
Leevi Oranen

UTILIZING DEEP LEARNING ON EMBEDDED

DEVICES

Master of Science Thesis

Faculty of Medicine and Health Technology

Examiners: Antti Vehkaoja

David Hästbacka

August 2021

i

ABSTRACT

Leevi Oranen: Utilizing deep learning on embedded devices
Master of Science Thesis
Tampere University
Biomedical Engineering, MSc
August 2021

The aim of this thesis was to review the tools needed for the development of deep learning
application on an embedded system and how this can be done in practice. The most important
and used frameworks (TensorFlow, Keras, PyTorch, Caffe and MATLAB) for building and training
machine learning models were reviewed. Another aim was to study and compare the development
experience and performance of four different single-board computers.

The machine learning tools studied were comparable in model training performance. Each
tool has its strengths and weaknesses. Keras is easy to use and beginner friendly, but the cus-
tomizability is limited. PyTorch, on the other hand, is very customizable, but requires more under-
standing about machine learning. TensorFlow works well with TensorFlow Lite, enabling model
optimization on mobile and embedded devices.

When choosing a tool, the compatibility of devices plays a very important role. If the same
program needs to be rewritten separately for each device, this will be very expensive for the
company. This compatibility can be improved by favoring devices that support the most common
standards such as Khronos Group standards.

The tested devices were Google Coral, NVIDIA Jetson Nano, NXP S32V234 and Raspberry
Pi 4. The test application used in this thesis was emotional detection which consists of two parts.
First, a face had to be found in the image, after which the face was cropped and fed into the
emotional detection model. The the devices were compared with three parameters: the time
taken to detect the face, the time taken to identify the emotion, and the number of processed
frames per second.

The test consisted of two variables: input source and face detection algorithm. The used input
sources were live stream and the pre-recorded video. The face detection algorithm was performed
both with the “Haar cascade object detection” (HCOD) algorithm and in the most optimal way for
each device. For example with Google Coral this means that the optimized face detection model
from Google Coral’s website was used. The test results with optimal face detection were not easily
comparable because the implementation changed so much.

As a result, the NXP S32V234 had the best performance. However, the programming devel-
opment on that device was challenging, which meant that not all tests could even be performed.
The optimal test performance with a camera stream varied between 25,4 FPS with S32V234 to
10,9 FPS with Jetson Nano. Google Coral, NVIDIA Jetson Nano and Raspberry Pi 4 were more
or less in the same category in the test with HCOD face detection.

As these tests show, embedded devices have become powerful enough to perform heavy deep
learning calculus. This opens up new opportunities for many research areas to make human lives
healthier, happier and safer.

Keywords: Deep Learning, Machine Learning, embedded device, Linux, GPU, CPU, TPU

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

TIIVISTELMÄ

Leevi Oranen: Syväoppimisen hyödyntäminen sulautetuissa järjestelmissä
Diplomityö
Tampereen yliopisto
Biolääketieteen tekniikka, DI
Elokuu 2021

Tämän työn tavoitteena oli esitellä tarvittavia työkaluja syväoppimista hyödyntävän ohjelman
kehittämiseen sulaututetussa järjestelmässä ja testata joitakin käytännössä. Työssä käytiin läpi
tärkeimmät ja käyteyimmät työkalut (TensorFlow, Keras, PyTorch, Caffe ja MATLAB) koneoppi-
mis mallin rakentamiseen ja kouluttamiseen. Toinen tavoite oli tutkia ja vertailla neljän eri yhden
piirilevyn tietokoneen kehityskokemusta sekä suorituskykyä.

Tutkitut koneoppimistyökalut ovat suorituskyvyltään samankaltaisia neuroverkkojen koulutuk-
sessa. Jokaisella työkalulla on omat vahvuutensa ja heikkoutensa. Keras on helppokäyttöinen ja
aloittelija ystävällinen, mutta muokattavuus on rajallista. PyTorch puolestaan on hyvin muokatta-
va, mutta vaatii enemmän ymmärrystä koneoppimiesta. TensorFlow toimii hyvin TensorFlow Liten
kanssa, mikä mahdollistaa mallien optimoinnin mobiililaitteissa ja sulaututetuissa järjestelmissä.

Työkalujen valinnassa yhteensopivuus laitteiden on erittäin tärkeässä roolissa. Jos sama oh-
jelma pitää kirjoittaa erikseen jokaiselle laitteelle tämä tulee yritykselle todella kalliiksi. Tätä yh-
teensopivuutta voidaan parantaa suosimalla laitteita, jotka tukevat yleisimpiä standardeja kuten
Khronos Groupin satndardeja.

Testatut laitteet olivat Google Coral, NVIDIA Jetson Nano, NXP S32V234 ja Raspberry Pi
4. Testiohjelmana käytettiin tunnetilan estimointia, joka koostui kahdesta osasta. Ensimmäiseksi
kuvasta piti löytää kasvot, jonka jälkeen kasvot rajattiin ja syötettiin tunnetilan estimointi mallille.
Laitteita verrattiin kolmella parametrilla: ajalla, joka kului kasvojen tunnistamiseen, ajalla, joka kului
tunnetilan tunnistamiseen sekä prosessoitujen kuvien määrällä sekunnissa.

Testissä oli kaks muuttujaa kuvan lähde sekä kasvojentunnistusalgoritmi. Lähteenä käytettiin
sekä suoraa kuva että ennalta tallennettua videota. Kasvojentunnistusalgoritmi tehtiin sekä “Haar
cascade object detection” (HCOD) algoritmilla, että jokaiselle laitteelle optimaalisimmalla tavalla.
Esimerkiksi Google Coralin tapauksessa kasvojen tunnistuksessa käytettiin Coralin nettisivuilta
haettua optimoitua mallia. Tästä jälkimmäinen ei ole helposti vertailtavissa, sillä toteutukset erosi-
vat niin paljon toisistaan.

Tulokseksi saatiin, että NXP S32V234 oli suorituskyyltään paras. Kuitenkin ohjelmointikehitys
kyseisellä laitteella oli haastavaa, minkä vuoksi kaikkia testejä ei voitu edes suorittaa. Optimaali-
sen testin tulos suoralla kuvalla Coralille oli 18,9 FPS, Jetson Nanolle 10,9 FPS ja S32V234 25,4
FPS. Google Coral, NVIDIA Jetson Nano ja Raspberry Pi 4 olivat kutakuinkin samassa luokassa
HCOD testissä.

Kuten nämä testit osoittavat, sulautetuista järjestelmistä on tullut riittävän tehokkaita, jotta niitä
voidaan käyttää raskaaseen syväoppimiseen. Tämä avaa monille tieteenaloille uusia mahdolli-
suuksia tehdä ihmisten elämästä terveempää, onnellisempaa ja turvallisempaa.

Avainsanat: syäoppiminen, koneoppiminen, sulautettu järjestelmä, Linux, GPU, CPU, TPU

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.

iii

CONTENTS

1 Introduction . 1

2 Deep learning on embedded devices . 3

2.1 Hardware used for deep learning . 7

2.1.1 Cloud computing vs End-device computing 8

2.1.2 Hardware acceleration . 9

2.2 Deep learning in automotive industry . 10

2.2.1 Driver monitoring system . 10

2.2.2 Self-driving cars . 11

2.3 Deep learning in Medical industry . 12

3 Deep learning software development on embedded device 14

3.1 The Deep Learning development workflow 14

3.2 Software stack for DL on embedded device 17

3.2.1 Deep Learning training frameworks 18

3.2.2 File exchange . 25

3.2.3 Deploying neural network models on embedded device 27

3.2.4 Processing unit API . 28

3.3 Deep Learning Framework Compatibility 31

4 Hardware test materials and methods . 33

4.1 Test methods . 33

4.2 Google Coral . 35

4.3 NVIDIA Jetson Nano . 36

4.4 NXP S32V234 . 38

4.5 Raspberry Pi 4 . 39

5 Hardware test results . 41

6 Discussion and conclusions . 45

References . 47

iv

LIST OF FIGURES

1.1 All the tested boards are shown. The first row: Google Coral Dev board,

Raspberry Pi 4, Second row: NVIDIA Jetson Nano, NXP S32V234 2

2.1 Relationship between Artificial intelligence, Machine learning, Neural Net-

work and Deep Learning . 3

2.2 The basic difference between training and inference with deep learning

model is that in training labeled data is fed to DL model and the model

tries to minimize the prediction error. In inference trained model is used to

classify unknown data. [6] . 4

2.3 One Neural network node . 5

2.4 Popular activation functions [10] . 5

2.5 VGG convolutional neural network [12] 6

2.6 Finding face features in the 2012 ImageNet challenge [13] 6

2.7 Illustration of cloud, edge and device computing [14] 7

2.8 Visualized difference between car automation levels [33] 11

3.1 Illustration of tools used in ML and DL development and computing. 17

3.2 Summary of the most used DL frameworks with GPU support [48] 19

3.3 ONNX enable conversions between frameworks and model optimization

for various hardware [69]. 26

3.4 Neural Network Exchange Format supports the most popular training frame-

works and is a intermediate step to different inference engines [73]. 27

3.5 Overview of processing unit APIs. Abstraction level increases towards the

top. Modified from [79] . 29

3.6 The main differences between OpenCV and OpenVX. Modified from [79]. . 30

4.1 Haar Cascade features . 34

4.2 Every pixel in the integral image is sum of pixels in its left and above. . . . 34

4.3 Google Coral Dev Board (left) and USB accelerator (right) [93] 36

4.4 NVIDIA Jetson Nano Developer Kit [97] 37

4.5 NXP’s S32V234 Vision and Sensor Fusion Evaluation Board [100] 38

4.6 Raspberry Pi 4 with Camera Module V2 40

v

LIST OF TABLES

2.1 Comparison of end-device and cloud computing. Modified from [15] 8

3.1 Summary of the most used DL frameworks 25

4.1 Summary of the SBCs used in the performance test 40

5.1 HCOD test with camera stream: the values are averages of one frame

processing. 41

5.2 HCOD test with standard video: the values are averages for one frame

processing . 41

5.3 Optimal test with camera stream: the values are averages for one frame

processing. 42

5.4 Optimal test with standard video: the values are averages for one frame

processing . 42

vi

LIST OF SYMBOLS AND ABBREVIATIONS

ACC Adaptive Cruise Control

AI Artificial Intelligence

API Application Programming Interface

ASIC Application Specific Integrated Circuit

CNN Convolutional Neural Network

CPU Central Processing Unit

CV Computer Vision

DL Deep Learning

DMS Driver Monitoring System

FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

HCOD Haar Cascade object detector

HW Hardware

IDE Integrated Development Environment

MCU Microcontroller Unit

ML Machine Learning

NHTSA National Highway Traffic Safety Administration

NN Neural Network

NNEF Neural Network Exchange Format

ONNX Open Neural Network Exchange

SAE Society of Automotive Engineers

SBC Single-board Computer

SW Software

TF TensorFlow

TPU Tensor Processing Unit

1

1 INTRODUCTION

The automotive industry is going to experience great changes over the next few years.

Global Market Insights’ prognosticators predict that the markets for artificial intelligence

in automotive industry will increase from today’s (2020) $1 billion to $12 billion by 2026

[1]. This would mean a 200 % growth in just six years. In addition to automotive industry,

also the medical industry also offers great possibilities for embedded deep learning ap-

plications from epileptic seizure detection to malaria detection in rural areas of Africa [2,

3].

One of the greatest challenges for this prediction is that AI and deep learning (DL) models

tend to be computationally heavy. There are cloud servers that could be used to overcome

the calculation part but cloud computing will create other issues such as latency, reliability

and cost. For this reason it is important to find solutions where safety critical systems are

not dependent only on cloud computing.

The recent rapid development of Single-board Computers (SBC), such as Raspberry Pi,

has enabled the execution of computations on powerful, low-energy consumption Internet

of Things devices. Simple tasks such as face detection and recognition and action recog-

nition are nowadays easy to implement and they could make people’s lives easier and

potentially save hundreds of thousands of lives by alarming sleeping or distracted driver

or by bringing diagnostic tools to people that are not able to get to the hospital because

of long distances or other reasons.

The aim of this thesis is to present hardware and software tools intended for embedded

deep learning inference. In this work only a limited amount of these tools are assessed.

A concrete objective is to compare how do the SBCs compare in DL image recognition

performance and in developer experience. Figure 1.1 presents the tested SBCs which

are Google Coral Dev board, Raspberry Pi 4, NVIDIA Jetson Nano and NXP S32V234.

All of them are commercially available.

2

Figure 1.1. All the tested boards are shown. The first row: Google Coral Dev board,
Raspberry Pi 4, Second row: NVIDIA Jetson Nano, NXP S32V234

This work presents the current state of this subject in 2020-2021. The field of computer

science, especially the AI field, is developing rapidly and some of the tools and statements

may not be valid anymore in the near future.

The thesis is organized as follows: Chapter 2 introduces deep learning in general, gives

an overview of computational requirements for embedded devices and discusses the

most used solutions for it. In addition, it presents real-world applications as well as present

and future opportunities in the automotive and medical industries. Chapter 3 introduces

the software tools which are relevant in this kind of software development. The tools are

presented in the same sequence as they are utilized in the development process. It also

reviews some close to hardware Application Programming Interfaces (API) even if these

APIs are commonly handled by higher-level tools. Next, Chapter 4 explains the used test

algorithms and discusses the development tools and experience of the tested SBCs. In

addition, the test results are presented there. Finally, Chapter 6 concludes the work and

presents the main findings of this study.

3

2 DEEP LEARNING ON EMBEDDED DEVICES

Our modern world creates a significant amount of data all the time. This data can be used

to train deep learning models and help humans’ everyday life. But what is deep learning?

How can it be utilized it and implemented on embedded devicea? These questions will

be answered in this chapter.

At first we need to define what deep learning means. Figure 2.1 shows how Artificial

Intelligence (AI), Machine Learning (ML) and Deep Learning (DL) are related to each

other. AI is often defined as "the science of making computers do things that require

intelligence when is done by humans" [4]. ML is a subset of AI. There are several different

kinds of algorithms in ML such as support vector machines and artificial neural networks

(NN). The name "Neural Network" comes from human biology because it resembles the

human neuron system with connections between nodes. Deep Learning algorithms are

just complex multi-layered neural networks. The word "deep" refers to the number of

layers. In NN there are only a few layers and in DL there are several. [5]

Figure 2.1. Relationship between Artificial intelligence, Machine learning, Neural Net-
work and Deep Learning

4

Deep Learning, as well as in general ML, consists of two phases: training and inference.

During the training phase labeled data is fed to the DL model. As shown in the top part of

the Figure 2.2, the model tries to predict the labeled image and the error of the prediction

is used to update the model. DL training requires massive amounts of computational

power and data. Therefore, training is usually done on powerful machine or in the cloud.

[6]

Inference is the process in which a trained DL model is used in an application that it

was designed for [6]. In Figure 2.2, the picture of a bicycle is fed to the model which

predicts what is shown in the picture. Inference requires much less computation power

than training. However, it might be a challenge for small computers such as those used

in embedded devices.

Figure 2.2. The basic difference between training and inference with deep learning model
is that in training labeled data is fed to DL model and the model tries to minimize the
prediction error. In inference trained model is used to classify unknown data. [6]

The NN principle is described in Figure 2.3. As an input, each node takes a weighted

sum of output values of previous nodes plus bias. The sum goes through a non-linear

activation function which creates the output of the node. While training the neural network

learning parameters are weights and bias. Bias is simply a value that is added to the sum.

It can improve the performance in some cases. The activation function must have a non-

linear operation. Without a non-linear component, the neural network could be presented

with just one layer which would not work in complex applications.

5

Figure 2.3. One Neural network node

There are several types of activation functions. They are typically simple as presented in

Figure 2.4. Both Sigmoid and Tanh functions were popular in the past because of mono-

tonicity, continuity and bounded properties. But as the computational power of the com-

puters increased and neural networks became deeper, Sigmoid and Tanh had a problem

called "vanishing gradient" while backpropagating the gradient. This was due to satura-

tion as there could not be much deviation with very high values. The ReLu function solves

this problem by having a bigger gradient than Sigmoid or Tanh. However, its disadvantage

is that because all negative values become zero. It can lead to a dead neurons problem.

This means that if the input value is less than zero, it cannot be updated ever again. This

can be overcome by choosing smaller learning rates so that there would not be a big

gradient and thus big negative weight in the ReLu node. Another option is to use ReLu

variants such as leaky ReLu. [7, 8, 9]

Figure 2.4. Popular activation functions [10]

Convolutional Neural Networks (CNN) are a subclass of Artificial Neural Networks. Figure

2.5 presents one kind of CNN called VGG (Visual Geometry Group) neural network by

Simonyan and Zisserman from Visual Geometry Group of the University of Oxford [11].

6

In CNNs the main component is convolutional layers in which there are different kinds

of filters also known as kernels. For example the first filter can be a 3x3x3 filter that

convolves over the RGB image. The next layer input is a set of channels made by filters

of the previous node.

Figure 2.5. VGG convolutional neural network [12]

In VGG the input image is a 224x224x3 RGB image. The first hidden layer is a set of 3x3

filters. More precisely, there are 64 filters which each produces one channel for the next

hidden layer. Another important component of VGG, as well as all CNN, is max-pooling.

A max-pooling layer simply drops some of the data. This prevents overfitting and reduces

the number of learning parameters. Overfitting is a phenomenon where machine learning

algorithm learns the training data too well and it doesn’t generalize to test data.

Figure 2.6. Finding face features in the 2012 ImageNet challenge [13]

Figure 2.6 illustrates how CNN finds important features for object detection. By progress-

ing in layers, it increases the level of abstraction of the images. In the first few layers the

face can be identified. However, in the further layers, it becomes too abstract for humans

to recognize the content of the image.

7

2.1 Hardware used for deep learning

Deep Learning applications tend to be computationally expensive. For this reason, the

hardware plays a crucial role in these kinds of tasks. In general, there are few ways to do

embedded deep learning inference: cloud, edge and end-device (Figure 2.7).

Figure 2.7. Illustration of cloud, edge and device computing [14]

Zhi Zhou et al. [14] used levels (0-6) to illustrate the usage of cloud, edge and device

computing and their combinations in training and inference.

1. Level 0: Cloud Intelligence Both training and inference are done in the could

2. Level 1: Cloud–Edge Coinference and Cloud Training Training takes place in the

cloud. Cloud–Edge coinference means that the data is partially offloaded to the

cloud.

3. Level 2: In-Edge Coinference and Cloud Training

4. Level 3: On-Device Inference and Cloud Training

5. Level 4: Cloud–Edge Cotraining and Inference

6. Level 5: All In-Edge

7. Level 6: All On-Device

Next, the advantages and disadvantages of cloud and end-device computing are dis-

cussed. Then, the different hardware solutions and architectures are reviewed.

8

2.1.1 Cloud computing vs End-device computing

As described in Chapter 1, cloud computing is used to overcome the computational lim-

itations of embedded devices. However, there are several factors to be considered so

that the system can meet the requirements. Table 2.1 compares cloud computing to end-

device (embedded device) computing.

Table 2.1. Comparison of end-device and cloud computing. Modified from [15]

End-device Computing Cloud Computing

Energy Low High

Latency Minimum Higher

Performance Low Much higher

Reliability High Lower

Privacy High Risk

These variables are not unambiguous and they depend on many things. First, energy

consumption can be considered for the whole system (cloud and end-device) or just for

the end-device. There must be some kind of end-device in both cases. A central chal-

lenge is the trade-off between the energy consumption of computation and transmission.

The more energy is used for transmission, the less energy is required for computation

and vice versa. Wireless communication modules tend to consume a lot of energy. Also,

the signal strength and bandwidth of the network influence the transmission energy. [15]

If the whole system is considered then only using the end-device will potentially save

energy because energy is not used in the transmission and maintenance of the cloud.

Latency may be the most important variable in safety-critical applications such as health

emergencies and autonomous driving. In these applications, even a slight delay may

cause severe consequences. In other cases, it may at least weaken the user experience.

Because only the end-device is used, it reduces the latency to the minimum because no

time is wasted in data transmission. However, if the amount of transmitted data is small

enough and the operations done are heavy then the overall time may be reduced by using

cloud computing. The cloud computation performance is always higher because there is

more flexibility in terms of e.g. space, energy consumption and cooling. [15] In the near

future new 5G technology may help with latency because it can reduce theoretically the

latency to only 1 ms [16] compared to 4G’s 50 ms latency.

In addition to latency, network reliability is the most important advantage of end-device

computing over cloud computing. If everything is done inside the end-device there is

one less reliability component that needs to be aware. Also, if the system, such as a

car, is moving, there can be low coverage areas where the continuous and fast internet

connection cannot be provided.

9

Lastly, sending personal information to the cloud can pose a privacy risk. This is of

course always an important concern but even more so with sensitive information such

as personal health information. If the end-device is not connected to the internet, the

risk of information leak is minimal. However, in some cases it would be convenient that

the information could be shared with medical professionals. This is a common trade-off

between convenience and privacy. [15]

2.1.2 Hardware acceleration

Embedded devices are combinations of software and hardware. These systems are usu-

ally designed for specific tasks such as controlling a robot vacuum cleaner or monitoring

a driver’s awareness. Typically, in embedded systems the software is running on a Cen-

tral Processing Unit (CPU) which is a circuit that governs specific operations. CPUs are

usually too inefficient for running DL models because they require parallel computing and

CPUs are designed for serial processing [17]. This is why DL inference on embedded

devices needs a hardware accelerator. There are a few different technical architectures

for DL acceleration which are presented next. A common factor for all these architectures

is that they are designed for parallel computing.

Graphics Processing Unit (GPU)s are commonly used for accelerating 3D graphics

applications in computers. That was the only task for GPUs about two decades ago. At

the beginning of the 21st century, computer scientists found out that GPUs could be used

in other tasks as well. As GPUs became more programmable, they afforded more new

possibilities than graphics rendering. [18] In DL, GPUs tend to have decent performance

and great compatibility but consume more energy than FPGAs or ASICs [19].

Field Programmable Gate Array (FPGA) is a semiconductor integrated circuit that has

programmable interconnects. The main difference between FPGA and Application Spe-

cific Integrated Circuit (ASIC) is that once manufactured ASICs cannot be reprogrammed

[20]. Even though FPGAs and ASICs are energy-saving and require less computational

resources, they are only popular in the research field because of the programming com-

plexity and lower compatibility compared to GPUs. [19, 21]

Tensor Processing Unit (TPU) is a special type of ASIC by Google, which is specifically

designed for deep learning tasks. The TPU combines a vector processing unit (VPU) with

a dedicated matrix multiply unit (MXU). The MXU is responsible for matrix multiplications

where as the VPU does all other tasks such as activation and softmax functions. This

way, the TPU can be very powerful in large matrix multiplications tasks such as CNN or

NN. [22]

Utilizing deep learning on embedded devices in different industries will be discussed in

the next chapters. First, automotive and then medical industry applications are reviewed.

10

2.2 Deep learning in automotive industry

2.2.1 Driver monitoring system

The European Commission agreed in 2019 that every new car must be equipped with

around 30 advanced safety features by 2022. This is a part of the European Union’s (EU)

long-term goal called, "Vision Zero". The commission states that these safety systems will

prevent at least 140 000 serious injuries by 2038. [23] Some of those new safety features

such as drowsiness and distraction monitoring, advanced emergency braking and lane

keeping assistance require AI and most likely DL.

Drowsiness and distraction monitoring are key components of the Driver Monitoring Sys-

tem (DMS). In 2019, there were 3142 deaths caused by distracted driving and 697 deaths

caused by drowsy driving in the USA [24]. Almost 4000 people lost their lives because

the drivers did not pay 100 % attention to driving. Texting and driving is the most alarming

distraction according to the US National Highway Traffic Safety Administration (NHTSA).

Most of these deaths could have been prevented by installing a DMS.

Several methods for drowsiness and distraction monitoring have been proposed. Sang-

Joong Jung et al. [25] used an electrocardiogram (ECG) sensor and analyzed the heart

rate variability (HRV) to determine driver’s fatigue and drowsiness status. Also, a driver

input based system is proposed, where both steering wheel and throttle inputs are mon-

itored [26]. However, the most studied and versatile methods are Computer Vision (CV)

based systems [27, 28, 29]. With a CV-based system, drowsiness and distraction mon-

itoring can be done simultaneously. Reddy Bhargava et al. [30] developed a DMS that

featured eyes, mouth and face bounding boxes which were fed into drowsiness detection

network. This was computationally too expensive, the model was compressed. In the

end, the system achieved over 90 % accuracy and a 14,9 FPS performance with NVIDIA

Jetson TK1.

Since DMS are safety-critical components relying on only one system can be risky. To

increase accuracy and reliability, a combination of different systems may be the best way

to design DMS. In their study, Boyraz et al. [26] combined driver input measurement with a

CV system. Instead of using images for the decision-making, they measured five different

features: eye closure, gaze vector (x, y), and head motion (x, y), which reduces the

amount of data and thus computational load. They then combined the visually collected

data with driver input data: steering wheel angle, vehicle speed, and force applied to the

steering wheel. They reached 89 % accuracy for determining a drowsiness level from 1

to 5.

11

2.2.2 Self-driving cars

Self-driving cars are the future of mobility and are having a huge impact on the automotive

industry. Autonomous vehicles utilize a wide range of technologies such as cameras,

LIDAR and ultra sound. Information provided by these technologies allows the car to

make safe decisions in traffic. [31] In this chapter different levels and requirements of

self-driving cars are discussed.

On the one hand, self-driving can mean task assistance where the human delegates

one specific action to a designated system such as cruise control. On the other hand,

self-driving can mean a fully autonomous car that navigates the roads without human in-

terference. The Society of Automotive Engineers (SAE) defines six levels of car autonomy

from 0 to 5 as follows [32].

Figure 2.8. Visualized difference between car automation levels [33]

Level 0: No Automation: A SAE Level 0 car has no automation. All the driving tasks are

done by the driver at all times. The majority of used cars on the market are classified as

SAE Level 0 [34].

Level 1: Driver Assistance: A SAE Level 1 car is controlled by the driver but some

driving assistant features such as Adaptive Cruise Control (ACC) or lane centering may

be included. Level 1 cars can have only one of these kinds of driving assistant features.

ACC adjusts the vehicle speed to the car driving in front of it. The distance to the car in

front can be measured by radar, laser or camera. While radar or laser systems do not

require AI camera systems may require it.

Level 2: Partial Automation: If both lane centering and ACC are combined, the vehicle

is classified as a SAE Level 2. Tesla’s Model S is an example of this. [34] A Level 2 car

12

requires the driver’s full attention and the hands have to be kept on the wheel at all times.

Level 3: Conditional Automation: At SAE Level 3, the driver’s full attention is no longer

required. Nevertheless, the driver has to be ready to take over the driving task at a

moment’s notice. There are no Level 3 cars yet on the markets. Audi planned on releasing

its new A8 with Traffic Jam Pilot feature. This feature could have been applied with speeds

under 60 km/h. Due to legal concerns, Audi decided to postpone the roll-out of this feature

[35]. BMW and Honda are also very close to releasing their new SAE Level 3 automation

cars [36, 37].

From this level onward cars need to have very powerful computers to be able to run

complex DL models. These models identify objects and create a 3D model of the car’s

surroundings. [31]

Level 4: High Automation: A SAE Level 4 car is fully automated under some circum-

stances. At this level the driver won’t be required to take over at a moment’s notice but

must be ready to take over control if the car’s sensors cannot provide reliable information.

[31] For example raining and snowing is a challenge for LIDAR systems.

Level 5: Full Automation: At SAE Level 5, a car is fully automated. It doesn’t even need

a steering wheel because it won’t require any human interactions at any point. Tesla’s co-

founder and CEO Elon Musk claimed in World Artificial Intelligence Conference “I remain

confident that [Tesla] will have the basic functionality for Level 5 autonomy complete this

year [2020].” [38]. This ambitious statement has been questioned for instance by Profes-

sor Melanie Mitchell who doubts that it is not possible to train DL algorithms to handle all

possible situations [38].

Getting a self-driving car flawless is an arduous challenge, even impossible. When we

discuss about autonomous vehicles, we need to keep in mind that people also make

mistakes. Therefore, we need to determine an acceptable level of confidence for these

cars. It may not be acceptable for a car to be only as good as a human, but whether it

must be double or a hundred times better than a human, that is the big question.

2.3 Deep learning in Medical industry

For Deep Learning, there are huge opportunities in the medical industry. Image process-

ing is one of the greatest areas where DL can help a specialist with simple tasks. This

way, the expensive specialist can concentrate on actual patient care. For example, DL

has given very promising results in fracture detection [39]. A study conducted by Accen-

ture [40] estimated that AI applications could potentially generate $150 billion in annual

savings for the U.S. health care system by 2026. Teikari et al. [41] reviewed embedded

deep learning in ophthalmology (eye related medicine). They stated that embedded DL

can be used for automated image acquisition. This would result in a high-quality image or

13

recording without a specialized operator. There could be several delivery options for this.

Firstly, patients could use shared devices in local supermarkets. Secondly, patients could

be imaged before an ophthalmologist appointment in a hospital waiting room. Thirdly,

patients who live in remote areas could be imaged with mobile imaging equipment. And

lastly patients could do home monitoring for disease progression. [41]

Malaria is a tropical disease that occurs mostly in Africa but also in Asia and South Amer-

ica. Especially in Africa, health care is not as advanced as in the Western world which

restricts diagnostics and access to treatment. At least the diagnostics part could be im-

proved with edge AI. Feng Yang et al. researched [3] to research how malaria could

be detected with a smartphone-based system. The Android phone was attached to the

eyepiece of the microscope and the taken pictures were analyzed to find and count the

number of parasites. This was implemented using the OpenCV4Android SDK library. In

the end they reached 93,46 % accuracy. Malaria screening is only one example of this

enormous potential of edge AI in rural areas.

Even though DL/ML based systems have been proven to be better than humans in many

cases there is a concern of using these systems in the medical industry due to its unpre-

dictability. In the paper "What do we need to build explainable AI systems for the medical

domain?" Andreas Holzinger et al. [42] discuss how and why AI systems are needed to

be explainable. They pointed out that medical professionals have to understand why and

how given decisions have been made. In their research paper "Deep neural networks

are easily fooled", Nguyen et al. [43] found out that DNN models can classify completely

unrecognizable images for humans as near-perfect examples of random class. A similar

study [44] by Su et al. stated that even one pixel change can result in misclassification. In

addition, the most accurate methods such as DL are the least transparent and the most

transparent methods such as decision trees are usually less accurate [45]. The question

is how device manufacturers can ensure patient safety of the patient in the medical do-

main. This problem is not only relevant to the medical industry but automotive and other

industries as well.

The challenge for separates a medical image classification is that image annotation for

model training tends to be even more expensive than in other industries. Annotations,

such as detecting bone fracture, must be done by a medical specialist of a certain field

which is more expensive than for example annotating traffic signs.

14

3 DEEP LEARNING SOFTWARE DEVELOPMENT ON

EMBEDDED DEVICE

Deep learning models are not usually trained on embedded devices. Typically, the deep

learning model’s computationally expensive training is done on high-powered machines.

In this process, machine learning frameworks are used. The next step is to optimize the

trained model and deploy it to the embedded device. This optimization is done using

frameworks such as TensorFlow Lite and TensorRT.

This chapter will cover the basic steps of DL software development on embedded devices

and some useful frameworks for that purpose.

3.1 The Deep Learning development workflow

This is the workflow for DL model and algorithm development for embedded devices:

1. Decide on a goal

2. Collect a dataset

3. Design a model architecture

4. Train the model

5. Convert the model

6. Run inference

7. Evaluate and troubleshoot [46]

Decide on a goal

Before designing any algorithms, the goal has to be defined. This step is important for

the developer to decide which data to collect and which model architecture to use. For

example in driver monitoring the goal can be "detect if driver’s eyes are closed". This is

typical classification problem where the output is a probability of different classes. In this

case "open or "closed". However, if the goal is to detect where the driver is looking, then

the output is a vector that is illustrated by direction. [46]

15

Collect a dataset

In many cases, this part can be the most time-consuming. It is hard to estimate how

much data is required to train an effective model. The complexity of the model and the

relationship between variables, the number of parameters and the amount of noise affects

to the data requirements. In DL applications the principle is: the more data, the better.

[46]

However, what data to collect needs to be considered. It is essential to collect data from

every possible scenario to increase robustness. For the example of driver monitoring,

data should contain different lighting conditions, various skin colors and people of different

ages. [46]

After collecting data, interesting data points need to be determined. Labeling data can

take hundreds of hours and for example in medical applications it can be costly if the

labelling needs to be done by specialized doctor. For driver monitoring purposes, labels

such as "smoking" or "looking at the phone" can be assigned. [46]

Design a model architecture

There are infinite possibilities for model architectures and it requires experience and

knowledge to judge which architecture works best for a given problem. Sometimes it

can be more convenient to base the model on an existing architecture developed by re-

searchers rather than starting from scratch. When designing model for embedded de-

vices, constraints of the device need to be considered. Models that run on a desktop

may not run on smaller devices due to memory and speed restrictions. Additionally, some

embedded devices may have hardware acceleration which can speed up the execution

of certain types of model architectures. To achieve best results, the model architecture

should be designed for the target device. It needs to be kept in mind that designing a

model architecture is an iterative process. Developers often go back and forth within

the ML workflow to find a working model. It is almost impossible to know which model

works and which does not without experimenting. Experience can be helpful. [46] There

are several frameworks for creating model architectures of which the most popular are

discussed in Chapter 3.2.1.

Train the model

Model training is a process where training data is fed to the model to adjust its learning

parameters. At first, the model’s weights and biases are set to random values. Weight

adjusting is done by comparing the model’s training data output with the desired output

by using a backpropagation algorithm. This algorithm finds the global minimum by the

method of steepest descent [46, 47]. After training the full dataset for one cycle, one

epoch is done. Usually, these epochs are done several times until the model’s perfor-

mance stops improving. [46]

16

There are two common performance metrics to monitor model’s training, accuracy and

loss. Accuracy is the percentage of how often the model guesses the expected answer

and loss means how far the model was from the expected answer. Accuracy should

approach 100 % and loss 0,0 during training. In practice models are rarely perfect (ac-

curacy 100 % and loss 0,0) and it depends on the application and how accurate it needs

to be. It is not guaranteed that the model reaches acceptable accuracy with any number

of epochs. Then the developer has to go back to designing the model architecture and

try again. It is also possible that the problem was too challenging and any ML algorithm

cannot solve it. [46]

Convert model

The trained model can be used on a desktop. However, if the model is intended to be used

on an embedded device, it has to be converted to the format that the device’s interpreter

supports. For example, TensorFlow (TF) has made interpreters for mobile devices called

TensorFlow lite. It also provides converters which makes it easy to convert TF models to

tflite-format. Covering tools are discussed in Section 3.2.3.

Run inference

A trained and converted model is not enough in itself. It needs additional code to support

data preprocessing and instructions on what to do for predicted results. It is typical for

classifiers that the output gives a probability for all classes and these probabilities will sum

to 1. The class with the highest probability is the prediction. In real-life cases, interference

such as the sensor malfunction may cause false predictions. Thus, it may be useful to

filter the predictions. [46] For the DMS example, it may be hard to judge when to alarm for

drowsiness. If the alarm turns on as soon as the diver closes his eyes, it will be irritating

quickly. However, if the delay is too long, an accident could already have happened by

the time the alarm turns on. The same is the case when using the phone while driving: if

the system alarms as soon as there is one phone prediction, real or false, it is not working

correctly. There should be some averaging or another filtering instance.

Evaluate and troubleshoot

When the device is up and running it should be evaluated and tested if it works as it

is supposed to work. Even though the model’s accuracy was acceptable in the training

phase, the real-world performance might be poor. Perhaps the training data did not rep-

resent real cases or it is not processed the same way. Another reason is that the model

was overfitted. “Overfitting” means that during the training phase the model learned to

predict training data too well. A model’s accuracy for training data can be very high but

its robustness for any other data can be poor. In practice, the model memorized the train-

ing data and developed shortcuts for it. For example, if a classifier should detect if the

driver is sleeping or not and in training set all "sleepers" are bearded white men and "not

17

sleepers" are long-haired black women, a model can find some false features for detect-

ing drowsiness such as skin color. Another problem arose in spring 2020 when people

started to wear face masks. A face covered with a mask could be a great challenge for

models that were not trained for it. Overfitting is very common and it can be avoided e.g.

by collecting more training data and ensuring that the data has enough variation. [46]

If the system performance is still not good enough after checking all hardware and other

troubleshooting options, others should be considered such as designing the model ar-

chitecture again. In total, well-performing systems will usually need multiple iterations to

reach maximum performance.

3.2 Software stack for DL on embedded device

In this chapter, DL on embedded devices is presented as a stack of different SW tools.

The underlying idea is that SW developers can pick and combine different frameworks for

the DL pipeline. Figure 3.1 presents some of these components.

Figure 3.1. Illustration of tools used in ML and DL development and computing.

18

In Figure 3.1 the first layer is application. It can be practically any ML/DL application.

However, this work focuses on camera-based applications. The second layer, application

programming language determines which programming language is used in any given

application. The third layer represents ML training frameworks which will be described in

Chapter 3.2.1. The fourth layer determines the NN data exchange format. These tools

enable the developer to change the trained model to another format. For example, if a

PyTorch developed model is intended to be used with TensorFlow Lite, it must be con-

verted to the TensorFlow format. Two popular NN exchange format tools are introduced

in Section 3.2.2. The next layer is the processing unit API which refers to the DL acceler-

ation SW. These are discussed in Section 3.2.4. The last two layers refer to the hardware.

The processing unit platform differentiates different types of processing units and the last

layer further distinguishes these processing units by architecture and vendor.

In the following chapters, different frameworks for training and deployment are covered.

First, ML frameworks are introduced and their advantages and disadvantages are dis-

cussed. Second, model deploying frameworks and optimization methods are reviewed.

3.2.1 Deep Learning training frameworks

Frameworks are vital to start DL model development and over the last years, many frame-

works have been developed. Therefore, many frameworks have been developed over the

years. A unifying factor between all of the DL frameworks is to facilitate the complicated

data analysis process. The designed purpose of these tools varies and one framework

cannot address every problem. Figure 3.2 shows a summary of GPU-supported frame-

works. All the following tools utilize cuDNN and CUDA (introduced in Chapter 3.2.4) for

GPU processing.

This chapter reviews software frameworks for DL. Due to the vast amount of frameworks

available today, only the most important frameworks are discussed in this chapter with a

focus on image and video processing.

19

Figure 3.2. Summary of the most used DL frameworks with GPU support [48]

TensorFlow

TensorFlow (TF) is a open-source software library for ML and DL and is developed and

maintained by the Google Brain team. TF includes an API for Python and C++ and is one

of the most popular frameworks. In addition, it is supported in Google’s and Amazon’s

cloud services. One downside of TF is the rather steep learning curve due to its diverse

functionality and low-level implementation. [48] Even though there are tools to convert

models between frameworks, this task can be challenging at times as Rubin demon-

strated in his article [49]. If, for example, TensorFlow Lite is the desired output model,

then TF or Keras can be good options.

Compared to PyTorch, TF works more smoothly on embedded devices. TF Lite, which

will be discussed in Chapter 3.2.3, allows the use of ML models on embedded devices.

According to [50], TF is the best option for RPi (CPU-only), Intel Movidius, Google Coral

and NVIDIA Jetson Nano.

In addition, TF supports not only CPUs but also GPUs and TPUs. Implementation on

NVIDIA’s GPUs is limited because TF only uses cuDNN and CUDA. If a suitable GPU

is available, TF can automatically switch to use it and the acceleration is automated.

However, for that reason memory control is not possible. [51] TF is available on 64-bit

Linux, macOS, Windows and mobile platforms such as iOS and Android. Python versions

3.5-3.8 are supported.

TF is commonly compared to PyTorch because they are the most used DL frameworks.

In general, TF is more focused on industrial use cases and PyTorch on research [51].

20

1 import keras
2 from t enso r f l ow . keras . models import Sequent ia l
3 from t enso r f l ow . keras . l aye rs import Dense , Conv2D
4 from t enso r f l ow . keras . l aye rs import MaxPooling2D , F l a t t e n
5
6 model = Sequent ia l ()
7 model . add (keras . Inpu t (shape=(640 , 360 , 3)))
8 model . add (Conv2D(32 , 5 , a c t i v a t i o n =" r e l u " , padding="same"))
9 model . add (Conv2D(16 , 3 , a c t i v a t i o n =" r e l u " , padding="same"))

10 model . add (MaxPooling2D (4))
11 model . add (F l a t t e n ())
12 model . add (Dense (u n i t s =10 , a c t i v a t i o n = ’ softmax ’))
13
14 model . summary ()
15
16 model . compile (loss= ’ ca tego r i ca l_c rossen t ropy ’ ,
17 op t im i ze r = ’ sgd ’ ,
18 met r i cs =[’ accuracy ’])
19
20 model . f i t (x_ t ra in , y_ t ra in , epochs=5 , batch_s ize =32)

Program 3.1. Keras model definition and training

Google uses TF in many of its products, e.g. search results and autocompletion, speech-

to-text and voice technology, image recognition and classification as well as spam detec-

tion for Gmail.

Keras

On top of TensorFlow, there is a high-level API called Keras. The development of Keras

was driven by the idea that it would be easy to use and fast prototyping would be possible.

[52] This is also Keras’ weakness: Keras is less flexible and optimal for researching new

architectures. One of the greatest advantages of Keras, as well as TensorFlow, is that

they are supported by large companies (TF by Google, Keras by Google and Microsoft).

[48]

Keras provides easy-to-use DL tools. Because Keras is a library running on top of Ten-

sorFlow, it is easy to convert Keras models to TensorFlow Lite and deploy it to embedded

devices.

Program 3.1 demonstrates how easy it is to create a Keras model and train it.

First, all the necessary packages are imported. Then, the model instance is created.

“Sequential” is the simplest type of model because it is a linear stack of layers. Two

dense layers are added with different parameters and to finalize the learning process, it is

configured with the compile function. The training is done with a simple fit function where

21

the training parameters, such as the number of epochs and batch size, are determined.

Parameter x_train is a list of training data (e.g. pictures) and y_train a is list of the correct

labels for the training data. The model.summary() prints model shape as shown below:

Layer (type) Output Shape Param #
===

conv2d (Conv2D) (None , 640 , 360 , 32) 2432

conv2d_1 (Conv2D) (None , 640 , 360 , 16) 4624

max_pooling2d (MaxPooling2D) (None , 160 , 90 , 16) 0

f l a t t e n (F l a t t e n) (None , 230400) 0

dense (Dense) (None , 10) 2304010

===

To ta l params : 2 ,311 ,066

Tra inab le params : 2 ,311 ,066

Non−t r a i n a b l e params : 0

In the next section, a similar python script is used to show a PyTorch comparison.

PyTorch

PyTorch is, next to TensorFlow, one of the most used DL frameworks and was devel-

oped by Facebook’s AI research group. Horace He claimed in his article from 2019 that

TensorFlow and PyTorch were the best choices for DL at this point. [53].

Similar to TF, PyTorch also uses cuDNN and CUDA for an optimized GPU usage. How-

ever, PyTorch released version 1.8 on 4.3.2021 [54] which also supports the AMD ROCm.

This allows PyTorch to use AMD’s GPUs in addition to NVIDIA’s. Not all AMD GPUs sup-

port ROCm, however.

Even though TF is generally better for embedded device development, mobile phones

are an exception. Following version 1.3, PyTorch has supported an end-to-end workflow

deployment on iOS and Android mobile devices. For mobile GPU usage, PyTorch uses

Metal with iOS. Metal is an API developed by Apple which enables near-direct access to

the GPU. For Android phones, PyTorch uses Vulkan with Android phones. [55] Vulkan

is a Khronos-developed API for the same purpose as Metal. It has similar unmodified

functionalities from OpenGL and OpenCL [56] which are discussed more in Chapter 3.2.4.

PyTorch is widely used in commercial products such as Facebook (e.g. facial recogni-

tion,object detection, spam filtering,fake news detection, as well as news feed automation

22

1 import t o rch
2 from t o rch import nn
3 import t o rch . nn . f u n c t i o n a l as F
4 import t o rch . opt im as optim
5
6 # Define model
7 class Net (nn . Module) :
8 def _ _ i n i t _ _ (s e l f) :
9 super () . _ _ i n i t _ _ ()

10 s e l f . conv1 = nn . Conv2d (3 , 32 , 5)
11 s e l f . conv2 = nn . Conv2d (32 , 16 , 3)
12 s e l f . pool = nn . MaxPool2d (4)
13 s e l f . f l a t = nn . F l a t t e n ()
14 s e l f . f c = nn . L inear (160∗90∗16 , 10)
15
16 def forward (s e l f , x) :
17 x = s e l f . pool (F . r e l u (s e l f . conv1 (x)))
18 x = s e l f . pool (F . r e l u (s e l f . conv2 (x)))
19 x = F . softmax (s e l f . f c (x))
20 return x
21
22 net = Net ()
23 pr in t (net) # Dispalys the model’s architecture
24
25 def t ra in_model ()
26 c r i t e r i o n = nn . CrossEntropyLoss ()
27 op t im i ze r = optim .SGD(net . parameters () , l r =0.001 , momentum=0.9)
28
29 for epoch in range (2) : # loop over the dataset multiple times
30 for i , data in enumerate (t r a i n l o a d e r , 0) :
31 # get the inputs; data is a list of [inputs, labels]
32 inputs , l a b e l s = data
33
34 # zero the parameter gradients
35 op t im i ze r . zero_grad ()
36
37 # forward + backward + optimize
38 outputs = net (i npu ts)
39 loss = c r i t e r i o n (outputs , l a b e l s)
40 loss . backward ()
41 op t im i ze r . step ()

Program 3.2. PyTorch model definition and training. Modified from PyTorch website [57]

23

and friend suggestions) [51] and the Tesla Autopilot [58].

PyTorch is simple to use and debug and it is very "pythonic". Unlike for example in TF,

developers can place a python debugging breakpoint in the middle of the PyTorch model.

In comparison, TF debugging is more complicated. The PyTorch API is great because it

is better designed and TF has been switching APIs many times over the last years. The

following is an example of the PyTorch model definition and training [53] There is example

model definition and training [57] similar to the one made in Keras Section.

At first, the model definition is a bit more complicated with PyTorch than it is with Keras.

However, the considerable difference is model training. While there was only one "fit"

command in Keras, in PyTorch there is a whole self-made function for it. Whereas in

Keras the number of epochs is defined in fit function parameters, in PyTorch it is defined

in the for-loop. This is to enable debugging but requires more understanding about DL

and the training process which is not necessarily a bad thing.

Caffe

Caffe is a DL framework developed by Yangqing Jia at the Berkeley Artificial Intelligence

Research. It is optimized for speed, modularity and expression [59]. To achieve, that

Caffe is written in C++. New custom layers must be written in C++ as well. Caffe is highly

suitable for image processing and there are a lot of retrained networks available in the

Caffe Model Zoo. [48]

In 2017, Caffe 2 was announced and a year later it was merged into PyTorch. Thus, Caffe

2 is part of Facebook’s PyTorch ML framework [60].

MATLAB

MATLAB differs from the other DL frameworks in many ways. It is not a DL framework

but rather a platform for programming and numeric computing by MathWorks. Whereas

almost all other frameworks are open-sourced, MATLAB is a commercial product that is

quite expensive for private use. For this reason, it is less popular and has less community

support. However, community support is still considered good. The MATLAB language

is matrix-based which allows the natural expression of computational mathematics. It is

used by engineers and scientists for data analysis, algorithm development, and simula-

tions. MathWorks has two main product families: MATLAB and Simulink. Simulink is a

platform for simulations and model-based design and it not relevant considering this work.

MATLAB toolboxes are packages that are not automatically included. There are several

useful toolboxes for ML and DL purposes. These packages are reviewed in the book

"Practical MATLAB Deep Learning A Project-Based Approach" [61] by Michael Paluszek

and Stephanie Thomas. Below, some of the most relevant toolboxes for DL and visual

tasks are listed.

24

• Deep Learning toolbox

• Statistics and Machine Learning Toolbox

• Computer Vision System Toolbox

• Parallel Computing Toolbox

The Deep Learning Toolbox is the main toolbox for MATLAB DL. It can be used to de-

sign, build, and visualize CNNs. The Statistics and Machine Learning Toolbox is made

for data analytic methods, gathering trends, and patterns. It provides tools for classifica-

tion, regression, and clustering which can be used to understand the data and thus for DL

model development. The Computer Vision System Toolbox includes functions for com-

puter vision systems such as feature detection and extraction. It also supports 3D vision

and 3D motion detection as well as stereo camera processing. The Parallel Computing

Toolbox is not directly a DL/ML toolbox but it is very useful for accelerating computing. It

enables multicore CPU processing and GPU processing. Some Deep Learning toolbox

functions can utilize parallel computing. In addition, high-level programming constructs

such as parallel for-loops are easy to implement. There are also MATLAB open source

tools by MATLAB users such as the Deep Learn Toolbox by Rasmus Berg Palm [62], the

Deep Neural Network by Masayuki Tanaka [63] and the Pattern Recognition and Machine

Learning Toolbox (PRMLT) by Mo Chen [64] among others. [61]

The reason why MATLAB is considered in this thesis is its ability to deploy applications

for embedded boards. With the MATLAB Coder toolbox C and C++ code can be gen-

erated for both PC and embedded HW. The use of the Embedded Coder with MATLAB

Coder enables C and C++ code generation and optimization for embedded processors.

Embedded Coder supports a wide variety of processors. To deploy a standalone appli-

cation, MATLAB Compiler can be used. Software component generation for integration

with other programming languages can be done with the MATLAB Compiler SDK. [65,

66]

Table 3.1 presents the summary of introduced frameworks.

25

Table 3.1. Summary of the most used DL frameworks

Framework Creator
Initial

release

Open

Source
Interface

CUDA

support

Easy-

to-use

Flexi-

bility

Tensorflow
Google

Brain
2015 Yes

Python, R,

Java, C/C++

JavaScript

Yes + +++

Keras
François

Chollet
2015 Yes Python, R Yes +++ +

PyTorch Facebook 2016 Yes
Python,

Julis, C++
Yes +++ +

Caffe
Berkeley

Vision
2013 Yes

Python,

MATLAB, C++
Yes ++ ++

MATLAB MathWorks 2013 No MATLAB Yes ++ +

3.2.2 File exchange

ONNX Ecosystem

Open Neural Network Exchange (ONNX) is a format to represent ML and NN models

originally developed by Facebook and Microsoft. The idea behind ONNX is to enable de-

velopers to work with different frameworks by allowing them to convert models to another

framework as shown on the left side of Figure 3.3. Later ONNX was open-sourced on

GitHub and others have joined the development. The advantage is that the developer is

not tied to the framework selected at the beginning of the project. ONNX supports all

major ML frameworks such as PyTorch, TF, Keras, scikit learn and MATLAB. [67, 68]

26

1 import t o rch
2 pre_ t ra ined = VAE(encoder , decoder)
3 p re_ t ra ined . l o a d _ s t a t e _ d i c t (to rch . load (’ t r a i n e d . p t ’))
4 p re_ t ra ined . eval ()
5 ex_ input = to rch . zeros (1 , 28 , 28)
6 to rch . onnx . expor t (p re_ t ra ined , ex_input , " onnx_model . onnx ")

Program 3.3. Converting PyTorch model to ONNX [70]

Figure 3.3. ONNX enable conversions between frameworks and model optimization for
various hardware [69].

Regardless of the ML framework, all of them share most of the mathematical operations

which allows almost any model to be easily converted to ONNX and vice versa. Program

3.3 illustrates how to convert a PyTorch model to ONNX. First, the model is instantiated

and then weights are loaded. Following that, it’s put into evaluation mode, the PyTorch

model is converted to ONNX and exported. [68] Since the export runs the model, the

example input is required. Any values can be used in the example if the type and size are

right. [70]

ONNX Runtime

In companies, there can be several teams using different training frameworks and tar-

geting different deployment options. This causes scattered solutions and compatibility

issues. At the end of 2018, Microsoft provided ONNX Runtime as a solution. ONNX

Runtime is an inference engine and training accelerator for ML and NN models in ONNX

format. [71]

Neural Network Exchange Format

Neural Network Exchange Format (NNEF) is a neural network data exchange format de-

27

veloped by the Khronos Group and is complementary to ONNX. The Khronos Group is a

non-profit standardization organization open to universities and companies that can join

and participate in the standardization process. The first version of NNEF was launched

in 2017. The main goal of the NNEF is to enable data scientists and engineers to use

training frameworks of their choice and import trained networks on inference engines from

hardware vendors as shown in Figure 3.4. In addition, NNEF can be used for communi-

cation between training frameworks. [72]

Figure 3.4. Neural Network Exchange Format supports the most popular training frame-
works and is a intermediate step to different inference engines [73].

The development of mobile and embedded processor architectures with the objective to

increase speed and lower power consumption, has been very active in recent years. Be-

cause of this development, there is a risk that embedded neural net processing becomes

so fragmented that barriers between different solutions make it impossible for developers

to accelerate inferencing engines on multiple platforms. NNEF aims to solve this problem.

NNEF and ONNX are complementary but they have some functional and structural dif-

ferences. Whereas ONNX is used more in training interchange, NNEF is designed for

embedded inferencing import. In short, NNEF is more hardware-oriented while ONNX

focuses more on software stack flexibility. [72, 73]

3.2.3 Deploying neural network models on embedded device

To be able to use trained DL models on embedded devices, they first need to be optimized

before deployment. Model optimization methods, such as combining layers, quantization

and elimination of unused layers, reduce the model size and thus memory requirements

which allows faster inference. In this chapter, different optimization and inference engines

are discussed.

TensorFlow Lite

TensorFlow Lite (TFLite) enables ML inference on mobile and embedded devices. It con-

sists of two components: TFLite converter and TFLite interpreter. [74] The TFLite con-

verter only converts TF-based models [50] (page 431).

The TFLite converter converts TF models into an efficient form by reducing the binary and

modelsize. The binary size is decreased by reducing the size of dependencies and the

28

model size by quantizing weights [75]. TFLite interpreter is used to perform an inference

with a TFLite model. The interpreter supports inference using C++, Java, and Python.

TensorRT

NVIDIA has released its framework, TensorRT, for neural network model optimization and

inference. TensorRT was developed for NVIDIA’s GPUs. It can be used complementary

to training frameworks such as PyTorch, TF, and Caffe. In addition, it is possible to import

existing models from Caffe, ONNX, or TF. [76]

TensorRT allows the creation of optimization profiles. With these profiles, developers can

determine configurations such as maximum workspace size, the minimum acceptable

level of precision, etc. [76].

OpenVINO

OpenVINO is a toolkit developed by Intel. It includes a Model Optimizer and Inference En-

gine. The model optimizer supports Caffe, TF, ONNX, MXNet, and Kaldi models. The in-

ference engine supports the execution of Intel’s products such as CPU, Integrated Graph-

ics, and Movidius Neural Compute Stick. Intel Movidius can only be used with OpenVINO

[50] (page 55).

Arm NN

Arm NN is an inference engine that enables the use of neural networks on Arm Cortex

CPUs, Arm Mali GPUs, and the Arm ML processor. Supported NN are TF, TFLite, Caffe,

and ONNX. Arm NN optimizes the inference by analyzing the NN and replacing its oper-

ations with implementations particularly designed for specific hardware. [77] Arm NN is

build on top of ARM Computer Library [78] which is introduced later in Chapter 3.2.4.

3.2.4 Processing unit API

Processing unit APIs are the means to communicate with hardware devices. Figure 3.5

shows the relationship and abstraction level of some APIs. Next, these APIs are dis-

cussed.

29

Figure 3.5. Overview of processing unit APIs. Abstraction level increases towards the
top. Modified from [79]

OpenCL

Application development for heterogeneous parallel processing platforms is challenging

because programming approaches for these processors vary a lot. OpenCL (Open Com-

puting Language) addresses this problem. It is a low-level, royalty-free standard for

heterogeneous parallel programming from supercomputers to embedded devices by the

Khronos Group. It can leverage CPUs, GPUs. and other processors such as FPGA to ac-

celerate parallel computation. OpenCL enables the writing of accelerated portable code

across different devices and processor architectures. This low-level abstraction layer re-

lieves developers from studying details of the device. [80, 81]

In addition to computing language, OpenCL includes API, libraries and a runtime system.

It supports the writing of a general-purpose program that can be run on a GPU without

any additional mapping onto a 3D graphics API if extreme efficiency is not required. [81]

OpenVX

OpenVX is Khronos Group-developed standard for the cross-platform acceleration of

computer vision applications. The design goal of OpenVX is to provide optimized com-

puter vision processing for embedded and real-time applications. It is intended for imple-

mentation by hardware vendors. Compared to OpenCL, OpenVX has a higher abstraction

to enable performance portability across various processing unit architectures. [82]

OpenCV

OpenCV (Open Source Computer Vision Library) is a widely used computer vision library.

30

It has thousands of computer vision functions and it is open-source. OpenCV is written in

C/C++ but there are APIs for Python and Java as well.

OpenCV is not a kernel’s API but in its OpenCV 3 release, a transparent API was added.

This means that the implementation of OpenCV will look for OpenCL on the system. If

OpenCL is found, it will begin to dispatch some of the primitives down into OpenCL. The

programmer doesn’t need to change any of the code. It happens automatically. [79]

OpenCV is complementary to OpenVX. However, they have been designed to perform

slightly different tasks. Next, the main differences between these two are discussed (Fig-

ure 3.6).

Figure 3.6. The main differences between OpenCV and OpenVX. Modified from [79].

First of all, both compared APIs are very useful and have their specific use cases in ML.

The purpose of this comparison is to provide reasons for choosing one over the other

depending on a given situation. OpenCV is an open-source library maintained by a com-

munity. OpenVX is a Khronos-defined API with full conformance tests. It means that even

though OpenCV has a lot of tests, it is not regulated by any organization. Khronos, on

the other hand, regulates the whole system of OpenVX and every new implementation

must pass certain conformance tests. OpenVX is consistent in a way that all core func-

31

tions must be available in all conformant implementations. OpenCV functions may vary

depending on the platform. The drawback of OpenVX is that because of its conformance

and consistency limitations, it cannot provide as many functionalities as OpenCV. But

OpenVX focuses on optimized hardware-accelerated functions. To sum it up, OpenCV is

more suitable for rapid demos and OpenVX for production deployment.

Arm Compute Library

Arm has created a collection of low-level functions for ML which are optimized for Cortex-A

CPU and Mali GPU architectures and called Arm Compute Library [83]. ML acceleration

is done for Mali GPU using OpenCL [83]. For Cortex-A CPU, the acceleration is done

by Neon or Scalable Vector Extension (SVE) which are low-level tools for ARM CPU

processing [83].

CUDA and cuDNN

Nowadays, most of the DL research is done with GPUs [48], more specifically NVIDIA

GPUs, because of their speed and flexibility. Also NVIDIA was one of the first vendors

that started to provide DL acceleration tools for users and it has a better framework and

community support. For example TF supports only NVIDIA GPU cards [84]. PyTorch just

released version 1.8 that supports ROCm which is AMD’s solution for GPU-accelerated

computing.

CUDA (Compute Unified Device Architecture) is a platform for parallel computing for

NVIDIA’s GPUs. It includes GPU-accelerated libraries, a compiler, development tools

and CUDA runtime. [85]

NVIDIA CUDA Deep Neural Network library (cuDNN) is a GPU-accelerated library for DL

development. It provides highly optimized DL operations such as forward and backward

convolution, pooling, normalization, and activation layers. This allows deep learning re-

searchers and framework developers to focus on application/software development rather

than low-level GPU performance tuning. cuDNN is used in many DL frameworks including

Caffe2, Keras, MATLAB, PyTorch and TF. [86]

3.3 Deep Learning Framework Compatibility

Compatibility is one of the most important aspects when choosing a framework for em-

bedded inference. For example, PyTorch models cannot be used in Google Coral since it

support only Google’s TFLite-based models.

Even if models can be converted from one framework to another with a file exchanger, it

can sometimes be tricky [87]. Likewise, even though TensorRT supports ONNX models,

it was found out that TensorRT works more seamlessly with TF [50] (page 56). There-

fore, Rosebrock et al. [50] (page 431) recommend using TF because it is supported in

32

many different hardware and frameworks such as OpenVINO, TensorRT and TFLite. This

makes it easy to switch between hardwares and still use the same trained TF model.

Compatibility issues can become very expensive for companies that use a variety of

frameworks and different hardware vendors. The vendors would prefer their users to

only buy their HW solutions. For this reason, vendor-specific frameworks are always a

risk. As mentioned later in Chapter 4.4 NXP has created a vendor-specific framework

for S32V234 board development. This tool was hard to use and the program written for

the other boards was not compatible with it. For companies and end-users, it would be

more convenient if the same program was used in every hardware. The Khronos Group

is enabling this by providing computing standards for free to any company, institution, or

individual [88]. Several HW and SW tools are utilizing Khronos standards.

When choosing the hardware it is important to keep in mind which features are needed by

the user and which tools are supported by the manufacturer. For example which DL data

formats and frameworks are supported and which versions of those. The most popular

ones are Keras, TF, TensorFlow Lite, PyTorch, Caffe2 and ONNX. Users should only focus

on the higher-level tools. Manufacturers ensures that the hardware is used in the most

optimal way.

33

4 HARDWARE TEST MATERIALS AND METHODS

In this section test methods and tested hardware are presented. First, the test algorithm

is introduced. Then a selection of embedded AI devices is evaluated based on develop-

ment experience and performance. The hardware performance results are presented in

Chapter 5.

4.1 Test methods

The test application used in these boards is called "emotion detection". The detection is

done for each frame separately and previous predictions do not affect to the next ones.

Most video-based algorithms work this way but sometimes average filters could be used

to filter one frame misclassification out. This application uses RGB images and does

image processing to it so that the image is compatible with the detection algorithms. The

aim was to use test applications consisting of typical application development workflows

for which publicly available and well-supported solutions can be utilized (i.e. face region

detection) combined with custom-developed proprietary inference models using camera

stream as input data. The objective was to test how different frameworks were supporting

the workflows and identify typical problems encountered by developers when transferring

the execution to edge devices.

First, the image is fed to the Haar Cascade object detector (HCOD) which is trained to

find faces in the image. Haar Cascade is an ML model that is trained by using positive

and negative images. It was first proposed by Paul Viola and Michael Jones in 2001 [89].

• Positive images contain images of objects that are supposed to be identified.

• Negative images contain images of everything else except for objects that are

intended to be identified.

After the classifier is trained, features need to be extracted from the image patch. That

is done with Haar features such as shown in Figure 4.1 that are similar to convolutional

kernels. The feature is a single value calculated by subtracting the pixel values under

the white area from the pixel values under the black area. The greater difference is

proportional to the probability of the edge in that region [90, 91].

34

Figure 4.1. Haar Cascade features

Unfortunately, it would be too heavy operation for computers to calculate all possible sizes

and locations for each feature. Viola and Jones proposed in their paper that it could be

done with an integral image. An integral image is constructed from the original image by

summing pixel values from left to right and top to bottom e.g. the fifth pixel of the first row

in integrated image is the sum of the first five pixels of the row in the original image. This

is illustrated in Figure 4.2. [90, 91]

Figure 4.2. Every pixel in the integral image is sum of pixels in its left and above.

Now only four value additions are needed for any feature size. This reduces the complex-

ity of feature calculations dramatically. In the original paper Viola and Jones had 180 000

features from which they used AdaBoost to find the approximately 6000 best ones. Run-

ning 6000 features for every section of the image is still too computationally expensive

for real-time face detection. For this Viola and Jones introduced the Cascade Classifier

which is a multi-stage classifier that applies a set of features in every stage. The first

35

stages contain rougher features compared to later stages that are more complex to find

smaller details of the face. If any given stage claims that there is a face in the section,

that section is passed on to the next stage. After the section is passed by all stages, a

face is confirmed. On the other side, as soon as even one stage states that there is no

face in that section, it is discarded right away. This method saves a lot of time and lets the

algorithm spend more time in other sections of the image. [89, 91]

Once all the faces are detected, images are cropped, resized, and fed to an emotion

detection algorithm. The emotion detection algorithm is proprietary to BHTC and it won’t

be explained in detail due to confidentiality reasons. The emotion detection model was

developed with Keras and, depending on the target device, it is converted to another

framework. There are seven output emotions: anger, disgust, fear, happy, sad, surprise,

and neutral. When the emotion is detected, a rectangular is drawn around the face and

emotion and imprinted above the rectangular. For the comparison the displayed values

are face detection time, emotion detection time, and processed frames per second (FPS).

Because HW accelerators such as GPU or TPU cannot be used with HCOD, alternative

solutions for face detection were studied for optimized and faster performance. However,

HCOD is a good benchmark because it can be used as-is with most of the boards.

In the following sections, the tested hardware is introduced. The development experience

is also discussed with the unique properties of each board.

4.2 Google Coral

Google Coral is a general-purpose board for ML applications. Google has a few products

that feature a Tensor Processing Unit (TPU) such as Coral Dev Board and USB Accel-

erator (Figure 4.3). The USB accelerator is like a USB stick that can be inserted into a

Raspberry Pi, for example. The Dev board is a single-board computer that doesn’t need

anything else to be used, except a camera in case images or videos are required.

Coral boards are comparably cheap. The USB accelerator costs around USD 60 and the

Dev Board is about USD 130. Both only support TF Lite models which is a disadvantage

compared to solutions. In this work, only the Coral Dev Board was evaluated. This

board features an NXP i.MX 8M SoC (quad Cortex-A53) CPU, an integrated GC7000 Lite

Graphics GPU, and 1 GB RAM. The ML accelerator is a Google Edge TPU coprocessor

which is an ASIC designed by Google. [92]

36

Figure 4.3. Google Coral Dev Board (left) and USB accelerator (right) [93]

Getting started with Coral Dev Board was easy. Google [94] and other authors provide

several guides on how to set up the board. The first step is to flash the Mendel Linux im-

age to the board. Mendel Linux is a lightweight derivative of Debian Linux. This was easy

to do with instructions from the Coral website [94]. After flashing the operating system,

the board was up and running. The only challenge was the installation of OpenCV which

is an open-source CV and ML software library. Because building OpenCV is computa-

tionally heavy and it requires more RAM than there is available on the board. To tackle

this issue, instructions by Petar Jalušic’ were referred to [95]. An advantage of this board

is the broad community support which can support development work.

The camera used for testing was Google’s 5-megapixel camera module designed for

Coral boards. The test script was done with Python. Coral does not have a graphi-

cal interface, thus the video stream was displayed with a Flask [96] server. Flask is a

lightweight Web Server Gateway Interface (WSGI) framework. In Coral, Flask was used

to create web applications where the output video stream can be displayed. The emotion

detection Keras model (.h5) had to be converted to TFLite format before it could be used.

4.3 NVIDIA Jetson Nano

NVIDIA Jetson Nano Developer Kit is a small low-powered single-board computer, that

can run multiple NNs in parallel. This board has a Quad-core ARM A57 CPU, a 128-core

Maxwell GPU that can run up to 472 GFLOPS (floating point operations per second) and

4 GB of RAM. [97], [50] (page 265). This board is compatible with a Raspberry Pi camera

so that was used in the tests.

NVIDIA’s TensorRT (Section 3.2.3) is a crucial part of the development with Jetson Nano.

It allows optimization of performance, power and efficiency. Developing on NVIDIA Jet-

son Nano has been made easy because the Maxwell GPU supports OpenGL, Vulkan

and CUDA. OpenGL is a processing unit API developed by the Khronos Group. Thus,

37

Figure 4.4. NVIDIA Jetson Nano Developer Kit [97]

OpenCV can use CUDA for more optimized operations. In theory, some PC applications

could be used on Jetson Nano as well. However, better performance can be obtained if

models and scripts are optimized for the device.

Building the development environment was especially easy with this board due to the

ready-made image by PyimageSearch. The image was included in the Complete Bundle

of Raspberry Pi for Computer Vision book. The only requirement before starting the

development work was to write the image to the SD-card and boot the device. The image

included:

• System-level packages

• OpenCV compiled from source (CUDA-capable)

• NVIDIA’s distribution of TensorFlow 1.13.1

• TensorRT

• Python libraries as needed

Python packages were installed in virtualenv which is one of the best Python package

managers. The PyimageSearch team estimated that installing all the required software

by hand would take approximately three to five days. In addition to the ready image, they

provided instructions for setting up the Jetson Nano board [98]. There are guides on how

to set up important software such as SSH, OpenCV, Tensorflow and TensorRT.

38

4.4 NXP S32V234

The S32V234 is NXP’s second-generation vision processing family with ARM Quad Cortex-

A53 cores processors. It has a 3D GPU (GC3000) with OpenCL, OpenGL, and OpenVG

and dual APEX-2 vision accelerators for deep learning inference enabled by OpenCL,

APEX-CV and APEX graph tool [99]. This board is much more expensive than the previ-

ous two with a price of around USD 750.

Figure 4.5. NXP’s S32V234 Vision and Sensor Fusion Evaluation Board [100]

Developing with this board is challenging because NXP uses vendor-specific software

development frameworks. These frameworks have steep learning curves and some fea-

tures require additional coding. In this case, this system does not use Video4Linux for

camera controlling. Video4Linux is a set of device drivers for video stream capturing on

Linux systems. This means that controlling cameras require self-made drivers which is

laborious to do. In addition, some components, such as Yocto and S32 Design Studio,

require old versions of Ubuntu and other software.

Building Linux with Yocto

Yocto Project is an open-source collaboration project that is designed for creating custom

Linux operating systems for embedded devices. The advantage of this approach is that

the Linux system includes only the essential components so that it won’t waste any mem-

ory or performance on unnecessary processes. Yocto is based on the layer model. Each

layer gives the OpenEmbedded build system instructions on what to do. There are lots of

layer repositories that can be modified for the specific needs of a given product. [101]

Instructions on how to build Linux can be found in NXP’s user manual for S32V234 on their

website [102]. However, building with Yocto for this board was somewhat problematic. In

the user manual there are instructions for building the Linux BSP (Board support package)

39

using Yocto. The Linux kernel used is version 4.14 which is already a few years old.

Furthermore, there are old versions of some components such as OpenCV. Updating to

a newer Linux kernel (version 5.4) is challenging because the NXP-provided Advanced

Driver Assistance Systems (ADAS) have some drivers that are incompatible with Linux

kernel 5.4. This hampers the use of the most recent SW tools.

Software Development

NXP’s S32 Design Studio for Vision is an Integrated Development Environment (IDE) for

software development for S32V234 based on Eclipce. The development experience with

this was not very good. for instance, the S32 Design Studio installation guide is only for

Ubuntu 14 and 16. However, the installation was successful on Ubuntu 18.04 by adapting

the original guide. [103] NXP encourages to use of the S32 Design Studio for the S32

Platform which supports also Ubuntu 18. The learning curve with Design Studio is rather

steep and it is hard to get started with it especially because community help is almost

nonexistent.

Another way to develop software for this board is to use NXP’s Vision Toolbox for MAT-

LAB. In principle, the code can be developed in MATLAB and then generate and deploy

the C/C++ code to the target device. In addition to the C/C++ code the output includes

Makefile to build the application on the target device, S23V234 in this case. This MATLAB

add-on can be installed by following instructions in the NXP Support Package for S32V234

found in MATLAB add-ons. It requires free-of-charge license which can be downloaded

from NXP’s website and the NXP Vision SDK software package.

However, MATLAB development is not easy. First, not all MATLAB functions can be used

with the MATLAB Coder and Embedded Coder. Second, it is unclear how or if it is even

possible to generate Makefile for the target device. The generated Makefile is made for

the host computer, Windows PC in this case. It is not possible to use Linux because all

the needed tools have no Linux support.

There is a demo application for face detection provided by NXP. It was used to optimize the

face detection time. Another reason was that the face detection algorithm development

would have taken too much time and it wouldn’t have been time efficient. This is also the

reason why there is no HCOD test.

4.5 Raspberry Pi 4

Raspberry Pi is a series of the most popular single-board computers by the Raspberry Pi

Foundation. The first Raspberry Pi was released in 2012 and since then there have been

updated releases every year. In this work, the used board is the Raspberry Pi 4 with 4 GB

RAM. It costs around EUR 65. It has an ARM Quad Core Cortex-A72 CPU with build-in

WiFi and Bluetooth. Raspberry Pi is not primarily designed to be used for DL so it doesn’t

40

have any HW acceleration components. That is why only the HCOD test was done with

it. However, the Google Coral USB accelerator can be used with Raspberry Pi. Adrian

Rosebrock considers this topic in his book "Raspberry Pi for Computer Vision" [50].

Figure 4.6. Raspberry Pi 4 with Camera Module V2

With that book [50] there was an Raspberry Pi 4 Linux image provided with the most im-

portant software for DL and CV development including OpenCV. According to this book,

Raspberry Pi works well with many different DL frameworks. However, if OpenVINO is

used for optimization then TF and Caffe are the best choices [50]. Because the emotion

detection model used was already converted to TFLite for the Google Coral implementa-

tion it was interesting to test how well it would work on the Raspberry pi 4.

The only Python package that was not installed in the image was TFLite runtime. That

was straight forward with the TF’s instructions [104].

In the Table 4.1 is shown a summary of the SBCs specification.

Table 4.1. Summary of the SBCs used in the performance test

SBC CPU RAM OS Recommended FW

Google Coral
Quad

Cortex-A53
1 GB Mendel Linux TensorFlow Lite

NVIDIA

Jetson Nano

Quad-core

ARM A57
4 GB Ubuntu 18.04

Caffe, PyTorch and

TensorFlow (Use TF take

advantage of TensorRT)

NXP S32V234
Quad

Cortex-A53
-

Custom Linux

built with Yocto
MATLAB

Raspberry Pi 4
Quad core

Cortex-A72
4 GB Raspberry Pi OS

Tensor-Flow,

Caffe

41

5 HARDWARE TEST RESULTS

The hardware performance test results are shown in the tables below. There were two

changing variables, face detection algorithm and input data source. The input sources

were camera stream and recorded video. The recorded video used was the same in every

test. This leads to four combination of tests. All values shown in the tables are averages of

the time taken to process a single frame. First, there is Table 5.1 of HCOD face detection

with camera stream input. Second, Table 5.2 is the same but with a standard video. In the

third Table 5.3, face detection was done with the more optimal way. The implementation

was depending on the board. Finally, Table 5.4 contains results of optimal face detection

with standard video. All tests could not be executed. For example Raspberry Pi does not

have any DL hardware accelerator so considerable improvements were not expected with

another implementation. The NXP S32V234 development was so difficult that it would

have been too time-consuming to perform all the tests with it.

Table 5.1. HCOD test with camera stream: the values are averages of one frame pro-
cessing.

Haar Cascade, Stream Face Det (ms) Emotion Det (ms) Frames per Sec (FPS)

Google Coral 319.77 73.69 2.37

Jetson Nano 200.20 38.19 4.19

NXP S32V234 - - -

Raspberry Pi 254.89 10.56 3.42

Table 5.2. HCOD test with standard video: the values are averages for one frame pro-
cessing

Haar Cascade, Video Face Det (ms) Emotion Det (ms) Frames per Sec (FPS)

Google Coral 313,23 72,36 2,51

Jetson Nano 260,01 18,33 3,59

NXP S32V234 - - -

Raspberry Pi 255,98 10,05 3,40

42

Table 5.3. Optimal test with camera stream: the values are averages for one frame
processing.

Optimal, Stream Face Det (ms) Emotion Det (ms) Frames per Sec (FPS)

Google Coral 7,60 14,89 18,91

Jetson Nano 95,08 32,09 10,94

NXP S32V234 22,74 16,15 25,38

Raspberry Pi - - -

Table 5.4. Optimal test with standard video: the values are averages for one frame
processing

Optimal, Video Face Det (ms) Emotion Det (ms) Frames per Sec (FPS)

Google Coral 7,31 14,55 23,22

Jetson Nano 155,19 13,09 6,06

NXP S32V234 - - -

Raspberry Pi - - -

Google Coral

The first emotion detection test was done with the HCOD. The performance wasn’t very

good, but this was expected because the HCOD was calculated with a CPU. The nput

size for the Haar Cascade was 640x480 pixels. In the stream test, a 500 frame average

was calculated and for face detection the average inference time was 319,8 ms and for

emotion detection 73,7 ms. The results for the standard video were very similar: face

detection time was only 6,5 ms lower and emotion detection time was 1,3 ms lower. The

difficulty in evaluating HCDO is that the algorithm calculation time varies a lot depending

on the face location. If the face is in the bottom right corner the inference time is around

200 ms. The other extreme placement is the top left corner where the inference time is

close to 400 ms. In the video stream test the face was in the middle of the image. This

board was the worst in the HCOD test, however, not significantly. One thing that can affect

its perfomance is the Flask. It is hard to determine how much it reduces the performance.

The second face detection model for Coral is called MobileNet SSD v2 (Faces) [105]. This

model is pre-compiled by Google’s Coral team thus the performance should be rather

close to the absolute optimal.

43

MobileNet SSD v2 (Faces):

• Detects the location of human faces

• Dataset: Open Images v4

• Input size: 320x320

This model accelerated the inference time significantly. The face detection time dropped

from 319,8 ms to 7,6 ms. This performance boost is mostly due to TPU usage which this

model could utilize. Interestingly, also the emotion detection time decreased from 73,7

ms to 14,9 ms. This might have been due to the slightly different bounding box of these

models’ outputs. There was almost no difference between the camera stream and the

standard video tests.

The downside of the MobileNet model was that it was not particularly robust. For exam-

ple, the HCOD and Dlib (used with Jetosn Nano) face detection gave almost the same

bounding box for every frame if the face was still. For MobileNet, the bounding box was

inconsistent and it varied a lot between frames. Another considerable difference is that

the input image for MobileNet was 320x320 whereas for HCOD it was 640x480. This

means that were three times more pixels in the HCOD than in the MobileNet face detec-

tion. The HCOD face detection test was also made with the same image size as the one

with MobileNet. This reduced the face detection time to 118 ms. The emotion detection

time was similar to before (72 ms) which was expected. This demonstrates that differ-

ent implementations are not easily comparable. As shown by the results, there is always

some kind of trade-off between accuracy, robustness, and speed.

NVIDIA Jetson Nano

The first test (HCOD) application was the same for the Google Coral. This time, Flask

was not used because Jetson Nano supports Linux OS with a GUI. The Haar Cascade

test performance was much better on the Jetson Nano than it was on Coral. The face

detection time was abetter by a third (200,2 ms) compared to Coral’s performance in the

camera stream test. As pointed out before, the face location affects the HCOD’s face

detection time, thus the standard video test provides more comparable results. However,

there is a significant difference between Google Coral and NVIDIA Jetson Nano. The

emotion detection time was 38,2 ms which was almost two times faster than it was on

Coral with the HCOD test. Still, emotion detection was over two times slower than it was

with Coral’s optimal test.

To be able to run the Keras model (.h5) on Jetson Nano it has to be converted to a

frozen graph. Frozen graphs reduce the size of a model by removing useless information,

e.g. information saved in the checkpoint files such as gradients. As the name implies,

a frozen graph cannot be trained afterward because of lost information. Now, everything

for inferencing on a PC would be ready. However, to achieve better performance on an

44

embedded device, the frozen graph is further optimized with TensorRT.

Various different methods for a more optimal face detection were tested. A GPU-based

test was done with Dlib’s CNN face detection model [106]. This resulted in a heavy ap-

plication and the RAM started to restrict the performance. The application displayed the

following warning: "Allocator (GPU_0_bfc) ran out of memory trying to allocate 69.09MiB.

The caller indicates that this is not a failure, but may mean that there could be perfor-

mance gains if more memory were available". Nevertheless, this resulted better per-

formance than the HCOD as the face detection time was reduced to 95,08 ms and the

emotion detection time to 32,09. In principle, the emotion detection time should not be

affected by the face detection algorithm but different algorithms result in a slightly different

bounding box which can be seen with a varying emotion detection time.

Even though the performance was reduced by memory, Dlib’s face detector was able to

detect the face better than HCOD. It was highly accurate, very robust and it could detect

the face from varying angles.

NXP S32V234

The NXP S32V234 board had the best performance compared to any other tested board.

This NXP board was also the most expensive and it is not designed for private use but

rather for more demanding tasks such as driver monitoring systems. The dual APEX-2

vision accelerators performance can be seen from an FPS count. Even if the face and

emotion detection times are slower than with the Coral board, the NXP board was still 34

% faster in FPS. This is due to more optimized image processing.

Again, these results are not directly comparable between other boards because the NXP

face detection application uses an HD image (1280x720 pixels) which is more than 6 time

bigger than the image used with Coral’s MobileNet. Thus, in reality, the NXP S32V234 is

the most powerful board of all tested in this thesis.

Raspberry Pi 4

Raspberry Pi 4 doesn’t have an accelerator for DL calculus so only the HCOD test was

performed with it. The camera stream and standard video tests showed very similar re-

sults. The performance of the NVIDIA Jetson Nano and Raspberry Pi was very similar.

The Raspberry Pi is faster with emotion detection and the Jetson Nano with face detec-

tion. FPS counts with standard videos were around 3,5 for both.

45

6 DISCUSSION AND CONCLUSIONS

The aim of this thesis was to review software tools needed in embedded deep learn-

ing applications, use them to develop applications, and run the applications on selected

Single-board Computers (SBC). The most used frameworks and tools were compared

and evaluated. In addition, four SBCs were tested successfully even though all applica-

tions weren’t tested on the NXP board due to development difficulties. Based on that it

can be said that the aims have been achieved. This field of science is very rapidly pro-

gressing which means that statements regarding software tools covered in this thesis may

not be valid anymore in a few years.

All the most popular frameworks introduced in this thesis are similar in terms of perfor-

mance. However, the developing workflow varies a lot. PyTorch is good for developing

new architectures and easy to debug but it may be hard for beginners. TF has a steep

learning curve as well. TF is good for embedded deep learning because TF Lite is com-

monly supported in mobile phones and embedded devices. To make TF model devel-

opment easier, Keras is the best option. Keras is a high-level API operating on top of

TF. MATLAB has been developing its deep learning toolboxes a lot in the past few years.

There are some advantages over TF and PyTorch such as code generation functionali-

ties. However, as experienced in this thesis it requires learning and it is not as easy and

convenient as it sounds.

Compatibility between software and hardware is crucial for companies because it can be

very expensive if the software has to be rewritten for every hardware separately. Stan-

dardized APIs, such as Khronos Group’s APIs, are helping hardware manufacturers to

make such boards which are easy to program and enable reusing the code. When choos-

ing the hardware supported frameworks, this needs to be checked to ensure that desired

model can be run on the device.

Tested SBCs were Google Coral, NVIDIA Jetson Nano, NXP S32V234 and Raspberry

Pi 4. The test algorithm was emotion detection which included two parts. First, the face

was detected and cropped, and then the face was fed to the emotion detection model.

Each board was tested with two different face detection algorithms, Haar Cascade object

detector (HCOD) and a more optimal one (depending on the board). A camera stream

and recorded video were used as input. These two variables, face detection algorithm and

46

input source, produced four tables of results. The emotion detection algorithm the was

same in every test. HCOD tests were comparable because the input image size and other

aspects were similar for each board. Especially, HCOD with pre-recorded videos were

comparable because head angle and position in the image affect the processing time.

The more optimal tests were so different that they were not comparable. For example,

Google Coral with MobileNet took in a 320x320 image and NXP S32V234 took an HD

image (1280x720). This means that the NXP face detection processed 9 times more

pixels than Google Coral.

It was not possible to perform all the scheduled tests. With Raspberry Pi 4 only the HCOD

test could be done because it did not have any parallel computing processors. In addition,

only the optimal test was done with NXP because of the development issues. It took too

much time and resources to get even one algorithm working so the decision was made to

not even try others. The development experience with other boards was much better. The

Google Coral Dev Board had great instructions on its web-site. Also, there were multiple

good guides from users for various tasks such as installing OpenCV. Nvidia Jetson Nano

and Raspberry Pi 4 had great community support as well and most importantly Adrian

Rosebrock’s Linux images saved a lot of time. In the images all the necessary tools such

as OpenCV, TF etc. were already installed.

However, enough results were gathered to draw conclusions. The NXP’s board had

the best performance. With HCOD all the boards (except NXP) had very similar per-

formances. The Coral had a slightly worse (FPS 2,37) and the Jetson Nano a little better

(FPS 4,19) performance, but they were in the same class. Although the results from the

optimal test are not well comparable the NXP was clearly the fastest board. The face and

emotion detection times were not the best but the rest of the image processing was so

fast that the NXP board can be determined to be the best.

This thesis overviewed DL tools and compared them on a general level. Thus, most of

the tools were not actually used. For further studies, it would be interesting to test deep

learning frameworks in terms of training. Training a model architecture with the same

data set with different frameworks would give information about the training process and

performance. Nowadays, the embedded device most used by people is the mobile phone.

The use of mobile phones in e.g. Driver Monitoring System (DMS) applications would be

worth researching. In addition, similarly to deep learning frameworks, also vendor-specific

SDKs such as Nvidia and Arm NN SDK would be interesting to test and compare.

47

REFERENCES

[1] Mraz, S. Prediction: Market for artificial intelligence in cars will grow 1,200% in

next six years. English. 2020.

[2] Hussein, R., Palangi, H., Ward, R. and Wang, Z. J. Epileptic Seizure Detection: A

Deep Learning Approach. English. (Mar. 2018). URL: https://arxiv.org/abs/
1803.09848.

[3] Yang, F., Poostchi, M., Yu, H., Zhou, Z., Silamut, K., Yu, J., Maude, R. J., Jaeger, S.

and Antani, S. Deep Learning for Smartphone-Based Malaria Parasite Detection

in Thick Blood Smears. English. IEEE journal of biomedical and health informat-

ics 24.5 (Sept. 2019), 1427–1438. DOI: 10.1109/JBHI.2019.2939121. URL:

https://ieeexplore.ieee.org/document/8846750.

[4] Copeland, J. What is Artificial Intelligence? Accessed: 28.10.2020. May 2000.

URL: http://www.alanturing.net/turing_archive/pages/Reference%
5C%20Articles/What%5C%20is%5C%20AI.html.

[5] Gavrilova, Y. Artificial Intelligence vs. Machine Learning vs. Deep Learning: Es-

sentials. (Apr. 2020). Accessed: 30.10.2020. URL: https : / / serokell . io /
blog/ai-ml-dl-difference.

[6] The Difference Between Deep Learning Training and Inference. Accessed: 30.9.2020.

URL: https : / / www . intel . com / content / www / us / en / artificial -
intelligence/posts/deep-learning-training-and-inference.html.

[7] Shridhar, K., Lee, J., Hayashi, H., Mehta, P., Iwana, B. K., Kang, S., Uchida, S.,

Ahmed, S. and Dengel, A. ProbAct: A Probabilistic Activation Function for Deep

Neural Networks. English. (May 2019). URL: https://arxiv.org/abs/1905.
10761.

[8] Doshi, C. Why Relu? Tips for using Relu. Comparison between Relu, Leaky Relu,

and Relu-6. Medium (June 2019). URL: https://medium.com/@chinesh4/why-
relu-tips-for-using-relu-comparison-between-relu-leaky-relu-
and-relu-6-969359e48310.

[9] Ramadhan, L. Neural Network: The Dead Neuron. Towardsai (Nov. 2020). URL:

https://pub.towardsai.net/brain-damage-on-artificial-intelligence-
37bc53023ab8.

[10] Kumar, S. S. Why Sigmoid?: Medium (Nov. 2019). URL: https://medium.com/
n%5C%C3%5C%BAcleoml/why-sigmoid-ee95299e11fd.

https://arxiv.org/abs/1803.09848
https://arxiv.org/abs/1803.09848
https://doi.org/10.1109/JBHI.2019.2939121
https://ieeexplore.ieee.org/document/8846750
http://www.alanturing.net/turing_archive/pages/Reference%5C%20Articles/What%5C%20is%5C%20AI.html
http://www.alanturing.net/turing_archive/pages/Reference%5C%20Articles/What%5C%20is%5C%20AI.html
https://serokell.io/blog/ai-ml-dl-difference
https://serokell.io/blog/ai-ml-dl-difference
https://www.intel.com/content/www/us/en/artificial-intelligence/posts/deep-learning-training-and-inference.html
https://www.intel.com/content/www/us/en/artificial-intelligence/posts/deep-learning-training-and-inference.html
https://arxiv.org/abs/1905.10761
https://arxiv.org/abs/1905.10761
https://medium.com/@chinesh4/why-relu-tips-for-using-relu-comparison-between-relu-leaky-relu-and-relu-6-969359e48310
https://medium.com/@chinesh4/why-relu-tips-for-using-relu-comparison-between-relu-leaky-relu-and-relu-6-969359e48310
https://medium.com/@chinesh4/why-relu-tips-for-using-relu-comparison-between-relu-leaky-relu-and-relu-6-969359e48310
https://pub.towardsai.net/brain-damage-on-artificial-intelligence-37bc53023ab8
https://pub.towardsai.net/brain-damage-on-artificial-intelligence-37bc53023ab8
https://medium.com/n%5C%C3%5C%BAcleoml/why-sigmoid-ee95299e11fd
https://medium.com/n%5C%C3%5C%BAcleoml/why-sigmoid-ee95299e11fd

48

[11] Simonyan, K. and Zisserman, A. Very Deep Convolutional Networks for Large-

Scale Image Recognition. English. (Sept. 2014). URL: https://arxiv.org/
abs/1409.1556.

[12] Model optimization. (). Accessed: 21.1.2021. URL: https://www.tensorflow.
org/lite/performance/model_optimization.

[13] Albawi, S., Mohammed, T. A. and Al-Zawi, S. Understanding of a convolutional

neural network. English. IEEE, Aug 21, 2017, 1–6. DOI: 10.1109/ICEngTechnol.
2017.8308186. URL: https://ieeexplore.ieee.org/document/8308186.

[14] Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K. and Zhang, J. Edge Intelligence:

Paving the Last Mile of Artificial Intelligence With Edge Computing. English. Pro-

ceedings of the IEEE 107.8 (2019), 1738–1762. DOI: 10.1109/jproc.2019.
2918951. URL: https://search.datacite.org/works/10.1109/jproc.
2019.2918951.

[15] Shi, W., Cao, J., Zhang, Q., Li, Y. and Xu, L. Edge Computing: Vision and Chal-

lenges. English. IEEE internet of things journal 3.5 (Oct. 2016), 637–646. DOI:

10.1109/JIOT.2016.2579198. URL: https://ieeexplore.ieee.org/
document/7488250.

[16] Kavanagh, S. 5G vs 4G: No Contest. Accessed: 28.5.2021. Mar. 2020. URL:

https://5g.co.uk/guides/4g- versus- 5g- what- will- the- next-
generation-bring/.

[17] Caulfield, B. What’s the Difference Between a CPU and a GPU? 2009. URL:

https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-
between-a-cpu-and-a-gpu/.

[18] What Is a GPU? Accessed: 1.10.2020. URL: https://www.intel.com/content/
www/us/en/products/docs/processors/what-is-a-gpu.html.

[19] Wang, X., Han, Y., Leung, V. C. M., Niyato, D., Yan, X. and Chen, X. Convergence

of Edge Computing and Deep Learning: A Comprehensive Survey. English. IEEE

Communications surveys and tutorials 22.2 (2020), 869–904. DOI: 10 . 1109 /
COMST.2020.2970550. URL: https://ieeexplore.ieee.org/document/
8976180.

[20] Field Programmable Gate Array (FPGA). Accessed: 1.10.2020. URL: https://
www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.
html#:~:text=Field%5C%20Programmable%5C%20Gate%5C%20Arrays%5C%
20(FPGAs,or%5C%20functionality%5C%20requirements%5C%20after%5C%
20manufacturing..

[21] Wang, T., Wang, C., Zhou, X. and Chen, H. An Overview of FPGA Based Deep

Learning Accelerators: Challenges and Opportunities. English. (2019), 1674–1681.

DOI: 10.1109/HPCC/SmartCity/DSS.2019.00229. URL: https://ieeexplore.
ieee.org/document/8855594.

https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://www.tensorflow.org/lite/performance/model_optimization
https://www.tensorflow.org/lite/performance/model_optimization
https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://ieeexplore.ieee.org/document/8308186
https://doi.org/10.1109/jproc.2019.2918951
https://doi.org/10.1109/jproc.2019.2918951
https://search.datacite.org/works/10.1109/jproc.2019.2918951
https://search.datacite.org/works/10.1109/jproc.2019.2918951
https://doi.org/10.1109/JIOT.2016.2579198
https://ieeexplore.ieee.org/document/7488250
https://ieeexplore.ieee.org/document/7488250
https://5g.co.uk/guides/4g-versus-5g-what-will-the-next-generation-bring/
https://5g.co.uk/guides/4g-versus-5g-what-will-the-next-generation-bring/
https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/
https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/
https://www.intel.com/content/www/us/en/products/docs/processors/what-is-a-gpu.html
https://www.intel.com/content/www/us/en/products/docs/processors/what-is-a-gpu.html
https://doi.org/10.1109/COMST.2020.2970550
https://doi.org/10.1109/COMST.2020.2970550
https://ieeexplore.ieee.org/document/8976180
https://ieeexplore.ieee.org/document/8976180
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html#:~:text=Field%5C%20Programmable%5C%20Gate%5C%20Arrays%5C%20(FPGAs,or%5C%20functionality%5C%20requirements%5C%20after%5C%20manufacturing.
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html#:~:text=Field%5C%20Programmable%5C%20Gate%5C%20Arrays%5C%20(FPGAs,or%5C%20functionality%5C%20requirements%5C%20after%5C%20manufacturing.
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html#:~:text=Field%5C%20Programmable%5C%20Gate%5C%20Arrays%5C%20(FPGAs,or%5C%20functionality%5C%20requirements%5C%20after%5C%20manufacturing.
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html#:~:text=Field%5C%20Programmable%5C%20Gate%5C%20Arrays%5C%20(FPGAs,or%5C%20functionality%5C%20requirements%5C%20after%5C%20manufacturing.
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html#:~:text=Field%5C%20Programmable%5C%20Gate%5C%20Arrays%5C%20(FPGAs,or%5C%20functionality%5C%20requirements%5C%20after%5C%20manufacturing.
https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00229
https://ieeexplore.ieee.org/document/8855594
https://ieeexplore.ieee.org/document/8855594

49

[22] Görner, M. What are Tensor Processing Units (TPUs)? Accessed: 18.5.2021. May

2021. URL: https://codelabs.developers.google.com/codelabs/keras-
flowers-data/#2.

[23] Europe agrees on mandatory safety systems for 2022. Accessed: 2.10.2020. 27

March, 2019. URL: https://autovistagroup.com/news-and-insights/
europe-agrees-mandatory-safety-systems-2022.

[24] NHTSA’s Overview of Motor Vehicle Crashes in 2019. (Dec. 2020). URL: https:
//www.nhtsa.gov/risky-driving.

[25] Jung, S.-J., Shin, H.-S. and Chung, W.-Y. Driver fatigue and drowsiness monitor-

ing system with embedded electrocardiogram sensor on steering wheel. English.

IET intelligent transport systems 8.1 (Feb. 2014), 43–50. DOI: 10.1049/iet-
its.2012.0032. URL: http://digital-library.theiet.org/content/
journals/10.1049/iet-its.2012.0032.

[26] Boyraz, P., Acar, M. and Kerr, D. Multi-sensor driver drowsiness monitoring. En-

glish. Proceedings of the Institution of Mechanical Engineers. Part D, Journal of

automobile engineering 222.11 (Nov. 2008), 2041–2062. DOI: 10.1243/0954407\
0JAUTO513. URL: https://journals.sagepub.com/doi/full/10.1243/
09544070JAUTO513.

[27] Kumar, A. and Patra, R. Driver drowsiness monitoring system using visual be-

haviour and machine learning. English. (Apr 2018), 339–344. DOI: 10.1109/
ISCAIE.2018.8405495. URL: https://ieeexplore.ieee.org/document/
8405495.

[28] Jo, J., Lee, S. J., Kim, J., Jung, H. G. and Park, K. R. Vision-based method for

detecting driver drowsiness and distraction in driver monitoring system. English.

Optical Engineering 50.12 (Dec. 2011), 127202. DOI: 10.1117/1.3657506. URL:

http://dx.doi.org/10.1117/1.3657506.

[29] Galarza, E. E., Egas, F. D., Silva, F. M., Velasco, P. M. and Galarza, E. D. Real

Time Driver Drowsiness Detection Based on Driver’s Face Image Behavior Using

a System of Human Computer Interaction Implemented in a Smartphone. En-

glish. Proceedings of the International Conference on Information Technology &

Systems (ICITS 2018) (Jan. 2018), 563–572. DOI: 10.1007/978-3-319-73450-
7_53. URL: http://link.springer.com/10.1007/978-3-319-73450-7_53.

[30] Reddy, B., Kim, Y.-H., Yun, S., Seo, C. and Jang, J. Real-Time Driver Drowsi-

ness Detection for Embedded System Using Model Compression of Deep Neural

Networks. English. (Jul 2017), 438–445. DOI: 10.1109/CVPRW.2017.59. URL:

https://ieeexplore.ieee.org/document/8014793.

[31] Schwarz, M. Look Who’s Driving. 2019.

[32] Shuttleworth, J. SAE Standards News: J3016 automated-driving graphic update.

Jan. 2019. URL: https://www.sae.org/news/2019/01/sae- updates-
j3016-automated-driving-graphic.

https://codelabs.developers.google.com/codelabs/keras-flowers-data/#2
https://codelabs.developers.google.com/codelabs/keras-flowers-data/#2
https://autovistagroup.com/news-and-insights/europe-agrees-mandatory-safety-systems-2022
https://autovistagroup.com/news-and-insights/europe-agrees-mandatory-safety-systems-2022
https://www.nhtsa.gov/risky-driving
https://www.nhtsa.gov/risky-driving
https://doi.org/10.1049/iet-its.2012.0032
https://doi.org/10.1049/iet-its.2012.0032
http://digital-library.theiet.org/content/journals/10.1049/iet-its.2012.0032
http://digital-library.theiet.org/content/journals/10.1049/iet-its.2012.0032
https://doi.org/10.1243/0954407\0JAUTO513
https://doi.org/10.1243/0954407\0JAUTO513
https://journals.sagepub.com/doi/full/10.1243/09544070JAUTO513
https://journals.sagepub.com/doi/full/10.1243/09544070JAUTO513
https://doi.org/10.1109/ISCAIE.2018.8405495
https://doi.org/10.1109/ISCAIE.2018.8405495
https://ieeexplore.ieee.org/document/8405495
https://ieeexplore.ieee.org/document/8405495
https://doi.org/10.1117/1.3657506
http://dx.doi.org/10.1117/1.3657506
https://doi.org/10.1007/978-3-319-73450-7_53
https://doi.org/10.1007/978-3-319-73450-7_53
http://link.springer.com/10.1007/978-3-319-73450-7_53
https://doi.org/10.1109/CVPRW.2017.59
https://ieeexplore.ieee.org/document/8014793
https://www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-graphic
https://www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-graphic

50

[33] Parrick, M. The Future of Car Insurance. Accessed: 26.5.2021. Nov. 2018. URL:

https://brownandjoseph.com/blog/future-car-insurance/.

[34] Hendrickson, J. What Are the Different Self-Driving Car “Levels” of Autonomy?:

(Jan. 2020). URL: https://www.howtogeek.com/401759/what-are-the-
different-self-driving-car-levels-of-autonomy/.

[35] Hetzner, C. Audi quits bid to give A8 Level 3 autonomy. (Apr. 2020). URL: https:
//europe.autonews.com/automakers/audi-quits-bid-give-a8-level-
3-autonomy.

[36] Davies, A. BMW Takes Self-Driving to the Next Level. (June 2020). URL: https:
//www.autoweek.com/news/technology/a32852529/bmw-takes-self-
driving-to-the-next-level/.

[37] Honda launches next generation Honda SENSING Elite safety system with Level

3 automated driving features. (Mar. 2021). URL: https://hondanews.eu/eu/
et/corporate/media/pressreleases/329456/honda-launches-next-
generation- honda- sensing- elite- safety- system- with- level- 3-
automated-driving-feat.

[38] Dickson, B. Sorry, Elon: Fully Autonomous Tesla Vehicles Will Not Happen Any-

time Soon. PC Magazine (July 2020). URL: https://www.pcmag.com/opinions/
sorry-elon-fully-autonomous-tesla-vehicles-will-not-happen-
anytime - soon# : ~ : text = achieve % 5C % 20that % 5C % 20goal. - ,Level %
5C%205%5C%20Autonomy, National%5C%20Highway%5C%20Traffic%5C%
20Safety%5C%20Administration..

[39] Kalmet, P. H. S., Sanduleanu, S., Primakov, S., Wu, G., Jochems, A., Refaee,

T., Ibrahim, A., Hulst, L. V., Lambin, P. and Poeze, M. Deep learning in fracture

detection : a narrative review. English. Acta orthopaedica (2020) (2020), 1. DOI:

10.18154/rwth-2020-02484. URL: https://search.datacite.org/works/
10.18154/rwth-2020-02484.

[40] Coller, M., Fu, R., Yin, L. and Christiansen, P. ARTIFICIAL INTELLIGENCE: Health-

care’s New Nervous System. (2017). URL: https://www.accenture.com/
t20171215t032059z__w__/us-en/_acnmedia/pdf-49/accenture-health-
artificial-intelligence.pdf.

[41] Teikari, P., Najjar, R. P., Schmetterer, L. and Milea, D. Embedded deep learning

in ophthalmology: making ophthalmic imaging smarter. English. Therapeutic ad-

vances in ophthalmology 11 (Mar. 2019), 251584141982717–2515841419827172.

DOI: 10.1177/2515841419827172. URL: https://search.datacite.org/
works/10.1177/2515841419827172.

[42] Holzinger, A., Biemann, C., Pattichis, C. S. and Kell, D. B. What do we need to

build explainable AI systems for the medical domain? English. (Dec. 2017). URL:

https://arxiv.org/abs/1712.09923.

https://brownandjoseph.com/blog/future-car-insurance/
https://www.howtogeek.com/401759/what-are-the-different-self-driving-car-levels-of-autonomy/
https://www.howtogeek.com/401759/what-are-the-different-self-driving-car-levels-of-autonomy/
https://europe.autonews.com/automakers/audi-quits-bid-give-a8-level-3-autonomy
https://europe.autonews.com/automakers/audi-quits-bid-give-a8-level-3-autonomy
https://europe.autonews.com/automakers/audi-quits-bid-give-a8-level-3-autonomy
https://www.autoweek.com/news/technology/a32852529/bmw-takes-self-driving-to-the-next-level/
https://www.autoweek.com/news/technology/a32852529/bmw-takes-self-driving-to-the-next-level/
https://www.autoweek.com/news/technology/a32852529/bmw-takes-self-driving-to-the-next-level/
https://hondanews.eu/eu/et/corporate/media/pressreleases/329456/honda-launches-next-generation-honda-sensing-elite-safety-system-with-level-3-automated-driving-feat
https://hondanews.eu/eu/et/corporate/media/pressreleases/329456/honda-launches-next-generation-honda-sensing-elite-safety-system-with-level-3-automated-driving-feat
https://hondanews.eu/eu/et/corporate/media/pressreleases/329456/honda-launches-next-generation-honda-sensing-elite-safety-system-with-level-3-automated-driving-feat
https://hondanews.eu/eu/et/corporate/media/pressreleases/329456/honda-launches-next-generation-honda-sensing-elite-safety-system-with-level-3-automated-driving-feat
https://www.pcmag.com/opinions/sorry-elon-fully-autonomous-tesla-vehicles-will-not-happen-anytime-soon#:~:text=achieve%5C%20that%5C%20goal.-,Level%5C%205%5C%20Autonomy,National%5C%20Highway%5C%20Traffic%5C%20Safety%5C%20Administration.
https://www.pcmag.com/opinions/sorry-elon-fully-autonomous-tesla-vehicles-will-not-happen-anytime-soon#:~:text=achieve%5C%20that%5C%20goal.-,Level%5C%205%5C%20Autonomy,National%5C%20Highway%5C%20Traffic%5C%20Safety%5C%20Administration.
https://www.pcmag.com/opinions/sorry-elon-fully-autonomous-tesla-vehicles-will-not-happen-anytime-soon#:~:text=achieve%5C%20that%5C%20goal.-,Level%5C%205%5C%20Autonomy,National%5C%20Highway%5C%20Traffic%5C%20Safety%5C%20Administration.
https://www.pcmag.com/opinions/sorry-elon-fully-autonomous-tesla-vehicles-will-not-happen-anytime-soon#:~:text=achieve%5C%20that%5C%20goal.-,Level%5C%205%5C%20Autonomy,National%5C%20Highway%5C%20Traffic%5C%20Safety%5C%20Administration.
https://www.pcmag.com/opinions/sorry-elon-fully-autonomous-tesla-vehicles-will-not-happen-anytime-soon#:~:text=achieve%5C%20that%5C%20goal.-,Level%5C%205%5C%20Autonomy,National%5C%20Highway%5C%20Traffic%5C%20Safety%5C%20Administration.
https://doi.org/10.18154/rwth-2020-02484
https://search.datacite.org/works/10.18154/rwth-2020-02484
https://search.datacite.org/works/10.18154/rwth-2020-02484
https://www.accenture.com/t20171215t032059z__w__/us-en/_acnmedia/pdf-49/accenture-health-artificial-intelligence.pdf
https://www.accenture.com/t20171215t032059z__w__/us-en/_acnmedia/pdf-49/accenture-health-artificial-intelligence.pdf
https://www.accenture.com/t20171215t032059z__w__/us-en/_acnmedia/pdf-49/accenture-health-artificial-intelligence.pdf
https://doi.org/10.1177/2515841419827172
https://search.datacite.org/works/10.1177/2515841419827172
https://search.datacite.org/works/10.1177/2515841419827172
https://arxiv.org/abs/1712.09923

51

[43] Nguyen, A., Yosinski, J. and Clune, J. Deep neural networks are easily fooled:

High confidence predictions for unrecognizable images. English. IEEE, Jun 2015,

427–436. ISBN: 1063-6919. DOI: 10.1109/CVPR.2015.7298640. URL: https:
//ieeexplore.ieee.org/document/7298640.

[44] Su, J., Vargas, D. V. and Sakurai, K. One Pixel Attack for Fooling Deep Neural Net-

works. English. IEEE transactions on evolutionary computation 23.5 (Oct. 2019),

828–841. DOI: 10.1109/TEVC.2019.2890858. URL: https://ieeexplore.
ieee.org/document/8601309.

[45] Bologna, G. and Hayashi, Y. Characterization of Symbolic Rules Embedded in

Deep DIMLP Networks: A Challenge to Transparency of Deep Learning. English.

Journal of Artificial Intelligence and Soft Computing Research 7.4 (Oct. 2017),

265–286. DOI: 10.1515/jaiscr-2017-0019. URL: http://www.degruyter.
com/doi/10.1515/jaiscr-2017-0019.

[46] Warden, P. and Situnayake, D. TinyML. Bejing ; Boston ; Farnham ; Sebastopol ;

Tokyo: O’Reilly, 2020. ISBN: 9781492052043.

[47] Leung, H. and Haykin, S. The complex backpropagation algorithm. English. IEEE

transactions on signal processing 39.9 (Sept. 1991), 2101–2104. DOI: 10.1109/
78.134446. URL: https://ieeexplore.ieee.org/document/134446.

[48] Nguyen, G., Dlugolinsky, S., Bobák, M., Tran, V., García, Á. L., Heredia, I., Malík,

P. and Hluchý, L. Machine Learning and Deep Learning frameworks and libraries

for large-scale data mining: a survey. English. The Artificial intelligence review

52.1 (Jan. 2019), 77–124. DOI: 10.1007/s10462-018-09679-z. URL: https:
//search.datacite.org/works/10.1007/s10462-018-09679-z.

[49] Rubin, R. My Journey in Converting PyTorch to TensorFlow Lite. (Sept. 2020). Ac-

cessed: 28.4.2021. URL: https://towardsdatascience.com/my-journey-
in-converting-pytorch-to-tensorflow-lite-d244376beed.

[50] Rosebrock, A., Hoffman, D., McDuffee, D., Thanki, A. and Paul, S. Raspberry Pi

for Computer Vision. 1.0.0. PyImageSearch.com, 2019.

[51] Dancuk, M. PyTorch vs TensorFlow: In-Depth Comparison. (Feb. 2021). Accessed:

29.4.2021. URL: https://phoenixnap.com/blog/pytorch-vs-tensorflow.

[52] Chandram, R. The What’s What of Keras and TensorFlow. Accessed: 22.10.2020.

Apr. 2019. URL: https://www.upgrad.com/blog/the-whats-what-of-
keras-and-tensorflow/.

[53] He, H. The State of Machine Learning Frameworks in 2019. The Gradient (2019).

[54] PyTorch 1.8.0 Release Notes. Accessed: 30.4.2021. Apr. 2021. URL: https://
github.com/pytorch/pytorch/releases.

[55] PyTorch Mobile. Accessed: 4.5.2021. URL: https://pytorch.org/mobile/
home/.

https://doi.org/10.1109/CVPR.2015.7298640
https://ieeexplore.ieee.org/document/7298640
https://ieeexplore.ieee.org/document/7298640
https://doi.org/10.1109/TEVC.2019.2890858
https://ieeexplore.ieee.org/document/8601309
https://ieeexplore.ieee.org/document/8601309
https://doi.org/10.1515/jaiscr-2017-0019
http://www.degruyter.com/doi/10.1515/jaiscr-2017-0019
http://www.degruyter.com/doi/10.1515/jaiscr-2017-0019
https://doi.org/10.1109/78.134446
https://doi.org/10.1109/78.134446
https://ieeexplore.ieee.org/document/134446
https://doi.org/10.1007/s10462-018-09679-z
https://search.datacite.org/works/10.1007/s10462-018-09679-z
https://search.datacite.org/works/10.1007/s10462-018-09679-z
https://towardsdatascience.com/my-journey-in-converting-pytorch-to-tensorflow-lite-d244376beed
https://towardsdatascience.com/my-journey-in-converting-pytorch-to-tensorflow-lite-d244376beed
https://phoenixnap.com/blog/pytorch-vs-tensorflow
https://www.upgrad.com/blog/the-whats-what-of-keras-and-tensorflow/
https://www.upgrad.com/blog/the-whats-what-of-keras-and-tensorflow/
https://github.com/pytorch/pytorch/releases
https://github.com/pytorch/pytorch/releases
https://pytorch.org/mobile/home/
https://pytorch.org/mobile/home/

52

[56] Khronos. Vulkan 1.2.179 - A Specification (with all registered Vulkan extensions).

Accessed: 26.5.2021. Apr. 2021. URL: https://www.khronos.org/registry/
vulkan/specs/1.2-extensions/html/chap1.html.

[57] PyTorch: Training a Classifier. (). Accessed: 3.5.2021. URL: https://pytorch.
org/tutorials/beginner/blitz/cifar10_tutorial.html.

[58] Karpathy, A. PyTorch at Tesla. Accessed: 3.5.2021. Nov. 2021. URL: https://
www.youtube.com/watch?v=oBklltKXtDE.

[59] Caffe. Accessed: 21.10.2020. URL: https://caffe.berkeleyvision.org/.

[60] Caffe2 and PyTorch join forces to create a Research + Production platform Py-

Torch 1.0. Accessed: 29.10.2020. May 2018. URL: https://caffe2.ai/blog/
2018/05/02/Caffe2_PyTorch_1_0.html.

[61] Paluszek, M. and Thomas, S. Practical MATLAB Deep Learning : A Project-Based

Approach. English. Apress, Jan. 2020. URL: https://library.biblioboard.
com/viewer/9f7b0068-c392-11ea-8d48-0ae0aa0d175d.

[62] Palm, R. B. Prediction as a candidate for learning deep hierarchical models of

data. MA thesis. 2012.

[63] Tanaka, M. Deep Neural Network. MATLAB Central File Exchange (2021). Ac-

cessed: 17.5.2021. URL: https://www.mathworks.com/matlabcentral/
fileexchange/42853-deep-neural-network.

[64] Choen, M. Pattern Recognition and Machine Learning Toolbox. GitHub (2021).

Accessed: 17.5.2021. URL: https://github.com/PRML/PRMLT.

[65] MATLAB Coder. (). Accessed: 17.5.2021. URL: https://se.mathworks.com/
products/matlab-coder.html.

[66] Embedded Coder. (). Accessed: 17.5.2021. URL: https://se.mathworks.com/
products/embedded-coder.html.

[67] What is ONNX? Accessed: 6.10.2020. Dec. 2019. URL: https://microsoft.
github.io/ai-at-edge/docs/onnx/.

[68] Ippolito, P. P. ONNX: Easily Exchange Deep Learning Models. (Sept. 2020). Ac-

cessed: 6.10.2020. URL: https://towardsdatascience.com/onnx-easily-
exchange-deep-learning-models-f3c42100fd77.

[69] Gill, J. K. What is ONNX? Open Neural Network Exchange Advantages. (May

2019). Accessed: 6.10.2020. URL: https://www.xenonstack.com/blog/
onnx/.

[70] (OPTIONAL) EXPORTING A MODEL FROM PYTORCH TO ONNX AND RUN-

NING IT USING ONNX RUNTIME. (2017). Accessed: 09.10.2020. URL: https://
pytorch.org/tutorials/advanced/super_resolution_with_onnxruntime.
html.

[71] Xu, F. ONNX Runtime is now open source. (Dec. 2018). URL: https://azure.
microsoft.com/en-us/blog/onnx-runtime-is-now-open-source/.

https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/chap1.html
https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/chap1.html
https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html
https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html
https://www.youtube.com/watch?v=oBklltKXtDE
https://www.youtube.com/watch?v=oBklltKXtDE
https://caffe.berkeleyvision.org/
https://caffe2.ai/blog/2018/05/02/Caffe2_PyTorch_1_0.html
https://caffe2.ai/blog/2018/05/02/Caffe2_PyTorch_1_0.html
https://library.biblioboard.com/viewer/9f7b0068-c392-11ea-8d48-0ae0aa0d175d
https://library.biblioboard.com/viewer/9f7b0068-c392-11ea-8d48-0ae0aa0d175d
https://www.mathworks.com/matlabcentral/fileexchange/42853-deep-neural-network
https://www.mathworks.com/matlabcentral/fileexchange/42853-deep-neural-network
https://github.com/PRML/PRMLT
https://se.mathworks.com/products/matlab-coder.html
https://se.mathworks.com/products/matlab-coder.html
https://se.mathworks.com/products/embedded-coder.html
https://se.mathworks.com/products/embedded-coder.html
https://microsoft.github.io/ai-at-edge/docs/onnx/
https://microsoft.github.io/ai-at-edge/docs/onnx/
https://towardsdatascience.com/onnx-easily-exchange-deep-learning-models-f3c42100fd77
https://towardsdatascience.com/onnx-easily-exchange-deep-learning-models-f3c42100fd77
https://www.xenonstack.com/blog/onnx/
https://www.xenonstack.com/blog/onnx/
https://pytorch.org/tutorials/advanced/super_resolution_with_onnxruntime.html
https://pytorch.org/tutorials/advanced/super_resolution_with_onnxruntime.html
https://pytorch.org/tutorials/advanced/super_resolution_with_onnxruntime.html
https://azure.microsoft.com/en-us/blog/onnx-runtime-is-now-open-source/
https://azure.microsoft.com/en-us/blog/onnx-runtime-is-now-open-source/

53

[72] Group, N. W. NNEF and ONNX: Similarities and Differences. Feb. 2018. URL:

https://www.khronos.org/blog/nnef-and-onnx-similarities-and-
differences.

[73] Neural Network Exchange Format (NNEF). Accessed: 5.3.2021. URL: https :
//www.khronos.org/nnef.

[74] TensorFlow Lite guide. Accessed: 3.11.2020. URL: https://www.tensorflow.
org/lite/guide.

[75] Model optimization. Accessed: 21.1.2021. URL: https://www.tensorflow.
org/lite/performance/model_optimization.

[76] NVIDIA TensorRT Documentation. Accessed: 3.10.2020. URL: https://docs.
nvidia.com/deeplearning/tensorrt/developer-guide/index.html.

[77] Roddy, S. Arm NN: the Easy Way to Deploy Edge ML. Jan. 2019. URL: https:
//community.arm.com/developer/tools-software/tools/b/tools-
software-ides-blog/posts/arm-nn-the-easy-way-to-deploy-edge-
ml.

[78] Arm NN and Arm Compute Library. Accessed: 31.5.2021. URL: http://software-
dl.ti.com/processor- sdk- linux/esd/docs/05_03_00_07/linux/
Foundational_Components_ArmNN.html.

[79] OpenVX & OpenCL BOF - SIGGRAPH 2016. Accessed: 22.3.2021. July 2016.

URL: https://www.youtube.com/watch?v=aml-CBmOZ4g.

[80] OpenCL. Accessed: 21.3.2021. URL: https://www.khronos.org/opencl/.

[81] Howes, L. The OpenCL Specification. (Feb. 2018). URL: https://www.khronos.
org/registry/OpenCL/specs/opencl-2.1.pdf.

[82] OpenVX. Accessed: 22.3.2021. URL: https://www.khronos.org/openvx/.

[83] Arm Compute Library. Accessed: 31.5.2021. URL: https://developer.arm.
com/ip-products/processors/machine-learning/compute-library.

[84] GPU support. Accessed: 28..4.2021. URL: https://www.tensorflow.org/
install/gpu.

[85] NVIDIA CUDA toolkit. Accessed: 28.4.2021. URL: https://developer.nvidia.
com/cuda-zone.

[86] NVIDIA cuDNN. Accessed: 28.4.2021. URL: https://developer.nvidia.com/
cudnn.

[87] Rubin, R. My Journey in Converting PyTorch to TensorFlow Lite. (Sept. 2020). Ac-

cessed: 12.11.2020. URL: https://towardsdatascience.com/my-journey-
in-converting-pytorch-to-tensorflow-lite-d244376beed.

[88] Khronos, Developer Resource Hub. Accessed: 9.6.2021. URL: https://www.
khronos.org/developers.

[89] Viola, P. and Jones, M. Rapid object detection using a boosted cascade of simple

features. English. 1 (2001), I. DOI: 10.1109/CVPR.2001.990517. URL: https:
//ieeexplore.ieee.org/document/990517.

https://www.khronos.org/blog/nnef-and-onnx-similarities-and-differences
https://www.khronos.org/blog/nnef-and-onnx-similarities-and-differences
https://www.khronos.org/nnef
https://www.khronos.org/nnef
https://www.tensorflow.org/lite/guide
https://www.tensorflow.org/lite/guide
https://www.tensorflow.org/lite/performance/model_optimization
https://www.tensorflow.org/lite/performance/model_optimization
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html
https://community.arm.com/developer/tools-software/tools/b/tools-software-ides-blog/posts/arm-nn-the-easy-way-to-deploy-edge-ml
https://community.arm.com/developer/tools-software/tools/b/tools-software-ides-blog/posts/arm-nn-the-easy-way-to-deploy-edge-ml
https://community.arm.com/developer/tools-software/tools/b/tools-software-ides-blog/posts/arm-nn-the-easy-way-to-deploy-edge-ml
https://community.arm.com/developer/tools-software/tools/b/tools-software-ides-blog/posts/arm-nn-the-easy-way-to-deploy-edge-ml
http://software-dl.ti.com/processor-sdk-linux/esd/docs/05_03_00_07/linux/Foundational_Components_ArmNN.html
http://software-dl.ti.com/processor-sdk-linux/esd/docs/05_03_00_07/linux/Foundational_Components_ArmNN.html
http://software-dl.ti.com/processor-sdk-linux/esd/docs/05_03_00_07/linux/Foundational_Components_ArmNN.html
https://www.youtube.com/watch?v=aml-CBmOZ4g
https://www.khronos.org/opencl/
https://www.khronos.org/registry/OpenCL/specs/opencl-2.1.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-2.1.pdf
https://www.khronos.org/openvx/
https://developer.arm.com/ip-products/processors/machine-learning/compute-library
https://developer.arm.com/ip-products/processors/machine-learning/compute-library
https://www.tensorflow.org/install/gpu
https://www.tensorflow.org/install/gpu
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://towardsdatascience.com/my-journey-in-converting-pytorch-to-tensorflow-lite-d244376beed
https://towardsdatascience.com/my-journey-in-converting-pytorch-to-tensorflow-lite-d244376beed
https://www.khronos.org/developers
https://www.khronos.org/developers
https://doi.org/10.1109/CVPR.2001.990517
https://ieeexplore.ieee.org/document/990517
https://ieeexplore.ieee.org/document/990517

54

[90] Face Detection using Haar Cascades. Dec. 2020. URL: https://docs.opencv.
org/4.5.1/d2/d99/tutorial_js_face_detection.html.

[91] Shankar, B. G. Face Detection with Haar Cascade. Dec. 2020. URL: https :
/ / towardsdatascience . com / face - detection - with - haar - cascade -
727f68dafd08.

[92] Dev Board. URL: https://coral.ai/products/dev-board.

[93] Situnayake, D. Build AI that works offline with Coral Dev Board, Edge TPU, and

TensorFlow Lite. (Mar. 2019). URL: https://blog.tensorflow.org/2019/03/
build-ai-that-works-offline-with-coral.html.

[94] Get started with the Dev Board. Accessed: 18.2.2021. URL: https://coral.ai/
docs/dev-board/get-started.

[95] Jalušić, P. Doing Machine Vision on Google Coral with OpenCV. Jan. 2020. URL:

https://krakensystems.co/blog/2020/doing-machine-vision-on-
google-coral.

[96] Welcome to Flask. Accessed: 14.4.2021. URL: https://flask.palletsprojects.
com/en/1.1.x/.

[97] Jetson Nano Developer Kit. Accessed: 12.4.2021. URL: https://developer.
nvidia.com/embedded/jetson-nano-developer-kit.

[98] Rosebrock, A. How to configure your NVIDIA Jetson Nano for Computer Vision

and Deep Learning. Mar. 2020. URL: https://www.pyimagesearch.com/
2020 / 03 / 25 / how - to - configure - your - nvidia - jetson - nano - for -
computer-vision-and-deep-learning/.

[99] Mula, N. Vision Processor for Machine Learning Applications. Accessed: 2.6.2021.

Nov. 2017. URL: https : / / www . eeweb . com / vision - processor - for -
machine-learning-applications/.

[100] SBC-S32V234: S32V Vision and Sensor Fusion Evaluation Board. Accessed:

18.3.2021. URL: https://www.nxp.com/design/development- boards/
automotive-development-platforms/s32v-mpu-platforms/s32v-vision-
and-sensor-fusion-evaluation-board:SBC-S32V234.

[101] Rifenbark, S. Yocto Project Reference Manual. Accessed: 28.4.2021. 2018. URL:

https://www.yoctoproject.org/docs/2.5/overview-manual/overview-
manual.html#the-yocto-project-layer-model.

[102] User Manual Linux S32V_BSP23.1. Nov. 2020. URL: https://www.nxp.com/
products/processors-and-microcontrollers/arm-processors/s32v2-
vision-mpus-/s32v2-processors-for-vision-machine-learning-and-
sensor-fusion:S32V234?tab=Design_Tools_Tab.

[103] S32 Design Studio for Vision. Accessed: 17.3.2021. URL: https://www.nxp.
com/design/software/development- software/s32- design- studio-
ide/s32-design-studio-for-vision:S32DS-VISION.

https://docs.opencv.org/4.5.1/d2/d99/tutorial_js_face_detection.html
https://docs.opencv.org/4.5.1/d2/d99/tutorial_js_face_detection.html
https://towardsdatascience.com/face-detection-with-haar-cascade-727f68dafd08
https://towardsdatascience.com/face-detection-with-haar-cascade-727f68dafd08
https://towardsdatascience.com/face-detection-with-haar-cascade-727f68dafd08
https://coral.ai/products/dev-board
https://blog.tensorflow.org/2019/03/build-ai-that-works-offline-with-coral.html
https://blog.tensorflow.org/2019/03/build-ai-that-works-offline-with-coral.html
https://coral.ai/docs/dev-board/get-started
https://coral.ai/docs/dev-board/get-started
https://krakensystems.co/blog/2020/doing-machine-vision-on-google-coral
https://krakensystems.co/blog/2020/doing-machine-vision-on-google-coral
https://flask.palletsprojects.com/en/1.1.x/
https://flask.palletsprojects.com/en/1.1.x/
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://www.pyimagesearch.com/2020/03/25/how-to-configure-your-nvidia-jetson-nano-for-computer-vision-and-deep-learning/
https://www.pyimagesearch.com/2020/03/25/how-to-configure-your-nvidia-jetson-nano-for-computer-vision-and-deep-learning/
https://www.pyimagesearch.com/2020/03/25/how-to-configure-your-nvidia-jetson-nano-for-computer-vision-and-deep-learning/
https://www.eeweb.com/vision-processor-for-machine-learning-applications/
https://www.eeweb.com/vision-processor-for-machine-learning-applications/
https://www.nxp.com/design/development-boards/automotive-development-platforms/s32v-mpu-platforms/s32v-vision-and-sensor-fusion-evaluation-board:SBC-S32V234
https://www.nxp.com/design/development-boards/automotive-development-platforms/s32v-mpu-platforms/s32v-vision-and-sensor-fusion-evaluation-board:SBC-S32V234
https://www.nxp.com/design/development-boards/automotive-development-platforms/s32v-mpu-platforms/s32v-vision-and-sensor-fusion-evaluation-board:SBC-S32V234
https://www.yoctoproject.org/docs/2.5/overview-manual/overview-manual.html#the-yocto-project-layer-model
https://www.yoctoproject.org/docs/2.5/overview-manual/overview-manual.html#the-yocto-project-layer-model
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/s32v2-vision-mpus-/s32v2-processors-for-vision-machine-learning-and-sensor-fusion:S32V234?tab=Design_Tools_Tab
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/s32v2-vision-mpus-/s32v2-processors-for-vision-machine-learning-and-sensor-fusion:S32V234?tab=Design_Tools_Tab
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/s32v2-vision-mpus-/s32v2-processors-for-vision-machine-learning-and-sensor-fusion:S32V234?tab=Design_Tools_Tab
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/s32v2-vision-mpus-/s32v2-processors-for-vision-machine-learning-and-sensor-fusion:S32V234?tab=Design_Tools_Tab
https://www.nxp.com/design/software/development-software/s32-design-studio-ide/s32-design-studio-for-vision:S32DS-VISION
https://www.nxp.com/design/software/development-software/s32-design-studio-ide/s32-design-studio-for-vision:S32DS-VISION
https://www.nxp.com/design/software/development-software/s32-design-studio-ide/s32-design-studio-for-vision:S32DS-VISION

55

[104] Tensorflow for mobile & IoT: Python quickstart. (Mar. 2021). Acessed: 5.5.2021.

URL: https://www.tensorflow.org/lite/guide/python.

[105] Models Built for the Edge TPU. Accessed: 14.4.2021. URL: https://coral.ai/
models/.

[106] Dlib Detailed API Listing. Accessed: 24.4.2021. URL: http://dlib.net/python/
index.html#dlib.cnn_face_detection_model_v1.

https://www.tensorflow.org/lite/guide/python
https://coral.ai/models/
https://coral.ai/models/
http://dlib.net/python/index.html#dlib.cnn_face_detection_model_v1
http://dlib.net/python/index.html#dlib.cnn_face_detection_model_v1

	Introduction
	Deep learning on embedded devices
	Hardware used for deep learning
	Cloud computing vs End-device computing
	Hardware acceleration

	Deep learning in automotive industry
	Driver monitoring system
	Self-driving cars

	Deep learning in Medical industry

	Deep learning software development on embedded device
	The Deep Learning development workflow
	Software stack for DL on embedded device
	Deep Learning training frameworks
	File exchange
	Deploying neural network models on embedded device
	Processing unit API

	Deep Learning Framework Compatibility

	Hardware test materials and methods
	Test methods
	Google Coral
	NVIDIA Jetson Nano
	NXP S32V234
	Raspberry Pi 4

	Hardware test results
	Discussion and conclusions
	References

