'D Tampereen yliopisto

Topi Nieminen

UNITY GAME ENGINE IN VISUALIZA-
TION, SIMULATION AND MODELLING

Faculty of Information Technology and Communication Sciences
Bachelor’s thesis
July 2021

ABSTRACT

Topi Nieminen: Unity game engine in visualization, simulation and modelling
Bachelor’s thesis

Tampere University

Bachelor's Degree Programme in Computer Sciences

July 2021

Many software projects include different visualisation, simulation and modelling tech-
niques. These can be used to represent data in human-comprehensible form, allow test-
ing in simulations, and model complex or large objects in virtual environments to help
design. Many academic research projects require these techniques as well. Game en-
gines are software frameworks that implement these features to speed up development.
This thesis investigates the usability of the Unity game engine for research projects.
This is done via a systematic literature review on case studies that use Unity in their
projects. The thesis found that Unity can be used in a wide variety of research fields and
there were some common advantages and challenges of using Unity in the case studies.
The most common advantages of Unity were its ease of use, licensing and scripting sup-
port, while challenges included the need of file format conversions, limited documenta-

tion for research projects and lacking simulation performance.

Keywords: Unity, Unity3D, game engine, visualization, simulation, modelling, virtual

reality

Taman julkaisun alkuperdisyys on tarkastettu Turnitin OriginalityCheck —ohjelmalla.

-ii-

TIIVISTELMA

Topi Nieminen: Unity pelimoottori visualisoinnissa, simuloinnissa ja mallintamisessa
Kandidaatintutkielma

Tampereen yliopisto

Tietojenkasittelytieteiden tutkinto-ohjelma

Heindkuu 2021

Pelimoottorit ovat ohjelmistokehyksid, jotka on rakennettu edesauttamaan videopelien kehittamista.
Pelimoottori yleisesti toteuttaa muun muassa tietokonegrafiikoiden piirtdmisen naytolle, fysiikkasimulaa-
tion sekd kommunikaation laitteiston ja kayttojarjestelmén kanssa. Pelimoottori taten helpottaa ja nopeut-
taa videopelin kehittdjan tyotd, kun tdma voi keskittyd enemmén itse pelin toteuttamiseen. Pelimoottorin
tarjoamat hyodyt eivét kuitenkaan rajoitu yksistddn videopelien kehitykseen, vaan niistd voi olla hyé&tya
muissakin sovelluskohteissa. Tamén tyon tarkoituksena oli selvittdd, miten Unity, suosittu pelimoottori,
soveltuu visualisointiin, simulointiin ja mallinnukseen akateemisessa kontekstissa.

Ty0 toteutettiin systemaattisena kirjallisuuskatsauksena akateemisiin tapaustutkimuksiin. Avainsa-
noista muodostettu kysely lahetettiin kolmeen akateemiseen tietokantaan, joiden tuloksista saatiin 16 ty6n
aiheeseen liittyvdd tapaustutkimusta. Tapaustutkimuksia rajattiin vield kolmella kriteerilld: tapaustutki-
muksen tuli olla kirjoitettu englannin kielelld, tapaustutkimuksen piti kuvata visualisointi-, simulointi- tai
mallinnusprojektia, ja tapaustutkimuksen projektin tuli perustua suurilta osin Unity-pelimoottorin kayt-
toon. Tama pienensi kirjallisuuskatsauksen joukkoa lopulliseen 12 tapaustutkimukseen.

Tyon tulokset osoittavat, ettd Unity on kdyttokelpoinen usealla tieteenalalla: kirjallisuuskatsaukseen
sisdltyi tutkimuksia bioinformatiikan-, tekniikan-, informaatiotieteiden- seké arkkitehtuurin ja ymparisto-
suunnittelun aloilta. Tapaustutkimuksista etsittiin ja analysoitiin kommentteja Unityn kayttokelpoisuudes-
ta, jotka voitiin luokitella hyotyihin ja haasteisiin. Yleisimmat hyodyt liittyivdt muun muassa Unityn help-
pokéyttoisyyteen, lisensointimalliin ja ohjelmointirajapintaan. Yleisimpid haasteita olivat Unityn rajoittu-
nut tiedostomuototuki, ldhes yksinomaan videopelikehitykseen keskittyvd dokumentaatio ja kehittdjayh-
teiso, seka tiettyihin kayttokohteisiin riittdméton suorituskyky.

Vihiten haasteita Unityn kéyttokelpoisuudessa oli mallinnukseen liittyvissé tapaustutkimuksissa, joi-
hin siséltyi padasiassa arkkitehtuurin ja ympéristosuunnittelun alojen tutkimukset. Nama haasteet liittyivét
pddasiassa tiedostomuototukeen ja mallinnustytkalujen koordinaatistoon. Visualisointiin liittyvissa tutki-
muksissa oli jonkin verran samoja haasteita kuin mallinnuksessa, mutta niiden lisdksi osa projekteista
kohtasi suorituskykyongelmia. Eniten haasteita Unityn suorituskyky toi projekteihin, jotka ajoivat simu-
laatioita. Kaiken kaikkiaan Unity oli kayttokelpoinen ldhes kaikissa tapaustutkimuksissa, tai tarjosi aina-

kin huomionarvoisen, joskin rajoittuneen, vaihtoehdon joidenkin tieteenalojen tavanomaisille tyokaluille.

.Avainsanat: Unity, Unity3D, pelimoottori, visualisointi, simulointi, mallintaminen

-iii-

1 INEFOAUCHION. .. oveiieienneissaresseessanossesssssossssssssossssssassssssssssossssssasosssssssssssssssssssassssssassssssans 1
2 Research method.........iiieeiinneiennniennnienneicnsniossasiossasesssasesssasssssasssssasssssssssssssssssssesses 1
2.1 Data COIBCHION. ...ccuveeriereieeieeeteeteeete et este et estessteesseeeseesssesseesssassseesssesssssessnns 2

3 UILY .coorueiessnnncssnnecssanesssanssssansssssnsssasssssasssssasssssasssssasssssassssssse 4
3.1 GeNETAl OVEIVIEWeiiiiiiiiiieieeiteete ettt ettt ettt et et et s b e st e e be e sanesbee e 4

3.2 WOrkflow and @COSYSLEIML.......cceuiriuiirieriienieeiteeiteeie ettt e e saee e s sabe e e s 4

3.3 LICENSINE. cceeuietieiieiiiieeeettee ettt ettt e ettt e e st e e s e sast e e e s aanee e e e s e e eesnsssssnaeeeeeeees 5

4 Case Study CategOTiZatiON.......ccovuieeersserosesssarosessssrsssssssass 6
4.1 BiOINfOITNALICS. .. veeiuieiiieiieeiteceeeie ettt ete e e s e e steesbeebeessaeesbeeessaeeesnsneesnnns 7

4.2 Architecture and environmental modelling...........cccccoovieriiiniiniiiiiinniieeeieeee 8

4.3 Engineering and information SCIENCES...........cceceeruerrieniieenienieeeeeieeteeie e 9

5 Advantages and challenges of Unity.........cccoceeverrecsuicsensecsnnssenseecseecseccssseesssncssneesanees 9
5.1 AdVANTAZES.eeiiuieeiiieeeiieenieeertteesteeesteeesteesstteessseeessaesssaesssseesssssrsaeesenssssraaeeas 9
5.1.1 Accessibility and liCeNSING......c.ovuiiiiiii 11

5.1.2 BUIlt-in fEAtUIES... oo 11

5.1.3 Cross-platform deployment.......ccooiiiiiii 12

5.1.4 External assets and plug-inS.........ccooiiiiiiiiiiiii e 12

o I T Y 1] o Ve TP 12

5.1.6 VR-Capabiliti@s.ooouuii e 13

5.2 CRallEN@ES......coeueiiiiieieiiteeee ettt ettt ettt st e st e e s sanae e 13
5.2.1 File format sUpPOrt. ..o 14

5.2.2 Documentation and SUPPOIt.......ccuuiiiiiiiiiei e 15

5. 2.3 P fOIMANCE. .. e 15

5.2.4 Coordinate SYSteM.. ... i 16

6 CONCIUSIONS.....cconuiineinninsersssiesssnsssissssssssnesssssssssssssssssesses 16

RO Y CIICES. coeeeeeeeeeeeeeeeeeeeeeeeeesesesesssesesesesssssssesesssssssssssssssssssssssssssssesssssssssesssssssssssssssssssssssss 17

1 Introduction

Visualisation, simulation and modelling techniques are required in many software pro-
jects. Visualisation techniques allow representing the underlying software processes in
human-comprehensible form, while simulations allow imitating the real world in differ-
ent ways. Complex objects or large cities can be modelled in a virtual environment to
facilitate better design and planning. Academic research takes use of these techniques as
well: data must be visualized, experiments can be done in simulations that sometimes
take place in a carefully modelled virtual environment. Many applications and software
frameworks have been developed to implement these techniques. One such class of soft-
ware are video game engines.

Video game engines are software frameworks that have been created to support
video game development. They often implement software features required in video
games, such as graphics rendering, physics simulation, and simple modelling tools usu-
ally in the form of a level editor. Having these features already implemented simplifies
the development process allowing the developer to focus on features specific to the pro-
ject at hand. Since game engine features are not required only in video games, they
could be used for other projects, such as research.

This thesis aims, through the methods of a literature review, to investigate the ad-
vantages and challenges of using a video game engine in academic projects. The game
engine chosen for this is Unity, which is a popular game engine developed by Unity
Technologies. Section 2 introduces the research and data collection methods used, as
well as an overview of the case studies reviewed in this thesis. Section 3 provides an
overview of Unity as a development tool, its software ecosystem and licensing. Section
4 expands on Section 2 by categorizing the studies and providing small synopses for
each case study. Section 5 categorises and discusses the different advantages and chal-
lenges of using Unity in research projects, as found in the case studies. Finally, Section
6 discusses the results and some of the limitations of this thesis.

2 Research method

The research method used in this thesis is systematic literature review. Systematic liter-
ature reviews are a type of literature review that collects secondary data from other stud-
ies using systematic and replicable methods [Armstrong 2011]. Systematic reviews for-
mulate research questions to identify relevant studies. The initial research question for
this thesis was of form ”Usage of the Unity game engine outside video game develop-
ment”. The data was to be collected from both academic and non-academic sources.

However, the initial search results indicated that Unity is widely used in academia, spe-

cifically in visualization, simulation, and modelling. This lead to the current form of the

research question, "Unity game engine in visualization, simulation, and modelling”.

2.1 Data collection

The material for this literature review was searched for and collected from three
sources: ProQuest, ScienceDirect and Tampere University’s ANDOR search engine.
The following search query was used for all the databases: (”Unity” OR *Unity3D” OR
”Unity game engine” OR “game engine”) AND (”Visualization” OR ”Simulation”).
The searches were done on 23.9.2019.

The databases were set to sort according to relevancy, and material was collected
from first-page results only to keep the scope of this thesis restricted. Three rules were
followed when evaluating relevancy: (1) the material must be written in English, (2) the
material must address the Unity game engine and (3) the material must describe a case
study on visualization, modelling or simulation done using Unity. Initially 16 docu-
ments were found relevant but this was later narrowed down to 12 using the criteria
mentioned earlier.

Table 1 lists all the case studies examined in this literature review. Included of each
case study are the authors, year, title and name of the publication. The differences in
publications show that usage of Unity was not limited to particular fields or type of re-
search. The oldest study is from the year 2012 and the latest ones from 2019. Studies
from 2017 to 2019 represent the majority. This could be explained either by the search
query favouring newer studies, the date of the search, or that Unity has simply become

more popular from 2017 onwards.

Author(s) Year Title Publication
Ismail Buyuksalih, Serdar Bayburt, 3D modelling and visualization based |ISPRS Annals of the Photogrammetry,
Gurcan Buyuksalih, A.P. Baskaraca, on the Unity game engine — advantages |Remote Sensing and Spatial
Hairi Karim, and Alias Rahman 2017 |and challenges Information Sciences
Time.deltaTime: the vicissitudes of Al & SOCIETY: Journal of
presence in visualizing Roman houses |Knowledge, Culture and
David Fredrick 2014 |with game engine technology Communications
Managing the scalability of visual
exploration using game engines to
Bernhard Klein 2016 |analyse UHI Scenarios Procedia Engineering
Utilizing A Game Engine for
Interactive 3D Topographic Data International Journal of Geo-
Dany Laksono and Trias Aditya 2019 Visualization Information
C. Masato Nakano, Erick Moen, Hye
Suk Byun, Heng Ma, Bradley Newman,
Alexander McDowell, Tao Wei, and iBET: Immersive visualization of Journal of Molecular Graphics and
Mohamed Y. El-Naggar 2016 |biological electron-transfer dynamics |Modelling
Minh Nguyen, Mohammed Melaisi,
Brent Cowan, Alvaro Joffre Uribe Low-end haptic devices for knee bone |World Journal of Science, Technology
Quevedo, and Bill Kapralos 2017 |drilling in a serious game and Sustainable Development
DAAAM International Symposium on
Jiri Polcar, Petr Horejsi, Pavel Using Unity3D as an Elevator Intelligent Manufacturing and
Kopecek, and Muhammad Latif 2017 |Simulation Tool Automation
Developing a wind turbine planning
platform: Integration of “sound
Azarakhsh Rafiee, Pim Van der Male, propagation modeleGIS-game engine”
Eduardo Dias, and Henk Scholten 2017 |triplet Environment Modelling & Software
Erick Ratamero, Dom Bellini,
Christopher Dowson, and Rudolf Touching proteins with virtual bare Journal of Computer-Aided Molecular
Romer 2018 |hands Design
Virtual Astronaut for Scientific
Jue Wang, Keith Bennett, and Edward Visualization — A Prototype for Santa
Guinness 2012 Maria Crater on Mars Future Internet
Molecular Dynamics Visualization
Michael Wiebrands, Chris Malajczuk, (MDV): Stereoscopic 3D Display of
Andrew Woods, Andrew Rohl, and Biomolecular Structure and Interactions
Ricardo Mancera 2018 |Using the Unity Game Engine Journal of Integrative Bioinformatics
BioVR: a platform for virtual reality
Jimmy Zhang, Alex Paciorkowski, Paul assisted biological data integration and
Craig, and Feng Cui 2019 |visualization BMC Bioinformatics

Table 1: Studies included in the systematic literature review.

3 Unity

3.1 General overview

File Edit Assets GameObject Component Window Help

< ;| E] :'i': ¥ = Center | @Local | & collab ~ | @ | Account - | [Layers - | [Default - |
= Hiél‘al‘ci‘vy ® = Scene € Game B Asset Store ~= O Inspector = |
| create | @rAll | Shaded |20 || @ || st -] oo | W | M| Gizmos - | @rAl

v €} sampleScene* -=
|, Main Camera
| Directional Light
L Plane
L/ Cube

i@ Project | [l Console - =
| Ereate - a) [& [%]* [#3]
v | /Favorites Assets
(01 Al Material
O All Models
(), all Prefabs

Scenes Scenes
» G Packages

‘Aute Generate Lighting On

Figure 1: Unity editor user interface (version 2019.3).

Unity applications are created using the Unity editor shown in Figure 1. The Unity ed-
itor is available to the main desktop operating systems, Windows, MacOS and Linux
(Ubuntu 16.04). Unity applications themselves can be deployed on desktop operating
systems mentioned before, as well as Android- and iOS- mobile operating systems,
PlayStation 4 and Xbox One consoles, and as a web application via WebGL. [Unity
Technologies, 2021d] The cross-platform nature of Unity allows sharing much source
code between the different platforms. This helps in saving costs when porting Unity ap-
plications to other platforms to increase customers or user base.

3.2 Workflow and ecosystem

Unity editor allows building applications using scenes. Scenes can include different 3D
models, textures, and application logic via scripts. The base building blocks in a scene
are called game objects. A game object can be thought of as a container that can hold
the different 3D models and other assets. A game object can be modified by adding
components to it. Components are most commonly scripts that alter the behaviour of the
game object. Examples of components are, for example, a RigidBody component that
simulates gravity on the game object, and the Collider component that lets the de-

veloper add collision detection to the game object. Multiple game objects and their com-

ponents can be combined into prefabs, which are reusable between different scenes, and
can be instantiated into the scene from scripts. [Unity Technologies, 2021d]

The developers can create scripts themselves using the C# programming language.
Developer-made scripts are the main way to add custom logic to the game or application
being developed. Unity uses the open-source .NET platform with scripting back-ends to
allow the usage of C# in Unity scripting [Unity Technologies, 2021d]. To enable the C#
scripts to communicate with the Unity engine they must inherit Unity’s built-in base
class, MonoBehaviour. MonoBehaviour provides various functions and attributes neces-
sary to interact with the engine.

Besides MonoBehaviour -derived scripts, developers can also include code created
outside Unity via plug-ins. The plug-ins can be further divided to Managed plug-ins and
Native plug-ins. Managed plug-ins are C# assemblies compiled outside Unity scripts.
However, they are accessible to the standard .NET tools that Unity uses to compile
scripts. Therefore their usage is similar to default Unity components. Native plug-ins
are platform-specific code libraries that can access features such as operating system
calls and third-party code that would otherwise be unavailable to Unity. Unity’s tools
have less access to these types of plug-ins, for example, when debugging code. [Unity
Technologies, 2021d]

Noteworthy aspects of Unity are the Unity Asset Store [Unity Technologies, 2021j]
and Package Manager [Unity Technologies. 2021d]. The asset store is a marketplace
where third parties can sell resources for application development or add-ons to the
Unity editor itself. Examples of development resources include assets such as 3D mod-
els, audio effects, scripts or templates, while editor add-ons add plug-ins and new tools
to the editor interface. Unity’s package manager can be used to download and install
packages similar to the asset store, such as tools. By default the package manager down-
loads packages from a repository managed by Unity Technologies but community re-

positories can be accessed with it as well [Unity Technologies. 2021d].

3.3 Licensing

Unity applications are royalty free software, and Unity Technologies does not charge
payments from software made using the editor [Unity Technologies, 2021h]. The cre-
ator of the software made with the Unity editor has all the intellectual, among other,
rights to the software [Unity Technologies, 2021i]. However, earning money by selling
the software made with the Unity editor has some conditions. Publishing software made
with Unity requires a license from Unity Technologies [Unity Technologies, 2021f].
Unity Technologies offer four tiers of licenses to users that are listed in Table 2. Each li-
cense has a price per user, also known as a seat, and revenue requirements for the em-
ploying organization. The most notable license here is the Unity personal license, which

is free for individuals and small teams earning less than $100 000 in the preceding 12
months [Unity Technologies, 2021f].

Name Price per seat Allowed revenue in last 12 months
Personal Free Less than $100 000

Plus $399 per year Less than $200 000

Pro $1800 per year More than $200 000

Enterprise $200 per month More than $200 000

Table 2: Unity license pricing tiers. Data from Unity Technologies [2021f].

In addition to the licences offered to for-profit organizations, Unity Technologies offers
a free Unity education license to not-for-profit academic institutions for uses such as
education and research. This license can also be used by students of the academic insti-
tution. This license must be applied for and must meet the qualification requirements for
the license program. These requirements differ by region. [Unity Technologies 2021g]

The Unity Education license appears the most suitable for research. The case studies
discussed in this systematic literature review mostly reported having used the personal
license, however. One explanation for this could be that the case studies were completed
when the licensing terms were different.

4 Case study categorization

This section introduces the case studies included in this systematic literature review via
providing outlines of the studies. The studies were grouped into three categories: Bioin-
formatics, Architecture and environmental modelling, and Engineering and information
sciences. The studies were categorised by comparing their subject matter, fields of study
and the academic publication they appeared in, such as a scientific journal or confer-
ence. Table 3 shows the result of the categorization.

Bioinformatics

Architecture and environ-
mental modelling

Engineering and informa-
tion sciences

Nakano and others [2016] | Buyuksalih and others Klein [2016]
[2017]
Ratamero and others [2018] | Fredrick [2013] Nguyen and others [2017]

Wiebrands and others

Laksono and Aditya [2019]

Polcar and others [2017]

[2018]

Zhang and others [2019] Rafiee and others [2017]

Wang and others [2012]

Table 3: Case studies categorized in three categories.

4.1 Bioinformatics

The Bioinformatics category contains studies related to the visualization, simulation and
modelling of biological data, such as proteins and other complex molecules.

Nakano and others [2016] present iBET, an extension to VizBET, a computational
framework to simulate and visualize electron-transfer dynamics in biological molecules.
They argue that visualization in 2D on traditional computer monitors, that VizBET of-
fers, severely limits user’s ability to understand complex, multidimensional electron-
transfer pathways. To provide a more accurate representation with enhanced depth per-
ception, they created iBET that allows visualization using virtual reality (VR). Nakano
and others [2016] describe procedures to export Visual Molecular Dynamics software
models into Unity and render them in VR to be used with a head-mounted display
(HMD). VR is a method of visualisation where graphics are rendered to a HMD to sim-
ulate the user being in a virtual environment.

Ratamero and others [2018] introduce a software pipeline that allows embedding
protein structures into VR programs using a combination of widely available software,
standard hardware and few custom-built scripts. The software pipeline uses Unity as the
programming and execution environment. The researchers argue that three-dimensional
models are more accessible and intuitive than 2D projections.

Wiebrands and others [2018] have developed a biomolecular visualization tool to be
used with HIVE Cylinder, a 3 meters high 180 degree cylindrical 3D screen at Curtin
University, Perth, Western Australia. Wiebrands and others explain that the HIVE Cyl-
inder is very similar to a HMD but supports audiences up to 50 people. They argue that
collaborative experiences with this system is easier than using multiple headsets.

Zhang and others [2019] present BioVR, a VR-assisted platform for visualisation
and analysis of DNA, RNA, and protein sequences and structures. The paper describes
the development of the project such as software design and user interface considera-
tions, and creation and integration of different software components. The project aims to

augment the field of bioinformatics in both analysis and visualization in virtual reality.

4.2 Architecture and environmental modelling

The studies belonging to this category describe projects that include, to an extent, ele-
ments from architecture and environmental modelling. These studies used different
technologies to help virtualize real-life environments and objects. The virtualized envir-
onments were then brought to Unity for further use.

Buyuksalih and others [2017] describe advantages and challenges of using Unity in
3D modelling and visualization of two projects: the solar energy estimation system and
underground utility mapping for Istanbul. The paper describes the development stages
of the projects and discusses advantages and limitations of 3D modelling in Unity.

Fredrick [2013] describes the creation of a virtual model of a Pompeian house at the
time of the eruption of Vesuvius. The house model was created using Unity by six un-
dergraduate students. The students had access to plans, drawings, photographs and other
documentation of the original house.

Laksono and Aditya [2019] explored the use of Unity for visualizing large-scale to-
pographic data. The data were from mixed sources of terrestrial laser scanner models
and topographic map data. The result was a multiplatform 3D visualization application
that allowed its users to explore 3D environments in first person view or from a top-
down view. The 3D visualization was build into WebGL and deployed to a web-server
to be used from a web browser.

Rafiee and others [2017] described a conceptual design and implementation of a
software meant to support wind turbine planning process. The software is an integration
of three major components: Unity, geographic information system (GIS) and sound
model. The software is aimed at the general public. Rafiee and others argue that the
easy-to-use interface of the software allows contribution from users with differing tech-
nical backgrounds. They add that that interactivity provided by Unity has a potential to
attract contribution from younger citizens as well.

Wang and others [2012] cover their approach and implementation of the Virtual As-
tronaut (VA) visualization environment built on Unity. Wang and others describe the
purpose of the project was to support the scientific visualization of multiple-mission
data from Mars. The VA allows the user to explore a virtual environment created with
this data.

4.3 Engineering and information sciences

The three studies in the engineering and information sciences use Unity mainly for sim-
ulation of environment phenomena and mechanical devices, including the relevant user
interactions.

Klein [2016] studied the feasibility of using visual pre-processing on heat emission
data from cars using cellular automata for simulation and Unity for visualization. Klein
describes the objective of the study to find out how domain knowledge can help reduce
data and thus increase performance. Klein reported data reduction rate of 90% in
model/file size without loss of visual quality using this approach.

Nguyen and others [2017] examine the use of consumer-level haptic devices as an
affordable training solution for medical-based, surgical skills development. They de-
velop a serious game in VR to simulate surgical bone drilling using Unity.

Polcar and others [2017] developed an elevator simulation model using Unity. Pol-
car and others then evaluated the model in terms of accuracy and suitability as a tool for
creating an elevator simulation with a sequence dispatcher. They then compared the
model to discrete event simulation (DES) tools that are usually used in industrial pro-
cesses and discussed the advantages, disadvantages and limits of using such a model.

5 Advantages and challenges of Unity

This section introduces advantages and challenges of using Unity in academic projects
collected from the case studies. Most studies did not explicitly mention advantages or
challenges. Thus, data collection required interpretation. There were three ways the case
studies addressed the advantages and challenges. Firstly, some studies clearly explained
their experiences with Unity, usually as a list of advantages and challenges. These stud-
ies required very little interpretation and the information could be used as-is. Secondly,
most studies explained the reasons why Unity was chosen for the case study. The reas-
ons were interpreted as advantages of Unity. Thirdly, some studies had remarks towards
some parts or features of Unity that could be interpreted as positive or negative feed-

back. These were interpreted as advantages and challenges, respectively.

5.1 Advantages
The case studies shared some common themes in their advantages. This allowed cat-
egorisation. Table 4 shows which advantage categories are applicable to each case

study. The next sections will provide more details on the different categories.

-10-

Accessib-| Built-in | Cross- | External | File |Scripting| VR cap-
ility and | features |Platform| assets & | format abilities
licensing deploy- | plugins | support
ment
Buyuksalih
etal. [2017]] * () X X X
Fredrick < < <
[2014]
Klein < < .
[2016]
Laksono &
Aditya X X X X
[2019]
Nakano et < (x) X . . .
al. [2016]
Nguyen et
al. [2017] X X X X
Polcar et al. < < «
[2017]
Rafiee et al. < x) < «
[2017]
Ratamero . . X . . X
et al. [2018]
Wang et al. < < < < <
[2012]
Wiebrands
et al. [2018] () x (x)
Zhang et al.
[2019] X x) X (x) X

Table 4: Advantage categories interpreted from case studies. ‘x’ means the case study

found the advantage, ‘(x)’ means the advantage was not mentioned in-text but can be in-

terpreted in other ways (e.g. context), and empty cell means the study did find advant-

ages in that category.

11

5.1.1 Accessibility and licensing

This category combines attributes related to the accessibility, usability, cost and licens-
ing of Unity. As seen in Table 4, at least one of these attributes was commented on in
most sources. Fredrick [2014] states that Unity was chosen for the facts that Unity is
free for academic use and because of accessibility of the game engine. Nakano and oth-
ers [2016] reason that since Unity’s personal license is free, it is an attractive option for
scientists to incorporate into their research. Rafiee and others [2017] state that they use
the personal license. Polcar and others [2017] describe Unity as a cheaper alternative
compared to using traditional discrete-event simulation tools in elevator simulations. It
can be assumed that Polcar and others refer to Unity’s licensing as mentioned by Fre-
drick and Nakano and others when discussing the cost of Unity.

Several studies commended Unity’s usability. Nguyen and others [2017] state that
they were able to use Unity for rapid prototyping in their study. This is echoed by
Ratamero and others [2018] who state that, as a game engine, Unity allows them to im-
plement ideas quickly and easily. On the same note, Klein [2016] concludes that game
engines provide powerful tools to easily construct urban scenes and provide first person
exploration techniques for multidimensional data. Polcar and others [2017] reason that
knowledge of C# and basic overview of Unity’s scripting API were enough to create the
model used in their study. Wang and others [2012] state that they found it easy and fast
to implement functions with Unity.

Unity’s learning resources were commented on by two studies. Buyuksalih and oth-
ers [2017] state that Unity has numerous video tutorials and examples that help de-
velopers get familiar with the Unity development process, while Zhang and others
[2019] state Unity’s ample online resources as one of the reasons for choosing Unity for

their project.
5.1.2 Built-in features

This category focuses on the built-in features of Unity. These include the general game
engine components such as graphics, audio, scene-construction, as well as Unity’s ed-
itor features. It can be safely assumed that all studies in this literature review used them
to some extent, even if not directly mentioned. For example, Klein [2016] states that
Unity engine was chosen for visualization because of the several built-in functions that
support urban heat island exploration and multifaceted scene construction. Ratamero
and others [2018] found that Unity’s built-in features allow people without program-

ming experience to develop their ideas with minimal training.

12

The UI systems that are included with Unity were mentioned in two studies. Lak-
sono and Aditya [2019] built menus with Unity Ul components, and added scripts to
control their interactions. Wiebrands and others [2018], using standard Unity Ul com-
ponents with mouse pointer input, built a UI designed to work on both flat screen mon-
itors and in stereo on large screen cylindrical displays.

The graphical features of Unity received some praise. Buyuksalih and others [2017]
praised the engine’s visualization and lighting of 3D objects arguing it as an advantage
in modelling 3D spatial geometry. Polcar and others [2017] noted that simulations made
with Unity can be made to look photorealistic. They also argued that Unity can reach
much more realistic simulation than abstract DES tools. Laksono and Aditya [2019]
also see game engines, including Unity, as an effective way to provide simulated envir-
onments.

Ratamero and others [2018] noted that Unity allowed them to attach colliders and
rigid-body physics to protein objects. This allowed them to simulate virtual mass and
thus deepen the physical reality simulation to the user.

The appreciation for other features of Unity were little more scattered. Zhang and
others [2019], and Nakano and others [2016] mentioned Unity’s virtual reality capabilit-

ies as a major advantage.
5.1.3 Cross-platform deployment

Five studies reported having built their software on more than one platform. Buyuksalih
and others [2017] state that the ability to build Unity software for Android is a major
benefit. The ability to run Unity software in a web browser was especially popular in the
studies. Fredrick [2014], Laksono and Aditya [2019], Rafiee and others [2017], and
Wang and others [2012] all report having, in addition to a Windows version, built a ver-
sion of the software for deployment on the web either using the Unity web player or
WebGL. Laksono and Aditya [2019], and Rafiee and others [2017] report having built a

mobile version of their software as well.
5.1.4 External assets and plug-ins

The use of external assets, plug-ins and libraries was reported in six studies. However,
none of the studies used similar or comparable external assets. This is most likely ex-
plained by the major differences in fields of research. This indicates that Unity’s asset

ecosystem is quite comprehensive.
5.1.5 Scripting

Scripting was a commonly discussed topic in the case studies: the vast majority of pa-
pers at least mentioned it. One clear exception is the study by Fredrick [2014], whose

project description didn’t imply scripting. Some studies explicitly reported use cases for

13

scripting. For example, Laksono and Aditya [2019] used C# scripts for camera naviga-
tion, player movements, as well as user interfaces and their interactions.

The object-oriented nature of C# was commented on in two studies [Zhang et al.,
2019; Polcar et al., 2017]. Polcar and others [2017] argue that object-oriented program-
ming helps them make their simulation project agent based and further allows the aim
of the simulation to be changed easily.

Nearly all projects used C# for scripting, but some alternatives were mentioned.
Buyuksalih and others [2017] imply using UnityScript and mention Boo and C# as al-
ternatives, while Nakano and others [2016] mention just JavaScript as an alternative to
C#. UnityScript is derived from JavaScript, and was called JavaScript in the Unity ed-
itor [Fine, 2017]. Further, Unity has dropped support for UnityScript and Boo after
these studies were published, leaving only C# [Fine, 2017].

5.1.6 VR-capabilities

Three studies that chose Unity used it to develop VR-applications. Nakano and others
[2016] chose Unity for it’s support for the Oculus interface. Zhang and others [2019]
chose Oculus products for their software implementation as well. Ratamero and others
[2018] chose Unity because of its support for the HTC Vive headset and for providing
standard, easy to use, VR features.

All studies discussed in this section belong to the field of bioinformatics, which
indicates that the field is experimenting with new methods of visualisation. Although
not quite VR, Wiebrands and others [2018], also a bioinformatics visualisation project,
introduced new molecular data visualisation method with the HIVE Cylinder display.

5.2 Challenges
The challenges interpreted from the studies had less common themes. Similarly as in
Section 5.1., Table 5 shows the case studies and challenge categories, details of which

will be discussed in the following sections.

14

File format |Documentation
support and support Performance Coordinate system
Buyuksalih et
al. [2017] X X X X
Laksono &
Aditya [2019] X X
Nakano et al.
[2016] X (x)
Polcar et al.
[2017] X
Ratamero et
al. [2018] X
Wang et al.
[2012] X X
Wiebrands et
al. [2018] X

Table 5: Challenge categories interpreted from case studies. This table can be read the

same way as Table 4 in Section 5.1.

5.2.1 File format support

Different file formats can be used to save different kinds of data more efficiently. Same
kind of data can have multiple different file formats, such as files describing 3D models.
Sometimes software that use same kind of data cannot read the same file formats. Fortu-
nately files can be converted from one format to another. However, this sometimes re-
quires more work and the use of 3" party software from the user.

Unity’s 3D file format support was mentioned in a few case studies. All case studies
mentioning file formats reported having to do file conversions to import their 3D files to
Unity. Buyuksalih and others [2017] and Laksono & Aditya [2019] report converting
GIS format files, such as Shapefile among others, to FBX format to import them to
Unity. Buyuksalih and others [2017] report loss of semantic data during the conversion
process, while Laksono & Aditya report having done data editing in addition to the con-
version process. Nakano and others [2016] report converting Wavefront .obj and .mtl
files to FBX files. Ratamero and others [2018] report converting PDB format files to
OBJ files to import them to Unity and comment that importing 3D models to Unity

while keeping correct colours can be tricky. Wang and others [2012] report using tools

15

to convert 3D files produced by their tools to FBX format and creating a customized
code interface for their use in Unity.

Unity supports model file formats from multiple different software, mainly common
modelling programs [Unity 2021d]. The file format conversions discussed before were
done on file formats commonly used in specialized applications, such as GIS files and
molecular data files. These file formats likely won’t see native support in Unity due to

their small user base among Unity users.
5.2.2 Documentation and support

Documentation is crucial in software development because it works as the user manual
on using a specific technology. Tutorials and sample projects help expand the docu-
mentation and make it easier to understand. These factors were discussed in a few case
studies.

Buyuksalih and others [2017] state that most of Unity’s documentation is applicable
only for Unity’s designed purpose: game development. Since their case study was on
3D visualization of spatial objects they found that manuals, tutorials and sample pro-
jects made for Unity had limited use for their project. Buyuksalih and others consider
Unity a very specialized tool for 3D visualisation with various limitations and draw-
backs. They argue that this contributes to the limited number of users using Unity for
this purpose and thus explains their experience of limited relevant documentation and
support.

As virtual reality projects, the case studies by Zhang and others [2019] and Nakano
and others [2016] both report a different experience in regards to documentation. Zhang
and others [2019] report that they chose Unity over Unreal Engine because Unity has
ample online resources. Online resources here most likely refer to the aforementioned
documentation and tutorials. Nakano and others [2016] argue that Unity is not designed
with a specific game in mind providing them with a “clean slate” onto which to build
their simulation. They compare Unity to Unreal Engine, the latter they argue is designed
with first-person shooters in mind.

5.2.3 Performance

Some studies did not find Unity’s performance adequate. Buyuksalih and others [2017]
argued that, at least from a graphical point of view, the Unreal engine performs better
than Unity.

Wiebrands and others [2018] reported degrading performance when the number of
active objects reached tens of thousands. Unity implemented GPU instancing during the

development of the project but this did not solve the performance problems. They had to

16

make some workarounds to improve the performance but this came at a cost of some
visualization quality.

Polcar and others [2017] concluded through testing that simulations running in
Unity cannot be sped up enough to be suitable for long term simulation runs. Unity ap-
plications can be sped up through scripts. However, this causes the application to de-
mand more computing resources form the host computer.

Laksono and Aditya [2019] reported that the performance of Unity 3D applications
in web browsers relies heavily on the internet capabilities and computer hardware of the
end-user. Poor internet connection caused significant loading times for the 3D visualisa-
tion. The cause of the slow loading time was found to be the 3D model that needed to be
downloaded on the end-user’s computer. Decimating the mesh in Blender resulted in

smaller model file size and faster loading time.
5.2.4 Coordinate system

Coordinate systems are found in all software that handle two or three dimensional data.
However, there may be differences in the implementation of the coordinate system
between different software, such as naming the coordinate axes.

Wang and others [2012] pointed out that Unity uses a coordinate system where X-
and Z-axes form the surface plane with Y-axis pointing up. They state that this is differ-
ent from the GIS field, where commonly X and Y form the surface plane and Z points
up. Buyuksalih and others [2017] reported coordinate system interoperability problems
with Unity and found no tools for coordinate conversions or transformations.

6 Conclusions

This systematic literature review explored Unity’s usage in visualization, simulation and
modelling in research. Unity is a development platform for creating 3D and 2D applica-
tions, most notably video games. The literature review included case studies that repor-
ted usage of Unity. As shown in this paper, Unity has a wide range of applications in
several areas of research such as bioinformatics visualization, architectural modelling
and engineering simulations.

This literature review analysed the case studies to find reports on the different ad-
vantages and challenges of using Unity. The most commonly reported advantages of
Unity were its accessibility, licensing and scripting support. Unity’s accessibility refers
to the Unity editor’s ease of use which allowed for fast prototyping and development.
Unity’s licensing was deemed suitable for research projects, as it is low cost for re-
search projects and in some cases even free for individuals and educational institutions.

Unity’s scripting capabilities were used in nearly all of the included case studies.

17

Unity’s support for cross-platform deployment, virtual reality, as well as external assets
and plug-ins were also reported as important in some case studies.

The commonly reported challenges of Unity included restricted file format support,
lacking documentation for research purposes, and software performance. Unity only
supports select file formats, so case studies using different formats had to do file con-
versions. File conversions involve additional work and may cause loss of information
between formats. Unity’s documentation and support focused on game development,
which wasn’t always helpful in research projects. Finally, Unity’s performance was
deemed lacking in projects where the simulation had to be sped up or needed to render
large amounts of or highly detailed objects.

There were limitations to the way this thesis was implemented. The collection of
Unity’s advantages and disadvantages in research required significant amount of inter-
pretation of qualitative data. This is even more significant when considering that the
case studies are very loosely related by topic. This might make it difficult to justify
comparison of collected data between different case studies. Fortunately comparisons
within the categories discussed in Section 4, especially within the Bioinformatics cat-
egory, is more feasible. However, the advantages and challenges found in this thesis,
when taken into account, could help in assessing usage of Unity for research projects. A
better way to collect data on Unity’s advantages and challenges could be, for example,
surveys, which would provide consistent and highly comparable data. This is something
for future studies to address, however.

To conclude, the systematic literature review answers the research question by
presenting relevant case studies from multiple research fields, and analysing and report-
ing their experiences with Unity. The results of this paper may be useful to projects
looking for a software based visualisation, simulation or modelling platform. The
presented advantages and disadvantages should be considered when choosing a software

framework in the project planning phase.

References

Azarakhsh Rafiee, Pim Van der Male, Eduardo Dias, and Henk Scholten. 2017.
Developing a wind turbine planning platform: Integration of “sound propagation
model-GIS-game engine” triplet. Environ. Model. Softw. 95, (2017), 326-343.
DOI:https://doi.org/10.1016/j.envsoft.2017.06.019

Bernhard Klein. 2016. Managing the Scalability of Visual Exploration Using Game
Engines to Analyse UHI Scenarios. In Procedia Engineering 169, Elsevier Ltd, 272—
279. DOI:https://doi.org/10.1016/j.proeng.2016.10.033

https://doi.org/10.1016/j.envsoft.2017.06.019

18

C. Masato Nakano, Erick Moen, Hye Suk Byun, Heng Ma, Bradley Newman,
Alexander McDowell, Tao Wei, and Mohamed Y. El-Naggar. 2016. IBET: Immersive
visualization of biological electron-transfer dynamics. J. Mol. Graph. Model. 65, (April
2016), 94-99. DOI:https://doi.org/10.1016/j.jmgm.2016.02.009

Dany Laksono and Trias Aditya. 2019. Utilizing a game engine for interactive 3D
topographic data visualization. ISPRS Int. J. Geo-Information 8, 8, Article 361 (August
2019), 18 pages. DOI:https://doi.org/10.3390/ijgi8080361

David Fredrick. 2014. Time.deltaTime: the vicissitudes of presence in visualizing
Roman houses with game engine technology. Al Soc. 29, 4 (October 2014), 461-472.
DOI: https://doi.org/10.1007/s00146-013-0488-5

Erick Martins Ratamero, Dom Bellini, Christopher G. Dowson, and Rudolf A. Rémer.
2018. Touching proteins with virtual bare hands: Visualizing protein—drug complexes
and their dynamics in self-made virtual reality using gaming hardware. J. Comput.
Aided. Mol. Des. 32, 6 (June 2018), 703—709. DOLI:https://doi.org/10.1007/s10822-018-
0123-0

I. Buyuksalih, S. Bayburt, G. Buyuksalih, A. P. Baskaraca, H. Karim, and A. A.
Rahman. 2017. 3D modelling and visualization based on the Unity game engine —
advantages and challenges. In ISPRS Annals of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, Copernicus GmbH, 161-166.
DOI:https://doi.org/10.5194/isprs-annals-1V-4-W4-161-2017

Jimmy F. Zhang, Alex R. Paciorkowski, Paul A. Craig, and Feng Cui. 2019. BioVR: A
platform for virtual reality assisted biological data integration and visualization. BMC
Bioinformatics 20, 1 (February 2019), 78-88. DOI:https://doi.org/10.1186/s12859-019-
2666-z

Jiri Polcar, Petr Horejsi, Pavel Kopecek, and Muhammad Latif. 2017. Using unity3D as
an elevator simulation tool. In Annals of DAAAM and Proceedings of the International
DAAAM Symposium, Danube Adria Association for Automation and Manufacturing,
DAAAM, 517-522. DOI:https://doi.org/10.2507/28th.daaam.proceedings.073

Jue Wang, Keith Bennett, and Edward Guinness. 2012. Virtual Astronaut for Scientific
Visualization—A Prototype for Santa Maria Crater on Mars. Futur. Internet 4, 4
(December 2012), 1049-1068. DOLI:https://doi.org/10.3390/fi4041049

Michael Wiebrands, Chris J. Malajczuk, Andrew J. Woods, Andrew L. Rohl, and
Ricardo L. Mancera. 2018. Molecular Dynamics Visualization (MDV): Stereoscopic 3D
Display of Biomolecular Structure and Interactions Using the Unity Game Engine. J.
Integr. Bioinform. 15, 2, Article 20180010 (June 2018), 8 pages.
DOLI:https://doi.org/10.1515/jib-2018-0010

Minh Nguyen, Mohammed Melaisi, Brent Cowan, Alvaro Joffre Uribe Quevedo, and
Bill Kapralos. 2017. Low-end haptic devices for knee bone drilling in a serious game.
World J. Sci. Technol. Sustain. Dev. 14, 2/3 (April 2017), 241-253.
DOI:https://doi.org/10.1108/wjstsd-07-2016-0047

https://doi.org/10.1108/wjstsd-07-2016-0047
https://doi.org/10.1515/jib-2018-0010
https://doi.org/10.3390/fi4041049
https://doi.org/10.2507/28th.daaam.proceedings.073
https://doi.org/10.1186/s12859-019-2666-z
https://doi.org/10.1186/s12859-019-2666-z
https://doi.org/10.5194/isprs-annals-IV-4-W4-161-2017
https://doi.org/10.1007/s10822-018-0123-0
https://doi.org/10.1007/s10822-018-0123-0
https://doi.org/10.1007/s00146-013-0488-5
https://doi.org/10.3390/ijgi8080361
https://doi.org/10.1016/j.jmgm.2016.02.009

19

Richard Fine. 2017. UnityScript’s long ride off into the sunset. Retrieved from
https://blogs.unity3d.com/2017/08/11/unityscripts-long-ride-off-into-the-sunset/ on 19.2.2021.

Unity Technologies. 2021a. Editor. Retrieved from https://unity3d.com/unity/editor on
14.2.2021.

Unity Technologies. 2021b. Public relations. Retrieved from https://unity3d.com/public-
relations on 14.2.2021.

Unity Technologies. 2021c. Unity. Retrieved from http://unity.com on 14.2.2021.

Unity Technologies. 2021d. Manual. Retrieved from
https://docs.unity3d.com/Manual/index.html on 14.2.2021.

Unity Technologies. 2021e. Scripting API. Retrieved from
https://docs.unity3d.com/ScriptReference/index.html on 14.2.2021.

Unity Technologies. 2021f. Compare plans. Retrieved from
https://store.unity.com/compare-plans ?currency=USD on 14.2.2021.

Unity Technologies. 2021g. The Unity License Grant Program. Retrieved from
https://unity.com/education/license-grant-program on 14.2.2021.

Unity Technologies. 2021h. Frequently asked questions. Retrieved from
https://unity3d.com/unity/faq?_ga=2.5998074.838570682.1611672169-
1982909119.1608186040 on 14.2.2021.

Unity Technologies. 2021i. Unity Terms of Service. Retrieved from
https://unity3d.com/legal/terms-of-service on 14.2.2021.

Unity Technologies. 2021j. Unity Asset Store. Retrieved from
https://assetstore.unity.com/ on 4.7.2021

Unreal engine. 2021. Unreal Engine. Epic games, Inc. Retrieved from
https://www.unrealengine.com/en-US/ on 14.2.2021.

https://www.unrealengine.com/en-US/
https://assetstore.unity.com/
https://unity3d.com/legal/terms-of-service
https://unity3d.com/unity/faq?_ga=2.5998074.838570682.1611672169-1982909119.1608186040
https://unity3d.com/unity/faq?_ga=2.5998074.838570682.1611672169-1982909119.1608186040
https://unity.com/education/license-grant-program
https://store.unity.com/compare-plans?currency=USD
https://store.unity.com/compare-plans?currency=USD
https://docs.unity3d.com/ScriptReference/index.html
https://docs.unity3d.com/Manual/index.html
http://unity.com/
https://unity3d.com/public-relations
https://unity3d.com/public-relations
https://unity3d.com/unity/editor
https://blogs.unity3d.com/2017/08/11/unityscripts-long-ride-off-into-the-sunset/

