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Abstract

Context. Companies commonly invest effort to remove technical issues be-
lieved to impact software qualities, such as removing anti-patterns or coding
styles violations.
Objective. Our aim is to analyze the diffuseness of Technical Debt (TD)
items in software systems and to assess their impact on code changes and
fault-proneness, considering also the type of TD items and their severity.
Method. We conducted a case study among 33 Java projects from the Apache
Software Foundation (ASF) repository. We analyzed 726 commits contain-
ing 27K faults and 12M changes. The projects violated 173 SonarQube rules
generating more than 95K TD items in more than 200K classes.
Results. Clean classes (classes not affected by TD items) are less change-
prone than dirty ones, but the difference between the groups is small. Clean
classes are slightly more change-prone than classes affected by TD items of
type Code Smell or Security Vulnerability. As for fault-proneness, there is
no difference between clean and dirty classes. Moreover, we found a lot of
incongruities in the type and severity level assigned by SonarQube.
Conclusions. Our result can be useful for practitioners to understand which
TD items they should refactor and for researchers to bridge the missing
gaps. They can also support companies and tool vendors in identifying TD
items as accurately as possible.
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1. Introduction

Companies commonly spend time to improve the quality of the software
they develop, investing effort into refactoring activities aimed at removing
technical issues believed to impact software qualities. Technical issues in-
clude any kind of information that can be derived from the source code and
from the software process, such as usage of specific patterns, compliance
with coding or documentation conventions, architectural issues, and many
others. If such issues are not fixed, they generate Technical Debt.

Technical Debt (TD) is a metaphor from the economic domain that refers
to different software maintenance activities that are postponed in favor of
the development of new features in order to get short-term payoff [1]. Just
as in the case of financial debt, the additional cost will be paid later. The
growth of TD commonly slows down the development process [1][2].

Different types of TD exist: requirements debt, code debt, architectural
debt, design debt, test debt, build debt, documentation debt, infrastructure
debt, versioning debt, and defect debt [2]. Some types of TD, such as
”code TD”, can be measured using static analysis tools, which is why several
companies have started to adopt code TD analysis tools such as SonarQube,
Cast, and Coverity, investing a rather large amount of their budget into
refactoring activities recommended by these tools. This is certainly a very
encouraging sign of a software engineering research topic receiving balanced
attention from both communities, research and industry.

SonarQube is one of the most frequently used open-source code TD anal-
ysis tools [3], having been adopted by more than 85K organizations1, includ-
ing nearly 15K public open-source projects2. SonarQube allows code TD
management by monitoring the evolution of TD and alerting developers if
certain TD items increase beyond a specified threshold or, even worse, grow
out of control. TD monitoring can also be used to support the prioritization
of repayment actions where TD items are resolved (e.g., through refactor-
ing) [4][5]. SonarQube monitors the TD analyzing code compliance against
a set of rules. If the code violates a rule, SonarQube adds the time needed
to refactor the violated rule as part of the technical debt, thereby creating
an issue. In this paper we refer to these issues with the term ”TD items”.

SonarQube classifies TD items into three main categories: Code Smells,
i.e., TD items that increase change-proneness and the related maintenance

1https://www.sonarqube.org
2https://sonarcloud.io/explore/projects
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effort; Bugs, i.e., TD items that will result in a fault; and Security Vulnera-
bilities3.

It is important to note that the term ”code smells” adopted in Sonar-
Qube does not refer to the commonly known term code smells defined by
Fowler et al. [6]. SonarQube also classifies the rules into five severity levels:
Blocker, Critical, Major, Minor, and Info. The complete list of violations
can be found in the replication package4.

Even if developers are not sure about the usefulness of the rules, they do
pay attention to their categories and priorities and tend to remove violations
related to rules with a high level of severity in order to avoid the potential
risk of faults [7][8][9]. However, to the best of our knowledge, there are
currently no studies that have investigated both the fault-proneness of rules
classified as Bugs and the change-proneness of rules classified as Code Smells.

Therefore, in order to help both practitioners and researchers understand
whether SonarQube rules are actually fault- or change-prone, we designed
and conducted an empirical study analyzing the evolution of 33 projects
every six months. Our goal was to assess the impact of the TD items on
change- and fault-proneness as well as considering the severity of this impact.

The result of this work can benefit several groups. It helps practitioners
to understand which TD items they should refactor and researchers to bridge
the missing gaps, and supports companies and tool vendors in identifying
TD items as accurately as possible.

Structure of the paper. Section 2 describes the basic concepts un-
derlying this work, while Section 3 presents some related work done by
researchers in recent years. In Section 4, we describe the design of our case
study, defining the research questions, metrics, and hypotheses, and describ-
ing the study context with the data collection and data analysis protocol.
In Section 5, we present the achieved results and discuss them in Section 6.
In Section 7, we identify the threats to the validity of our study, and in Sec-
tion 8, we draw conclusions and give an outlook on possible future work.

2. Background

SonarQube is one of the most common open-source static code analysis
tools for measuring code technical debt [7],[3]. SonarQube is provided as a

3SonarQube Rules: https://docs.sonarqube.org/display/SONAR/Rules Last Access:
May 2018

4Replication Package: https://figshare.com/s/240a036f163759b1ec97
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service by the sonarcloud.io platform or can be downloaded and executed
on a private server.

SonarQube calculates several metrics such as number of lines of code and
code complexity, and verifies the code’s compliance against a specific set of
”coding rules” defined for most common development languages. Moreover,
it defines a set of thresholds (”quality gates”) for each metric and rule. If
the analyzed source code violates a coding rule, or if a metric is outside a
predefined threshold (also named ”gate”), SonarQube generates an issue (a
”TD item”). The time needed to remove these issues (remediation effort) is
used to calculate the remediation cost and the technical debt. SonarQube
includes Reliability, Maintainability, and Security rules. Moreover, Sonar-
Qube claims that zero false positives are expected from the Reliability and
Maintainability rules5.

Reliability rules, also named Bugs, create issues that ”represent some-
thing wrong in the code” and that will soon be reflected in a bug. Code
smells are considered ”maintainability-related issues” in the code that de-
crease code readability and code modifiability. It is important to note that
the term ”code smells” adopted in SonarQube does not refer to the com-
monly known term code smells defined by Fowler et al. [6], but to a different
set of rules.

SonarQube also classifies the rules into five severity levels6:

• BLOCKER: ”Bug with a high probability to impact the behavior of the
application in production: memory leak, unclosed JDBC connection.”
SonarQube recommends immediately reviewing such an issue

• CRITICAL: ”Either a bug with a low probability to impact the be-
havior of the application in production or an issue which represents a
security flaw: empty catch block, SQL injection” SonarQube recom-
mends immediately reviewing such an issue

• MAJOR: ”Quality flaw which can highly impact the developer produc-
tivity: uncovered piece of code, duplicated blocks, unused parameters”

• MINOR: ”Quality flaw which can slightly impact the developer pro-
ductivity: lines should not be too long, s̈witchs̈tatements should have
at least 3 cases, ...”

5SonarQube Rules:https://docs.sonarqube.org/display/SONAR/Rules
6SonarQube Issues and Rules Severity:’ https://docs.sonarqube.org/display/SONAR/Issues
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• INFO : ”Neither a bug nor a quality flaw, just a finding.”

The complete list of violations can be found in the online raw data (Sec-
tion 4.5).

3. Related Work

In this Section, we report the most relevant works on the diffuseness,
change- and fault-proneness of code TD items.

3.1. Diffuseness of Technical Debt issues

To the best of our knowledge, the vast majority of publications in this
field investigate the distribution and evolution of code smells [6] and an-
tipatterns [10], but few papers investigated SonarQube violations.

Vaucher et al. [11] considered God Class code smells in their study, fo-
cusing on whether these affect software systems for long periods of time and
making a comparison with whether the code smell is refactored.

Olbrich et al. [12] investigated the evolution of two code smells, God
Class and Shotgun Surgery. They found that the distribution over time of
these code smells is not constant; they increase during some periods and
decrease in others, without any correlation with project size.

In contrast, Chatzigeorgiou and Manakos [13] investigated the evolution
of several code smells and found that the number of instances of code smells
increases constantly over time. This was also confirmed by Arcoverde et
al. [14], who analyzed the longevity of code smells.

Tufano et al. [15] showed that close to 80% of the code smells are never
removed from the code, and that those code smells that are removed are
eliminated by removing the smelly artifact and not as a result of refactoring
activities.

Palomba et al. [8] conducted a study on 395 versions of 30 different
open-source Java applications, investigating the diffuseness of 13 code smells
and their impact on two software qualities: change- and fault-proneness.
They analyzed 17,350 instances of 13 code smells, which were identified by
applying a metric-based approach. Out of the 13 code smells, only seven
were highly diffused smells; their removal would result in great benefit to
the software in terms of change-proneness. In contrast, the benefit regarding
fault-proneness was very limited or non-existent. So programmers should
keep an eye on these smells and do refactoring where needed in order to
improve the overall maintainability of the code.

5



To the best of our knowledge, only four works consider code TD calcu-
lated by SonarQube [5][16][4][17].

Saarimäki et al. [5] investigated the diffuseness of TD items in Java
projects, reporting that the most frequently introduced TD items are related
to low-level coding issues. The authors did not consider the remediation time
for TD.

Digkas et al. [16] investigated the evolution of Technical Debt over a
period of five years at the granularity level of weekly snapshots. They con-
sidered as context 66 open-source software projects from the Apache ecosys-
tem. Moreover, they characterized the lower-level constituent components
of Technical Debt. The results showed a significant increase in terms of size,
number of issues, and complexity metrics of the analyzed projects. However,
they also discovered that normalized TD decreased as the aforementioned
project metrics evolved.

Moreover, Digkas et al. [4] investigated in a subsequent study how TD
accumulates as a result of software maintenance activities. As context, they
selected 57 open-source Java software projects from the Apache Software
Foundation and analyzed them at the temporal granularity level of weekly
snapshots, also focusing on the types of issues being fixed. The results
showed that the largest percentage of Technical Debt repayment is created
by a small subset of issue types.

Amanatidis et al. [17] investigated the accumulation of TD in PHP ap-
plications (since a large portion of software applications are deployed on the
web), focusing on the relation between debt amount and interest to be paid
during corrective maintenance activities. They analyzed ten open-source
PHP projects from the perspective of corrective maintenance frequency and
corrective maintenance effort related to interest amount and found a positive
correlation between interest and the amount of accumulated TD.

3.2. Change- and Fault-proneness of Technical Debt issues

Only two works investigated the change- and fault-proneness of TD items
analyzed by SonarQube [18][19].

Falessi et al. [18] studied the distribution of 16 metrics and 106 Sonar-
Qube violations in an industrial project. They applied a What-if approach
with the goal of investigating what could happen if a specific sq-violation had
not been introduced in the code and if the number of faulty classes decreases
in case the violation is not introduced. They compared four Machine Learn-
ing (ML) techniques (Bagging, BayesNet, J48, and Logistic Regression) on
the project and then applied the same techniques to a modified version of
the code, where they had manually removed sq-violations. Their results

6



showed that 20% of the faults could have been avoided if the code smells
had been removed.

Tollin et al. [19] used ML to predict the change-proneness of classes based
on SonarQube violations and their evolution. They investigated whether
Sonar Qube violations would lead to an increase in the number of changes
(code churns) in subsequent commits. The study was applied to two different
industrial projects, written in C# and JavaScript. The authors compared
the prediction accuracy of Decision Trees, Random Forest, and Naive Bayes.
They report that classes affected by more sq-violations have greater change-
proneness. However, they did not prioritize or classify the most change-
prone sq-violations.

Other works investigated the fault proneness of different types of code
smells [6], such as MVC smells [20], testing smells [21], or Android smells [22].

To the best of our knowledge, our work is the first study that investigated
and ranked SonarQube violations considering both their change- and fault-
proneness on the same set of projects. Moreover, differently than previous
works, our work is the first work analyzing the accuracy of the SonarQube
TD items classification, including TD items types and severity.

4. Case Study Design

We designed our empirical study as a case study based on the guidelines
defined by Runeson and Höst [23]. In this Section, we will describe the
case study design including the goal and the research questions, the study
context, the data collection, and the data analysis procedure.

4.1. Goal and Research Questions

The goal of this study was to analyze the diffuseness of TD items in soft-
ware systems and to assess their impact on the change- and fault-proneness
of the code, considering also the type of technical debt issues and their
severity.

Accordingly, to meet our expectation, we formulated the goal as follows,
using the Goal/Question/Metric (GQM) template [24]:

Purpose Analyze
Object technical debt issues
Quality with respect to their fault- and change-

proneness
Viewpoint from the point of view of developers
Context in the context of Java projects

7



Based on the defined goal, we derived the following Research Questions
(RQs):
RQ1 Are classes affected by TD items more change- or fault-prone than
non-affected ones?
RQ2 Are classes affected by TD items classified by SonarQube as different
types more change- or fault-prone than non-affected ones?
RQ3 Are classes affected by TD items classified by SonarQube with different
levels of severity more change- or fault-prone than non-affected ones?
RQ4 How good is the classification of the SonarQube rules?

RQ1 aims at measuring the magnitude if the change- and fault-proneness
of these classes. We considered the number of changes and the number of
bug fixes. Our hypothesis was that classes affected by TD items, independent
of their type and severity are more change- or fault-prone than non-affected
ones.

RQ2 and RQ3 aim at determining how the rules are grouped between
different values of type (RQ2) and severity (RQ3) and what the relative
distribution of different levels of severity and different types is in the ana-
lyzed projects. No studies have investigated yet whether the rules classified
as ”Bugs” or ”Code Smells” are fault- or change-prone, according to the
SonarQube classification.

Based on the definition of SonarQube ”Bugs” and ”Code Smells”, we hy-
pothesized that classes affected by ”Bugs” are more fault-prone and classes
affected by ”Code Smells” are more change-prone.

Moreover, SonarQube assumes that higher level of severity assigned to
the different rules suggests more intensity in changes or faults. Therefore,
we aim at understanding whether the severity level increases together with
their actual fault- or change-proneness, considering within the same type
(”Bugs” or ”Code Smells”) and across types.

RQ4 aims at combining RQ2 and RQ3 to understand an eventual dis-
agreement in the classification of SonarQube rules, considering both the type
and severity of TD items. Therefore, we hypothesized that classes affected
by ”Bugs” with a higher level of severity are more fault-prone than those
affected by ”Bugs” with a lower level of severity or those not affected. In
addition, for ”Bug”, we hypothesized that classes affected by ”Code Smells”
with a higher level of severity are more change-prone than those with a lower
level of severity ”Code Smells” or those not affected.

8



4.2. Context

For this study, we selected projects based on ”criterion sampling”[25].
The selected projects had to fulfill all of the following criteria:

• Developed in Java

• Older than three years

• More than 500 commits

• More than 100 classes

• Usage of an issue tracking system with at least 100 issues reported

Moreover, as recommended by Nagappan et al. [26], we also tried to max-
imize diversity and representativeness by considering a comparable number
of projects with respect to project age, size, and domain.

Based on these criteria, we selected 33 Java projects from the Apache
Software Foundation (ASF) repository7. This repository includes some of
the most widely used software solutions. The available projects can be
considered industrial and mature, due to the strict review and inclusion
process required by the ASF. Moreover, the included projects have to keep
on reviewing their code and follow a strict quality process8.

We selected a comparable number of projects with respect to their do-
main, project age, size, and domain. Moreover, the projects had be older
than three years, have more than 500 commits and 100 classes and must
report at least 100 issues in Jira.

In Table 1, we report the list of the 33 projects we considered together
with the number of analyzed commits, the project sizes (LOC) of the last
analyzed commits, and the number of faults and changes in the commits.

4.3. Data Collection

All selected projects were cloned from their Git repositories. Each com-
mit was analyzed for TD items using SonarQube. We used SonarQube’s
default rule set. We exported SonarQube violations as a CSV file using
SonarQube APIs. The data is available in the replication package (Sec-
tion 4.5).

7http://apache.org
8https://incubator.apache.org/policy/process.html
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Table 1: Description of the selected projects

Project Name Analyzed Commits Last
Com-
mit
LOC

Last
Com-
mit
Classes

#
Faults

#
Changes

# Timeframe
Accumulo 3 2011/10 - 2013/03 307,167 4,137 9,606 850,127
Ambari 8 2011/08 - 2015/08 774,181 3,047 7,110 677,251
Atlas 7 2014/11 - 2018/05 206,253 1,443 1,093 570,278
Aurora 16 2010/04 - 2018/03 103,395 1,028 19 485,132
Batik 3 2000/10 - 2002/04 141,990 1,969 54 365,951
Beam 3 2014/12 - 2016/06 135,199 2,421 51 616,983
Cocoon 7 2003/02 - 2006/08 398,984 3,120 227 2,546,947
Commons BCEL 32 2001/10 - 2018/02 43,803 522 129 589,220
Commons BeanUtils 33 2001/03 - 2018/06 35,769 332 1 448,335
Commons CLI 29 2002/06 - 2017/09 9,547 58 25 165,252
Commons Codec 30 2003/04 - 2018/02 21,932 147 111 125,920
Commons Collections 35 2001/04 - 2018/07 66,381 750 88 952,459
Commons Configuration 29 2003/12 - 2018/04 87,553 565 29 628,170
Commons Daemon 27 2003/09 - 2017/12 4,613 24 4 7,831
Commons DBCP 33 2001/04 - 2018/01 23,646 139 114 184,041
Commons DbUtils 26 2003/11 - 2018/02 8,441 108 17 40,708
Commons Digester 30 2001/05 - 2017/08 26,637 340 44 321,956
Commons Exec 21 2005/07 - 2017/11 4,815 56 40 21,020
Commons FileUpload 28 2002/03 - 2017/12 6,296 69 37 42,441
Commons IO 33 2002/01 - 2018/05 33,040 274 336 225,560
Commons Jelly 24 2002/02 - 2017/05 30,100 584 29 205,691
Commons JEXL 31 2002/04 - 2018/02 27,821 333 180 187,596
Commons JXPath 29 2001/08 - 2017/11 28,688 253 30 188,336
Commons Net 32 2002/04 - 2018/01 30,956 276 114 428,427
Commons OGNL 8 2011/05 - 2016/10 22,567 333 1 39,623
Commons Validator 30 2002/01 - 2018/04 19,958 161 60 123,923
Commons VFS 32 2002/07 - 2018/04 32,400 432 152 453,798
Felix 2 2005/07 - 2006/07 55,298 687 5,424 173,353
HttpComponents Client 25 2005/12 - 2018/04 74,396 779 15 853,118
HttpComponents Core 21 2005/02 - 2017/06 60,565 739 128 932,735
MINA SSHD 19 2008/12 - 2018/04 94,442 1,103 1,588 380,911
Santuario Java 33 2001/09 - 2018/01 124,782 839 99 602,433
ZooKeeper 7 2014/07 - 2018/01 72,223 835 385 35,846
Sum 726 2,528,636 27,903 27,340 12,373,716

10



To calculate fault-proneness, we determined fault-inducing and bug-
fixing commits from the projects’ Git history. This was done using the
SZZ algorithm, which is based on Git’s annotate/blame feature [27]. The
algorithm has four steps. The first step fetches the issues from a bug track-
ing system. All of the projects analyzed in this paper use Jira as their bug
tracking system. The second step preprocesses the git log output, and the
third identifies the bug-fixing commits. This is possible because the AFS
policies require developers to report the fault-ID in the commit message of
a fault-fixing commit. Finally, the last step identifies the fault-introducing
commits using the data gathered in the previous steps.

The analysis was performed by taking a snapshot of the main branch of
each project every 180 days. The number of used commits varied between
the projects. Table 1 reports for each project the number of commits and
the time frames the commits are taken from.

We selected 6-months snapshots since the changes between subsequent
commits usually affect only a fraction of the classes and the analysis of all
the commits would have caused change- and fault-proneness to be zero for
almost all classes. In total, we considered 726 commits in our analysis, which
contained 200,893 classes.

We extracted the TD items analyzing each snapshot with SonarQube’s
default rule set. To calculate fault-proneness, we determined fault-inducing
and fault-fixing commits from the projects’ Git history by applying the SZZ
algorithm [27]. The algorithm has four steps. The first step fetches the
issues from a bug tracking system. All of the projects analyzed in this
paper use Jira as their bug tracking system. The second step preprocesses
the git log output, and the third identifies the bug-fixing commits. This is
possible because the AFS policies require developers to report the fault-ID in
the commit message of a fault-fixing commit. Finally, the last step identifies
the fault-introducing commits using the data gathered in the previous steps.

4.4. Data Analysis

In order to answer our RQs, we investigated the differences between
classes that are not affected by any TD items (clean classes) and classes
affected by at least one TD item (dirty classes). This paper compares the
change- and fault-proneness of the classes in these two groups.

We calculated the class change- and fault-proneness adopting the same
approach used by Palomba et al. [8].

We extracted the change logs from Git to identify the classes modified
in each analyzed snapshot (one commit every 180 days). Then, we defined
the change-proneness of a class Ci in a commit sj as:

11



change-pronenessCi,sj = #Changes(Ci)sj−1→sj

Where #Changes(Ci)sj−1→sj is the number of changes made on Ci by
developers during the evolution of the system between the sj − 1 s and the
sj s commit dates.

SZZ provides the list of fault-fixing commits and all the commits where
a class has been modified to fix a specific fault. Therefore, we defined the
fault-proneness of a class ci as the number of commits between snapshots
sm and sn that fixed a fault in the program and altered the class ci in some
way.

We calculated the normalized change- and fault-proneness for each class.
The normalization was done by dividing the proneness value with the num-
ber of effective lines of code in the class. We defined an effective line of code
as a non-empty line that does not start with ”//”, ”/*”, or ”*”. We also
excluded lines that contained only an opening or closing curly bracket.

The results are presented using boxplots, which are a way of presenting
the distribution of data by visualizing key values of the data. The plot
consists of a box drawn from the 1st to the 3rd quartile and whiskers marking
the minimum and maximum of the data. The line inside the box is the
median. The minimum and maximum are drawn at 1.5*IQR (Inter-Quartile
Range), and data points outside that range are not shown in the figure.

We also compared the distributions of the two groups using statistical
tests. First, we determined whether the groups come from different dis-
tributions. This was done by means of the non-parametric Mann-Whitney
test. The null hypothesis for the test is that when taking a random sample
from two groups, the probability for the greater of the two samples to have
been drawn from either of the groups is equal [28]. The null hypothesis was
rejected and the distribution of the groups was considered statistically differ-
ent if the p-value was smaller than 0.01. As Mann-Whitney does not convey
any information about the magnitude of the difference between the groups,
we used the Cliff’s Delta effect size test. This is a non-parametric test meant
for ordinal data. The results of the test were interpreted using guidelines
provided by Grissom and Kim [29]. The effect size was considered negligible
if |d| < 0.100, small if 0.100 ≤ |d| < 0.330, medium if 0.330 ≤ |d| < 0.474,
and large if |d| > 0.474.

To answer RQ1, we compared the clean classes with all of the dirty
classes, while for RQ2, we grouped the dirty classes based on the type of
the different TD items and for RQ3 by their level of severity. For each value
of type and severity, we determined classes that were affected by at least
one TD item with that type/severity value and compared that group with

12



the clean classes. Note that one class can have several TD items and hence
it can belong to several subgroups. For both RQ2 and RQ3 we used the
same data, but in RQ2 we did not care about the severity of the violated
rule while on RQ3 we did not care about the type.

Based on SonarQube’s classification of TD items, we expected that
classes containing TD items of the type Code Smell should be more change-
prone, while classes containing Bugs should be more fault-prone. The analy-
sis was done by grouping classes with a certain TD item and calculating the
fault- and change-proneness of the classes in the group. This was done for
each of the TD items and the results were visualized using boxplots. As with
RQ2 and RQ3, each class can contain several TD items and hence belong to
several groups. Also, we did not inspect potential TD item combinations. To
investigate RQ4, we compared the type and severity assigned by SonarQube
for each TD item with the actual fault-proneness, and change-proneness.

4.5. Replicability

In order to allow our study to be replicated, we have published the
complete raw data in the replication package9.

5. Results

RQ1. Are classes affected by TD items more change- or fault-prone than
non-affected ones?

Out of 266 TD items monitored by SonarQube, 173 were detected in the
analyzed projects.

The analyzed commits contained 200,893 classes, of which 102,484 were
affected by between 1 and 9,017 TD items. As can be seen from Figure 1,
most of the classes were affected only by either zero or one TD item. How-
ever, the number of classes also dropped almost logarithmically as the num-
ber of TD items grew. This is why we grouped the results for the number
of TD items in one class using the power of two as the limit for the number
of TD items in a class.

The distribution of the change-proneness of all of the classes in Figure 2
shows that the majority of the classes do not experience any changes and 75%
of the classes experience less than 0.89 changes per line of code. The figure
also suggests that the differences in the distributions are minor between the
clean and dirty classes. Dirty classes have a higher maximum (2.6), median

9https://figshare.com/s/240a036f163759b1ec97
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(0.02), and Q3 (1.05), which is the third quartile containing 75 % of the
data.

In order to identify the significance of the perceived differences between
the clean and the dirty classes, we applied the Mann-Whitney and Cliff’s
Delta statistical tests. In terms of change-proneness, the p-value from the
Mann-Whitney test was zero, which suggests that there is a statistically
significant difference between the groups. The effect size was measured
using Cliffs delta. We measured a d-value of -0.06, which indicates a small
difference in the distributions.

The fault-proneness of the classes is not visualized as the number of
faults in the projects is so small, that also the maximum of the boxplot was
zero. Thus, all of the faults were considered as outliers. However, when
the statistical tests were run with the complete data, the p-value from the
Mann-Whitney test was zero. This means there is a statistically significant
difference between the two groups. However, the effect size was negligible,
with d value of -0.005.

Moreover, we investigated the distributions of the change- and fault-
proneness of classes affected by different numbers of TD items. We used the
same groups as in Figure 1.

The number of issues in a class does not seem to greatly impact the
change-proneness (Figure 3). The only slightly different group is the group
with 9-16 issues as its Q3 is slightly less than for the other dirty groups.

The results from the statistical tests confirm that the number of TD
items in the class does not affect the change- or fault-proneness of the class
(Table 2). Considering change-proneness, the Mann-Whitney test suggested
that the distribution would differ for all groups. However, the Cliff’s Delta
test indicated that the differences are negligible for all groups except the one
with 17 or more items, for which the difference was small. Thus, differenti-
ating the dirty group into smaller subgroups did not change the previously
presented result.

Once again, the fault-proneness is not visualized as the non-zero values
were considered as outliers. In addition, while the statistical tests reveal
that only the group with three or four TD items was found to be similar to
the clean group, all of the effect sizes were found negligible.
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Table 2: Results from the Mann-Whitney (MW) and Cliff’s Delta tests when comparing
the group of clean classes with groups of classes affected by different numbers of TD items
(RQ1)

#TD items per class
change-proneness fault-proneness

MW (p) Cliff (d) MW(p) Cliff (d)

1 0.00 -0.048 0.00 0.009
2 0.00 -0.055 0.00 0.005

3-4 0.00 -0.061 0.82 -0.000
5-8 0.00 -0.075 0.00 -0.010
9-16 0.00 -0.063 0.00 -0.016
17→ 0.00 -0.133 0.00 -0.036
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Number of TD items in a class
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Figure 1: Number of classes with different numbers of TD items. (RQ1)

However, the Cliff’s Delta test indicated that the differences are neg-
ligible for all groups except the one with 17 or more items, for which the
difference was small. In terms of fault-proneness, only the group with three
or four TD items was found to be similar to the clean group. However, all
of the effect sizes were determined to be negligible.
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Figure 3: Change-proneness of classes affected by dif-
ferent numbers of TD items (RQ1)
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Figure 4: Change-proneness of classes affected by TD items considering type and severity
(RQ2 and RQ3)
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Summary of RQ1
When inspecting six-month periods, the majority of the classes do not
change and the rest of the classes have less than 2.5 changes per code
line. Clean classes might be less change-prone than dirty classes, but
the difference between the groups is small. When inspecting for fault-
proneness, the code generally does not contain any faults and there is no
difference between the clean and dirty classes. The number of TD items
in a class does not remarkably affect the change- or fault-proneness.

RQ2. Are classes affected by TD items classified by SonarQube as different
types more change- or fault-prone than non-affected ones?

The diffuseness of the detected 173 TD rules grouped by type is reported
in Table 3. We collected data regarding the number of classes affected by
each Type and Severity of TD items (# affected classes). Moreover, we
included the violated TD type recurrences (# rules) and how many times
they are violated (# introductions).

The change-proneness of different types of dirty classes is provided in
Figure 4a. Fault-proneness is not visualized as the plot consists of only
zeros.

Looking at the change-proneness of the different types, the distributions
are divided in two groups. The most diffused types are Vulnerability and
Code Smell, for which all of the key values are similar, with Q3 being ap-
proximately 1 and the maximum being 2.5. The less diffused groups are the
Bug type and the clean classes, which are similar to each other in terms of
Q3 and maximum.

Moreover, the Mann-Whitney test suggested that regardless of the type,
the distributions of the dirty groups would differ from the distribution of
the clean group. However, the measured effect size was negligible for all of
the types (Table 4).

Regarding the evaluation of fault-proneness, the distribution for the
number of faults per code line in a class consists only of zeros and out-
liers for all of the inspected groups. Thus it is not visualized in the paper.
Moreover, there do not appear to be any significant differences between the
clean and the dirty groups. The Mann-Whitney test suggests that only the
Bug type does not have a statistically significant difference in the distribu-
tion, with a p-value of 0.07. For the other types, the p-value was less than
0.01. However, the Cliff’s Delta test suggest that all of the effect sizes are
negligible as the |d| values are smaller than 0.1.
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Table 3: Diffuseness of detected TD items (RQ2 and RQ3)

Type Severity # Rules # Affected Classes # Introductions

Bug

All 36 2,865 1,430
Info 0 0 0
Minor 0 0 0
Major 8 1,324 377
Critical 23 2,940 816
Blocker 5 662 237

Code Smell

All 130 70,822 132,173
Info 2 12,281 5,387
Minor 32 70,426 44,723
Major 80 78,676 73,894
Critical 14 19,636 7,556
Blocker 2 1,655 613

Vulnerability

All 7 3,556 2,241
Info 0 0 0
Minor 0 0 0
Major 2 2,186 876
Critical 5 3,490 1,365
Blocker 0 0 0

Total 173 102,484 135,844

Table 4: Results from the Mann-Whitney (MW) and Cliff’s Delta tests when comparing
the group of clean classes with groups of classes affected by TD items of different levels of
severity and different types (RQ2 and RQ3)

Severity and Type Change-proneness Fault-proneness
MW (p) Cliff (d) MW(p) Cliff (d)

Severity

Info 0.00 -0.144 0.00 -0.036
Minor 0.00 -0.062 0.00 -0.009
Major 0.00 -0.068 0.00 0.008

Critical 0.00 -0.059 0.00 -0.018
Blocker 0.00 -0.101 0.00 -0.066

Type
Bug 0.00 -0.054 0.07 -0.004

Code Smell 0.00 -0.065 0.00 -0.005
Vulnerability 0.00 -0.072 0.00 -0.022
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The results from the Mann-Whitney and Cliff’s Delta tests are shown in
Table 4. In terms of change-proneness, the Mann-Whitney test suggested
that regardless of the type, the distributions of the dirty groups would differ
from the distribution of the clean group. However, the measured effect size
was negligible for all of the types.

Considering fault-proneness, the data is not visualized as the non-zero
values were considered as outliers. The Mann-Whitney test suggests that
only the Bug type does not have a statistically significant difference in the
distribution, with a p-value of 0.07. For the other types, the p-value was
less than 0.00. However, the results from the Cliff’s Delta test suggest that
all of the effect sizes are negligible as the |d| values are smaller than 0.1.

Summary of RQ2
Considering the type of different TD items, the types Vulnerability and
Code Smell seem to be slightly more change-prone than the clean classes,
but the differences are negligible. We did not find any significant differ-
ences regarding the fault-proneness of the classes.

RQ3. Are classes affected by TD items classified by SonarQube with different
levels of severity more change- or fault-prone than non-affected ones?

Table 3 reports the diffuseness of the detected 173 TD rules grouped by
severity.

The change-proneness of the dirty classes regarding different types is
provided in Figure 4b. The most diffused levels are the least and the most
severe levels Info and Blocker. Both of these groups have medians greater
than zero, meaning most of the data does not consist of zeros. The me-
dian for Info is 0.07 and for Blocker it is 0.05, while their maximums are
more than three changes per line of code and the Q3s are around 1.2. The
least diffused level is Critical, while the levels Major and Minor are in the
between.

The results from the Mann-Whitney and Cliff’s Delta tests for the dif-
ferent severity levels are given in Table 4. The distribution of the change-
proneness of all the groups was found to be different than that for the clean
group. However, the measured effect size was negligible for the severity lev-
els Minor, Major, and Critical, and small for the levels Info and Blocker.
The results from the statistical tests confirmed the visual results from the
boxplots, namely, that there are no significant differences between the clean
classes and the different values of severity.

Considering the fault-proneness of the different severity levels, the results
are similar to the fault-proneness of the different type values. The Mann-
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Figure 5: The change-proneness of classes infected by TD items defined as Code Smell
and the fault-proneness of classes infected by TD items defined as Bug (the five most
frequently introduced TD items) - (RQ4)

Whitney test suggests that the distributions would differ for all levels, but
when the effect size was measured, it was found to be negligible for every
level.

Summary of RQ3
Regarding severity, the dirty classes are not significantly more change-
prone than the clean classes either. We did not find any significant
differences regarding the fault-proneness of the classes.

RQ4. How well are SonarQube’s TD rules classified?

In order to confirm the classification of SonarQube’s TD items, we in-
spected the change- and fault-proneness of single TD items. For reasons of
space, Figure 5 shows only the distribution of the five most frequently in-
troduced TD items for the types Bug and Code Smell. The complete figure
is available in the replicated package (Section 4.5). The results are unex-
pected, since when we look at the Bug type, we can see that none of the
TD items are fault-prone, but they are change-prone. This confirms the
results obtained in the previous RQs. Regarding Code Smells, TD items are
change-prone even if their assigned level of severity is never confirmed. (The
most relevant examples are UselessImportanCheck and S1166). We consid-
ered all the TD items classified as Bug and Code Smell with the assigned
level of severity affecting the analyzed projects.

Bug. All the TD items classified as Bug have no impact on maintainabil-
ity since they turned out not to be fault-prone. This confirmed the results
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obtained for the previous RQs. Instead, and unexpectedly in addition, they
appear to have a clear impact, which on some occasions is just as relevant,
on code stability. For example, S1860, OverridenCallSuperFinalizeCheck,
has a moderate impact, while S1175 and S2066 have a higher impact.

Code Smells. Unexpectedly, two code smells (RightCurlyBraceStart-
LineCheck and S1171) were also found to have a relevant impact on fault-
proneness. Regarding the level of severity, we found only two code smells
classified as Blocker (S2442 and S1181). We found 13 code smells with
the severity level Critical. Unexpectedly, only two code smells (S2178 and
S1994) can confirm the assigned severity level. One code smell, S2447, seems
to have a lower severity level than the assigned one. Out of 80 code smells
with the severity level Major, we found only nine that confirm the severity
level, while the level of severity assigned to the others by SonarQube was
found to be overestimated. Moreover, we found an underestimation of four
code smells with the severity level Minor (UnlessImportanCheck, S00119,
RightCurlyBraceStartLineCheck, and S1195). Actually, they have a higher
impact on code stability.

Summary of RQ4
The change-proneness of the classes affected by TD items of the type
Code Smell differs notably, even though the majority of the affected
classes do not change. TD items of the type Bug are not more fault-
prone, as the roneness does not appear to be dependent on the type of
the TD item and the assigned level of severity.

6. Discussion

In this Section, we will discuss the results obtained according to the RQs
and present possible practical implications from our research.

Answers to Research Questions. The analysis of the evolution of 33
Java projects showed that, in general, the number of TD Items in a class does
not remarkably affect the change- or fault-proneness. Clean classes (classes
not affected by TD Items) might be less change prone than dirty classes,
but the difference between the groups is small. Moreover, when inspecting
for fault-proneness, the code generally does not contain any faults and there
is no difference between the clean and dirty classes.

Out of 266 TD items detected by SonarQube, we retrieved 173 in the
analyzed projects: 36 ”Bugs”, 130 ”Code Smells”, and 7 ”Vulnerabilities”.

Taking into account TD Items classified as Bug (supposed to increase
the fault-proneness) only one increases the fault-proneness. Unexpectedly,
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all the remaining Bugs resulted to slightly increase the change-proneness
instead. As expected, all the 130 TD items classified as Code Smell affect
change-proneness, even if their impact on the change-proneness is very low.
Moreover, also the seven TD items classified as Vulnerability have a low
effect on change-proneness.

However, the change- and fault-proneness of the vast majority of TD
items (more than 70%) does not always increase together with the severity
level assigned by SonarQube.

Implications. SonarQube recommends manual customization of their
set of rules instead of using the out-of-the-box rule set. However, as reported
by [5], querying the SonarQube public instance APIs10, we can see that
more than 98% of the public projects (14,732 projects up to 14,957) use the
”sonar way” rule set, mainly because developers have no experience with
customizing nor understand which rules are more change or fault prone.

Our results are similar to Tollin et al. [19], even if in our case the effect of
TD items on change-proneness is very low. Tollin et al. found an increase in
change-proneness in classes affected by TD items in two industrial projects
written in C# and Javascript. However, they adopted C# and Javascript
rules, which are different from the Java rules. The difference in the results
regarding change-proneness could either be due to the different projects (33
open-source Java projects) or to the different rules defined for Java.

The main implication for practitioners is that they should carefully se-
lect the rules to consider when using SonarQube, especially if they plan
to invest effort to reduce the change- or fault-proneness. We recommend
that practitioners should apply a similar approach as the one we adopted,
performing a historical analysis of their project and classifying the actual
change- and fault-proneness of their code, instead of relying on their percep-
tion of what could be fault or change prone. Researchers should continue to
study this topic in more depth and help both practitioners and tool providers
to understand the actual harmfulness of TD items, but should also propose
automated tools for performing historical analyses in order to automatically
identify the harmfulness of TD items.

7. Threats to Validity

In this Section, we will introduce the threats to validity, following the
structure suggested by Yin [30].

10https://docs.sonarqube.org/display/DEV/API+Basics
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Construct Validity. This threat concerns the relationship between
theory and observation. Limitations. We adopted the measures detected
by SonarQube, since our goal was to analyze the diffuseness of TD items
in software systems and to assess their impact on the change- and fault-
proneness of the code, considering also the type of TD items and their
severity. We are aware that the SonarQube detection accuracy of some
rules might not be perfect, but we tried to replicated the same conditions
adopted by practitioners when using ithe same tool. Unfortunately, several
projects in our dataset do not tag the releases. Therefore, we evaluated the
change- and fault-proneness of classes as the number of changes and bug fixes
a class was subject to in a period of six months. We are aware that using
releases could have been more accurate for faults. However, as Palomba et
al. [8] highlighted, the usage of releases has the threats that time between
releases is different and the number of commits and changes are not directly
comparable. Unfortunately Git does not provide explicit tags for several
projects in our dataset. We relied on the SZZ algorithm [27] to classify fault-
inducing commits. We are aware that SZZ provides a rough approximation
of the commits inducing a fix because of Git line-based limitations of Git
and because a fault can be fixed also modifying a different set of lines than
the inducing ones. Moreover, we cannot exclude misclassification of Jira
issues (e.g., a new feature classified as bug). As for the data analysis, we
normalized change- and fault-proneness per class using LOC. As alternative
other measures such as complexity could have been used.

Internal Validity. This threat concerns internal factors of the study
that may have affected the results. Some issues detected by SonarQube were
duplicated, reporting the issue violated in the same class and in the same
position but with different resolution times. We are aware of this fact, but we
did not remove such issues from the analysis since we wanted to report the
results without modifying the output provided by SonarQube. We are aware
that we cannot claim a direct cause-effect relationship between the presence
of a TD items and the fault- and change-proneness of classes, that can be
influence by other factors. We are also aware that classes with different roles
(e.g., classes controlling the business logic) can be more frequently modified
than others.

External Validity. This threat concerns the generalizability of the
results. We selected 33 projects from the Apache Software Foundation,
which incubates only certain systems that follow specific and strict quality
rules. Our case study was not based only on one application domain. This
was avoided since we aimed to find general mathematical models for the
prediction of the number of bugs in a system. Choosing only one or a very
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small number of application domains could have been an indication of the
non-generality of our study, as only prediction models from the selected
application domain would have been chosen. The selected projects stem
from a very large set of application domains, ranging from external libraries,
frameworks, and web utilities to large computational infrastructures. The
application domain was not an important criterion for the selection of the
projects to be analyzed, but in any case we tried to balance the selection
and pick systems from as many contexts as possible. We are considering
only open source projects, and we cannot speculated on industrial projects.
Moreover, we only considered Java projects due to the limitation of the tools
used (SonarQube provides a different set of TD items for each language) and
results would have not been directly comparable.

Reliability. This threat concerns the relationship between the treat-
ment and the outcome. We do not exclude the possibility that other sta-
tistical or machine learning approaches, such as Deep Learning, might have
yielded similar or even better accuracy than our modeling approach.

8. Conclusion

In this paper, we studied the impact of TD items on change- and fault-
proneness, considering also the type and severity, based on 33 Java systems
from the Apache Software Foundation. We analyzed nearly 726 commits
containing 27K faults and 12 million changes. The projects were infected by
173 SonarQube TD items violated more than 95K times in more than 200K
classes analyzed.

Our results revealed that dirty classes might be more prone to change
than classes not affected by TD items. However, the difference between
the clean and dirty groups was found to be at most small regardless of the
type and severity. When considering the fault-proneness of the classes, no
significant differences were found between the clean classes and the groups
with dirty classes. As for SonarQube classification of TD items, all the
TD items, including all the Bugs, Code Smells and Vulnerabilities have a
statistically significant, but very small effect on change-proneness. Only
one out of 36 TD items classified as Bug (supposed to increase the fault-
proneness) has a very limited effect on fault-proneness.

Our study shows that SonarQube could be useful and TD items should
be monitored by developers since all of them are related to maintainabil-
ity aspects such as change-proneness. Despite our results show that the
impact on change-proneness of TD items is very low, monitoring projects
with SonarQube would still help to write cleaner code and to slightly reduce
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change-proneness. As recommended by SonarQube, we would not recom-
mend to invest time refactoring TD items if the goal is to reduce change- or
fault-proneness, instead we would recommend not to write new code con-
taining TD items. The result of this work can be useful for practitioners and
help them to understand how to prioritize TD items they should refactor. It
can also be used by researchers to bridge the missing gaps, and it supports
companies and tool vendors in identifying TD as accurately as possible.

As regards future work, we plan to further investigate the harmfulness
of SonarQube TD items, also comparing them with other types of technical
debt, including architectural and documentation debt. We are planning to
replicate this work, adopting different analysis techniques, including machine
learning. Moreover, we also plan to conduct a case study with practitioners
to understand the perceived harmfulness of TD items in the code.
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