This is done via EEG, which includes a non-invasive sensor(s) on 

the scalp of the user. These already allow rudimentary controls in VR environment, such 

as pressing a button by concentrating on the button on the screen as Nextmind has done. 

These buttons have a tag that is optimized for the visual cortex and can then be sensed 

by EEG and decoded by a computer software. Another way of interacting with an EEG 

device is to measure the general attentiveness or relaxation as Looxid has done. They 

have a few applications ready for their device that allow trying the lifting of objects by 

concentrating hard or checking the live EEG data on screen. What specifically needs to 

be concentrated on and how is not specified. [157, 158] 

3.4 Feedback methods 

Usually the feedback for actions with computers is auditive or visual. When a user 

presses a button, it induces a sound, or the button changes color, blinks or visually goes 

down. But there are other ways to get feedback on XR. For instance, Dextra Robotics, 

VRGluv, HaptX and Manus have made glove controllers, with full hand motion capture 

and force feedback for each individual finger. This allows getting pose information of 

individual fingers and gives a feeling of actually touching or holding objects in XR. The 

following subsections cover some other feedback methods that have been introduced 

into XR systems. [159–161] 

3.4.1 Haptics 
A step further from robotic gloves are the haptic suits provided by Teslasuit and bHaptics 

for instance. Both offer suits that have dozens of haptic actuators for different body areas. 

However, Teslasuit is designed for industrial and military sector XR with the haptics being 

implemented with electro-stimulation and also include biometric sensors and motion cap-

ture embedded in the suit, while bHaptics is marketed for XR gaming sector with vibrating 

motors for haptics and a much lower price point. [162, 163]  

Another way to give haptic feedback in XR is with ultrasound, as provided by Ultraleap 

(previously known as Ultrahaptics). Assembling an array of ultrasound speakers, a light 

feedback can be induced in mid-air. This is hard to impossible to do in millimeter preci-

sion however, as for instance 40 kHz ultrasound has a wavelength of around 0.9 mm. 

Ultraleap promises various patterns of sensations to the palm of the hand to differentiate 
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between various actions. There have been many studies about using ultrasound to in-

duce mid-air haptic feedback during the years, but it has not seen much widespread 

commercial application as of yet. [136, 164, 165] 

3.4.2 Sound 
Sounds are also an important aspect of perceived space and objects. The traditional 3D 

surround sound systems like 5.1 or 7.1 do not work well with XR however. The traditional 

model assumes fixed positions of speakers in comparison to the listener, such as front 

center, rear left etc., but with XR the user is able to yaw, pitch and roll their head freely, 

which needs to be taken into account, if an accurate immersion is to be accomplished. 

The research on this subject is ongoing, nevertheless there are already some providers 

of 3D audio plugins and solutions. However, the major breakthrough and consensus on 

how to do 3D audio in XR is still yet to come. [166, 167] 

3.4.3 Scent 
In addition to visual, auditive and haptic feedback, there are some start-up companies 

like OVR and Feelreal, exploring controllable scent inducing devices. The devices use 

an array of different scents to mimic real-life scents. The companies seem to have vary-

ing amount of scents available and most of them are attachable below commercial 

HMD’s. The Feelreal also has a feature for spraying air or mist into the users face when 

activated, for instance when crossing a river in VR. [168] 
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4. APPLICABLE SOFTWARE FOR INTERFACING 

As Unity works with C# and ROS2 works with C++ or Python by default, a software is 

required between them. In the sections below some available software implementations 

are listed that were tried. These were considered as possible solutions or bases for so-

lutions for the interface between ROS2 and Unity. 

4.1 Unity Robotics Hub 

Unity Robotics Hub is an implementation of ROS1 communication in Unity by Unity Tech-

nologies. ROS2 integration for it is under development and in alpha stage at the time of 

writing. Enrolling in the alpha program requires signing of a non-disclosure agreement 

(NDA). [7] 

The software was evaluated but was seen unfit for the project. The details cannot be 

disclosed because of the NDA. 

4.2 ROS2 dotnet 

ROS2-dotnet is a software developed by Esteve Fernandes along with few other con-

tributors. It is developed for writing ROS2 applications for .NET Core and .NET Standard. 

This would possibly allow it to be used directly from Unity as C# is the scripting language 

in Unity and C# programs run on top of .NET system [169]. However, the documentation 

of ROS2 dotnet is very scarce and not completely up-to-date. This makes the use and 

learning of the software very time consuming, as significant time was invested just to get 

the software compiled. In addition, there is only a simple example program included with 

the software with ROS2 String type messages, which gives no assurance that it would 

work easily with more complex message types or otherwise more complex use. [74] 

All these reasons combined, with emphasis on the project time constraints, made this 

software inadequate for the project. 

4.3 ROS2 for Unity 

ROS2 for unity by Dyno Robotics is another implementation of ROS2 for Unity. It uses a 

fork of ROS2 dotnet mentioned above. However, it doesn’t support windows and seems 

rather outdated with latest update to the code being over 2 years ago at the time of 

writing. Also based on the branch names and the documentation of the forked ROS2 

dotnet, it is based on the ROS2 distro Dashing, which reached its EOL in May 2021.  
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The aim of the project was to incorporate ROS2 into use with VR and AR. As such, the 

decision was to use windows as a platform. Windows is considered by many to be more 

mature for XR as of yet, especially because of better graphics card and other driver 

availability. XR is also strongly driven by gaming industry, which is still highly concen-

trated around windows on PC platform.  [170, 171] 

These reasons combined made this software unsuitable for this project. 

4.4 ROS1 implementations 

ROS#, Unity Robotics Hub (without ROS2 features) and ROSBridgeLib are all imple-

mentations of ROS1 use and could be used with ROS2 via ROS1_bridge [7, 172, 173]. 

These would not be optimal solutions however, as ROS1_bridge brings about additional 

CPU stress and latency as described in the Subsection 2.3.3. It is also questionable how 

long is ROS1_bridge going to be supported, as the last ROS1 distro will only be sup-

ported until 2025. 

4.5 Future applicability 

All of the aforementioned software had pitfalls, which made them unappealing or unus-

able for this project. With future improvements however, they could potentially solve 

some or all of the problems presented in this thesis as the functionality goals of the soft-

ware were well aligned with the goals of this thesis. 
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5. APPLICATION INTERFACE SPECIFICATION 

As covered in Chapter 4, the available applicable software for interfacing ROS2 to Unity 

were degreed unfit and as such, a custom API was implemented. From the available 

official ROS2 APIs, C++ API was chosen over Python API as the baseline for the inter-

face. This was due to Unity having official support for native library plugins made with 

C/C++ [174]. There also seems to be a plugin available for Unity for Python support, but 

it is mentioned to be made for specific cases, not directly involved with the actual game 

scene [175]. Outside that, Unity doesn’t officially support Python, which made C++ API 

the only option.  

The development of the ROS2-Unity library API was made largely through experimenta-

tion as the ROS2 documentation and tutorials do not cover anything more elaborate than 

a simple publisher, subscriber, service server, service client, action server and action 

client. As such the design of the ROS2-Unity library API was formed through many iter-

ations of trying out different features of the ROS2 C++ API together with Unity. What is 

represented in this chapter is the final result of that iteration. The design process is cov-

ered in more detail in the Chapter 6. 

The ROS2-Unity library API only has support for a handful of message types, as it was 

too time consuming to translate even all the ROS2 standard message types into the API. 

As thus, it was agreed that the API acts as a baseline to expand upon. This was sup-

ported by writing a documentation page, which describes the API in detail and gives clear 

instructions on how to add support for a new message type for a subscriber or publisher. 

The documentation describing how to add a message type to the interface for publisher 

can be seen in Appendix C and for subscriber in Appendix D. 

The ROS2-Unity library API is composed of a low level API, a high level API and it can 

be expanded to ROS1 through the ROS1-Bridge. The features of these interfaces are 

covered in the following sections. 

5.1 Low level API 

The low level API consists of C style functions, as the name mangling in C++ is problem-

atic when importing into other languages, such as C# in Unity [176]. The functions are 

divided into general functions and message specific functions, which are presented in 

the following subsections. The C++ function definitions can be seen in the Appendix A 

and B. 
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5.1.1 General functions 
The ROS2-Unity library API includes the following general functions depicted in the Table 

2. 

Table 2. ROS2-Unity library API: general functions 

 

The initialize function creates 3 ROS2 nodes, one for publishing, one for subscribing and 

one for publishing debug messages, hard coded into the inner functions of the ROS2-

Unity library. It takes one parameter of the type string, which acts as a prefix for the 

names of the 3 nodes created. The shutdown function releases everything the initialize 

function has created dynamically and it doesn’t have parameters. 

add_subscriber and add_publisher functions have 3 parameters in common, a string for 

the topic, an unsigned integer for the message type and an unsigned integer for backlog 

queue length for messages in ROS2 API. The supported message types are the ones 

that have a send or poll function implemented and each of the message types corre-

sponds to a specific integer number as depicted in the Table 3. The backlog decrees 

how many messages are kept in queue in ROS2 API to be published or subscribed 

(polled or handled), before one is discarded. The add_subscriber function also has an 

unsigned integer parameter for a second backlog on the ROS2-Unity library side. This is 

explained in more detail in the Subsection 6.2.1. 

Table 3. ROS2-Unity library message type numbers 
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5.1.2 Message specific functions 
The ROS2-Unity library API includes the following publisher functions depicted in the 

Table 4. 

Table 4. ROS2-Unity library API: message specific publisher functions 

 

In addition the ROS2-Unity library API includes the following subscriber functions de-

picted in the Table 5. 

Table 5. ROS2-Unity library API: message specific subscriber functions 

 

All the publish message functions take the topic name to publish on as the first parameter 

followed by all the fields of the message type in question. Similarly, the poll message 

functions have parameters for topic name, followed by the fields of the message type in 

question. The message type field parameters in poll functions need to be reference pa-

rameters however, as they are updated by the function. This is how the message values 
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are transferred to the program calling the library functions. Polling functions for message 

types with strings or arrays of undefined length need to prepare a buffer for the message 

field data and give the length of that buffer as an input parameter. This input parameter 

is also given as a reference, as the library function assigns the amount of bytes written 

to that same variable. 

ROS2 actions and services are not implemented into the ROS2-Unity library API as most 

of the functionality presented in this thesis can be done using only topics. In the future 

however, actions and services should be included into the ROS2-Unity library as well.  

5.2 High level API 

For easy use in Unity, a high level API for the ROS2-Unity library was introduced in Unity, 

the idea being to hide the low level API and the need to know about the library functions 

and their parameters. The high level API consists of prefabs, one for each subscription 

or publisher type. In the future, a universal prefab should be implemented for subscriber 

and publisher. This would allow the user to pick a message type and parameters directly 

from the Unity editor inspector tab. 

5.3 ROS1 through ROS1_bridge 

While ROS1_Bridge is not part of the ROS2-Unity library, it effectively expands the in-

terface to include ROS1. As ROS1 still has a large userbase and wider array of software 

packages available than ROS2 at the moment, having a gateway to ROS1 networks for 

the ROS2-Unity library was considered important. ROS1_bridge cannot convert action 

calls, but as ROS2-Unity library does not utilize actions in its current configuration, this 

is irrelevant. [64] 

ROS1_bridge was set up on a Raspberry pi 3 B+. It was able to successfully translate 

topics across ROS1 and ROS2. No functional failures were discovered during the use 

and testing of the bridge. Some performance issues were noticeable however. These 

issues were briefly researched and are described in more detail in the Section 6.4. 
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6. ROS2-UNITY LIBRARY DEVELOPMENT 

This chapter covers the development process of the ROS2-Unity library. The develop-

ment of the library consisted of setting up the environment, software development and 

software evaluation. The software development and evaluation were done in iterations, 

developing a feature, testing it and then moving on to the next feature. The following 

sections cover the aforementioned aspects of the implementation.  

6.1 Environment 

The primary target environment for the development consisted of Windows 10 and Unity 

in an x86-64 architecture computer. The secondary target environment was a tablet with 

Android 11 of arm64-v8a architecture. The Android build of the ROS2-Unity library was 

made with a cross compiler tool in an Ubuntu 18.04 environment with an x86-64 archi-

tecture computer. The ROS2 part of the environment consisted of CMake and colcon. 

The tools of ROS2 used were rclcpp, colcon and the command line tools. These were all 

included in the ROS2 installation package. All the message definitions used in the ROS2-

Unity library were also included in the installation package. The tutorials in the ROS2 

documentation use CMake as the build system with the C++ examples. This was the 

baseline for the ROS2-Unity library as well. The development environments and compil-

ers used are depicted in the Figure 19. 

 

Figure 19. The development environment for ROS2-Unity library 
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6.1.1 Windows 
The installation of ROS2 into Windows was made via the package manager Chocolatey, 

according to ROS2 documentation page instructions [13]. The process was relative sim-

ple and the instructions were clear. Compiling ROS2 software was also fairly straightfor-

ward, following the ROS2 documentation tutorials. Windows also had access to essential 

ROS2 tools, like RViz2 and RQt, which have been migrated from ROS1 and Ubuntu. 

RQt in Windows seems to have all the default plugins that RQt in Ubuntu has, except 

the Image View plugin, which is missing in Windows.  

The used Unity editor version was 2019.4 and the SteamVR plugin was installed into it 

from Unity Asset Store. The SteamVR plugin came with all the necessary tools to imple-

ment rudimentary VR controls and headset integration for the demonstration scene. 

6.1.2 Linux (x86-64) 
The library could easily be compiled also in Ubuntu Linux environment and tested with 

the same C++ executable that was used for unit tests while developing in the Windows 

environment. There is also extensive documentation on installation and developing 

ROS2 on Ubuntu [13]. This platform was not a main aim of the project but was necessary 

for the cross-compilation attempts for the Android platform [177, 178]. 

6.1.3 Android 
An effort was made at the end of the project to compile the ROS2-Unity library also to 

Android devices of arm64 architecture. The library had most of the features implemented 

at this stage. ROS has a cross compilation tool available, which works with ROS1 and 

ROS2. However, it officially only supports Ubuntu and Debian compilation targets of 

armhf, arm64 and x86_64 architectures. The tool also officially supports only OSX Mo-

jave and Ubuntu 18.04 as host systems. The compilation utilizes Docker to emulate the 

target system and compile the software in that environment. Unity supports native library 

plugins for android [174]. The documentation even includes a sample Unity-package with 

a sample library plugin for Android. [13, 177]  

6.2 Software development 

This section covers the development of the ROS2-Unity library software and its utilization 

in Unity in a basic way as well as compiling for Android. Further development in Unity 

was conducted for the demonstrations, covered in Chapter 7. A simplified diagram of the 

ROS2-Unity library development process is depicted in the Figure 20. The iteration of 

adding and testing new features is covered in more detail in the Section 6.3. 
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Figure 20. ROS2-Unity library development process 

The initial research on ROS2 APIs, both python and C++, consisted of trying out the 

tutorials in the ROS2 documentation for writing a simple publisher and subscriber [13]. 

The ROS2-Unity library API was implemented as a shared library or dynamically linked 

library (DLL), as they are called in Windows environment [179].  

The Figure 21 gives an overview of the ROS2-Unity library structure. The figure is mod-

eled as a class diagram although only UnityPublisher, UnitySubscriber and 

TopicCallback are actual C++ classes. The other modules in the figure are considered 

to be packaged into modules in an object oriented way, which makes them representable 

as classes. general_functions and overloader are basically C wrappers for the Uni-

tyPublisher and UnitySubscriber C++ classes, while the tester module is composed of 

independent test functions. TopicCallback is a class for handling and storing messages 

for the subscriptions. Unity is represented here as a single class module, although a 

single Unity scene often consists of multiple C# classes. As the utilization of the ROS2-

Unity library in Unity is not restricted to any particular classes or functions however, there 

is no need to specify any specific classes or functions. The same accounts to the tester 

module, which is covered in more detail in the Section 6.3. 

 

Figure 21. ROS2-Unity library structure overview 
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The following subsections describe the core functionality of ROS2-Unity library, the C 

compatible interface, the included message types and how the library was integrated into 

Unity.  

6.2.1 Core functionality 
The simple tutorials, of which ROS2-Unity library was built on, consisted of C++ classes 

for the publisher and the subscriber, which were inherited from the ROS2 node class. 

Both of the nodes initially only used ROS2 String messages, but they were expanded to 

support different message types. The tutorial publisher class had a timer, which made 

the node publish a message every second. The timer was removed and public methods 

for sending messages were introduced instead. Similarly the tutorial subscriber initially 

only had a callback function, which printed out the messages received. It also called the 

spin-function for the subscriber node, which blocks indefinitely to check messages for 

the subscription. [13, 17] 

The callback function was modified to store the received messages in a container. Addi-

tionally a poll function was introduced, which utilizes spin_some function instead of reg-

ular spin function. The spin_some function “executes any immediately available work” 

[17]. In other words, it processes any available messages in queue in any of the ROS2 

subscriber objects in the node and then quits. The poll function can be used to return the 

messages from the oldest to the newest. The spin functions are not selective of the topic 

or the type in question, but rather check messages on a node basis.  

All the different types of messages implemented required their own add subscription 

method, callback function, poll message function, subscription handle and a message 

container. Experimentation was conducted to make the core classes as generic and re-

usable as possible. At this point the strong typing of C++ started to become problematic. 

A generic TopicCallback class was introduced, which could store any type of subscriber 

handle, message container and handler function that was integrated into the ROS2-Unity 

library. With this class, ROS_add_subscription could be made into a template function, 

which would only require the message type as a template parameter. Adding a subscrip-

tion would create a new TopicCallback class and store it in a dictionary with the topic 

name as the key.  

This was still not optimal, as all the callback functions had to be implemented manually 

and the containers and handlers added, when adding support for a new message type. 

Also as a result, the TopicCallback class had containers for all the other message types 

in addition to the one used. To alleviate the memory use, TopicCallback class constructor 

was made to shrink all the containers to a minimum size. 
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Similarly, the publisher class needed publisher handles, add_publisher functions and 

send message functions for every different message type. The add_publisher function 

could be made into a template function, which took the message type as a template 

parameter. The publisher handles were stored into separate dictionaries for all the dif-

ferent message types, with the topic name as the key. The message functions for differ-

ent message types could be combined into one overloaded function, but the separate 

overloads had to be programmed manually, as finding publisher handles from the sepa-

rate containers could not be generalized. 

6.2.2 C compatible interface 
The interface for Unity needed to be C compatible. This was achieved with the extern 

“C” expression, which prevents the C++ compiler from mangling the function names. The 

problem with the implementation was that it was built into classes and C language does 

not have a concept of classes. As such, separate interface functions needed to be intro-

duced. These functions had a C compatible interface, as they were declared within ex-

tern “C” expression, the function parameters were all C compatible types and no over-

loading of function names was conducted. Internally however, the functions did use the 

C++ classes built for publishers and subscribers. 

As C arrays do not monitor their size, a separate size parameter was needed for the 

array and string parameters of the send/poll message functions. For polling messages 

with string or array fields, the size variable was used both ways. From the calling side to 

ROS2-Unity library, the variable stated the size of the buffer in the calling side. If the 

buffer size was sufficient, the data was written into the array or string buffer and the size 

variable was assigned the amount of bytes written to the buffer or array. 

This functioned well, but introduced extra steps when expanding the interface further. To 

include a new message type for the publisher for instance, the add publisher method 

under the publisher class had to be modified, send message method had to be made for 

the class, a new dictionary had to be created for publisher objects of the new type and 

interface functions to add a publisher and to send a message of the new type had to be 

made. In addition, if the new message type was part of a ROS2 package, which was not 

previously introduced to the ROS2-Unity library, it needed to be added to the pack-

age.xml manifest, to the CMakeLists.txt file and to the source files as a header.  

For subscribers, the procedure was similar but instead of making a send method, a poll 

method was made and as an extra step, an additional callback function also had to be 

made. Initially the UnitySubscriber class also had a ROS_get_msg function for request-
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ing received messages from the class. This would have been an extra step to also ex-

pand when adding additional message types, so it was deprecated and direct access to 

the class variables was used from the overloader poll functions. This is against the good 

design practice of encapsulating variables in a class, but as the schedule of the project 

was tight, the choice was made to save time.  

Because of the steps mentioned above, it was a relatively time consuming effort to add 

a single message type into ROS2-Unity library. As such, only message types deemed 

most important were introduced into the library. In addition, a detailed documentation 

was created on steps to take to include a new message type for the interface. The steps 

can be seen in Appendix C and D for publishers and subscribers respectively. This ap-

proach allowed the initial library to be used, tested and evaluated with many standard 

robot functions, but also had information on how to proceed, if new message types were 

required in the future.  

As the C interface became more bloated with the addition of multiple message types, the 

interface was split into general_functions and overloader modules. The general_func-

tions included ROS2_init and ROS2_shutdown functions for the library in addition to the 

add_publisher and add_subscriber functions. The overloader included all the send func-

tions for the publishers and all the poll functions for the subscribers. It was also initialized 

by the ROS2_init and deinitialized by the ROS2_shutdown functions in the general_func-

tions module. The name overloader was chosen for the module as it works in a similar 

fashion as an overload of a function on C++. The overloader did not actually overload 

any functions however, as there is no concept of an overloaded function in the C lan-

guage. 

6.2.3 Included message types 
The message types included in ROS2-Unity library were String, Twist, Header, Pos-

eStamped and PoseWithCovarianceStamped for the publisher and String, Twist, 

Header, Image, CompressedImage, Odometry, LaserScan and BatteryState for the sub-

scriber. This subsection describes the reasoning behind the choices of the messages 

included. 

String messages were included from the start, but were also very important for passing 

on general human readable information. Future experimentation could be made on using 

javascript object notation (JSON) with the ROS2 String messages. This would effectively 

allow many kinds of data to be transmitted without altering the ROS2-Unity library inter-

face. The downsides of JSON over more optimized message types are larger message 

size and inclusion of latency from serialization and deserialization of messages. 
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Twist includes two 3-dimensional vectors: one for linear and one for rotational speed. As 

such, these messages are commonly used in robots for movement, as it allows com-

manding the robot to move linearly in any 3D direction, as well as to rotate around any 

3D axel. Moving a robot is a core functionality, which makes it imperative to include this 

message type. [19, 180] 

Header messages include a timestamp struct with seconds and nanoseconds as sub-

fields as well as a header ID String field. It is not commonly used on its own, but rather 

included as a part of many other messages to give sensor messages a timestamp. The 

purpose for including the Header to the interface was to experiment with transmitting 

non-trivial data through the interface using structs. As the Header message type is com-

pact, but includes a sub-struct and a String field, it was ideal for this experiment. The use 

of structs between the ROS2-Unity library and Unity required a formation of the same 

struct on Unity side however, which induced unnecessary extra work. In addition the 

serialization and marshalling of various non-trivial structs was a non-trivial and time con-

suming task [181]. As such, the message fields were included directly into the interface 

functions rather than as structs. [19] 

PoseStamped and PoseWithCovarianceStamped messages are used in Navigation soft-

ware in ROS1, which allows a robot to navigate in a mapped environment. A Pos-

eStamped message consists of a Header, 3D position and a quaternion orientation fields. 

A PoseWithCovarianceStamped has the same fields as the PoseStamped in addition to 

a covariance array field. The Header field is already described in the previous paragraph. 

It was possible to open the Navigation software with a map file and publish an initial pose 

and a goal pose using these message types through ROS1_bridge. The initial pose tells 

the software the position and orientation of the robot on the map, while the goal pose 

tells where the robot should navigate to and to which orientation. This was tested to work 

with a Robotnik RB1 robot in ROS1 as a ROS2 based robot was not available in the 

testing laboratory at the time. The Navigation software and the robot did end up in an 

undefined state many times during testing, but as this was not a core part of the research, 

the error was not researched further. [19, 26] 

Navigation software has migrated to ROS2 with the name Navigation 2 and it was as-

sumed that it worked in a similar fashion as its predecessor, which is why the Pos-

eStamped and PoseWithCovarianceStamped message types were included into the 

ROS2-Unity library. Unlike with the initial Navigation tool however, according to the Nav-

igation 2 documentation, the method described above is not the used way with Naviga-

tion 2 anymore. While Navigation uses topics to send initial and goal poses, Navigation 
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2 uses actions. In the light of the intended purpose, this change makes the usefulness 

of these message types rather questionable. [20] 

LaserScan message includes range, angle and intensity data of a laser scan, along with 

a few configuration parameters. These include a Header, minimum and maximum angles 

of the scan, the angle and time increment between measurements, time between scans 

and the minimum and maximum range values. As LIDAR has become more common 

and has many use cases in the modern society, the LaserScan message type was con-

sidered necessary to be included in the ROS2-Unity library [19, 182–184]. 

BatteryState was included as mobile robots generally work with a battery and knowing 

the battery state outside the robot would have many uses. The uses include program-

ming behavioral patterns for the robot based on its battery state and human monitoring 

of the battery state. It was noticed that the ROS2 BatteryState message was quite 

bloated with parameters ranging from various status fields to all kinds of electrical prop-

erties of a battery. In addition, the message type supports some individual measure-

ments for arrays of battery cells [19]. 

Image and CompressedImage were considered of high importance, as this allows man-

ual teleoperation through camera feed or automated navigation through machine vision 

as well as monitoring through the robot. For the Turtlebot3 Waffle Pi, which was the robot 

most used in this thesis, there were a few different ROS2 camera modules with tutorials 

available. The used modules were image_tools and v4l2_camera. image_tools only al-

lows (uncompressed) Image messages, while v4l2_camera allowed both Image and 

CompressedImage messages to be published. [185–187] 

Odometry allows subscribing to the robots world view of position and orientation. This 

allows the creation of a digital twin in a virtual environment, which mimics the movement 

of the real robot. It is also commonly used in SLAM and navigation applications. The 

Odometry in robots is often susceptible to errors however, as discovered in the Chapter 

7. [19, 20, 180] 

6.2.4 Unity and ROS2-Unity library 
ROS2-Unity library was imported into Unity according to the Unity documentation instruc-

tions [174]. Most of the types in C# matched with the C types used in the interface, but 

a few required slight changes. String buffers in C# were created as StringBuilder objects. 

Any pointers in the C interface were given as reference (ref) variables in C#. The arrays 

in the C interface, which are essentially pointers as well, were given as C# arrays. 



50 
 

For visualization of data, screen prefabs were created in Unity. These consisted of a 

vertical plane and a canvas. For textual data a text object was also created under the 

canvas object. For each message type, a script was created, which could be attached 

under a screen prefab. The scripts would then visualize the incoming/outgoing data. In 

addition, an initialization script was made to call ROS2_init function before any other 

calls were made to the ROS2-Unity library. 

The polling of ROS2 messages in a rapid fashion induced stuttering in the Unity scene, 

as the calls to the ROS2-Unity library were blocking. To alleviate this, the polling on 

subscriber wrappers on Unity was done by creating an additional thread for it. To prevent 

race conditions and other undefined behavior, the calling of poll functions was protected 

with a mutex. In addition, a timer was introduced so messages would be polled at a 

constant rate. 

The prefabs and scripts described were originally created as part of the integration test-

ing, which is described in more detail in the subsection 6.3.3. While these prefabs are 

not adaptable to all applications as they are, they give a baseline on what to build a 

specific implementation upon. They also serve as an example implementation if a new 

publisher or subscriber script is required to be built from scratch. 

To be able to publish data at will, geometric objects were created into the scene, which 

would create an event, if they were clicked with a mouse. This event would be caught by 

a publisher script, which would proceed to publish a message. As more message types 

and multiple screens were introduced, a need arose for movement controls in the Unity 

scene. For this purpose, rather traditional first person game movement controls were 

introduced. The player could move forward with the W key, backward with the S key, left 

with the A key and right with the D key (like the arrows are set up on a standard key-

board). The movement is always along the floor plane. The orientation of the player could 

be changed by moving the mouse while holding down the right mouse button. The con-

trols were later expanded with robot controls for the demonstration. This is described in 

more detail in the Subsection 7.2.1 and depicted in the Figure 31 in the same subsection. 

The XR functionality was tried with a HTC VIVE Pro HMD. The scene was tested to work 

the same way with the Unity XR features turned on, and the headset was tested to work 

while using the ROS2-Unity library. XR was only later integrated into the scene when 

developing demonstrations of the ROS2-Unity library with and without XR features. This 

is covered in the Subsection 7.2.2. 
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6.2.5 Cross-compiling for Android 
A sample Unity scene could be successfully built for Android without any plugins. Build-

ing with the Unity sample library, consisting of only one simple function, did not work 

however. The Unity compiled the game program and the device ran the program suc-

cessfully. The program reported an error while running however, stating that it failed to 

find the shared library, even though the library file was confirmed to be part of the Android 

application package (.apk). 

To ensure the cross-compilation tool was working as intended, the ROS2-Unity library 

was cross-compiled to a Raspberry Pi with 64-bit Ubuntu server 18.04. The functionality 

was tested with a simple C++ test executable, which did not use the ROS2 features in 

the library, but only did simple arithmetic with an added test function. Using the ROS2 

features in the library did not seem to work. The Raspberry Pi environment had Ubuntu 

18.04 and ROS Eloquent, while the cross compilation environment had Ubuntu 18.04 

and ROS Dashing. The mismatch between ROS2 distros might have been the reason 

for the error with the ROS2 functions. As the Raspberry Pi was not the primary target for 

cross compilation, no more work was conducted on this matter however. The main object 

was to check if the cross compilation tool was able to successfully compile for the arm64 

architecture, which was the case. 

Further research on cross-compiling libraries into Android revealed that a probable cause 

for a failure in platform migration of shared libraries and executables with library depend-

encies is the difference in the library dependencies of the programs. On a PC host sys-

tem, a depended library might reside in one location in the file system, while on Android, 

it might reside in a different location or be absent altogether. This makes it harder to get 

anything but statically linked executables to work when cross-compiling from one system 

and architecture into a different one.  

This led to a brief experimentation on compiling a statically linked library version of the 

ROS2-Unity library and linking that to a simple C++ program. This led to a failure as well 

however, as the C++ compiler used (g++) gave numerous errors when trying to compile 

a simple executable linked to the static library. The time constraints of the project dictated 

that no more effort for migrating the library to Android was to be made and the effort was 

declared a failure. 

6.3 Software Evaluation 

The ROS2-Unity library features were implemented and tested in iterative steps. The 

development and testing iteration is depicted in the Figure 22. This however does not 
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account for the initial stages of the software development process described earlier in 

this chapter. 

 

Figure 22. Development and evaluation process 

The first step in the iteration would be to implement a new functionality, usually a new 

message type to subscribe or publish to. The second step would be to make or update 

the mock system scripts, which would act as a ROS2 system on which to test the features 

against. The third step would be to make a unit test for the new functionality and run it. 

If the test is passed, the fourth step is to copy the compiled library into a Unity project 

and write a script which utilizes it. The script is then tested against the same mock system 

script as with the unit test. This is the integration test step. If everything passes, the new 

functionality is added into the documentation. If any of the tests fails, the code, either in 

Unity or in the ROS2-Unity library, is debugged until the tests pass successfully.  

The mock system scripts were ran on Ubuntu laptop, while the ROS2-Unity library, the 

unit tests and unity scripts were ran on a Windows laptop. The communication between 

systems was conducted via a WIFI LAN. The hardware setup is depicted in the Figure 

23. 
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Figure 23. ROS2-Unity library testing hardware setup 

The following subsections go into detail about the various steps and aspects of the tests. 

6.3.1 Mock System scripts 
2 mock system scripts were made, one for testing the publisher and one for testing the 

subscriber. The test scripts were written in Bash language and they utilized ROS2 com-

mand line tools. 

Both of the scripts first sourced the environment for ROS2. After sourcing, the publisher 

script made a publisher for every type and topic that was tested by the unit and integra-

tion tests. Similarly, the subscriber script made subscribers for all the tested topics and 

types. As the ROS2 command line tool commands to make publishers and subscribers 

are blocking calls, they were made to execute in the background in a subshell and their 

process IDs were collected into a list. After calling the publishers, a command was called 

to wait for the user to input any key. This input was not stored anywhere, but acted as a 

signal to kill all the subprocesses that had their IDs stored previously into the list and 

quit. Overall in practicality, the script sent or received messages that were to be tested, 

until any key was pressed. 

6.3.2 Unit tests 
As part of the compilation process of the ROS2-Unity library software, a separate exe-

cutable program was also compiled. This executable was coded in C++ and was meant 

as a quick way to unit test the new features of the software as well as to act as regression 
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tests for the older features. The features were almost exclusively new message formats 

for publishers or subscribers. The unit testing procedure is depicted in the Figure 24. 

 

Figure 24. Unit testing procedure 

The errors were checked from the unit test executable, while the functionality of the new 

feature was checked from the unit test executable or the mock system script depending 

on the feature. The tests were made modular, so individual features could be selected 

for testing or left out. The implemented test modules are listed in the Table 6. 

Table 6. Unit test modules 

 

The test executable had counters for the amount of tests conducted and the amount of 

tests passed. For subscriber tests, there was also a separate counter for how many 

messages were polled and how many were received. This was to separate errors from 

not receiving messages, as it is not an error if no messages were received, if no mes-

sages or not enough messages were sent. 

The base test module includes 3 tests. The first one initializes the library and then shuts 

it down, the second one initializes and shuts the library down twice and the third one 

initializes the library twice and then shuts the library down twice.  

The Subscriber base test module also included 3 tests. The first one tests polling mes-

sages without making a subscriber. This should fail to receive a message but not crash. 
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The second one adds a subscription to a topic and polls it 5 times and the third one 

makes 5 subscribers and polls a single message from all of them. 

Similarly, the Publisher base test module has 3 modules. The first one tests sending 

messages without making a publisher, expecting a failure but should not crash. The sec-

ond one adds a publisher to a topic and sends 5 messages to it and the third one makes 

5 publishers and sends a single message to all of them. 

The publisher and subscriber type test modules call on an array of individual message 

type test modules. Each of the message type test modules initializes the library first and 

shuts it down in the end of the module. All of the publisher message type test modules 

first test if a publisher of that type can be created and then try to send 5 messages 

through that publisher.  

Similarly, all of the subscription message type modules first test if a subscription of that 

type can be created and then try to poll 5 messages from that subscription. If a publisher 

or subscriber fails to create a publisher or a subscriber of the type in question, the test 

was deemed a failure. If a publisher cannot send messages to the created publisher, the 

test was deemed a failure. For subscribers, not receiving messages was not counted as 

an error, but the amount of polls and the amount of messages received by the polls were 

counted separately. 

6.3.3 Integration tests 
After a new feature was implemented and it passed the unit tests, integration testing was 

ensued. This evaluated the functionality of the ROS2-Unity library in a Unity environment. 

The integration testing procedure is depicted in the Figure 25: 
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Figure 25. Integration test procedure 

* Running the DLL on Unity editor did not work with subscriptions. In addition DLL 
errors on Unity editor lead to a crash, requiring a restart of the editor, which is slow. 

 

Only errors in the Unity scene and Unity scripts could be checked in the integration tests, 

as DLL errors are not shown in Unity. In case of a DLL error, the program usually crashes 

without any given information. 

The test modules had a C# script for initializing the ROS2-Unity library, a single publisher 

script for each of the different message types implemented and similarly a single sub-

scriber script for each of the different message types implemented. The publisher and 

subscriber scripts were attached into the screen objects in the scene and showed incom-

ing or outgoing messages on the screen. The working test modules were left as prefabs 

to act as a high level API for the ROS2-Unity library.  

The mock system scripts worked fine with most of the message types, but for image and 

compressed image messages, only mock image data was sent from the mock system 
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script to test the core function. This was meant to be checked through a text screen in 

Unity to ensure the messages were received successfully. For properly testing the inte-

gration of images from ROS2 into Unity however, a Turtlebot3 with a camera was used 

for publishing live camera footage. 

6.3.4 Stress test 
Stress tests, including system lag, latency and robustness for various scenarios, was 

planned to be implemented only, if the project schedule allowed. Although there was no 

time to implement any stress testing, outside brief testing of ROS1_bridge, this is defi-

nitely an aspect, which should be researched in the future.  

6.4 ROS1_bridge tests 

While using ROS1_bridge, some issues were discovered. Sometimes there was a no-

ticeable initial latency after creating a publisher or a subscriber to a topic, until the ROS1-

Bridge or the recipient beyond the bridge adapted to that. In addition, while simple mes-

sages were translated seemingly instantaneously, large amounts of data induced some 

noticeable lag and grouping of messages. In other words, it would take some time for 

the messages to arrive, and when they would, there would be multiple messages arriving 

in bulk simultaneously.  

6.4.1 Stress test 
A brief test was conducted on the issue of latency and grouping of messages under 

stress. ROS command line tools were utilized to send large amounts of messages and 

the receiving of the messages was monitored through ROS command line tools for dis-

tinctive latency. In addition, Robotnik RB1 Base robot topics were subscribed to through 

ROS1_bridge. RB1 only has support for ROS1, and was installed with ROS Dashing at 

the time of testing. In addition to RB1, a PC laptop with Ubuntu 16.04 and ROS kinetic 

was used as ROS1 environment. The ROS2 environment it was tested against was a 

PC with Windows 10 and ROS Foxy. The ROS1_bridge was ran on a Raspberry Pi 3 B+ 

with Ubuntu server 18.04 and ROS Melodic for ROS1 and ROS Eloquent for ROS2. The 

communication between devices was done through a WiFi LAN with a TP-Link AC2300 

router/switch. The test setup is depicted in Figure 26. 
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Figure 26. ROS1_bridge stress test setup 

Trying to induce noticeable latency by sending high amounts of string messages with 

ROS command line tools did not work. The publishing of messages became saturated 

at around 5000 to 10000 Hz frequency and could not effectively be raised higher, yet 

there was no noticeable latency or grouping on the receiving end. 

Subscribing to Robotnik RB1 Base robots /tf topic through ROS1_bridge induced a no-

ticeable latency and grouping however. The tf package keeps track of many different 

coordinate frames of a robot, such as world frame, base frame and any gripper frames 

for instance. This can easily include a large amount of data. [26] 

6.4.2 Initialization latency test 
An elementary research on the initial latency with ROS1_bridge was also performed. The 

research was done by timing the publishing of messages both ways between ROS2 and 

ROS1. The demo and tutorial package executables, which come with the installation 

were used as the publisher and the subscriber. The timings were done by hand with a 

smartphone timer application. This makes the measurements relatively inaccurate, but if 

the measurements were consistent within each category, they could still be referenced 

to each other, as they were all measured in a similar manner. The test equipment and 

the network connections were the same as in the stress test, described in the previous 

subsection, excluding the RB1 robot. The setup is depicted in the Figure 27. 
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Figure 27. ROS1_bridge initialization test setup 

The test was done by running the subscriber first and timing the first received message 

from the starting time of the publisher, or the other way around, running the publisher 

first and timing the first received message from the starting time of the subscriber. While 

testing, it was also noticed that messages were sometimes lost in transition when using 

ROS1_bridge. As in the ROS1 and ROS2 tutorial executables the messages are num-

bered, it is possible to check if some of the messages were lost. For cases where the 

publisher is initialized first, one second is given for the subscriber executable for initiali-

zation, where misses are not counted. This is considered to be the time before the actual 

ROS subscriber is created. As a reference, the timings of ROS2 to ROS2 and ROS1 to 

ROS1 messaging were also measured. 

6.4.3 Results 
The timings within the categories were consistent enough to be compared against other 

categories. They should give general information on which types of communication are 

the slowest and fastest to initialize through ROS1_bridge and if it needs to be taken into 

account when using ROS1_bridge. All of the measurements can be seen in the Appendix 

E. The collected time averages and average amounts of missed messages are shown in 

Table 7, with the missed message amounts in brackets and zero results not shown. 

Table 7. Missed message averages (in brackets with zeroes not shown) and time averages 
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There were no missed messages in any of the measurements when sending across 

ROS1_bridge, from ROS2 to ROS2 nor from ROS1 to ROS1, except when sending from 

ROS2 to ROS1 and the subscriber (ROS1) was initialized first. With the publishers ini-

tialized first, messages were lost for a time period less than a second from the time the 

subscriber executable was launched. 

The measurements show that ROS1 seems to be faster in initializing communication in 

general, compared to ROS2. Also considering communications through ROS1_bridge, 

when the ROS2 side, either publisher or subscriber, is initialized before communications, 

the latency is minimal. In contrast, when ROS1 side is initialized first, there is a noticeable 

latency. Especially with the communication from ROS2 to ROS1, when the subscriber is 

initialized first, there is over a half a minute latency on average. This is noticeable in the 

missed messages as well, as this was the only category where messages were missed. 

Missing over 10 seconds worth of messages after initialization on average is a high 

amount. 

The noticeable to significant initial latency in some categories and the missing of mes-

sages suggest that an initial wait period should be included when creating a new com-

munication topic or service across ROS1_bridge, to ensure consistent function. The 

measurements suggest that the wait period should be at least around 40 seconds long, 

as the highest delay measured was 37.14 seconds.  

The tests were ran with a Raspberry Pi 3 B+ acting as the ROS1_bridge, which might 

have not had the computational power required for proper functionality of ROS1_bridge. 

A study shows that a Raspberry Pi running ROS2 has a higher latency compared to a 

PC [45]. Also, the ROS1_bridge on Raspberry ran on ROS Eloquent, which has reached 

its EOL. It is possible that the newer distros have added updates for the ROS1_bridge. 

The router was connected to the internet during the test, which also might have added 

network latency to the measurements.  

To validify the magnitude of effects of ROS1_bridge in the results, a more controlled 

experiment and more research should be conducted in the future. One aspect to re-

search would be to see how the timings change in more stressed messaging network. 

Another aspect would be to check how the ROS1_bridge functions in different systems 

with and without significant CPU stress. However, the test succeeded in showing cate-

gorical differences in the latency of different communication categories and allowed the 

making of suggestions for future research and countermeasures.  
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7. DEMONSTRATIONS 

The demonstrations were meant as proof-of-concepts, rather than complete products. 

The first demonstration consisted of a Unity executable running on a large television 

screen and a Turtlebot3 robot in a lab environment. The executable utilizes the ROS2-

Unity library to communicate with the robot through various topics. 

The first live demonstration was kept without any XR involvement, as it was not neces-

sary for demonstrating the functionality of ROS2-Unity library in a Unity environment. An 

XR environment and controls were implemented for the second demonstration to demon-

strate the combination of XR and ROS2 however. 

7.1 Setup 

The VR headset used with the second demonstration was an HTC VIVE Pro with 2 HTC 

VIVE first generation base stations, also referred to as 1.0 base stations [188]. The de-

fault VIVE controller used in the demonstration is described in subsection 3.3.2. While 

the headset and the base stations do not represent the state-of-the-art of XR, they are 

adequate for demonstration purposes, like in this thesis. 

In addition, the demonstration setup consisted of a TV screen, a Turtlebot3, a keyboard, 

a mouse and a laptop, which was running the Unity application with the ROS2-Unity 

library. The setup is depicted in the Figure 28.  

 

Figure 28. The network, hardware and software setup for the demonstration 
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Communication between the Turtlebot3 and the laptop was done through a WiFi LAN 

with a TP-Link switch/router. The Unity application was ran on the TV screen through 

HDMI cable and took input controls from the mouse and the keyboard, which were con-

nected through USB. The second demonstration with XR features included had the HTC 

VIVE Pro HMD connected to the laptop via a Display port cable and utilized by Unity. 

The player (the camera) of the Unity scene is placed inside a virtual laboratory environ-

ment, modeled after the same laboratory where the real robot was in. In the virtual labor-

atory, there were modeled tables and a television screen, as they were in the real lab. In 

addition there were 4 added information screens that were not present in the real labor-

atory. The screens were 2-dimensional black planes with a canvas for text on top, which 

could be made to show any kind of textual information. In the Figure 29  are information 

screens showing output commands for the robot to move (left), debug messages from 

the ROS2-Unity library (center) and odometry messages received from the robot (right). 

 

Figure 29. Information screens in the Unity application 

In addition, there was one similar display, which displayed images, instead of text. This 

image display was placed onto the television screen, to look as if the images were shown 

by the television. This is the virtual version of the same television that the application 

was running on in the real world.  

7.2 Features 

The robot keeps track of its movements with wheel motor sensors and orientation with 

inertial measurement unit. This allowed the creation of a digital twin into the Unity scene 

by subscribing to the odometry topic of the robot (a message format that includes position 

and orientation of the robot [19]). A crude robot model was created into the Unity scene 
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and moved according to the position and orientation information of the real robot. The 

orientation information of the robot changes, if the robot turns itself, but also if the robot 

is rotated by outside force. The positional information on the other hand only changes, if 

the robot moves itself. The positional information can become skewed, if the robot hits 

an object and loses traction, as it interprets the turning wheels as linear movement in the 

coordinate system. Furthermore, the positional and orientational information are estima-

tions through sensory information and can become skewed by fast and rapidly changing 

movements and rotations [180].  

The image screen on the scene was made to show image feed from the Turtlebot3 cam-

era through ROS2 Image message topic. The real television showing the application and 

the virtual television within can be seen in the Figure 30. 

 

Figure 30. Image screen in the Unity application 

7.2.1 Keyboard controls 
In the Unity application, the player controls were the same as described in subsection 

6.2.4 for the first demonstration. The mouse would control the orientation when the right 

mouse button was down, while W, A, S and D keys were used to move according to the 

floor plane. The arrow keys control the Turtlebot 3 robot by sending ROS2 Twist -mes-

sages. UP / DOWN arrows sent linear maximum speed (0.26 / -0.26) along x-axis, effec-

tively making the robot move at full speed forwards or backwards respectively. LEFT / 

RIGHT arrows sent maximum rotational speed (1.82 / -1.82) along the z-axis, effectively 

turning the robot at full rotational speed counterclockwise or clockwise respectively. Val-

ues outside [-0.26, 0.26] linear and [-1.82, 1.82] rotational are dismissed by the robot. 
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The maximum values correspond to the reported maximum velocity values of the Turtle-

bot3 Waffle Pi in the official specification [180]. The keyboard controls are depicted in 

the Figure 31. 

 

Figure 31. Keyboard controls in the first demonstration 

7.2.2 XR controls 
With the controller trackpad, it would have been trivial to implement similar controls to 

the keyboard controls described in the previous subsection. This was considered to not 

add any additional value to the demonstration however. As such, a different approach 

was taken, which would better show the capabilities of XR in conjunction with robots. 

The controls implemented are depicted in the Figure 32. 
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Figure 32. XR controls mapping 

The trigger button and the touchpad of the wand controller were both made to move a 

target sphere in the scene to the point, where the controller was facing. This only worked 

on surfaces with a collider, which only included the floor and the robot itself. The trigger 

button placed a target for the robot, while the touchpad placed a target for the user to 

teleport to. The robot target was used with a simple algorithm to command the Turtlebot3 

to move to the target location. The algorithm is depicted in the Figure 33. The grip button 

was used to stop the algorithm and the robot. 

 

Figure 33. Simple robot movement algorithm 
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The speed and time of the movement, both rotational and linear, were configurable in 

the algorithm. A simple Proportional-Integral-Derivative (PID) controllers were imple-

mented to adapt to the amount of error in the orientation and the distance from the target. 

As Unity received the position of the robot by subscribing to the robot’s odometry topic, 

there was some latency between the movement of the robot and the updated odometry 

sent to Unity. To remedy this, the algorithm was executed in steps and a pause was 

introduced between the steps to let the odometry information update itself. 

With the PID controllers being dependent of time between measurements for the integral 

and derivate parts, the pause between measurements became troublesome. The time 

could be measured for the movement without the pause, but with the pause, the move-

ment with oscillation became rather slow. As such, the PID controllers were tuned to 

have very low integral and derivate values and the proportional values were tuned to 

overshoot only rarely. 

7.3 Results 

The first demonstration worked well in displaying the capabilities of the robot and the 

ROS2-Unity library. The robot was shown to receive messages from Unity application, 

Unity was shown to receive data from the robot and the scene showed methods for uti-

lizing this input and output of data. The robot could be teleoperated with the keyboard. 

Unity application could show data received from the robot through the information 

screens and the image screen. With the modeled virtual environment, the robot was du-

plicated as a digital twin into the virtual environment and could be maneuvered with it 

and the image feed. The robot could be parked under a narrow space, by only using the 

camera feed in the Unity application. The parking of the robot can be seen in the Figure 

34. The top pictures show the camera and digital twin feed in the virtual environment 

while parking. The bottom picture shows the end result in the real world. 
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Figure 34. Parking demonstration with teleoperation and camera and position 
feed 

When the application had ran for about 15 minutes in the first demonstration, the partic-

ipants were allowed to try out the application. At this stage, some errors started to arise. 

The first error froze the information screens, not displaying any new information any-

more. The robot was still operatable however and the digital twin was moving in the 

scene according to the real robot. Restarting the application fixed this problem for about 

a minute, until the next error occurred. The second error prevented any information to be 

sent via the keyboard commands or received into the information screens. Again how-

ever, restarting the application fixed the problem, at least temporarily. The player controls 

in the scene were unaffected by either error. 

It is unclear if these errors happened in the Unity or the ROS2-Unity library end. The first 

error seems to point towards unity, as the robot was still controllable after the error oc-

curred. The second error seems to point more towards the library however, as the com-

munication with the robot was cut, while the player controls stayed functional. More test-

ing is required for more elaborate assumptions however. 
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In addition to these crashes, the robot’s odometry often became skewed in long tests 

and in the demonstration. The Figure 35 shows a robot’s digital twin positioned according 

to the odometry information of the real robot and a sphere, which represents the robot’s 

starting point. When the screenshot was taken, the robot had been driven around for 

about 15 minutes and then driven back to the starting location and orientation. As seen 

in the figure, the position is off by several centimeters as the robot should stand right on 

top of the sphere. 

 

Figure 35. A digital twin of a Robot with skewed odometry 

The second demonstration was held multiple times for singular attendees, as the VR 

equipment only allows for one individual to try it out at a given time. The Figure 36 depicts 

the demonstration.  

 

Figure 36. ROS2-Unity library demonstration with XR.  
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The left side of the figure depicts the real world, while the right side depicts the virtual 

world. The top side depicts giving the robot a target (the red sphere), while the bottom 

side depicts the robot after it has moved to the target. 

The second demonstration successfully showed an example of XR-robot integration 

through Unity and ROS2 in a way that can be expanded upon in the future. Controlling 

the robot while having telepresense of the environment and having all the information 

screens available through teleporting in the scene were key points to the second demon-

stration. 

The reception for the demonstrations was positive. The information screens were acces-

sible with the teleport and keyboard controls and the robot was easily controllable 

through the controls. The XR demonstration successfully conveyed telepresense of the 

environment to the user. The setup, the algorithm and the robot were obviously not up 

to industry level standards with robustness, security or functionality, but presented the 

capabilities available with the ROS2-Unity library and XR quite well. 
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8. CONCLUSIONS 

This study established a state-of-the-art of ROS2 and XR. Both technologies are on the 

rise in popularity and market value. Both are also evolving rapidly, but have yet to be-

come widely adapted by the industry and consumers, even though both technologies 

and their development are also backed by powerful companies in the industry. 

ROS2 has generally been agreed to be a positive change from ROS1 with improved 

network security, real-time support, more robust middleware design, quality-of-service 

and broader platform and programming language support, but the migration to ROS2 

has been slow until now. The absence of the package support, lack of tool support, the 

learning process of the new features of ROS2 and the lack of documentation have made 

the adaptation unappealing in the past. This is steadily turning for the better however. 

Robotics companies are starting to release ROS2 drivers, the DDS suppliers are improv-

ing their product and its compatibility with ROS2 and various manufacturers of control-

lers, simulators and other products are adding compatibility for ROS2 into their products.  

One notable pitfall in ROS2 transition is the lack of documentation however. To program 

anything but a trivial ROS2 program, significant research is required. Usually this means 

trying out functions mentioned in the ROS2 API documentation through trial and error or 

reading source code. This will undoubtedly slow down the adaptation of ROS2 by hob-

byists and industry alike. 

In XR, the HMD has stabilized as the standard way of implementing XR, even though 

other solutions exist. None of the other solutions, such as CAVEs and mobile AR offer 

the amount of immersion and the flexibility that HMDs do however. While the HMDs on 

the market are fast improving in display quality, also additional peripheral devices are 

invented and improved. The vast array of interaction and feedback methods available for 

XR signals of a wide interest towards the field from researchers and investors. In addi-

tion, new display types and networking solutions, such as 5G, are developed with XR as 

a significant target. 

Notable technical problems with XR have been the induced simulator sickness and the 

tradeoff between the freedom of movement in untethered systems and the computational 

power of tethered systems. The simulator sickness has become less common due time 

however, as higher refresh rate and resolution displays have been constantly developed 

and more natural locomotion devices and designs are invented. 
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Various applications were tested, which could have helped or implemented an interface 

between ROS2 and XR through Unity. They were considered unappealing however, 

largely due to platform constraints and the lack of documentation, which made it difficult 

to use them. A custom API was implemented instead. 

A functional API was created between ROS2 and XR through Unity and ROS2 C++ API. 

The API was named ROS2-Unity library and only consisted of ROS2 topics with select 

few message types. The principles for expanding the API were documented however, 

which should allow for more versatile functionality in the future. The message types, 

which were selected should allow thorough testing of basic functionalities with many dif-

ferent robots, without the need for expansion. Cross-compilation of the API for Android 

was unsuccessful however. 

The functionality of the ROS2-Unity library was tested as part of the development pro-

cess, however no stress testing was conducted. The ROS2-Unity library features were 

demonstrated with a Turtlebot3 and a Unity application. The demonstration showed the 

ability to control the robot through remote control and telepresense, creation of a digital 

twin to monitor the robot and remote monitoring through the robot camera. The Turtle-

bot3 did experience some errors while in use. It should be investigated if this is a problem 

with ROS2, ROS2-Unity library or the robot itself.  

ROS1_bridge could successfully expand the library to function in ROS1 networks as 

well. It was also briefly stress tested as noticeable latency issues were discovered while 

using it. It was discovered that when creating new publishers or subscribers through 

ROS1_bridge, especially on the ROS2 side, it might take up to 37 seconds to start func-

tioning. In addition, it was discovered that large amounts of data, might induce a few 

second latency and grouping of messages, when used through ROS1_bridge. 

Additional future improvements for the ROS2-Unity library include adding ROS2 service 

and ROS2 action support, thoroughly testing the functionality under stress and refactor-

ing the existing code to be more efficient and easily expanded. On the Unity side, more 

universal wrapper scripts should be created to give easy access to all the library func-

tions. 

In conclusion, the project was a mostly a success. The state-of-the-art of XR and ROS2 

was documented and a working interface between ROS2 and Unity was achieved. 

Cross-compilation into Android failed however. In the future the API, or similar software, 

could be used in remote control of robots with telepresense through XR and governing 

vast sensory data through ROS2 in a virtual world as envisioned in the beginning of this 

project. 
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APPENDIX A: GENERAL_FUNCTIONS.H 

#ifndef ROS2UNITYDLL_H 
#define ROS2UNITYDLL_H 
 
 
#ifdef DLL_EXPORT 
#define ROS_C_API __declspec(dllexport) 
#else 
#define ROS_C_API __declspec(dllimport) 
#endif 
 
 
#include <iostream> 
#include <string> 
#include <stdlib.h> 
#include <stdio.h> 
#include <sstream> 
 
#include "UnitySubscriber.h" 
#include "UnityPublisher.h" 
#include "overloader.h" 
 
#include "rclcpp/rclcpp.hpp" 
#include "rclcpp/node.hpp" 
#include "std_msgs/msg/string.hpp" 
#include "sensor_msgs/msg/image.hpp" 
#include "sensor_msgs/msg/compressed_image.hpp" 
#include "sensor_msgs/msg/battery_state.hpp" 
#include "sensor_msgs/msg/laser_scan.hpp" 
#include "geometry_msgs/msg/twist.hpp" 
#include "geometry_msgs/msg/pose_stamped.hpp" 
#include "geometry_msgs/msg/pose_with_covariance_stamped.hpp" 
#include "nav_msgs/msg/odometry.hpp" 
 
 
extern "C" { 
    // Common ROS functions 
    ROS_C_API void ros2_init(const char *node_name_prefix); 
  
    ROS_C_API void ros2_shutdown(); 
 
 
    /* 
    topic: topic name. Needs to be lowercase 
    type: number for a corresponding type of message 
        0: string 
    backlog: amount of messages to have in queue 
    ret: true: success, false: fail        */ 
    ROS_C_API bool add_publisher(const char *topic,  
      unsigned int type, 
      unsigned int ROS_backlog); 
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/* 
    topic: topic name. Needs to be lowercase 
    type: number for a corresponding type of message 
    backlog: amount of messages to have in queue 
    ret: true: success, false: fail    */ 
    ROS_C_API bool add_subscriber( const char *topic,  
       unsigned int type, 
       unsigned int DLL_backlog, 
       unsigned int ROS_backlog);  
} 
 
#endif 
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APPENDIX B: OVERLOADER.H 

#ifndef OVERLOADER_H 
#define OVERLOADER_H 
 
 
#ifdef DLL_EXPORT 
#define ROS_C_API __declspec(dllexport) 
#else 
#define ROS_C_API __declspec(dllimport) 
#endif 
 
#include <iostream> 
#include <string> 
#include <stdlib.h> 
#include <stdio.h> 
#include <cstdint> 
 
#include "UnitySubscriber.h" 
#include "UnityPublisher.h" 
 
#include "std_msgs/msg/string.hpp" 
#include "sensor_msgs/msg/image.hpp" 
#include "sensor_msgs/msg/compressed_image.hpp" 
#include "sensor_msgs/msg/battery_state.hpp" 
#include "sensor_msgs/msg/laser_scan.hpp" 
#include "geometry_msgs/msg/twist.hpp" 
#include "geometry_msgs/msg/pose_stamped.hpp" 
#include "geometry_msgs/msg/pose_with_covariance_stamped.hpp" 
#include "nav_msgs/msg/odometry.hpp" 
 
 
bool init_overloader( shared_ptr<UnityROSSubscriber> sub,  
    shared_ptr<UnityROSPublisher> pub,  
    shared_ptr<UnityROSPublisher> err); 
 
bool deinit_overloader(); 
 
 
extern "C" { 
    // -----  Subscriber  ----- 
 
    /* 
    topic: topic name 
    out_buf: buffer to write the message into 
    buf_size: the size of the buffer on input,  
  amount of variables written on output  */ 
    ROS_C_API void poll_string( char *topic,  
      char *out_buf,  
      size_t *buf_size); 
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/* 
    topic: topic name 
    double x, y, z: linear vector 
    double rx, ry, rz: angular vector               */ 
    ROS_C_API void poll_twist( char *topic,  
      double *x,  
      double *y,  
      double *z,  
                                 double *rx,  
      double *ry,  
      double *rz); 
 
    /* 
    topic: topic name 
    unsigned int sec, nanosec: timestamp 
    frame_id: string 
    buf_size: the size of the buffer on input,  
  amount of variables written on output        */ 
    ROS_C_API void poll_header( char *topic,  
      uint32_t *sec,  
      uint32_t *nanosec,  
                                 char *frame_id,  
      size_t *buf_size); 
 
     
/* 
    topic: topic name 
    unsigned int sec, nanosec: timestamp 
    frame_id: string 
    frame_id_size: size of frame_id buffer on input,  
  amount of variables written on output. 
    height: image height in pixels 
    width: image width in pixels 
    encoding: color encoding used, 'rgb8' for  
  instance (16 bytes for buffer are enough) 
    is_bigendian: boolean 
    step: amount of bytes per row (width * bytes_per_pixel.  
  with rgb8: width * 3) 
    data: image data 
    data_buf_size: size of data buffer on input,  
  amount of variables written on output. 
    NOTE: If buffer is too small or no message or topic was found,  
  frame_id_size and data_buf_size will be 0.  */ 
    ROS_C_API void poll_image( char *topic,  
                               uint32_t *sec,  
      uint32_t *nanosec,  
      char *frame_id,  
      size_t *frame_id_size, 
                                 uint32_t *height,  
      uint32_t *width,  
      char *encoding, 
                                 uint8_t *is_bigendian,  
                                 uint32_t *step,  
      uint8_t *data,  
      size_t *data_buf_size); 
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/* 
    topic: topic name 
    unsigned int sec, nanosec: timestamp 
    frame_id: string 
    frame_id_size: size of frame_id buffer on input, bytes written on output 
    float voltage, temperature, current, charge,  
    float capacity, design capacity, percentage 
    power_supply_status: 0-4, see ros2 message documentation for more info 
    power_supply_health: 0-8, see ros2 message documentation for more info 
    power_supply_technology: 0-6, see ros2 message documentation for more 
info 
    present: boolean, is a battery present 
    float[] cell_voltage, cell_temperature: for battery cell arrays 
    cell_amount: cell_voltage and cell_temperature buffer lengths on input,  
  amount of values written on output.  
  If 0 on input, no data will be written 
    location: string 
    location_size: buffer size on input, amount written on output 
    serial_number: string 
    serial_size: buffer size on input, amount written on output            */ 
    ROS_C_API void poll_battery_state(  char *topic, 
                                        uint32_t *sec,  
       uint32_t *nanosec,  
       char *frame_id,  
       size_t *frame_id_size, 
                                         float *voltage,  
       float *temperature,  
       float *current,  
       float *charge,  
       float *capacity, 
                                         float *design_capacity,  
       float *percentage,  
       uint8_t *power_supply_status, 
                                         uint8_t *power_supply_health,  
       uint8_t *power_supply_technology, 
                                         bool *present, 
                                         float *cell_voltage,  
       float *cell_temperature,  
       size_t *cell_amount,  
                                         char *location,  
       size_t *location_size,  
       char *serial_number,  
       size_t *serial_size 
                                        ); 
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/* 
    topic: topic name 
    unsigned int sec, nanosec: timestamp 
    frame_id: string 
    frame_id_size: size of frame_id buffer on input, bytes written on output 
    float angle_min, angle_max, angle_increment,  
 float time_increment, scan_time, range_min, range_max, 
    ranges: float[] 
    ranges_size: buffer size on input, amount of values written on output 
    intensities: float[] 
    intensities_size: buffer size on input, amount of values written on out-
put. 
  If device doesn't support this == 0 
    */ 
    ROS_C_API void poll_laser_scan( char *topic,  
                                    uint32_t *sec,  
      uint32_t *nanosec,  
      char *frame_id,  
      size_t *frame_id_size,  
                                    float *angle_min,  
      float *angle_max,  
      float *angle_increment,  
                                    float *time_increment,  
      float *scan_time,  
      float *range_min,  
                                    float *range_max,  
      float *ranges,  
      size_t *ranges_size,  
                                    float *intensities,  
      size_t *intensities_size); 
 
 
    /* 
    topic: topic name 
    unsigned int sec, nanosec: timestamp 
    frame_id: string 
    frame_id_size: size of frame_id buffer on input,  
  amount of variables written on output. 
    format: the picture format. "jpeg" or "png" accepted officially  
  but not guaranteed. Prepare for 16 bytes. 
    data: image data 
    data_buf_size: size of data buffer on input, amount of variables 
  written on output. 
    NOTE: If buffer is too small or no message or topic was found, 
  frame_id_size and data_buf_size will be 0.                    */ 
    ROS_C_API void poll_compressed_image( char *topic,  
       uint32_t *sec,  
       uint32_t *nanosec,  
       char *frame_id,  
       size_t *frame_id_size, 
       char *format,  
       uint8_t *data,  
       size_t *data_buf_size); 
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/* 
    topic: topic name 
    unsigned int sec, nanosec: timestamp 
    frame_id: string 
    frame_id_size: size of frame_id buffer on input,  
  amount of variables written on output. 
    child_frame_id: Frame id the pose points to.  
  The twist is in this coordinate frame. (from ros2 github) 
    child_frame_id_size: size of child_frame_id buffer on input,  
  amount of variables written on output. 
    no_covariance: input bool if covariance values are wanted on output 
    x, y, z, quat_x, quat_y, quat_z, quat_w: position and orientation (Pose) 
    vel_x, vel_y, vel_z, rot_x, rot_y, rot_z: linear and rotational speed 
    covariance: pose covariance 
    vel_covariance: velocity covariance                */ 
    ROS_C_API void poll_odometry( char *topic,  
                                    uint32_t *sec,  
      uint32_t *nanosec,  
      char *frame_id,  
      size_t *frame_id_size, 
                                    char *child_frame_id,  
      size_t *child_frame_id_size,  
      const bool no_covariance, 
                                    double *x,  
      double *y,  
      double *z,  
      double *quat_x,  
      double *quat_y,  
      double *quat_z,  
      double *quat_w,  
      double *covariance, 
                                    double *vel_x,  
      double *vel_y,  
      double *vel_z,  
      double *rot_x,  
      double *rot_y,  
      double *rot_z,  
      double *vel_covariance); 
 
     
 
    // -----  Publisher  ----- 
 
    /* 
    topic: topic name 
    msg: string to be published 
    ret: true: success, false: fail                    */ 
    ROS_C_API bool send_string( const char *topic,  
                                const char *msg); 
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/* 
    topic: topic name 
    double x, y, z: linear vector 
    double rx, ry, rz: angular vector 
    ret: true: success, false: fail                    */ 
    ROS_C_API bool send_twist(  const char *topic,  
                                const double x,  
                                const double y,  
                                const double z,  
                                const double rx,  
                                const double ry,  
                                const double rz); 
 
    /* 
    topic: topic name 
    unsigned int sec, nanosec: timestamp 
    frame_id: string 
    ret: true: success, false: fail                    */ 
    ROS_C_API bool send_header( const char *topic,  
                                uint32_t sec,  
                                uint32_t nanosec,  
                                const char *frame_id); 
 
    /* 
    topic: topic name 
    double x, y, z: linear vector 
    double rx, ry, rz: angular vector 
    ret: true: success, false: fail                    */ 
    ROS_C_API bool send_pose(   const char *topic,  
                                uint32_t sec, 
                                uint32_t nanosec,  
                                const char *frame_id, 
                                const double x,  
                                const double y,  
                                const double z,  
                                const double quat_x,  
                                const double quat_y,  
                                const double quat_z, 
                                const double quat_w); 
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/* 
    topic: topic name 
    double x, y, z: linear vector 
    double rx, ry, rz: angular vector 
    cov_exists: bool 
    covariance: float[36], or empty array if no covariance is given  
  -> a matrix of zeros is put to the ROS2 message 
    ret: true: success, false: fail                    */ 
    ROS_C_API bool send_pose_with_cov(  const char *topic, 
                                        uint32_t sec, 
                                        uint32_t nanosec,  
                                        const char *frame_id, 
                                        const double x,  
                                        const double y,  
                                        const double z,  
                                        const double quat_x,  
                                        const double quat_y,  
                                        const double quat_z, 
                                        const double quat_w, 
                                        const bool cov_exists, 
                                        const double *covariance);      
} 
 
#endif 
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APPENDIX C: CREATION OF A NEW PUBLISHER 
MESSAGE TYPE 

Documentation was created to VTT intranet on how to add a new publisher message 

type: 

1. add the ros package name to package.xml. For example: 
 

<depend>std_msgs</depend> 
 
 

2. add the ros package to a CMakeLists.txt file of your project. For example: 
 

find_package(std_msgs REQUIRED) 
 
and 
 
ament_target_dependencies(your_target std_msgs) 
 
 
where your_target is your target library or executable project 

 
3. add your package header files in your header files. For example: 

 
#include "std_msgs/msg/string.hpp" 

 
 

4. UnityPublisher.h, under UnityROSPublisher::ROS_add_pub add a section for your mes-
sage as such: 

 
if(typeid(T) == typeid(std_msgs::msg::String)) 
    { 
        if(publ_string_.find(topic) == publ_string_.end()) 
        { 
            publ_string_.emplace(make_pair( 

topic, this->create_publisher<std_msgs::msg::String>( 
topic, backlog))); 

            return true; 
        } else  
        { 
            #ifdef DEBUG_MSGS 
            printf("ERROR: A publisher already exists with the given topic\n"); 
            #endif 
            return false; 
        }    
    } 

 
 

5. UnityPublisher.h under UnityROSPublisher class add a dictionary(=map) for your pub-
lisher objects as such: 

 
unordered_map<std::string, PUBL_STRING_PTR> publ_string_; 
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6. UnityPublisher.h and UnityPublisher.cpp add ROS_send_pub method for the Uni-
tyROSPublisher class with your message type as parameter, for example 

 
bool UnityROSPublisher::ROS_send_pub(const string& topic, 
std_msgs::msg::String& msg) 
{ 
    auto iter = publ_string_.find(string(topic)); 
 
    if(iter == publ_string_.end()) 
    { 
        #ifdef DEBUG_MSGS 
        printf("Error: no publishers with that topic name\n"); 
        #endif 
 
        return false; 
    } else 
    { 
        iter->second->publish(msg); 
        return true; 
    } 
} 

 
7. general_functions.h and general_functions.cpp: add your message type to add_pub-

lisher, as such: 
 

        switch (type) 
        { 
        case 0: 
            return pubObj->ROS_add_pub<std_msgs::msg::String>( string(topic), 
          ROS_backlog); 
 
 
Note: Mind you take a unique type number for your message. See Publisher types for 
reserved type numbers. 

 
8. overloader.h and overloader.cpp: add a C-compatible interface for the class function to 

send message, as such: 
 

extern "C" { 
 
    bool send_string(  const char *topic, const char *msg) 
    { 
        if(!ov_init) 
        { 
            #ifdef DEBUG_MSGS 
            printf("Publisher not initialized\n"); 
            #endif 
            return false; 
        } 
 
 
        #ifdef DEBUG_MSGS 
        printf("SEND_PUB\n\ttopic: %s\n\ttype: string\n\tmsg: %s\n", topic, msg); 
        send_debug("SEND_STRING: topic: " + string(topic)); 
        #endif 
 
        const string topic_str = string(topic); 
        const string msg_str = string(msg); 
     
        std_msgs::msg::String ros_msg = std_msgs::msg::String(); 
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        ros_msg.data = msg_str; 
 
        return ov_pubObj->ROS_send_pub(topic_str, ros_msg); 
    } 
} 

 
9. Document your changes to Confluence 
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APPENDIX D: CREATION OF A NEW 
SUBSCRIBER MESSAGE TYPE 

Documentation was created to VTT intranet on how to add a new subscriber message 

type: 

1. add the ros package name to package.xml. For example: 
 

<depend>std_msgs</depend> 
 

2. add the ros package to a CMakeLists.txt file of your project. For ex-
ample: 

 
find_package(std_msgs REQUIRED) 
and 
ament_target_dependencies(your_target std_msgs) 
 
where your_target is your target library or executable project 

 
3. add your package header files in your header files. For example: 

 
#include "std_msgs/msg/string.hpp" 

 
4. UnitySubscriber.h and UnitySubscriber.cpp add queue (=deque) for mes-

sages and a pointer for the subscription objects under TopicCallback 
class as such: 

 
deque<std_msgs::msg::String> msgs_string_; 
rclcpp::Subscription<std_msgs::msg::String>::SharedPtr subs_string_; 

 
 

5. UnitySubscriber.h and UnitySubscriber.cpp add callback function under 
TopicCallback class as such: 

 
void TopicCallback::callback_string( 

std_msgs::msg::String::SharedPtr msg) 
{ 
    if(msgs_string_.size() >= MAX_MSG_BUFFER_SIZE_) 
    { 
        msgs_string_.pop_front(); 
    } 
    msgs_string_.push_back(*msg); 
    #ifdef DEBUG_MSGS 
    printf("*** Callback: Got msg (topic: %s): %s ***\n",  

topic_.c_str(), msg->data.c_str()); 
    #endif 
} 

 
6. UnitySubscriber.cpp: Modify TopicCallback constructor to minimize 

memory usage, as such: 
 

msgs_string_.shrink_to_fit(); 
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7. UnitySubscriber.h, under UnityROSSubscriber::ROS_add_sub add a section 
for your message as such: 

 
if(typeid(T) == typeid(std_msgs::msg::String)) 
    { 
        cout << "*** STRING ***" << endl; 
        if(callbacks_.find(topic) == callbacks_.end()) 
        { 
            empty = false; 
            auto ret = callbacks_.emplace(make_pair( 

topic,  
TopicCallback(topic, DLL_backlog))); 
 

            ret.first->second.subs_string_ = this-> 
create_subscription<T>( 

topic,  
ROS_backlog,  
bind( &TopicCallback::callback_string,  

&ret.first->second, _1)); 
            return true; 
        } 
    } 

 
 

8. general_functions.h and general_functions.cpp: add your message type 
to add_subscriber, as such: 

 
        switch (type) 
        { 
        case 0: 
            return subObj->ROS_add_sub<std_msgs::msg::String>( 

string(topic),  
DLL_backlog,  
ROS_backlog); 

 
 
Note: Mind you take a unique type number for your message. See Sub-
scription types for reserved type numbers. 

 
9. overloader.h and overloader.cpp: add a C-compatible interface for the 

class function to poll for a message, as such: 
 

extern "C" { 
 
    void poll_string(char* topic, char *out_buf, size_t *buf_size) 
    { 
        auto iter = ov_subObj->callbacks_.find(topic); 
        auto iter_end = ov_subObj->callbacks_.end(); 
        std_msgs::msg::String temp; 
        string msg; 
 
 

  if(iter != iter_end) 
        { 

rclcpp::spin_some(ov_subObj); 
 

if(!iter->second.msgs_string_.empty()) 
            { 
                temp = iter->second.msgs_string_.front(); 
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    iter->second.msgs_string_.pop_front(); 
    msg = temp.data; 

 
    if(msg.empty()) 

                { 
                    *buf_size = 0; 

  return; 
                } else if(msg.size() < *buf_size) 
                { 

        strncpy(out_buf, msg.c_str(), msg.size()); 
  out_buf[msg.size()] = '\0'; 

                    *buf_size = msg.size(); 
   return; 

                } else 
                { 

  strncpy(out_buf, msg.c_str() , *buf_size - 1); 
  out_buf[*buf_size - 1] = '\0'; 

                    *buf_size = *buf_size - 1; 
  return; 

                } 
            }  
        } 
 
        // if no topic or msg is found 
        *buf_size = 0; 

  return; 
    } 
} 

 
10. Document your changes to Confluence 
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APPENDIX E: ROS1_TEST RESULTS 

 
a) Time measurements of messages through ROS1_bridge 

 

 

 

b) Missed messages during time measurements, depicted in the previous table 
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c) Time measurements of messages from ROS2 to ROS2 and ROS1 to ROS1 

 

 


