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Abstract
This paper considers numerical modeling of intensive heating induced thermo-
mechanical failure processes in granitic rock. For this end, a numerical method
based on polygonal finite elements and a damage-plasticity model is developed.
A staggered scheme is employed to solve the global thermo-mechanical problem.
The rock failure is described by a Rankine-Mohr-Coulomb plasticity model
with separate scalar damage variables for tension and compression. Consistent
tangent operator is derived for this model. Special attention is given to the
temperature dependence of the thermo-mechanical material properties of het-
erogeneous rock. In the numerical examples, the method is first verified with an
analytical solution of thermal stresses in a hollow cylinder, and then qualitatively
validated with the problems of thermal cracking of concentric cylinders and uni-
axial compressive test on rock under elevated temperatures. Finally, the method
is applied in novel simulations inspired by the degradation of sauna stones
under slow heating-rapid cooling and the comminution by rapid heating-cooling
cycles.
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1 INTRODUCTION

High temperature conditions and thermal shocks are typical in geotechnical engineering applications, such as harvest-
ing deep geothermal energy,1 nuclear waste disposal,2 thermal drilling,3 and even in the recreational application of
sauna stones.4 Rocks, especially Quartz bearing rocks, show pronounced temperature dependence in their material prop-
erties and, consequently, in their response under thermal loading. Naturally, this aspect has been extensively studied
experimentally.1,5–11
The temperature effects of geomaterials realize, upon increasing temperature, as degradation of mechanical properties

(Young’s modulus and strength) due to thermally induced cracks, while thermal properties show mixed behavior, that is,
some increase (thermal expansion coefficient and specific heat) while others decrease (thermal conductance). The strong
temperature dependence needs to be taken into account in predictive numerical modeling. Many numerical studies have
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been devoted to thermo-mechanical failure processes of rocks.11–21 While these studies have their merits, they do not
present a method versatile enough, capable of solving the coupled thermo-mechanical problem under both mechanical
and thermal loadings of short and long duration, while accounting for the rock mesostructure and the heterogeneity
thereof. This is the topic of present study.
A continuum approach based on the finite element method (FEM) and a plasticity-damage model is chosen as the

numerical method. It should be noted that the FEM has been enriched to better describe discontinuities. The enrichment
methods include the extended FEM22,23 and the embedded discontinuity FEM.13 These methods are, however, substan-
tially more challenging from the computational and implementation points of view, especially in problems involvingmul-
tiple cracks. There are also other approaches more suitable to model rock fracture processes, such as the discrete element
method. However, these approaches are inherently explicit in their time discretization, which makes their usage practi-
cally impossible, due to the conditional stability of the explicit time marching, in thermo-mechanical problems requiring
small elements to adequately model the rockmesostructure and long heating times. Two examples of such approaches are
the thermo-mechanical study using peridynamics byWang et al.21 and the hybrid finite element-discrete element method
by Joulin et al.12 In both works, a time step of the order of 1 ns is dictated by the method.
In the present modeling approach, a temporally unconditional implicit staggered scheme to solve the global thermo-

mechanical problem under intensive thermal loading is developed. The rock material is described as a heterogeneous
damaging (visco)plastic material with temperature dependent thermo-mechanical material properties. The main novelty
is the application of polygonal finite elements in modeling thermo-mechanical rock fracture processes for the first time.
Polygonal finite elements have been used in general fracture analyses by, for example, Huynh et al.24,25 and by Khoei
et al.26 Saksala and Jabareen27 showed that the polygonal finite elements perform better than standard finite elements in
modeling failure processes of heterogeneous rock. The modeling approach is verified, qualitatively validated, and then
applied in novel simulations of sauna stone degradation as well as thermal comminution of rocks by rapid heating-forced
cooling cycles.

2 THEORY

This section presents the theory of the computational routines for solving the thermo-mechanic problem related to the
simulations of rock failure due to thermal loading and the mechanical uniaxial compression tests. First, the damage-
(visco)plasticmaterialmodel for rock is presented. Second, a staggered implicit scheme for solving the thermo-mechanical
problem is outlined. Third, an explicit time marching method for solving the mechanical tests is outlined. Finally, the
theory of the polygonal finite elements and the method to describe the rock heterogeneity are described.
The theory is based on the small deformation framework, justified by the brittle nature of rock fracture under normal

laboratory conditions, enabling the additive split of the total strain

𝛆 = 𝛆e + 𝛆vp + 𝛆𝜃 (1)

into elastic, viscoplastic and thermal parts.

2.1 Damage-(visco)plasticity model for rock

The purpose of the present study is not to introduce a new constitutive model for rock but to predict numerically the
damage in rock due to thermal loading and in the basic uniaxial compression test. Therefore, the simplest possible failure
models have been chosen, that is, the Mohr-Coulomb (MC) and Rankine models. The MC criterion-based viscoplasticity
model in the 2D case is specified by:
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𝜎c

(
𝜆̇MC

)
= 𝜎c0 + 𝑠MC𝜆̇MC, 𝑘𝜑 =

1 + sin𝜑

1 − sin𝜑
, 𝑘𝜓 =

1 + sin𝜓

1 − sin𝜓
(4)

𝑓MC ≤ 0, 𝜆̇MC ≥ 0, 𝜆̇MC 𝑓MC = 0 (5)

where 𝜎𝑥, 𝜎𝑦 , and 𝜎𝑥𝑦 are the components of the stress tensor, 𝜎, 𝜎c0 is the initial compressive strength, 𝜑and 𝜓 are the
internal friction and dilation angles respectively, and 𝑔MC is the viscoplastic potential accounting for non-associated flow.
Furthermore, 𝑠MC and 𝜆̇MC are the constant viscosity modulus and the rate of the plastic increment, respectively. In the
perfectly plastic case 𝑠MC = 0. Finally, Equation (5) is the consistency conditions meaning that the present formulation
of viscoplasticity is the Wang’s viscoplastic consistency format.28
The Rankine model, used as the tensile cut-off, is written similarly by:

𝑓R
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where 𝜎t0 is the intact tensile strength while themeaning of the rest of the symbols is analogous to those in theMCmodel.
The purpose for writing thesemodels in the xy-stress space, instead of the principal stress space where their expressions

are extremely simple, is to avoid the transformations formulae between the principal and the xy-coordinate systems when
deriving the tangent stiffness matrix below. It should also be noted that the viscoplastic consistency format allows to use
the robust stress return mapping algorithms of computational plasticity.13,28
The damage part of the model employs separate scalar damage variables in tension, 𝜔t, and compression, 𝜔c. As the

damage is driven by (visco)plastic strain, the stress states leading to plastic flow are the ones that induce the damage as
well. Hence, no separate damage loading functions are needed in this formulation. The specific model components are:

𝜔t

(
𝜀
vp
eqvt

)
= 𝐴t

(
1 − exp

(
−𝛽t𝜀

vp
eqvt

))
, 𝜔c

(
𝜀
vp
eqvc

)
= 𝐴c

(
1 − exp

(
−𝛽c𝜀

vp
eqvc

))
(9)

𝛽𝑡 = 𝜎t0 ℎ𝑒∕𝐺Ic, 𝛽𝑐 = 𝜎c0 ℎ𝑒∕𝐺IIc (10)

𝜀̇
vp
eqvt =

1

3
⟨tr (𝛆̇vp

)⟩, 𝜀̇
vp
eqvc =

√
2

3
𝐞̇vp ∶ 𝐞̇vp, 𝐞̇vp = 𝛆̇vp −

1

3
tr
(
𝛆̇vp

)
(11)

𝛆̇vp = 𝜆̇MC
𝜕𝑔MC

𝜕𝛔
+ 𝜆̇R

𝜕𝑓R

𝜕𝛔
(12)

where parameters At and Ac control the final value of the damage variables. The parameters βt and βc, which control
the initial slope and the amount of damage dissipation, are defined by the fracture energies GIc and GIIc, and he is a
characteristic length of a finite element. The equivalent viscoplastic strain in tension, 𝜀vp

eqvt, is defined, in the rate form, as
the trace of the viscoplastic strain rate tensor, 𝛆̇vp, using the Macauley brackets so that tensile damage evolution occurs
only if the volumetric viscoplastic principal strains are positive. The equivalent viscoplastic strain in compression, 𝜀vp

eqvc,
being defined with the deviatoric part, 𝐞̇vp, of 𝛆̇vp, is similar to that of the J2-plasticity for metals. Moreover, Equation (12)
is the Koiter’s rule for bi-surface plasticity with 𝜆̇R, 𝜆̇MC being the viscoplastic multipliers in tension and in compression,
respectively. Moreover, the colon in (11) denotes the double contraction operator for tensors, that is, 𝐴 ∶ 𝐴 = 𝐴𝑖𝑗 𝐴𝑖𝑗 .
The final model components are the nominal-effective stress relation, which specifies how damage variables operate

on the stress, and the stiffness recovery scheme applied upon stress reversal. Here, the relations used by Lee and Fenves29
and Lubliner et al.30 are adopted by:

𝛔 = (1 − 𝑠c𝜔t) (1 − 𝑠t𝜔c) 𝛔̄ (13)
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𝑠t = 1 − 𝑤t𝑟 (𝜎̄𝑖) , 𝑠c = 1 − 𝑤c (1 − 𝑟 (𝜎̄𝑖)) , 0 ≤ 𝑤t, 𝑤c ≤ 1 (14)

𝑟 (𝜎̄𝑖) =
∑3

𝑖=1
⟨𝜎̄𝑖⟩ ∕

∑3

𝑖=1
|𝜎̄𝑖| (15)

where 𝜎̄ is the nominal stress, that is, the one returned on the failure surface when the trial stress violates the criteria.
Moreover, 𝑠t and 𝑠c are stiffness recovery functions depending on the principal stresses, 𝜎̄𝑖 , of the nominal stress. Finally,
parameters 𝑤t and 𝑤c control the degree of recovery. They are set here as 𝑤t = 0 and 𝑤c = 1, which means that 𝑠t = 1

and 𝑠c = 𝑟(𝜎̄𝑖). This choice means that unilateral effect is applied only upon load reversal from tension to compression.
This is certainly a realistic scheme for rock since a fully developed shear band, modeled here by the compressive damage
variable, cannot bear any tensile loading.
The damage and plasticity parts of themodel are combined in the effective stress space,31 whichmeans that the plasticity

and damage computations can be performed separately so that the stress returnmapping is first performed in the effective
stress space. Then, the damage variables are updated and, finally, the nominal stress is calculated by (13). Moreover, this
formulation poses no extra restrictions on the model parameters.31

2.2 Consistent tangent stiffness tensor for perfectly plastic-damage isothermal case

Next, the consistent tangent stiffness operator is derived for the mechanical part in the perfectly plastic case, that is, the
viscosity is ignored, to be used with the staggered implicit scheme. This means that during the solution of the mechanical
part, the temperature is kept constant. Therefore, the differentiation is carried out with respect to mechanical variables
only. Under these conditions, the starting point of the derivation is the nominal-effective stress relation,which is perturbed
slightly (variated):

𝛔 = (1 − 𝑠c𝜔t) (1 − 𝜔c) 𝛔̄ ⇒ 𝛿𝛔 = 𝜙𝛿𝛔̄ − (1 − 𝑠c𝜔t) 𝛿𝜔c𝛔̄ − (1 − 𝜔c) 𝑠c𝛿𝜔t𝛔̄ − (1 − 𝜔c) 𝜔t𝛿𝑠c𝛔̄ (16)

where 𝜙 = (1 − 𝑠c𝜔t) (1 − 𝜔c). Next, the variations of the damage variables are derived by
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where the particular derivatives can be readily obtained from (9) and (11). Term 𝛿𝑠c in (16) is more complicated involv-
ing the derivatives of the principal stresses. Starting from (14) and (15), while denoting 𝑟(𝜎̄𝑖) =

∑3

𝑖=1
⟨𝜎̄𝑖⟩/∑3

𝑖 = 1
|𝜎̄𝑖| =

𝑓<> ∕𝑓||, one gets:
𝛿𝑠c =

𝜕𝑟 (𝜎̄𝑖) ∶ 𝜕𝜎12

𝜕𝜎12 ∶ 𝜕𝜎
⏟⎴⏟⎴⏟RUC

∶ 𝛿𝜎̄ (18)

with: (
𝜕𝑟 (𝜎̄𝑖)

𝜕𝛔12

)
𝑖

=
𝜕𝑟 (𝜎̄𝑖)

𝜕𝜎𝑖
=
(
max (0, sgn (𝜎̄𝑖)) 𝑓|| − sgn (𝜎̄𝑖) 𝑓<>

)
∕𝑓2||

where 𝛔12 is a vector containing the principal stresses. It should be noted that due to the choice of the yield criteria,
that is, the Rankine and MC criteria, the gradient of the first principal stress must be calculated in any case so that the
increase in computational labor is not an issue.
Next, the variation of the plastic strain tensor needs to be expressed in terms of the variation of total strain. The starting

point for this is the Koiter’s rule (12) for bi-surface plasticity, which is variated as follows:
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Now, the variations of the nominal stress and the plastic increments are

𝛿𝝈̄ = 𝐄 ∶
⎛⎜⎜⎝𝛿𝜺 − 𝛿𝜺p − 𝛿𝜺𝜃
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where E is the elasticity tensor, and the variation of thermal strain is zero due to the staggered solution scheme. Moreover,
the consistency conditions in (5) and (8) have been exploited to solve for the plastic increments (variations in this context)
𝛿𝜆MC and 𝛿𝜆R . With these results in hand, and after some tensor algebra, the variation of plastic strain can be written in
terms of the variation of total strain:

𝛿𝛆p = (𝐓−1
p ∶ 𝐀p) ∶ 𝛿𝛆 (22)

with

𝐓p =

(
𝕀 +

(
Δ𝜆R
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+ Δ𝜆MC

𝜕2𝑔MC

𝜕𝛔2

)
∶ 𝐄

)
(23)

𝐀p =

(
𝜆R
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𝜕𝜎2
+ 𝜆MC

𝜕2𝑔MC

𝜕𝜎2

)
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𝜕𝑓R

𝜕𝜎
⊗ 𝐅t +

𝜕𝑔MC

𝜕𝜎
⊗ 𝐅c (24)

where II is the fourth order unit tensor. Now, substituting (22) and (20) into (16), 𝛿𝛔̄ from (20) into (18) and that in turn
into (16), and doing again some tensor algebra gives the final form of the elasto-plastic-damage consistent tangent tensor

𝛿𝛔 = 𝐄epd ∶ 𝛿𝛆 (25)

with

𝐄epd = 𝜙𝐄 + (1 − 𝜔c) 𝜔t𝛔̄ ⊗ 𝐑UC ∶ 𝐄

+ (𝜙𝐄 + (1 − 𝜔c) 𝜔t𝛔̄ ⊗ 𝐑UC ∶ 𝐄 + (1 − 𝜔c) 𝑠c𝛔̄ ⊗ 𝐅t + (1 − 𝑠c𝜔t) 𝛔̄ ⊗ 𝐂d) ∶ 𝐓−1
p ∶ 𝐀p

(26)

During unloading, the tangent stiffness is 𝜙𝐄. Moreover, when only one yield criterion is violated, the evolving parts
related to the other criterion are set to zero, for example, Δ 𝜆MC = 0, 𝐅c = 0, and𝐂d = 0when only theRankine criterion
is violated. Moreover, the scheme accounting for the stiffness recovery can be neglected by setting 𝑠c = 1 and 𝐑UC =

0. In view of Equations (23) and (24), the final form of the tangent stiffness is quite complex even in this isothermal
case.

2.3 Staggered implicit solution scheme for the governing thermo-mechanical equations

The weak form of the equations governing the thermo-mechanical problem consists of the equations of motion and heat
balance, which are written as

𝜌 𝐮̈ = ∇ ⋅ 𝛔 + 𝐛, (27)
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𝜌𝑐 𝜃̇ = −∇ ⋅ 𝐪 + 𝑄mech (28)

𝐪 = −𝑘∇𝜃

where ρ and c are the density and the specific heat capacity of the material, 𝜃 is the rate of change of temperature, 𝐮̈ is the
acceleration vector, b is the volume force, q is the heat flux vector related to temperature gradient∇θ and the conductivity
k by the Fourier’s law, and 𝑄mech expresses the mechanical heat production through dissipation and strain rate. This
last term is set to zero, that is, 𝑄mech ≡ 0, due to the sheer dominance of the external heat influx. More precisely, the
temperature rise due to thermo-elastic and thermo-plastic effects are of order 0.1◦C and 2◦C, respectively, due to adiabatic
heat generation during rock fracture under uniaxial compression,15 while that due to external heating is hundreds of
degrees.
The finite element discretized form of the Equations (27) and (28) reads32

𝐂 (𝜃, 𝜔) 𝛉̇ + (𝐊𝜃 (𝜃, 𝜔) + 𝐊h) 𝛉 = 𝐟𝜃 + 𝐟h (29)

𝐌𝐮̈ + 𝐟int (𝐮, 𝜃) = 𝐟esxt (30)

where u is the nodal displacement vector, θ is the nodal temperature vector, and 𝐟ext is the external force vector. Moreover,
𝐟int is the internal force vector, 𝐌 is mass matrix (lumped by row sum technique), 𝐂 is capacitance matrix, 𝐊𝜃 is the
conductivity matrix,𝐊h and 𝐟h are the contributions from boundary convection (such as natural and forced cooling), and
𝐟𝜃 is the vector of thermal loading. These are defined by

𝐟int = 𝐀
Ne

e=1 ∫
Ωe

𝐁T
e 𝛔edΩ, 𝐌 = 𝐀

Ne

e=1 ∫
Ωe

𝜌𝐍e
T𝐍edΩ (31)

𝐂 = 𝐀
Ne
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Ωe

𝜌𝑐 (𝜃, 𝜔) 𝐍e,T
𝜃

𝐍e
𝜃
dΩ, 𝐊𝜃 = 𝐀

Ne

e=1 ∫
Ωe

𝑘 (𝜃, 𝜔) 𝐁e,T
𝜃

𝐁e
𝜃
dΩ (32)

𝐊h = 𝐀
Ne

e=1 ∫
𝜕Ωe

ℎ𝐍e,T
𝜃

𝐍e
𝜃
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Ne
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ℎ𝜃𝑎𝐍e,T
𝜃

d𝜕Ω (33)

𝐟𝜃 = − 𝐀
Ne

e = 1 ∫
𝜕Ωe

𝑞n𝐍e,T
𝜃

d𝜕Ω + 𝐀
Ne

e = 1 ∫
Ωe

Qint𝐍
e,T
𝜃

dΩ (34)

whereA is the standard finite element assembly operator, andBe is the kinematicmatrix (mapping the nodal displacement
into element strains). Furthermore, 𝐍e

𝜃
and 𝐍e are the temperature and displacement interpolation matrices, k is the

conductivity, qn is the normal component of the external heat flux, Qint in the internal heat generation, and 𝐁e
𝜃
is the

gradient of𝐍e
𝜃
. Finally, h and 𝜃𝑎 are the convection coefficient and the ambient temperature. The temperature dependence

of thematerial properties is defined later.Moreover, Equation (32) indicates that the specific heat and conductance depend
on damage 𝜔 (to be defined later).
In the present application involving thermal loading, the inertia effects are negligible. For this reason, Equation (30) is

solved as a quasi-static problem (𝐮̈ ≡ 0), while the heat Equation (29) is solved with an implicit time marching. Applying
the backward Euler scheme 𝜃̇ = (𝜃𝑡+Δ𝑡 − 𝜃𝑡)∕Δ𝑡 to Equation (29), written at time 𝑡 + Δ𝑡, the Newton-Raphson scheme to
solve for 𝜃𝑡+Δ𝑡 reads32

𝐊𝑛−1
𝜃,tan

Δ𝜃𝑛 = 𝐑𝑛−1
𝜃

, 𝜃𝑛 = 𝜃𝑛−1 + Δ𝜃𝑛 (35)
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with

𝐊𝑛−1
𝜃,tan

= 𝐂̃𝑛−1 +
1

Δ𝑡
𝐂𝑛−1 + 𝐊̃𝑛−1

𝜃
+ 𝐊𝑛−1

𝜃
+ 𝐊h (36)

𝐑𝑛−1
𝜃

= −
1

Δ𝑡
𝐂𝑛−1

(
𝛉𝑛−1 − 𝛉𝑡

)
− (𝐊𝑛−1

𝜃
+ 𝐊h)𝛉𝑛−1 + 𝐟𝜃,𝑡+Δ𝑡 + 𝐟h,𝑡+Δ𝑡 (37)

where n is the iteration counter, and the nonlinear parts of the tangent stiffness matrix are

𝐂̃ = 𝐀
Ne

e=1 ∫
Ωe

𝜌
𝑑𝑐

𝑑𝜃

Δ𝜃

Δ𝑡
𝐍e,T

𝜃
𝐍e

𝜃
dΩ, 𝐊̃𝜃 = 𝐀

Ne

e=1 ∫
Ωe

𝑑𝑘

𝑑𝜃
𝐁e,T

𝜃
𝐁e

𝜃
(𝛉𝑛−1 ⊗ 𝐍e

𝜃
)dΩ (38)

The corresponding scheme for solving the displacement increment with the quasi-static version of Equation (30) is
written as

𝐊𝑛−1
u,tanΔ 𝐮𝑛 = 𝐑𝑛−1

u , 𝐮𝑛 = 𝐮𝑛−1 + Δ𝐮𝑛 (39)

with

𝐊𝑛−1
u,tan = 𝐀

Ne

e=1 ∫
Ωe

𝐁T
e 𝐄𝑛−1

epd
𝐁edΩ, 𝐑𝑛−1

u = −𝐟 𝑛−1
int

+ 𝐟ext,𝑡+Δ𝑡 (40)

Where 𝐄𝑛−1
epd

is the tangent stiffness matrix in Equation (26). Now, the staggered implicit scheme is as follows. First, the
Equation (35) is solved for the new nodal temperature while freezing (keeping constant) the displacement field. Then,
Equation (39) is solved for the new displacement field while freezing the temperature field. It should bementioned that in
the present case where the internal heat generation due to structural and dissipation effects is zero at the material point
level, the adiabatic and isothermal split approaches are identical. Despite this aspect of the present approach, there is a
two-way influence between the mechanical and thermal parts as the heat Equation (29) depends on material damage,
which in turn depends on displacement.

2.4 Explicit dynamics approach to simulate the mechanical tests

The mechanical uniaxial tests on heat treated and intact numerical rock samples are carried out solving the equation of
motion (30) with explicit time marching. The explicit modified Euler method33 is chosen for this end. Accordingly, the
system response is calculated as

𝐌𝐮̈𝑡 + 𝐀𝑁𝑒𝑙
𝑒 = 1𝐟 int,𝑒

𝑡 (𝛔, 𝜃) = 𝐟 ext
𝑡 with 𝐟 int,𝑒

𝑡 = ∫
Ω𝑒

𝐁T
𝑒 𝛔 (𝐮, 𝜃) 𝑑Ω𝑒 (41)

𝐮̇𝑡+Δ𝑡 = 𝐮̇𝑡 + Δ𝑡𝐮̈𝑡 (42)

𝐮𝑡+Δ𝑡 = 𝐮𝑡 + Δ𝑡𝐮̇𝑡+Δ𝑡 (43)

where 𝐮𝑡, 𝐮̇𝑡 and 𝐮̈𝑡 are the global displacement, velocity and acceleration vectors respectively at time t, and the
rest of the symbols are as above. This resort to explicit time integration is due to the convergence problems of the
implicit method in Equations (39) and (40) with the tangent stiffness operator (26). The aim is to simulate the uniaxial
compression test until the failure mode is fully developed and, simultaneously, the load bearing capacity of the rock
sample is fully exhausted. This a very challenging task for an implicit method due to the presence of the unilateral
conditions, extremely steep softening response and non-associated flow rule, which renders the tangent stiffness matrix
unsymmetric.
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F IGURE 1 Illustration of the triangular areas used in the definition of Wachspress shape function (A), and the triangulation of the
reference regular polygon with three integration points in each triangle, and the isoparametric mapping to a physical element (B)

2.5 Polygonal finite elements

Polygonal finite elements offer some benefits in comparison to the usual triangular and quadrilateral elements. These
include, in many cases, greater flexibility in meshing arbitrary geometries, better accuracy in the numerical solution,
better description of certain materials, and less locking-prone behavior under volume-preserving deformation.34 Saksala
and Jabareen27 compared the performance of the polygonal elements based on Wachspress interpolation functions to
traditional triangular and quadrilateral elements in softening problems and applied them in numerical modeling of het-
erogeneous rocks with good results. For this reason, the polygonal elements are chosen here as well.
The finite element formulation based on the Wachspress interpolation functions implemented in Matlab by Talischi

et al.35 is adopted. It is based on the standard isoparametric mapping from a reference element to the physical element, as
illustrated in Figure 1. The mathematical expression for a barycentric Wachspress shape function at node i of a reference
n-gon reads

𝑁𝑖 (𝜉) =
𝛼𝑖 (𝜉)∑𝑛

𝑗=1
𝛼𝑗 (𝜉)

, 𝛼𝑖 (𝜉) =
𝐴 (𝑝𝑖−1, 𝑝𝑖, 𝑝𝑖+1)

𝐴 (𝑝𝑖−1, 𝑝𝑖, 𝜉) 𝐴 (𝑝𝑖, 𝑝𝑖+1, 𝜉)
(44)

where A(a, b, c) denotes the signed area of triangle a, b, c (Figure 1A). The numerical integration scheme is based on
a sub-division of the reference polygon into triangles and applying a three-point quadrature for each triangle (resulting
3n integration points for each n-gon), as illustrated in Figure 1B. Polygonal finite element meshes are generated by the
PolyMesher code developed by Talischi et al.36 This code generates 2D Voronoi diagrams (tessellations) consisting of
centroidal (or alternatively non-centroidal) Voronoi cells.

3 NUMERICAL SIMULATIONS

The thermal treatment simulations and themechanical test simulations are carried out in 2Dplane strain conditions. First,
however, the material properties of the rock forming minerals and their temperature dependence is specified. Then, the
verification and validation simulations are carried out. Finally, the thermo-mechanical simulations concerning uniaxial
compression test and heating-cooling cycles are performed.

3.1 Rock mineral properties and their temperature dependence

Numerical granitic rock is assumed to consist of three minerals: Quartz (33%), Feldspars (59%) and Biotite (one of the
black Micas) (8%). The heterogeneity is described by random clusters of finite elements. These clusters, representing the
three rock forming minerals, are assigned with the mineral material properties. The mechanical and thermal properties
of the minerals are given in Table 1. These values are taken from Mahabadi,37 Vázquez et al.10 and Zhao et al. 38.
The uniaxial intact compressive strength for all minerals is 𝜎c0 = 2 cos 𝜑∕(1 − sin 𝜑) 𝑐0 = 137 MPa.
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TABLE 1 Material properties and model parameter values

Parameter/mineral Quartz Feldspar Biotite
E [GPa] 90 69 40
σt0 [MPa] 14 11 7
c0 [MPa] 25 25 25
ν 0.1 0.28 0.27
ρ [kg/m3] 2650 2580 3215
GIc [J/m2] 40 40 28
GIIc [J/m2] 800 800 560
φ [◦] 50 50 50
ψ [◦] 5 5 5
At 0.98 0.98 0.98
Ac 0.98 0.98 0.98
α [1/K] 1.23E-5 0.45E-5 1.5E-5
k [W/mK] 8 2.3 1.5
c [J/kgK] 733 730 730
f [%] 33 59 8

As the temperature expectedly rises hundreds of degrees during heating, it should be considered in modeling. Due to
the lack of data on the constituent minerals, the temperature dependence of uniaxial tensile and compressive strengths
is modeled after the experiments for granite as an aggregate of minerals. The data collected for tensile and compressive
strengths of many granites by Wang and Konietzky11 can reasonably well be approximated by linear fits as

𝜎c (𝜃) = 𝜎c0 (𝜃 = 293 K) + 𝐾𝜃
𝜎c

(𝜃 − 293 K) [MPa] , 𝐾𝜃
𝜎c

=
−0.7𝜎c0

550K
(45)

𝜎t (𝜃) = 𝜎t0 (𝜃 = 293 K) + 𝐾𝜃
𝜎t

(𝜃 − 293 K) [MPa] , 𝐾𝜃
𝜎t

=
−0.5𝜎c0

550K
(46)

These fits, valid for 𝜃 ∈ [293, 823]K, say thus that when the temperature is 550◦C, the uniaxial compressive and tensile
strengths are 70% and 50% of their respective values at the room temperature. As to the Young’s modulus, the data col-
lected by Toifl et al.7 is employed here. Accordingly, Young’s modulus of Plagioclase Feldspar and Muscovite Mica does
not depend on temperature in this range. Therefore, as Biotite is one of the black Micas, Biotite and Feldspar are taken
independent of temperature in their Young’s modulus. However, Quartz show nonlinear dependence fitted by:

𝐸𝑞 (𝜃) =

√√√√𝑏2
𝐸

(
1 −

(𝜃 − 𝜃0)
2

𝑎2
𝜃

)
+ 𝐸0 [GPa] for 𝜃 ∈ [293, 843] K (47)

where 𝜃0 and 𝐸0 are the initial temperature (293 K) and the corresponding Young’s modulus of Quartz, respectively. More-
over, 𝑏𝐸 and 𝑎𝜃 are the semi-minor and semi-major axes of the ellipse (47), which is plot against the data in Figure 2A.
The thermal expansion coefficient is the single most important material property with respect to thermal loading. The

constituent minerals behave very differently in this respect so that special attention must be payed to correctly fit the data
in literature. Again, Quartz is the deviant behaving in a strongly nonlinearmanner while Feldspar and Biotite show practi-
cally linear temperature dependencewithin the present range of interest.7 TheQuartz data by Polyakova39 is approximated
by the 6th order polynomial written along with the linear fits for Feldspar and Biotite as:

𝛼q (𝜃) = 6.13−21𝜃6 − 1.38−17𝜃5 + 1.19−14𝜃4 − 4.75−12𝜃3 + 8.13−10𝜃2[1∕𝐾] (48)

𝛼f (𝜃) = 𝛼f0 (𝜃 = 293 K) + 𝐾𝜃
𝛼f

(𝜃 − 293𝐾)[1∕𝐾], 𝐾𝜃
𝛼f

=
𝛼fmax − 𝛼f0

550K
(49)
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F IGURE 2 Temperature dependence of Quartz Young’s modulus (A); thermal expansion coefficients for granite forming minerals (B);
temperature dependence of Quartz thermal conductance (C); specific heat (D) (data after Toifl et al.7 and Polyakova39)

𝛼b (𝜃) = 𝛼b0 (𝜃 = 293 K) + 𝐾𝜃
𝛼b

(𝜃 − 293 K) [1∕K] , 𝐾𝜃
𝛼b

=
𝛼bmax − 𝛼b0

550K
(50)

where 𝛼fmax = 1.671−5 1/K and 𝛼bmax = 4.297−5 1/K, 𝛼f0 and 𝛼b0 are the maximum and initial values, in the interval
[293, 823] K, of the thermal expansion coefficients for Feldspar and Biotite. These curves are plotted in Figure 2B. The
reason for the nonlinear behavior of Quartz is the α-β-transition at 573◦C. This phase change is ignored in the present
study.
The specific heat capacity and the thermal conductance depend also on temperature, especially those of Quartz. The

thermal conductance of Feldspar and Biotite is set temperature independent based on the experiments collected by Toifl
et al.7 The data for Quartz therein is well matched with a second order polynomial by

𝑘q (𝜃) = 1.45−5 𝜃2 − 0.0254𝜃 + 14.19 [𝑊∕𝑚𝑘] for 𝐾𝜃 ∈ [293, 823]𝐾 (51)

This fit is plotted in Figure 2C. Finally, the temperature dependence of the specific heat capacity is approximated by linear
fits for each mineral as follows:

𝑐q (𝜃) = 1.129𝜃 + 402.8 [J∕kgK] (52)

𝑐bf (𝜃) = 𝑐bf0 (𝜃 = 293 K) + 𝐾𝜃
𝑐bf

(𝜃 − 293 K) [J∕kgK] , 𝐾𝜃
𝑐𝑏f

=
𝑐fbmax − 𝑐f0

550K
(53)

where the fit for Quartz data (52) is plotted in Figure 2D, and the values at 293 K are those in Table 1 while 𝑐fbmax =

1140 J∕kgK is valid for both Feldspar and Biotite. It should be noted that when the temperature falls outside the range,
the respective parameters have the values obtained at the end points of the range.
When a material deteriorates, through microcrack or void initiation, the thermal properties approach those of air. This

feature is taken here into account by relations

𝑐𝑖 = (1 − 𝑠c𝜔t) (1 − 𝜔c) 𝑐𝑖 (𝜃) , 𝑘𝑖 = (1 − 𝑠c𝜔t) (1 − 𝜔c) 𝑘𝑖 (𝜃) , 𝑖 = q, f , b (54)
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F IGURE 3 Geometry and boundary conditions of the thermo-mechanical problem (A); the polygonal finite element mesh 10k polygons
(B); temperature distribution at the end of simulation (C); temperature as a function of radius (D); radial (E) and hoop (F) stress as a function
radius

where 𝑐𝑖(𝜃) and 𝑘𝑖(𝜃) are the functions defining the temperature dependence of each mineral (when applicable)
and 𝑠c = 𝑟(𝜎̄𝑖) as discussed above. Thereby, the thermal conductance and the heat capacity deteriorate in pace
with the material damage. Moreover, upon load reversal resulting in void/crack closure, the thermal properties are
recovered.

3.2 Thermal stresses in a hollow cylinder: verification problem

The first numerical example concerns the verification of themethod against the analytical solution of thermal stresses in a
hollow cylinder due to prescribed temperatures (Dirichlet boundary condition) at the inner and outer rings. The problem
geometry is shown in Figure 3A. The analytical solutions of the related thermo-elasticity problem for the temperature,
radial and hoop stresses are40

𝜃 (𝑟) = 𝜃𝑎 + (𝜃𝑏 − 𝜃𝑎)
ln (𝑟∕𝑎)

ln (𝑏∕𝑎)
(55)

𝜎𝑟 (𝑟) =
𝛼𝐸 (𝜃𝑏 − 𝜃𝑎)

2 ln (𝑏∕𝑎)

(
− ln (𝑟∕𝑎) +

𝑏2

𝑏2 − 𝑎2

(
1 −

𝑎2

𝑟2

)
ln (𝑏∕𝑎)

)
(56)

𝜎𝜑 (𝑟) =
𝛼𝐸 (𝜃𝑏 − 𝜃𝑎)

2 ln (𝑏∕𝑎)

(
−1 − ln (𝑟∕𝑎) +

𝑏2

𝑏2 − 𝑎2

(
1 +

𝑎2

𝑟2

)
ln (𝑏∕𝑎)

)
(57)

where 𝜃𝑎 = 100◦𝐶 and 𝜃𝑏 = 0◦𝐶 are the temperatures at 𝑟 = 𝑎 = 0.03 m and 𝑟 = 𝑏 = 0.15 m, respectively. More-
over, 𝛼 and E are the thermal expansion coefficient and the Young’s modulus of the material.
The material properties for this specific problem are set as follows: E = 20 GPa, ν = 0.2, α = 5E-6 K−1, k = 1.5 W/mK,

c = 700 J/kgK, and ρ = 2400 kg/m3. The staggered algorithm in Section 2.3 is used, neglecting the damage and plasticity
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F IGURE 4 Simulation results for the problem of concentric cylinders: Polygonal finite element mesh 2500 polygons with rock
mesostructure (1 = Quartz, 2 = Feldspar, 3 = Biotite, 4 = Steel) (A); schematic of experimental failure mode (cracks in red) after Abdalla41 (B);
temperature distribution (C), first principal stress distribution (D), and tensile damage pattern (E) at t = 13.5 s; temperature distribution (F),
tensile (G) and compressive (H) damage distributions at the end of simulation

parts as well as temperature dependence of the material properties, to solve the thermo-mechanical problem for stresses
and temperature. Due to the relatively low values of the thermal conduction coefficient here, the simulation time is set
to Tsim = 1E4 s to reach the steady state solution (55)-(57). A time step of 1000 s is used. The simulation results and the
polygonal mesh are shown in Figure 3.
As the problem has radial symmetry and the analytical solutions are presented in radial coordinates, the stresses are

plotted by extracting them from the nodes closest to x-axis. According to the results in Figure 3, the analytical solutions are
very well predicted with the present method. There are few deviations in the radial stress component in Figure 3E. These
deviations are due to the fact that the stress components are not solved at nodes but at Gauss points, from which they are
interpolated and averaged to the nodes. In any case, it can be concluded that the present approach is verified against the
linear elastic case, that is, the implemented numerical method correctly and accurately solves the initial/boundary value
problem it was designed to solve. It should also be noted that the staggered scheme is clearly (temporally) unconditionally
stable in this uncoupled, linear elastic case as it was possible to use a time step of 1000 s.

3.3 Thermal cracking of concentric cylinders: qualitative validation problem

Next, the model is validated qualitatively against experimental crack pattern in concentric cylinders due to heating of the
inner cylinder. The experimental background is in the cracking of reinforced concrete structures under thermal stress
investigated by Abdalla.41 This problem has also been used for qualitative validation of thermo-mechanical models based
on peridynamics by Wang et al.21 and hybrid finite-discrete elements code by Joulin et al.12
Heating of the steel reinforcement inside the concrete cylinder leads to radial cracking of the concrete, as schematically

illustrated in Figure 4B. However, the rock material as described in Section 3.1 is applied here instead of concrete. More-
over, the simulation is carried out by heating the steel phase of the model using the volumetric internal heat generation
Qint in Equation (34). The reinforcement properties are set as follows: E= 200 GPa, ν= 0.3, ρ= 7800 kg/m3, α= 3E-5 K−1,
k= 5 W/mK, c= 700 J/kgK. It should be noted that the thermal expansion coefficient and the thermal properties may not
be those of steel but modified ones due to the fact that the outer cylinder is granite rock, not concrete, which has lower
thermal expansion coefficient than granite. Thesemodifications are justified by the similarity concrete and rockmaterials
in all respects relevant to this problem. Figure 4. show the simulation results with a heating duration of 100 s and heat
power Qint = 2E7 W/m3. The initial temperature is 293 K.
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F IGURE 5 The effect of rock mesostructure on thermal cracking of concentric cylinders: Final tensile damage (A) and temperature (B)
distribution with mesostructure 2; final tensile damage (C) and temperature (D) distribution with mesostructure 3

The temperature, the first principal stress and tensile damage distributions are shown in Figure 4C-E at t = 13.5 s. The
temperature rise is about 35◦C in the middle of the reinforcement. This temperature is enough to initiate tensile damage
evolution (note the range of the color bar), which displays radial crack-like patterns emanating from the reinforcement-
rock interface. At the end of heating (t = 100 s), the maximum temperature is about 125◦C, which is slightly higher than
the maximum temperature, 100◦C in the experimental study by Abdalla.41 The final crack pattern, represented by the
damage distributions in Figure 4G and 4H, did not change notably fromwhat it was at 13.5 s—only the values grew larger.
Figure 4H shows that some compressive damage has also developed. However, all the compressive damage occurred in
elements that has tensile damage as well, that is, both the Rankine andMC criterionwere violated at those Gauss points. It
should also be noted that the effect ofmaterial damage is attested in the temperature distribution (Figure 4F andFigure 5B)
as a lateral weak discontinuity over the main crack-like damage formation reaching the outer ring of the rock cylinder.
This is a realistic feature, which most of the previous numerical studies lack. Finally, the effect of rock mesostructure is
tested.
Figure 5 shows the simulation results with two additional rock mesostructures. The damage patterns are essentially

the same as that with the mesostructure in Figure 4A, albeit with differing details. In any case, the general trend in this
problem is that the temperature rise initiates several tensile cracks at the reinforcement-rock interface while only one of
them reaches the outer edge releasing the lateral stress state, thus preventing the rest of the cracks to propagate further.
As this seems to happen in the experiment as well, it can be concluded that the present approach correctly predicts the
failure mode in this kind of problem, that is, the numerical method is qualitatively validated against an experiment.

3.4 Uniaxial compression test under elevated temperatures: qualitative validation
problem

Uniaxial compression test at elevated temperatures measures the temperature dependence of rock compressive strength.
In this experiment, the rock sample is slowly heated to the desired uniform temperature after which it is cooled down
to room temperature before being subjected to the mechanical test.11 It should be emphasized here that heating is per-
formed so slowly that no thermal stresses would be generated inside an ideal homogeneous solid. However, rocks are
heterogeneous, granite particularly so, and the temperature dependence of the constituent minerals even accentuates it,
as clearly manifested in the present case of Quartz being the deviant. Therefore, thermal cracking, modeled here as dam-
age growth, is inflicted on the specimen, whichmanifests as degraded strength and stiffness in the consequentmechanical
test. It should also be reminded that for brittle materials, the compressive strength is not a material property per se, but
an emerging property contributed by the specimen size, boundary conditions and, most importantly, by the meso—and
microstructure (inherent microcracks, grain size and shape as well as heterogeneity) of the specimen.
Here, the uniaxial compression test is performed on two numerical rock samples (2000 polygons) shown in Figure 6

using the explicit scheme in Section 2.4 applying a constant velocity, 0.05 m/s, boundary condition at the upper edge. The
numerical samples display different polygon shapes: the NumRock1 has more centroidal Voronoi cells (polygons), while
NumRock2 is a Voronoi tessellation generated for almost random seeds (a single iteration is performed on random seeds
by the Lloyd’s algorithm,35 thus better representing a natural rock mesostructure. Figure 6 shows the simulation results
for the final failure modes and the corresponding average stress-strain curves.
The failure mode realized with NumRock1 displays a typical experimental “shearing along single plane”-failure mode

classified by Basu et al.42 Notably, the tensile damage variable reach also values close to 1 in the failure plane elements.
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F IGURE 6 Simulation results for uniaxial compression test on intact rock: NumRock1 (1 = Quartz, 2 = Feldspar, 3 = Biotite) and the
final failure modes represented as damage distributions (A); NumRock2 and the final failure modes with and without the geometric defect
(B); corresponding average stress-strain responses (C); geometric defect in NumRock2 (D)

The corresponding stress-strain response exhibits a non-linear pre-peak part even though the model is linear elastic up to
failure. This is a realistic feature and represents microcracking due to stiffness heterogeneity at elements where the com-
pressive strength is reached before the specimen loses its load bearing capacity as an aggregate of grains. The compressive
strength, 117 MPa is lower than the nominal strength 137 MPa of each mineral.
The second numerical specimen, NumRock2, shows a shear failure mode with two branches initiating at the upper

edge where the specimen has a geometric imperfection (Figure 6D) with a single node in the mesh deviating 0.036 mm
downwards from the upper edge. The resulting uniaxial strength, 97MPa, is 17% lower than that ofNumRock1. This feature
demonstrates thus the effect of geometric imperfections of the specimen on themeasured strength.43 Indeed, the strength
of NumRock2 without the geometry defect is 118 MPa, that is, practically the same as that of NumRock1 albeit with a
differing failure mode. As the geometric defect has extremely small dimension, 36 μm, and the mesostructure variation
itself caused only a 0.85% difference in strength, this result suggests that the experimental deviation of the compressive
strength of different rocks stems mostly from the specimen imperfections, in addition to imperfections in the boundary
conditions. It should however be noted that the present approach to model the mesostructure is a very simple one and
cannot capture the grain boundary behavior, which surely influences the rock response under uniaxial compression. In
any case, further elaboration of this topic is beyond the scope of the present paper.
Next, the samples are subjected to thermal treatment, that is, heating from 20◦C to 300◦C, with a duration of 6000 s

and Qint = 1E5 W/m3. The results are shown in Figure 7.
The strong heterogeneity of the numerical rock samples has caused substantial thermal damage, as attested in Figure 7.

Naturally, most of the damage is of tensile type (note the range of the compressive damage). The geometric defect in
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F IGURE 7 Simulation results of the thermal treatment for UCS test on heated rock (T = 6000 s, Qint = 1E5 W/m3): First principal stress
and the damage components at the end of heating for NumRock1 (A) and for NumRock2 (B)

F IGURE 8 Simulation results of uniaxial compression test on heated rock (up to 300◦C): Final failure modes represented as damage
distributions for NumRock1 (A) for NumRock2 (B); corresponding average stress-strain responses (C)

NumRock2 has no bearing in this kind of loading type. Finally, the cooled down numerical samples are subjected to
uniaxial compression test. The results are shown in Figure 8 (NumRock2 with the geometry imperfection).
Uniaxial compression induces similar failure modes, that is, shear banding with two branches, on both numerical rock

samples. However, the initiation spot at the upper edge is different, being the location of the geometric defect for Num-
Rock2. The stress-strain responses exhibit more pronounced nonlinear pre-peak parts for the heat-treated cases with the
curves deviating from the intact specimen responses at around 50MPa of the average stress. The stiffness recovery scheme
in Equations (14) and (15) was clearly at play here. The resulting compressive strengths (Figure 8C) 88 MPa for NumRock1
and 83 MPa for NumRock2 mean 25% and 14% reductions compared to the intact strengths. These results are within the
experimental scatter, which is disturbingly wide at this temperature. The granite tested by Yin et al.9 show 35-29% reduc-
tion while the data collected by Gautam et al.5 has mostly 10% reduction at 300◦C. Some granites even become stronger,
that is, show negative reduction in UCS, upon heating up to 300◦C.5,11 In any case, further elaboration of this topic is
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F IGURE 9 Simulation results for thermal treatment (heating up to 550◦C in 3 h 10 min): final damage distributions for NumRock1 (A);
experimental result for testing granite sauna stones (by permission of Liikkanen4) (B)

beyond the scope here. Finally, NumRock1 is heated up to 550◦C in 3h to demonstrate that certain granites may not be
able to bear slow heating without disintegration.
The strong temperature dependence of Quartz thermal expansion coefficient is reflected in the damage distributions

(Figure 9A) inflicted on the numerical rock. The tensile damage variable reach values beyond 0.9 atmany elements (Gauss
points) and remains below 0.1 at many others, which can be interpreted as a disintegration of the specimen into debris of
various grain size. This result is not without an experimental witness, as exemplified in Figure 9B, which shows a complete
disintegration of a Finnish granite sauna stone after slow heating of about 4 h.4 The sauna stone of size 50 × 50 × 50 mm
disintegrated before reaching 600◦C. This behavior, which is certainly not typical for sauna stones, can be explained by
the anomalous behavior of Quartz thermal expansion upon reaching the Curie point (573◦C) combined with a possible
poor condition of the granite. In any case, this experiment lends credence to the present model in its present calibration
of material and model parameter values.

3.5 Thermal cracking of rock sample due to heating-rapid cooling cycle: application
problem

Final numerical example concerns an application of the verified and validated method in modeling rock fracture due to
heating-forced cooling cycle. In the first example, the numerical rock sample, NumRock1, is heated to a target temperature
of 325◦C in 3600 s and then subjected to forced cooling at the left vertical and top edges. Forced cooling bywater ismodeled
as a convection boundary condition with the heat transfer coefficient hw = 14000 W/m2K.20 This example simulates the
thermal loading on sauna stones (the top ones in the sauna stove) due to heating and throwing of water at 20◦C. The
simulation results with the cooling duration of 5 s are shown in Figure 10.
Rapid cooling by water at the left and top edges generates a tensile stress state, which in turn induces more, mainly

tensile, damage close to these edges (compare Figure 10B to Figure 7A). The temperature dropped very fast to the room
temperature, as seen in Figure 10C. During computations, it was thus necessary to adjust the time step in order to capture
the steep temperature drop and to achieve convergence. It should be reminded that when the problem is nonlinear due
to material failure, the overall staggered scheme is not unconditionally stable in time since the Newton-Raphson scheme
in the mechanical part does not converge with an arbitrary large residual (imbalance vector).
This example helps to understand why rapid cooling, or quenching, of sauna stones by water inflicts damage on them.

However, this specific case exaggerates the phenomenon as the sample disintegratedwhen heated up to 550◦C. Good qual-
ity sauna stones, usually made of Olivine Diabase, Peridotite or even Ceramics, should endure 1–2 years while retaining
their original shape without turning into gravel. Nevertheless, all stone types undergo surface damage in use realized as
chipping, which is observed in a weekly manner when cleaning the sauna floor.
The second case considers the same rock sample (NumRock1), but this time heating is applied faster, as a surface influx,

while the cooling is performed similarly. The application in mind is comminution by thermal shock provided with a rapid
heating-forced cooling cycle. The heating and cooling are applied at both vertical edges of the sample. The heating time
is 30 s with the external heat flux qn = 1E5 W/m2 is applied. The results are shown in Figure 11.
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F IGURE 10 Simulation results for the slow
heating-forced cooling cycle (heating NumRock1 up to 325◦C
in 1 h): temperature distribution in the end of cooling phase
(A); the damage variables in the end of cooling phase (B); a
detail of temperature evolution at the left and top edge nodes
(C)

Rapid surface heating generates a steep lateral thermal gradient (Figure 11A),which induces substantial thermal stresses
exceeding the tensile strength of theminerals. This results in lateral crack-like tensile damage formations that do not reach
the edges of the specimen since the stress state therein is compressive. However, the rapid cooling by water reverses the
stress state facilitating further propagation to reach the edges, as attested in Figure 11F. This kind of heat treatment thus
suggests a potential non-mechanical comminution method. Further elaboration on this topic is, again, outside the scope
of the present method development stage of research.

4 CONCLUDING REMARKS

This paper developed a continuum based numerical scheme to model rock fracture under thermo-mechanical loadings.
The rock material model was based on MC and Rankine criteria with separate scalar damage variables to account for
the asymmetry of rock in tension and compression. This relatively simple model correctly captured the experimentally
observed rock failure modes in the uniaxial compression and the thermally loaded hollow cylinder. Moreover, the pre-
dicted thermal weakening effect at 300◦C on the compressive strength of granite was within the experimental bounds,
which, however, are exceptionally wide in this case. Furthermore, the simulation of compressive test on a specimen with
an extremely small geometric imperfection, which lowered the specimen strength 18% from that of geometrically perfect
specimen, suggests that experimental variation in the compressive strength of rocks is mostly due to these imperfections.
Due to the sheer dominance of the external heat influx, it was possible to neglect the heat generation due to structural

and dissipation effects, which rendered the underlying thermo-mechanical problem uncoupled. Thereby, the staggered
approach, based on the backward Euler scheme, to solve the global equations was unconditionally stable in time for the
linear elastic case, which is an advantage over the particle methods, which are based on explicit time integration and are
thus temporally conditionally stable. These methods are, however, superior to the present method in fracture description.
In any case, the present approach is capable of solving thermally induced rock fracture problems of wide range of heating
times.
It should also be mentioned that the effect of material deterioration on the thermal properties was accommodated in

the model, which added to the reality of the method through weakly discontinuous temperature field over the crack or
damaged elements in the present case.
The rock heterogeneity was described as random clusters of polygonal finite elements representing the granite con-

stituent minerals. The temperature dependence of the mineral thermo-mechanical properties was carefully modeled,
which resulted in evenmore pronounced heterogeneity of the material upon temperature rise due the deviant behavior of
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F IGURE 11 Simulation results of the rapid heating-forced cooling cycle (heating NumRock1 30 s with the external flux of 1E W/m2):
temperature (A), the first principal stress (B), and damage variable (C) distributions in the end of heating; temperature (D), the first principal
stress (E), and tensile damage variable (F) distributions in the end of cooling; temperature evolution at the vertical edge nodes (G)

Quartz in comparison to the Feldspar and Biotite. The α-β-transition of Quartz at 573◦C was ignored, which restricted the
applicability of the method to temperatures below 573◦C. Extension to include the α-β-transition is thus a topic of further
development of the method.
The method was finally applied in simulations of sauna stones deterioration under slow heating-rapid forced cooling.

The model calibrated for granite predicted notable damage after heating the numerical rock up to 300◦C and then cooling
it rapidly by water. Heating the sample slowly to 550◦C lead to disintegration of the sample into gravel, which has also an
experimental witness. In the second case, the rectangular sample was heated at both vertical edges with a surface flux to
300◦C in 30 s and then cooled fast by water at the same edges. This thermal shock lead to fragmentation of the sample by
multiple lateral cracks, suggesting thus a comminution method for granite by rapid heating-cooling cycles.
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