
Topi Nieminen

UNITY GAME ENGINE IN VISUALIZA-
TION, SIMULATION AND MODELLING

Faculty of Information Technology and Communication Sciences
 Bachelor’s thesis

July 2021

-i-

ABSTRACT

Topi Nieminen: Unity game engine in visualization, simulation and modelling
Bachelor’s thesis
Tampere University
Bachelor's Degree Programme in Computer Sciences
July 2021

Many software projects include different visualisation, simulation and modelling tech-

niques. These can be used to represent data in human-comprehensible form, allow test-

ing in simulations, and model complex or large objects in virtual environments to help

design. Many academic research projects require these techniques as well. Game en-

gines are software frameworks that implement these features to speed up development.

This thesis investigates the usability of the Unity game engine for research projects.

This is done via a systematic literature review on case studies that use Unity in their

projects. The thesis found that Unity can be used in a wide variety of research fields and

there were some common advantages and challenges of using Unity in the case studies.

The most common advantages of Unity were its ease of use, licensing and scripting sup-

port, while challenges included the need of file format conversions, limited documenta-

tion for research projects and lacking simulation performance.

Keywords: Unity, Unity3D, game engine, visualization, simulation, modelling, virtual

reality

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck –ohjelmalla.

-ii-

TIIVISTELMÄ

Topi Nieminen: Unity pelimoottori visualisoinnissa, simuloinnissa ja mallintamisessa
Kandidaatintutkielma
Tampereen yliopisto
Tietojenkäsittelytieteiden tutkinto-ohjelma
Heinäkuu 2021

Pelimoottorit ovat ohjelmistokehyksiä, jotka on rakennettu edesauttamaan videopelien kehittämistä.

Pelimoottori yleisesti toteuttaa muun muassa tietokonegrafiikoiden piirtämisen näytölle, fysiikkasimulaa-

tion sekä kommunikaation laitteiston ja käyttöjärjestelmän kanssa. Pelimoottori täten helpottaa ja nopeut-

taa videopelin kehittäjän työtä, kun tämä voi keskittyä enemmän itse pelin toteuttamiseen. Pelimoottorin

tarjoamat hyödyt eivät kuitenkaan rajoitu yksistään videopelien kehitykseen, vaan niistä voi olla hyötyä

muissakin sovelluskohteissa. Tämän työn tarkoituksena oli selvittää, miten Unity, suosittu pelimoottori,

soveltuu visualisointiin, simulointiin ja mallinnukseen akateemisessa kontekstissa.

Työ toteutettiin systemaattisena kirjallisuuskatsauksena akateemisiin tapaustutkimuksiin. Avainsa-

noista muodostettu kysely lähetettiin kolmeen akateemiseen tietokantaan, joiden tuloksista saatiin 16 työn

aiheeseen liittyvää tapaustutkimusta. Tapaustutkimuksia rajattiin vielä kolmella kriteerillä: tapaustutki-

muksen tuli olla kirjoitettu englannin kielellä, tapaustutkimuksen piti kuvata visualisointi-, simulointi- tai

mallinnusprojektia, ja tapaustutkimuksen projektin tuli perustua suurilta osin Unity-pelimoottorin käyt-

töön. Tämä pienensi kirjallisuuskatsauksen joukkoa lopulliseen 12 tapaustutkimukseen.

Työn tulokset osoittavat, että Unity on käyttökelpoinen usealla tieteenalalla: kirjallisuuskatsaukseen

sisältyi tutkimuksia bioinformatiikan-, tekniikan-, informaatiotieteiden- sekä arkkitehtuurin ja ympäristö-

suunnittelun aloilta. Tapaustutkimuksista etsittiin ja analysoitiin kommentteja Unityn käyttökelpoisuudes-

ta, jotka voitiin luokitella hyötyihin ja haasteisiin. Yleisimmät hyödyt liittyivät muun muassa Unityn help-

pokäyttöisyyteen, lisensointimalliin ja ohjelmointirajapintaan. Yleisimpiä haasteita olivat Unityn rajoittu-

nut tiedostomuototuki, lähes yksinomaan videopelikehitykseen keskittyvä dokumentaatio ja kehittäjäyh-

teisö, sekä tiettyihin käyttökohteisiin riittämätön suorituskyky.

Vähiten haasteita Unityn käyttökelpoisuudessa oli mallinnukseen liittyvissä tapaustutkimuksissa, joi-

hin sisältyi pääasiassa arkkitehtuurin ja ympäristösuunnittelun alojen tutkimukset. Nämä haasteet liittyivät

pääasiassa tiedostomuototukeen ja mallinnustyökalujen koordinaatistoon. Visualisointiin liittyvissä tutki-

muksissa oli jonkin verran samoja haasteita kuin mallinnuksessa, mutta niiden lisäksi osa projekteista

kohtasi suorituskykyongelmia. Eniten haasteita Unityn suorituskyky toi projekteihin, jotka ajoivat simu-

laatioita. Kaiken kaikkiaan Unity oli käyttökelpoinen lähes kaikissa tapaustutkimuksissa, tai tarjosi aina-

kin huomionarvoisen, joskin rajoittuneen, vaihtoehdon joidenkin tieteenalojen tavanomaisille työkaluille.

.Avainsanat: Unity, Unity3D, pelimoottori, visualisointi, simulointi, mallintaminen

-iii-

1 Introduction..1

2 Research method...1

2.1 Data collection..2

3 Unity...4

3.1 General overview..4

3.2 Workflow and ecosystem...4

3.3 Licensing..5

4 Case study categorization..6

4.1 Bioinformatics..7

4.2 Architecture and environmental modelling..8

4.3 Engineering and information sciences..9

5 Advantages and challenges of Unity...9

5.1 Advantages...9
5.1.1 Accessibility and licensing...11
5.1.2 Built-in features...11
5.1.3 Cross-platform deployment...12
5.1.4 External assets and plug-ins..12
5.1.5 Scripting..12
5.1.6 VR-capabilities...13

5.2 Challenges..13
5.2.1 File format support..14
5.2.2 Documentation and support..15
5.2.3 Performance..15
5.2.4 Coordinate system...16

6 Conclusions..16

References...17

-1-

1 Introduction
Visualisation, simulation and modelling techniques are required in many software pro-

jects. Visualisation techniques allow representing the underlying software processes in

human-comprehensible form, while simulations allow imitating the real world in differ-

ent ways. Complex objects or large cities can be modelled in a virtual environment to

facilitate better design and planning. Academic research takes use of these techniques as

well: data must be visualized, experiments can be done in simulations that sometimes

take place in a carefully modelled virtual environment. Many applications and software

frameworks have been developed to implement these techniques. One such class of soft-

ware are video game engines.

Video game engines are software frameworks that have been created to support

video game development. They often implement software features required in video

games, such as graphics rendering, physics simulation, and simple modelling tools usu-

ally in the form of a level editor. Having these features already implemented simplifies

the development process allowing the developer to focus on features specific to the pro-

ject at hand. Since game engine features are not required only in video games, they

could be used for other projects, such as research.

This thesis aims, through the methods of a literature review, to investigate the ad-

vantages and challenges of using a video game engine in academic projects. The game

engine chosen for this is Unity, which is a popular game engine developed by Unity

Technologies. Section 2 introduces the research and data collection methods used, as

well as an overview of the case studies reviewed in this thesis. Section 3 provides an

overview of Unity as a development tool, its software ecosystem and licensing. Section

4 expands on Section 2 by categorizing the studies and providing small synopses for

each case study. Section 5 categorises and discusses the different advantages and chal-

lenges of using Unity in research projects, as found in the case studies. Finally, Section

6 discusses the results and some of the limitations of this thesis.

2 Research method
The research method used in this thesis is systematic literature review. Systematic liter-

ature reviews are a type of literature review that collects secondary data from other stud-

ies using systematic and replicable methods [Armstrong 2011]. Systematic reviews for-

mulate research questions to identify relevant studies. The initial research question for

this thesis was of form ”Usage of the Unity game engine outside video game develop-

ment”. The data was to be collected from both academic and non-academic sources.

However, the initial search results indicated that Unity is widely used in academia, spe-

-2-

cifically in visualization, simulation, and modelling. This lead to the current form of the

research question, ”Unity game engine in visualization, simulation, and modelling”.

2.1 Data collection

The material for this literature review was searched for and collected from three

sources: ProQuest, ScienceDirect and Tampere University’s ANDOR search engine.

The following search query was used for all the databases: (”Unity” OR ”Unity3D” OR

”Unity game engine” OR ”game engine”) AND (”Visualization” OR ”Simulation”).

The searches were done on 23.9.2019.

The databases were set to sort according to relevancy, and material was collected

from first-page results only to keep the scope of this thesis restricted. Three rules were

followed when evaluating relevancy: (1) the material must be written in English, (2) the

material must address the Unity game engine and (3) the material must describe a case

study on visualization, modelling or simulation done using Unity. Initially 16 docu-

ments were found relevant but this was later narrowed down to 12 using the criteria

mentioned earlier.

Table 1 lists all the case studies examined in this literature review. Included of each

case study are the authors, year, title and name of the publication. The differences in

publications show that usage of Unity was not limited to particular fields or type of re-

search. The oldest study is from the year 2012 and the latest ones from 2019. Studies

from 2017 to 2019 represent the majority. This could be explained either by the search

query favouring newer studies, the date of the search, or that Unity has simply become

more popular from 2017 onwards.

-3-

Author(s) Year Title Publication

Ismail Buyuksalih, Serdar Bayburt,
Gurcan Buyuksalih, A.P. Baskaraca,
Hairi Karim, and Alias Rahman 2017

3D modelling and visualization based
on the Unity game engine – advantages
and challenges

ISPRS Annals of the Photogrammetry,
Remote Sensing and Spatial
Information Sciences

David Fredrick 2014

Time.deltaTime: the vicissitudes of
presence in visualizing Roman houses
with game engine technology

AI & SOCIETY: Journal of
Knowledge, Culture and
Communications

Bernhard Klein 2016

Managing the scalability of visual
exploration using game engines to
analyse UHI Scenarios Procedia Engineering

Dany Laksono and Trias Aditya 2019

Utilizing A Game Engine for
Interactive 3D Topographic Data
Visualization

International Journal of Geo-
Information

C. Masato Nakano, Erick Moen, Hye
Suk Byun, Heng Ma, Bradley Newman,
Alexander McDowell, Tao Wei, and
Mohamed Y. El-Naggar 2016

iBET: Immersive visualization of
biological electron-transfer dynamics

Journal of Molecular Graphics and
Modelling

Minh Nguyen, Mohammed Melaisi,
Brent Cowan, Alvaro Joffre Uribe
Quevedo, and Bill Kapralos 2017

Low-end haptic devices for knee bone
drilling in a serious game

World Journal of Science, Technology
and Sustainable Development

Jiri Polcar, Petr Horejsi, Pavel
Kopecek, and Muhammad Latif 2017

Using Unity3D as an Elevator
Simulation Tool

DAAAM International Symposium on
Intelligent Manufacturing and
Automation

Azarakhsh Rafiee, Pim Van der Male,
Eduardo Dias, and Henk Scholten 2017

Developing a wind turbine planning
platform: Integration of “sound
propagation modeleGIS-game engine”
triplet Environment Modelling & Software

Erick Ratamero, Dom Bellini,
Christopher Dowson, and Rudolf
Römer 2018

Touching proteins with virtual bare
hands

Journal of Computer-Aided Molecular
Design

Jue Wang, Keith Bennett, and Edward
Guinness 2012

Virtual Astronaut for Scientific
Visualization – A Prototype for Santa
Maria Crater on Mars Future Internet

Michael Wiebrands, Chris Malajczuk,
Andrew Woods, Andrew Rohl, and
Ricardo Mancera 2018

Molecular Dynamics Visualization
(MDV): Stereoscopic 3D Display of
Biomolecular Structure and Interactions
Using the Unity Game Engine Journal of Integrative Bioinformatics

Jimmy Zhang, Alex Paciorkowski, Paul
Craig, and Feng Cui 2019

BioVR: a platform for virtual reality
assisted biological data integration and
visualization BMC Bioinformatics

Table 1: Studies included in the systematic literature review.

-4-

3 Unity

3.1 General overview

Unity applications are created using the Unity editor shown in Figure 1. The Unity ed-

itor is available to the main desktop operating systems, Windows, MacOS and Linux

(Ubuntu 16.04). Unity applications themselves can be deployed on desktop operating

systems mentioned before, as well as Android- and iOS- mobile operating systems,

PlayStation 4 and Xbox One consoles, and as a web application via WebGL. [Unity

Technologies, 2021d] The cross-platform nature of Unity allows sharing much source

code between the different platforms. This helps in saving costs when porting Unity ap-

plications to other platforms to increase customers or user base.

3.2 Workflow and ecosystem

Unity editor allows building applications using scenes. Scenes can include different 3D

models, textures, and application logic via scripts. The base building blocks in a scene

are called game objects. A game object can be thought of as a container that can hold

the different 3D models and other assets. A game object can be modified by adding

components to it. Components are most commonly scripts that alter the behaviour of the

game object. Examples of components are, for example, a RigidBody component that

simulates gravity on the game object, and the Collider component that lets the de-

veloper add collision detection to the game object. Multiple game objects and their com-

Figure 1: Unity editor user interface (version 2019.3).

-5-

ponents can be combined into prefabs, which are reusable between different scenes, and

can be instantiated into the scene from scripts. [Unity Technologies, 2021d]

The developers can create scripts themselves using the C# programming language.

Developer-made scripts are the main way to add custom logic to the game or application

being developed. Unity uses the open-source .NET platform with scripting back-ends to

allow the usage of C# in Unity scripting [Unity Technologies, 2021d]. To enable the C#

scripts to communicate with the Unity engine they must inherit Unity’s built-in base

class, MonoBehaviour. MonoBehaviour provides various functions and attributes neces-

sary to interact with the engine.

Besides MonoBehaviour -derived scripts, developers can also include code created

outside Unity via plug-ins. The plug-ins can be further divided to Managed plug-ins and

Native plug-ins. Managed plug-ins are C# assemblies compiled outside Unity scripts.

However, they are accessible to the standard .NET tools that Unity uses to compile

scripts. Therefore their usage is similar to default Unity components. Native plug-ins

are platform-specific code libraries that can access features such as operating system

calls and third-party code that would otherwise be unavailable to Unity. Unity’s tools

have less access to these types of plug-ins, for example, when debugging code. [Unity

Technologies, 2021d]

Noteworthy aspects of Unity are the Unity Asset Store [Unity Technologies, 2021j]

and Package Manager [Unity Technologies. 2021d]. The asset store is a marketplace

where third parties can sell resources for application development or add-ons to the

Unity editor itself. Examples of development resources include assets such as 3D mod-

els, audio effects, scripts or templates, while editor add-ons add plug-ins and new tools

to the editor interface. Unity’s package manager can be used to download and install

packages similar to the asset store, such as tools. By default the package manager down-

loads packages from a repository managed by Unity Technologies but community re-

positories can be accessed with it as well [Unity Technologies. 2021d].

3.3 Licensing

Unity applications are royalty free software, and Unity Technologies does not charge

payments from software made using the editor [Unity Technologies, 2021h]. The cre-

ator of the software made with the Unity editor has all the intellectual, among other,

rights to the software [Unity Technologies, 2021i]. However, earning money by selling

the software made with the Unity editor has some conditions. Publishing software made

with Unity requires a license from Unity Technologies [Unity Technologies, 2021f].

Unity Technologies offer four tiers of licenses to users that are listed in Table 2. Each li-

cense has a price per user, also known as a seat, and revenue requirements for the em-

ploying organization. The most notable license here is the Unity personal license, which

-6-

is free for individuals and small teams earning less than $100 000 in the preceding 12

months [Unity Technologies, 2021f].

Name Price per seat Allowed revenue in last 12 months

Personal Free Less than $100 000

Plus $399 per year Less than $200 000

Pro $1800 per year More than $200 000

Enterprise $200 per month More than $200 000

Table 2: Unity license pricing tiers. Data from Unity Technologies [2021f].

In addition to the licences offered to for-profit organizations, Unity Technologies offers

a free Unity education license to not-for-profit academic institutions for uses such as

education and research. This license can also be used by students of the academic insti-

tution. This license must be applied for and must meet the qualification requirements for

the license program. These requirements differ by region. [Unity Technologies 2021g]

The Unity Education license appears the most suitable for research. The case studies

discussed in this systematic literature review mostly reported having used the personal

license, however. One explanation for this could be that the case studies were completed

when the licensing terms were different.

4 Case study categorization
This section introduces the case studies included in this systematic literature review via

providing outlines of the studies. The studies were grouped into three categories: Bioin-

formatics, Architecture and environmental modelling, and Engineering and information

sciences. The studies were categorised by comparing their subject matter, fields of study

and the academic publication they appeared in, such as a scientific journal or confer-

ence. Table 3 shows the result of the categorization.

-7-

Bioinformatics Architecture and environ-
mental modelling

Engineering and informa-
tion sciences

Nakano and others [2016] Buyuksalih and others
[2017]

Klein [2016]

Ratamero and others [2018] Fredrick [2013] Nguyen and others [2017]

Wiebrands and others
[2018]

Laksono and Aditya [2019] Polcar and others [2017]

Zhang and others [2019] Rafiee and others [2017]

Wang and others [2012]

Table 3: Case studies categorized in three categories.

4.1 Bioinformatics

The Bioinformatics category contains studies related to the visualization, simulation and

modelling of biological data, such as proteins and other complex molecules.

Nakano and others [2016] present iBET, an extension to VizBET, a computational

framework to simulate and visualize electron-transfer dynamics in biological molecules.

They argue that visualization in 2D on traditional computer monitors, that VizBET of-

fers, severely limits user’s ability to understand complex, multidimensional electron-

transfer pathways. To provide a more accurate representation with enhanced depth per-

ception, they created iBET that allows visualization using virtual reality (VR). Nakano

and others [2016] describe procedures to export Visual Molecular Dynamics software

models into Unity and render them in VR to be used with a head-mounted display

(HMD). VR is a method of visualisation where graphics are rendered to a HMD to sim-

ulate the user being in a virtual environment.

Ratamero and others [2018] introduce a software pipeline that allows embedding

protein structures into VR programs using a combination of widely available software,

standard hardware and few custom-built scripts. The software pipeline uses Unity as the

programming and execution environment. The researchers argue that three-dimensional

models are more accessible and intuitive than 2D projections.

Wiebrands and others [2018] have developed a biomolecular visualization tool to be

used with HIVE Cylinder, a 3 meters high 180 degree cylindrical 3D screen at Curtin

University, Perth, Western Australia. Wiebrands and others explain that the HIVE Cyl-

inder is very similar to a HMD but supports audiences up to 50 people. They argue that

collaborative experiences with this system is easier than using multiple headsets.

-8-

Zhang and others [2019] present BioVR, a VR-assisted platform for visualisation

and analysis of DNA, RNA, and protein sequences and structures. The paper describes

the development of the project such as software design and user interface considera-

tions, and creation and integration of different software components. The project aims to

augment the field of bioinformatics in both analysis and visualization in virtual reality.

4.2 Architecture and environmental modelling

The studies belonging to this category describe projects that include, to an extent, ele-

ments from architecture and environmental modelling. These studies used different

technologies to help virtualize real-life environments and objects. The virtualized envir-

onments were then brought to Unity for further use.

Buyuksalih and others [2017] describe advantages and challenges of using Unity in

3D modelling and visualization of two projects: the solar energy estimation system and

underground utility mapping for Istanbul. The paper describes the development stages

of the projects and discusses advantages and limitations of 3D modelling in Unity.

Fredrick [2013] describes the creation of a virtual model of a Pompeian house at the

time of the eruption of Vesuvius. The house model was created using Unity by six un-

dergraduate students. The students had access to plans, drawings, photographs and other

documentation of the original house.

Laksono and Aditya [2019] explored the use of Unity for visualizing large-scale to-

pographic data. The data were from mixed sources of terrestrial laser scanner models

and topographic map data. The result was a multiplatform 3D visualization application

that allowed its users to explore 3D environments in first person view or from a top-

down view. The 3D visualization was build into WebGL and deployed to a web-server

to be used from a web browser.

Rafiee and others [2017] described a conceptual design and implementation of a

software meant to support wind turbine planning process. The software is an integration

of three major components: Unity, geographic information system (GIS) and sound

model. The software is aimed at the general public. Rafiee and others argue that the

easy-to-use interface of the software allows contribution from users with differing tech-

nical backgrounds. They add that that interactivity provided by Unity has a potential to

attract contribution from younger citizens as well.

Wang and others [2012] cover their approach and implementation of the Virtual As-

tronaut (VA) visualization environment built on Unity. Wang and others describe the

purpose of the project was to support the scientific visualization of multiple-mission

data from Mars. The VA allows the user to explore a virtual environment created with

this data.

-9-

4.3 Engineering and information sciences

The three studies in the engineering and information sciences use Unity mainly for sim-

ulation of environment phenomena and mechanical devices, including the relevant user

interactions.

Klein [2016] studied the feasibility of using visual pre-processing on heat emission

data from cars using cellular automata for simulation and Unity for visualization. Klein

describes the objective of the study to find out how domain knowledge can help reduce

data and thus increase performance. Klein reported data reduction rate of 90% in

model/file size without loss of visual quality using this approach.

Nguyen and others [2017] examine the use of consumer-level haptic devices as an

affordable training solution for medical-based, surgical skills development. They de-

velop a serious game in VR to simulate surgical bone drilling using Unity.

Polcar and others [2017] developed an elevator simulation model using Unity. Pol-

car and others then evaluated the model in terms of accuracy and suitability as a tool for

creating an elevator simulation with a sequence dispatcher. They then compared the

model to discrete event simulation (DES) tools that are usually used in industrial pro-

cesses and discussed the advantages, disadvantages and limits of using such a model.

5 Advantages and challenges of Unity
This section introduces advantages and challenges of using Unity in academic projects

collected from the case studies. Most studies did not explicitly mention advantages or

challenges. Thus, data collection required interpretation. There were three ways the case

studies addressed the advantages and challenges. Firstly, some studies clearly explained

their experiences with Unity, usually as a list of advantages and challenges. These stud-

ies required very little interpretation and the information could be used as-is. Secondly,

most studies explained the reasons why Unity was chosen for the case study. The reas-

ons were interpreted as advantages of Unity. Thirdly, some studies had remarks towards

some parts or features of Unity that could be interpreted as positive or negative feed-

back. These were interpreted as advantages and challenges, respectively.

5.1 Advantages

The case studies shared some common themes in their advantages. This allowed cat-

egorisation. Table 4 shows which advantage categories are applicable to each case

study. The next sections will provide more details on the different categories.

-10-

Accessib-
ility and
licensing

Built-in
features

Cross-
Platform
deploy-
ment

External
assets &
plugins

File
format
support

Scripting VR cap-
abilities

Buyuksalih
et al. [2017]

x (x) x x x

Fredrick
[2014]

x x x

Klein
[2016]

x x x

Laksono &
Aditya
[2019]

x x x x

Nakano et
al. [2016]

x (x) x x x x

Nguyen et
al. [2017]

x x x x

Polcar et al.
[2017]

x x x

Rafiee et al.
[2017]

x (x) x x

Ratamero
et al. [2018]

x x x x x x

Wang et al.
[2012]

x x x x x

Wiebrands
et al. [2018]

(x) x (x)

Zhang et al.
[2019]

x (x) x (x) x

Table 4: Advantage categories interpreted from case studies. ‘x’ means the case study

found the advantage, ‘(x)’ means the advantage was not mentioned in-text but can be in-

terpreted in other ways (e.g. context), and empty cell means the study did find advant-

ages in that category.

11

5.1.1 Accessibility and licensing

This category combines attributes related to the accessibility, usability, cost and licens-

ing of Unity. As seen in Table 4, at least one of these attributes was commented on in

most sources. Fredrick [2014] states that Unity was chosen for the facts that Unity is

free for academic use and because of accessibility of the game engine. Nakano and oth-

ers [2016] reason that since Unity’s personal license is free, it is an attractive option for

scientists to incorporate into their research. Rafiee and others [2017] state that they use

the personal license. Polcar and others [2017] describe Unity as a cheaper alternative

compared to using traditional discrete-event simulation tools in elevator simulations. It

can be assumed that Polcar and others refer to Unity’s licensing as mentioned by Fre-

drick and Nakano and others when discussing the cost of Unity.

Several studies commended Unity’s usability. Nguyen and others [2017] state that

they were able to use Unity for rapid prototyping in their study. This is echoed by

Ratamero and others [2018] who state that, as a game engine, Unity allows them to im-

plement ideas quickly and easily. On the same note, Klein [2016] concludes that game

engines provide powerful tools to easily construct urban scenes and provide first person

exploration techniques for multidimensional data. Polcar and others [2017] reason that

knowledge of C# and basic overview of Unity’s scripting API were enough to create the

model used in their study. Wang and others [2012] state that they found it easy and fast

to implement functions with Unity.

Unity’s learning resources were commented on by two studies. Buyuksalih and oth-

ers [2017] state that Unity has numerous video tutorials and examples that help de-

velopers get familiar with the Unity development process, while Zhang and others

[2019] state Unity’s ample online resources as one of the reasons for choosing Unity for

their project.

5.1.2 Built-in features

This category focuses on the built-in features of Unity. These include the general game

engine components such as graphics, audio, scene-construction, as well as Unity’s ed-

itor features. It can be safely assumed that all studies in this literature review used them

to some extent, even if not directly mentioned. For example, Klein [2016] states that

Unity engine was chosen for visualization because of the several built-in functions that

support urban heat island exploration and multifaceted scene construction. Ratamero

and others [2018] found that Unity’s built-in features allow people without program-

ming experience to develop their ideas with minimal training.

12

The UI systems that are included with Unity were mentioned in two studies. Lak-

sono and Aditya [2019] built menus with Unity UI components, and added scripts to

control their interactions. Wiebrands and others [2018], using standard Unity UI com-

ponents with mouse pointer input, built a UI designed to work on both flat screen mon-

itors and in stereo on large screen cylindrical displays.

The graphical features of Unity received some praise. Buyuksalih and others [2017]

praised the engine’s visualization and lighting of 3D objects arguing it as an advantage

in modelling 3D spatial geometry. Polcar and others [2017] noted that simulations made

with Unity can be made to look photorealistic. They also argued that Unity can reach

much more realistic simulation than abstract DES tools. Laksono and Aditya [2019]

also see game engines, including Unity, as an effective way to provide simulated envir-

onments.

Ratamero and others [2018] noted that Unity allowed them to attach colliders and

rigid-body physics to protein objects. This allowed them to simulate virtual mass and

thus deepen the physical reality simulation to the user.

The appreciation for other features of Unity were little more scattered. Zhang and

others [2019], and Nakano and others [2016] mentioned Unity’s virtual reality capabilit-

ies as a major advantage.

5.1.3 Cross-platform deployment

Five studies reported having built their software on more than one platform. Buyuksalih

and others [2017] state that the ability to build Unity software for Android is a major

benefit. The ability to run Unity software in a web browser was especially popular in the

studies. Fredrick [2014], Laksono and Aditya [2019], Rafiee and others [2017], and

Wang and others [2012] all report having, in addition to a Windows version, built a ver-

sion of the software for deployment on the web either using the Unity web player or

WebGL. Laksono and Aditya [2019], and Rafiee and others [2017] report having built a

mobile version of their software as well.

5.1.4 External assets and plug-ins

The use of external assets, plug-ins and libraries was reported in six studies. However,

none of the studies used similar or comparable external assets. This is most likely ex-

plained by the major differences in fields of research. This indicates that Unity’s asset

ecosystem is quite comprehensive.

5.1.5 Scripting

Scripting was a commonly discussed topic in the case studies: the vast majority of pa-

pers at least mentioned it. One clear exception is the study by Fredrick [2014], whose

project description didn’t imply scripting. Some studies explicitly reported use cases for

13

scripting. For example, Laksono and Aditya [2019] used C# scripts for camera naviga-

tion, player movements, as well as user interfaces and their interactions.

The object-oriented nature of C# was commented on in two studies [Zhang et al.,

2019; Polcar et al., 2017]. Polcar and others [2017] argue that object-oriented program-

ming helps them make their simulation project agent based and further allows the aim

of the simulation to be changed easily.

Nearly all projects used C# for scripting, but some alternatives were mentioned.

Buyuksalih and others [2017] imply using UnityScript and mention Boo and C# as al-

ternatives, while Nakano and others [2016] mention just JavaScript as an alternative to

C#. UnityScript is derived from JavaScript, and was called JavaScript in the Unity ed-

itor [Fine, 2017]. Further, Unity has dropped support for UnityScript and Boo after

these studies were published, leaving only C# [Fine, 2017].

5.1.6 VR-capabilities

Three studies that chose Unity used it to develop VR-applications. Nakano and others

[2016] chose Unity for it’s support for the Oculus interface. Zhang and others [2019]

chose Oculus products for their software implementation as well. Ratamero and others

[2018] chose Unity because of its support for the HTC Vive headset and for providing

standard, easy to use, VR features.

All studies discussed in this section belong to the field of bioinformatics, which

indicates that the field is experimenting with new methods of visualisation. Although

not quite VR, Wiebrands and others [2018], also a bioinformatics visualisation project,

introduced new molecular data visualisation method with the HIVE Cylinder display.

5.2 Challenges

The challenges interpreted from the studies had less common themes. Similarly as in

Section 5.1., Table 5 shows the case studies and challenge categories, details of which

will be discussed in the following sections.

14

File format
support

Documentation
and support Performance Coordinate system

Buyuksalih et
al. [2017] x x x x

Laksono &
Aditya [2019] x x

Nakano et al.
[2016] x (x)

Polcar et al.
[2017] x

Ratamero et
al. [2018] x

Wang et al.
[2012] x x

Wiebrands et
al. [2018] x

Table 5: Challenge categories interpreted from case studies. This table can be read the

same way as Table 4 in Section 5.1.

5.2.1 File format support

Different file formats can be used to save different kinds of data more efficiently. Same

kind of data can have multiple different file formats, such as files describing 3D models.

Sometimes software that use same kind of data cannot read the same file formats. Fortu-

nately files can be converted from one format to another. However, this sometimes re-

quires more work and the use of 3rd party software from the user.

Unity’s 3D file format support was mentioned in a few case studies. All case studies

mentioning file formats reported having to do file conversions to import their 3D files to

Unity. Buyuksalih and others [2017] and Laksono & Aditya [2019] report converting

GIS format files, such as Shapefile among others, to FBX format to import them to

Unity. Buyuksalih and others [2017] report loss of semantic data during the conversion

process, while Laksono & Aditya report having done data editing in addition to the con-

version process. Nakano and others [2016] report converting Wavefront .obj and .mtl

files to FBX files. Ratamero and others [2018] report converting PDB format files to

OBJ files to import them to Unity and comment that importing 3D models to Unity

while keeping correct colours can be tricky. Wang and others [2012] report using tools

15

to convert 3D files produced by their tools to FBX format and creating a customized

code interface for their use in Unity.

Unity supports model file formats from multiple different software, mainly common

modelling programs [Unity 2021d]. The file format conversions discussed before were

done on file formats commonly used in specialized applications, such as GIS files and

molecular data files. These file formats likely won’t see native support in Unity due to

their small user base among Unity users.

5.2.2 Documentation and support

Documentation is crucial in software development because it works as the user manual

on using a specific technology. Tutorials and sample projects help expand the docu-

mentation and make it easier to understand. These factors were discussed in a few case

studies.

Buyuksalih and others [2017] state that most of Unity’s documentation is applicable

only for Unity’s designed purpose: game development. Since their case study was on

3D visualization of spatial objects they found that manuals, tutorials and sample pro-

jects made for Unity had limited use for their project. Buyuksalih and others consider

Unity a very specialized tool for 3D visualisation with various limitations and draw-

backs. They argue that this contributes to the limited number of users using Unity for

this purpose and thus explains their experience of limited relevant documentation and

support.

As virtual reality projects, the case studies by Zhang and others [2019] and Nakano

and others [2016] both report a different experience in regards to documentation. Zhang

and others [2019] report that they chose Unity over Unreal Engine because Unity has

ample online resources. Online resources here most likely refer to the aforementioned

documentation and tutorials. Nakano and others [2016] argue that Unity is not designed

with a specific game in mind providing them with a “clean slate” onto which to build

their simulation. They compare Unity to Unreal Engine, the latter they argue is designed

with first-person shooters in mind.

5.2.3 Performance

Some studies did not find Unity’s performance adequate. Buyuksalih and others [2017]

argued that, at least from a graphical point of view, the Unreal engine performs better

than Unity.

Wiebrands and others [2018] reported degrading performance when the number of

active objects reached tens of thousands. Unity implemented GPU instancing during the

development of the project but this did not solve the performance problems. They had to

16

make some workarounds to improve the performance but this came at a cost of some

visualization quality.

Polcar and others [2017] concluded through testing that simulations running in

Unity cannot be sped up enough to be suitable for long term simulation runs. Unity ap-

plications can be sped up through scripts. However, this causes the application to de-

mand more computing resources form the host computer.

Laksono and Aditya [2019] reported that the performance of Unity 3D applications

in web browsers relies heavily on the internet capabilities and computer hardware of the

end-user. Poor internet connection caused significant loading times for the 3D visualisa-

tion. The cause of the slow loading time was found to be the 3D model that needed to be

downloaded on the end-user’s computer. Decimating the mesh in Blender resulted in

smaller model file size and faster loading time.

5.2.4 Coordinate system

Coordinate systems are found in all software that handle two or three dimensional data.

However, there may be differences in the implementation of the coordinate system

between different software, such as naming the coordinate axes.

Wang and others [2012] pointed out that Unity uses a coordinate system where X-

and Z-axes form the surface plane with Y-axis pointing up. They state that this is differ-

ent from the GIS field, where commonly X and Y form the surface plane and Z points

up. Buyuksalih and others [2017] reported coordinate system interoperability problems

with Unity and found no tools for coordinate conversions or transformations.

6 Conclusions
This systematic literature review explored Unity’s usage in visualization, simulation and

modelling in research. Unity is a development platform for creating 3D and 2D applica-

tions, most notably video games. The literature review included case studies that repor-

ted usage of Unity. As shown in this paper, Unity has a wide range of applications in

several areas of research such as bioinformatics visualization, architectural modelling

and engineering simulations.

This literature review analysed the case studies to find reports on the different ad-

vantages and challenges of using Unity. The most commonly reported advantages of

Unity were its accessibility, licensing and scripting support. Unity’s accessibility refers

to the Unity editor’s ease of use which allowed for fast prototyping and development.

Unity’s licensing was deemed suitable for research projects, as it is low cost for re-

search projects and in some cases even free for individuals and educational institutions.

Unity’s scripting capabilities were used in nearly all of the included case studies.

17

Unity’s support for cross-platform deployment, virtual reality, as well as external assets

and plug-ins were also reported as important in some case studies.

The commonly reported challenges of Unity included restricted file format support,

lacking documentation for research purposes, and software performance. Unity only

supports select file formats, so case studies using different formats had to do file con-

versions. File conversions involve additional work and may cause loss of information

between formats. Unity’s documentation and support focused on game development,

which wasn’t always helpful in research projects. Finally, Unity’s performance was

deemed lacking in projects where the simulation had to be sped up or needed to render

large amounts of or highly detailed objects.

There were limitations to the way this thesis was implemented. The collection of

Unity’s advantages and disadvantages in research required significant amount of inter-

pretation of qualitative data. This is even more significant when considering that the

case studies are very loosely related by topic. This might make it difficult to justify

comparison of collected data between different case studies. Fortunately comparisons

within the categories discussed in Section 4, especially within the Bioinformatics cat-

egory, is more feasible. However, the advantages and challenges found in this thesis,

when taken into account, could help in assessing usage of Unity for research projects. A

better way to collect data on Unity’s advantages and challenges could be, for example,

surveys, which would provide consistent and highly comparable data. This is something

for future studies to address, however.

To conclude, the systematic literature review answers the research question by

presenting relevant case studies from multiple research fields, and analysing and report-

ing their experiences with Unity. The results of this paper may be useful to projects

looking for a software based visualisation, simulation or modelling platform. The

presented advantages and disadvantages should be considered when choosing a software

framework in the project planning phase.

References
Azarakhsh Rafiee, Pim Van der Male, Eduardo Dias, and Henk Scholten. 2017.
Developing a wind turbine planning platform: Integration of “sound propagation
model–GIS-game engine” triplet. Environ. Model. Softw. 95, (2017), 326–343.
DOI:https://doi.org/10.1016/j.envsoft.2017.06.019

Bernhard Klein. 2016. Managing the Scalability of Visual Exploration Using Game
Engines to Analyse UHI Scenarios. In Procedia Engineering 169, Elsevier Ltd, 272–
279. DOI:https://doi.org/10.1016/j.proeng.2016.10.033

https://doi.org/10.1016/j.envsoft.2017.06.019

18

C. Masato Nakano, Erick Moen, Hye Suk Byun, Heng Ma, Bradley Newman,
Alexander McDowell, Tao Wei, and Mohamed Y. El-Naggar. 2016. IBET: Immersive
visualization of biological electron-transfer dynamics. J. Mol. Graph. Model. 65, (April
2016), 94–99. DOI:https://doi.org/10.1016/j.jmgm.2016.02.009

Dany Laksono and Trias Aditya. 2019. Utilizing a game engine for interactive 3D
topographic data visualization. ISPRS Int. J. Geo-Information 8, 8, Article 361 (August
2019), 18 pages. DOI:https://doi.org/10.3390/ijgi8080361

David Fredrick. 2014. Time.deltaTime: the vicissitudes of presence in visualizing
Roman houses with game engine technology. AI Soc. 29, 4 (October 2014), 461–472.
DOI: https://doi.org/10.1007/s00146-013-0488-5

Erick Martins Ratamero, Dom Bellini, Christopher G. Dowson, and Rudolf A. Römer.
2018. Touching proteins with virtual bare hands: Visualizing protein–drug complexes
and their dynamics in self-made virtual reality using gaming hardware. J. Comput.
Aided. Mol. Des. 32, 6 (June 2018), 703–709. DOI:https://doi.org/10.1007/s10822-018-
0123-0

I. Buyuksalih, S. Bayburt, G. Buyuksalih, A. P. Baskaraca, H. Karim, and A. A.
Rahman. 2017. 3D modelling and visualization based on the Unity game engine –
advantages and challenges. In ISPRS Annals of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, Copernicus GmbH, 161–166.
DOI:https://doi.org/10.5194/isprs-annals-IV-4-W4-161-2017

Jimmy F. Zhang, Alex R. Paciorkowski, Paul A. Craig, and Feng Cui. 2019. BioVR: A
platform for virtual reality assisted biological data integration and visualization. BMC
Bioinformatics 20, 1 (February 2019), 78–88. DOI:https://doi.org/10.1186/s12859-019-
2666-z

Jiri Polcar, Petr Horejsi, Pavel Kopecek, and Muhammad Latif. 2017. Using unity3D as
an elevator simulation tool. In Annals of DAAAM and Proceedings of the International
DAAAM Symposium, Danube Adria Association for Automation and Manufacturing,
DAAAM, 517–522. DOI:https://doi.org/10.2507/28th.daaam.proceedings.073

Jue Wang, Keith Bennett, and Edward Guinness. 2012. Virtual Astronaut for Scientific
Visualization—A Prototype for Santa Maria Crater on Mars. Futur. Internet 4, 4
(December 2012), 1049–1068. DOI:https://doi.org/10.3390/fi4041049

Michael Wiebrands, Chris J. Malajczuk, Andrew J. Woods, Andrew L. Rohl, and
Ricardo L. Mancera. 2018. Molecular Dynamics Visualization (MDV): Stereoscopic 3D
Display of Biomolecular Structure and Interactions Using the Unity Game Engine. J.
Integr. Bioinform. 15, 2, Article 20180010 (June 2018), 8 pages.
DOI:https://doi.org/10.1515/jib-2018-0010

Minh Nguyen, Mohammed Melaisi, Brent Cowan, Alvaro Joffre Uribe Quevedo, and
Bill Kapralos. 2017. Low-end haptic devices for knee bone drilling in a serious game.
World J. Sci. Technol. Sustain. Dev. 14, 2/3 (April 2017), 241–253.
DOI:https://doi.org/10.1108/wjstsd-07-2016-0047

https://doi.org/10.1108/wjstsd-07-2016-0047
https://doi.org/10.1515/jib-2018-0010
https://doi.org/10.3390/fi4041049
https://doi.org/10.2507/28th.daaam.proceedings.073
https://doi.org/10.1186/s12859-019-2666-z
https://doi.org/10.1186/s12859-019-2666-z
https://doi.org/10.5194/isprs-annals-IV-4-W4-161-2017
https://doi.org/10.1007/s10822-018-0123-0
https://doi.org/10.1007/s10822-018-0123-0
https://doi.org/10.1007/s00146-013-0488-5
https://doi.org/10.3390/ijgi8080361
https://doi.org/10.1016/j.jmgm.2016.02.009

19

Richard Fine. 2017. UnityScript’s long ride off into the sunset. Retrieved from
https://blogs.unity3d.com/2017/08/11/unityscripts-long-ride-off-into-the-sunset/ on 19.2.2021.

Unity Technologies. 2021a. Editor. Retrieved from https://unity3d.com/unity/editor on
14.2.2021.

Unity Technologies. 2021b. Public relations. Retrieved from https://unity3d.com/public-
relations on 14.2.2021.

Unity Technologies. 2021c. Unity. Retrieved from http://unity.com on 14.2.2021.

Unity Technologies. 2021d. Manual. Retrieved from
https://docs.unity3d.com/Manual/index.html on 14.2.2021.

Unity Technologies. 2021e. Scripting API. Retrieved from
https://docs.unity3d.com/ScriptReference/index.html on 14.2.2021.

Unity Technologies. 2021f. Compare plans. Retrieved from
https://store.unity.com/compare-plans?currency=USD on 14.2.2021.

Unity Technologies. 2021g. The Unity License Grant Program. Retrieved from
https://unity.com/education/license-grant-program on 14.2.2021.

Unity Technologies. 2021h. Frequently asked questions. Retrieved from
https://unity3d.com/unity/faq?_ga=2.5998074.838570682.1611672169-
1982909119.1608186040 on 14.2.2021.

Unity Technologies. 2021i. Unity Terms of Service. Retrieved from
https://unity3d.com/legal/terms-of-service on 14.2.2021.

Unity Technologies. 2021j. Unity Asset Store. Retrieved from
https://assetstore.unity.com/ on 4.7.2021

Unreal engine. 2021. Unreal Engine. Epic games, Inc. Retrieved from
https://www.unrealengine.com/en-US/ on 14.2.2021.

https://www.unrealengine.com/en-US/
https://assetstore.unity.com/
https://unity3d.com/legal/terms-of-service
https://unity3d.com/unity/faq?_ga=2.5998074.838570682.1611672169-1982909119.1608186040
https://unity3d.com/unity/faq?_ga=2.5998074.838570682.1611672169-1982909119.1608186040
https://unity.com/education/license-grant-program
https://store.unity.com/compare-plans?currency=USD
https://store.unity.com/compare-plans?currency=USD
https://docs.unity3d.com/ScriptReference/index.html
https://docs.unity3d.com/Manual/index.html
http://unity.com/
https://unity3d.com/public-relations
https://unity3d.com/public-relations
https://unity3d.com/unity/editor
https://blogs.unity3d.com/2017/08/11/unityscripts-long-ride-off-into-the-sunset/

