
Joonas Hyvärinen

AUTOMATING CAD ASSEMBLY CONSTRAINTS

USING SUPERVISED DEEP LEARNING

Master of Science Thesis

Faculty of Engineering and Natural Sciences

Examiner: Professor Iñigo Flores Ituarte (PhD)

July 2021

i

ABSTRACT

Joonas Hyvärinen: Automating CAD assembly constraints using supervised deep learning
Master of Science Thesis
Tampere University
Master’s Degree Programme in Mechanical Engineering
July 2021

Assembly constraints determine the relative position and allowed movements between CAD
models in assemblies, which are an integral part of computer aided design. They comprise both
the expertise of CAD designers and information on the purpose of the assembly. Automation of
the assembly constraint adding process supports designers by decreasing the design time and
enhancing the user experience. This thesis discusses and evaluates a method for automating
assembly constraints using supervised deep learning and the convolutional neural network ar-
chitecture. It investigates the most relevant information of a CAD model to maintain a real-time
capable data presentation, as well as the requirements for dataset generation from pre-existing
assemblies.

The most relevant information to be extracted from CAD models was investigated through lit-
erature review and empirical research. An adjacency graph-based approach was selected based
on its benefits compared to other commonly used data presentations in CAD model classification.
A method for converting the graph into a matrix presentation was discussed and validated. A data
augmentation algorithm for cases in which exact normalization of graph data is difficult was tested
to increase the classifier performance. The data extraction method was used on professionally de-
signed CAD assemblies to collect datasets for training, validation and testing of the convolutional
neural network model. To test the theory in a real environment, an initial software implementation
was developed, and its real-time suitability validated as a part of the Vertex G4 mechanical CAD
system.

The analysis showed a strong correlation between data quantity and classifier model perfor-
mance. The results indicate that augmenting the collected data using the presented methods
leads to superior performance compared to a baseline dataset. A classification accuracy of up to
95.46% was reached using the larger matrix presentation and the augmented dataset. Utilization
of the presented augmentation method increases the classifier performance by up to 4.7% on
average on the calculated performance metrics. Balancing the datasets by making the quantity
of each constraint equal led to worse performance than non-augmented data especially in differ-
entiating distance constraints from coincident constraints. Overall, it can be concluded that the
presented method is adequate for assembly constraint classification and real-time CAD design
workflow. The thesis advances the state of research in the CAD model related machine learning
field.

Keywords: assembly constraint, deep learning, computer aided design, convolutional neural net-
work, classification, machine learning

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

TIIVISTELMÄ

Joonas Hyvärinen: Kokoonpanoehtojen automatisointi ohjattua syväoppimista hyödyntäen
Diplomityö
Tampereen yliopisto
Konetekniikan DI-ohjelma
Heinäkuu 2021

Kokoonpanoehdot määrittävät CAD -mallien suhteellisen sijainnin ja sallitut keskinäiset liikkeet
kokoonpanoissa, jotka ovat olennainen osa tietokoneavusteista suunnittelua. Ne sisältävät se-
kä suunnittelijoiden asiantuntemusta että tietoa kokoonpanon tarkoituksesta. Kokoonpanoehtojen
asettamisprosessin automatisointi tukee suunnittelijoita vähentämällä suunnitteluaikaa ja paranta-
malla käyttäjäkokemusta. Tässä opinnäytetyössä käsitellään ja arvioidaan menetelmä kokoonpa-
noehtojen automatisoimiseksi hyödyntäen ohjattua syväoppimista ja konvoluutioneuroverkkoark-
kitehtuuria. Työ tutkii CAD-mallien oleellisimpia tietoja reaaliaikaiseen toimintaan kykenevän datan
muodolle sekä vaatimuksia jo olemassa olevien kokoonpanojen käytölle datajoukkojen luomises-
sa.

Merkityksellisimpiä CAD-malleista kerättäviä tietoja tutkittiin kirjallisuuskatsauksen ja empiiri-
sen tutkimuksen avulla. Vierusgraafiin perustuva lähestymistapa valittiin sen hyötyjen perusteel-
la muihin CAD-mallien luokittelussa yleisesti käytettyihin datan muotoihin verrattuna. Menetel-
mä graafin muuntamiseksi matriisiesitykseksi käsiteltiin ja validoitiin. Luokittelijan suorituskyvyn
parantamiseksi testattiin datan lisäysalgoritmia tapauksissa, joissa graafimuotoisen datan tark-
ka normalisointi on vaikeaa. Datan keräysmenetelmää käytettiin ammattimaisesti suunnitelluille
CAD-kokoonpanoille datan keräämiseksi konvoluutioneuroverkkomallin koulutusta, validointia ja
testausta varten. Teorian testaamiseksi todellisessa ympäristössä kehitettiin alustava ohjelmisto-
toteutus ja vahvistettiin sen reaaliaikainen soveltuvuus osana mekaanista CAD-järjestelmää, Ver-
tex G4:ää.

Analyysi osoitti vahvan korrelaation datamäärän ja luokittelumallin suorituskyvyn välillä. Tulok-
set osoittavat, että kerätyn datan lisääminen esitetyillä menetelmillä johtaa parempaan suoritus-
kykyyn verrattuna lähtötason datajoukkoon. Jopa 95,46%:n luokittelutarkkuus saavutettiin käyttä-
mällä suurempaa matriisiesitystä ja laajennettua datajoukkoa. Esitetyn lisäysmenetelmän käyttö
lisää suorituskykyä keskimäärin jopa 4,7% lasketuilla suorituskykymittareilla. Datajoukkojen tasa-
painottaminen tekemällä kunkin kokoonpanoehdon määrä yhtä suureksi johti huonompaan suori-
tuskykyyn kuin alkuperäisellä datalla koulutettu malli. Etenkin mallin kyky erottaa etäisyysehtoja
yhtenevyysehdoista oli huonompi. Kaiken kaikkiaan voidaan päätellä, että esitetty menetelmä on
sopiva kokoonpanoehtojen luokittelulle ja reaaliaikaiselle CAD-suunnittelun työnkululle. Opinnäy-
tetyö edistää tutkimustilaa CAD-malliin liittyvällä koneoppimisalalla.

Avainsanat: kokoonpanoehto, syväoppiminen, tietokoneavusteinen suunnittelu, konvoluutioneuro-
verkko, luokittelu, koneoppiminen

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.

iii

PREFACE

This Master of Science thesis was written as part of the master’s programme at Tampere

University. The thesis was commissioned by a Finnish software company, Vertex Sys-

tems. The writing process happened over the span of six months during the spring and

early summer of 2021.

First, I would like to thank Timo Tulisalmi and Esa Mikkonen from Vertex Systems for the

possibility to write the thesis, for following the writing process and for their assistance in

the refinement of the thesis topic into its final form. I am also grateful for the freedom I

was given to use my own creativity in the way the system was implemented.

Second, I want to express my gratitude to my thesis supervisors Iñigo Flores Ituarte and

Hossein Mokhtarian from Tampere University for their support during the writing process.

I am especially grateful for the outstanding atmosphere in our meetings and the ease of

communication. It has been very pleasant working with you both.

Finally, I want to thank my friends for the peer support and the ability throw ideas and see

what sticks. It has been immeasurably valuable for the thesis to reach its final shape.

Tampere, 5th July 2021

Joonas Hyvärinen

iv

CONTENTS

1. Introduction . 1

2. Background. 3

2.1 Basic Concepts . 3

2.1.1 Supervised Deep Learning 3

2.1.2 Convolutional Neural Network 6

2.1.3 Computer Aided Design 8

2.2 Literature Review. 11

3. Data collection . 13

3.1 Feature Extraction . 13

3.1.1 Adjacency Graph . 13

3.1.2 Feature Vector . 15

3.2 Dataset Generation . 17

3.3 Data Processing . 23

3.4 Data Augmentation . 27

4. Method for Assembly Constraint Classification 30

4.1 Software System Architecture 30

4.2 CNN Architecture. 32

4.3 Model Training . 33

4.4 User Interface . 39

5. Results and discussion . 41

5.1 Evaluation Criteria . 41

5.2 Classification Model Validation 43

5.3 Discussion . 48

5.4 Future Improvements . 51

6. Conclusions . 52

6.1 Summary . 52

6.2 Future Research . 54

References . 55

v

LIST OF FIGURES

1.1 Fundamental outline of the classifier system. 2

2.1 An example of a deep NN excluding the weights, biases, inputs and outputs. 4

2.2 A single neuron in a deep NN. 4

2.3 An example of a CNN architecture. 6

2.4 The convolution operation on a 5 by 5 matrix with filter size of 3, no padding

and stride of 1. 7

2.5 The max pooling operation on a 4 by 4 matrix with a kernel size of 2. . . . 8

2.6 Process diagram for product assembling process in Vertex G4. 9

3.1 Visualization of a CAD model, its partial adjacency graph and the corre-

sponding adjacency matrix presentation. 15

3.2 Feature vector matrix presentation. 17

3.3 Quantity of constraints extracted from each of five large assemblies. 21

3.4 Initial constraint distribution within data extracted from pre-existing assem-

blies. 21

3.5 Designed CAD models for the manual tangential constraint generation pro-

cess. 22

3.6 Modified constraint distribution after manual tangential constraint genera-

tion and removal of angle-based constraints. 23

3.7 Two randomly selected normalized constraints from each class from the

generated dataset. 26

3.8 Mean absolute error between class matrix presentations of 100 randomly

picked samples per class. 27

4.1 The training and prediction process of the classifier. 31

4.2 Presented CNN classifier architecture. 32

4.3 Comparison of model performance metrics on the training dataset. 37

4.4 Comparison of model performance metrics on the validation dataset. . . . 38

4.5 Initial user interface for the classifier system inside the Vertex G4 CAD

software. 40

5.1 Comparison of normalized model confusion matrices. 45

5.2 Side by side comparison of model test set accuracy, precision, recall and

F-score. 46

vi

LIST OF TABLES

2.1 Assembly constraint types and element types combined. 10

3.1 Method comparison for CAD model conversion to a matrix presentation

based on important parameters for assembly constraint classification. . . . 13

3.2 Geometrical type values in the feature vector. 16

3.3 Constraints per category before and after the data augmentation operation. 29

4.1 Definitions of the trained models. 34

4.2 Essential hyperparameters and their values. 34

4.3 Model metrics at the point of minimum validation loss with five epochs of

patience for the early stopping algorithm. 39

4.4 Model training time comparison to the point of minimum validation loss and

to the point of 100 epochs. 39

5.1 Model recall values by assembly constraint type. 47

5.2 Recap of CAD model related classification results achieved with different

data presentations and different number of target classes. 50

vii

LIST OF ALGORITHMS

1 Algorithm for collecting all constraints recursively from an assembly. 19

2 Algorithm for creating an adjacency graph from a CAD model. 20

3 Algorithm for finding N nearest neighbors. 25

viii

LIST OF SYMBOLS AND ABBREVIATIONS

AI Artificial Intelligence

BFS Breadth First Search

CAD Computer Aided Design

CNN Convolutional Neural Network

DL Deep Learning

DOF Degrees of Freedom

ML Machine Learning

NN Neural Network

PWR Part in Whole Retrieval

ReLU Rectified Linear Unit

RPC Remote Procedure Call

UI User Interface

1

1. INTRODUCTION

Assemblies are an integral part of Computer Aided Design (CAD). Assemblies consist of

CAD models as well as the information of the models’ relationship in the form of assembly

constraints. Assembly constraints comprise both the expertise of CAD designers and

information on the purpose of the assembly. [1] However, applying assembly constraints

is a time-consuming routine task in the CAD process, which additionally requires the

designer to have proficiency in the CAD design. Automation of such tasks can support

designers by decreasing the design time and enhancing the user experience [2].

Deep Learning (DL) is a powerful tool used to automate routine tasks in many fields,

but the research in the CAD field focuses heavily on manufacturing feature classification,

part type recognition and model retrieval [3]–[5]. While these applications have received

large attention in the ML community in the recent years in studies such as [3]–[10], at

the time of writing this thesis, there has been little to no work on assembly constraint

classification. To explore the potential of DL in the automation of the assembly constraint

applying process, it is important to develop and evaluate a methodology for assembly

constraint classification.

The aim of this thesis is to present a novel assembly constraint automation method based

on supervised deep learning and Convolutional Neural Networks (CNN), a widely used

DL model in e.g. image classification and other CAD model related classification studies.

Figure 1.1 presents the fundamental outline of the classifier system. The process begins

with two CAD models with one selected geometric element from each, highlighted in

orange. The elements go through the processing pipeline, which is connected to a CNN

classifier. The classifier is presented as a black box model, which outputs the probability

predictions of the assembly constraint type between the user-selected elements.

The thesis focuses heavily on the data collection and the processing steps, that convert

the CAD models into a valid input to a CNN classifier, since using a solid CAD model di-

rectly is not feasible. Because the classifier system is developed to be associated with a

mechanical CAD software, Vertex G4, and the company has access to professionally de-

signed CAD assemblies, these pre-existing assemblies are used to collect the datasets

required for the classifier creation. However, different constraints are not used equally

during the design process, which is hypothesized to cause bias in the classifier perfor-

2

Figure 1.1. Fundamental outline of the classifier system.

mance. This is the second main topic the thesis will explore. Third, the whole pipeline

presented in figure 1.1 needs to happen without major delays not to interrupt the CAD

design workflow. For example, the CAD model classification approach used by Manda

et al. [9] requires up to 15 s to classify a single model, which is inadequate for real-time

CAD design. The thesis scope is focused on the assembly constraint classification based

on the geometrical structure of the CAD model and thus other approaches are left out

of the scope. While there exist other methods for CAD model related classification, this

thesis focuses on the ones that are valid to be used with the CNN architecture. The thesis

scope makes it impossible to discuss all the related techniques in-depth, and instead the

aim is to present these concepts in an efficient and compact format.

The goal of the thesis is to answer the following research questions:

1. What is the most relevant information to be extracted from a CAD model for the

purpose of training an assembly constraint classifier?

2. How can pre-existing CAD models be used to create datasets for CNN training,

validation and testing and what challenges does this approach pose related to data

bias?

3. How effectively can an assembly constraint classifier be incorporated to CAD de-

sign workflow?

Chapter 2 describes the fundamental basics required to understand the research topic

and its importance. It also reviews the literature around CAD model related classification

applications, due to the limited amount of literature around assembly constraint classifi-

cation. Chapter 3 contains a method for CAD model data extraction, data processing and

dataset generation. The chapter provides justifications for the selected data presentations

and a method to increase data quantity algorithmically. The software system architecture,

the CNN architecture, the DL model training process and the developed software imple-

mentation are described in chapter 4. Chapter 5 evaluates and discusses the obtained

results and presents possible future improvements before the thesis is concluded in chap-

ter 6.

3

2. BACKGROUND

2.1 Basic Concepts

2.1.1 Supervised Deep Learning

Machine Learning (ML) is a subsection of AI. Compared to traditional software systems,

ML based systems do not implement logical operations explicitly. Instead, they recognize

patterns in training data and generalize them to solve complicated problems [6]. Su-

pervised learning is the most frequently used form of ML. Supervised learning can be

described as learning from example, where during the training phase of the model the

system is taught with data and ground truth pairs, which the system learns to generalize.

Contrary to supervised learning, unsupervised learning systems are not trained using

ground truth labeled data, which makes the main problem the identification of patterns in

the data. [11]

Supervised DL is a subsection of ML that has reached state-of-the-art performance in

recent years on multiple ML fields [4]. In supervised DL the system is trained through ad-

justing a large number of weights contained inside a deep Neural Network (NN). Deep NN

structures are distinguished from older NNs through the lack of need for manual feature

extraction and instead, they can operate on raw data [11].

Figure 2.1 shows a deep NN that consists of an input layer, three hidden layers and

one output layer. The layer sizes and the number of hidden layers are dependant on

the application, the data dimensionality and the size of the dataset [11]. The weight,

bias and input values are left outside of the figure to make it clearer and are instead

presented in figure 2.2. The network is fully connected, which means that each neuron

in a layer is connected to each neuron in the following layer [12]. Each layer of a deep

NN transforms the data into a higher abstraction level, which allows the network to learn

complex functions [11].

Figure 2.2 depicts the role of a single neuron in a deep network. Each neuron sums its

inputs based on the optimized weight value. The edges connecting the neurons contain

weight values, which contain the relevant information of the model. The role can be

presented as equation 2.1:

4

Figure 2.1. An example of a deep NN excluding the weights, biases, inputs and outputs.

Figure 2.2. A single neuron in a deep NN. Adapted from [11].

y =
i=n∑︂
i=1

xiwi + b (2.1)

where y is the output from the neuron, xi is the input vector, wi is the learned weight vector

and b is the bias term, which tries to approximate the shifting needed for the activation

function to work properly [13]. The output of the neuron is fed into an activation function.

The Rectified Linear Unit (ReLU) is a popular activation function for DL. Other popular

activation functions include the Sigmoid function and the hyperbolic tangent [11]. Even

though there are other activation functions and there have been other improved variations

of ReLU [14], ReLU will be used in this thesis as the main activation function due to its

computational simplicity, fast learning and proven good performance compared to other

common activation functions [11]. A reason to consider other activation functions is the

dying problem of ReLU, in which neurons become inactive and never output anything but

the value zero for any input [15]. The fast learning of ReLU is the main advantage that

influences the selection over other approaches regardless of the problem. ReLU can be

described as function:

z = max(0, y) (2.2)

5

where z is the output and y is the input to the activation function. Activation functions

add non-linearity, for the sake that a system consisting merely of linear activations could

be reduced into a single neuron. [11] As presented in equation 2.2, the non-linearity is

achieved through setting values below zero to zero. An exception to using ReLU is made

in the last activation of the network, where Softmax is used instead. Softmax maps the

output values into values between zero and one and is imperative for producing the final

predictions for class values in multi-class classification [16]. Equation 2.3 presents the

Softmax function: [17]

si =
eyi∑︁j=n
j=1 e

yj
(2.3)

where si is the Softmax output, yi is the corresponding ith value in the output vector of

the preceding layer, yk is used to iterate over all the output vector values, n is the number

of classes and e is the Euler’s number.

The process of converting an input into an output by using equations 2.1 and 2.2 for each

neuron starting from left to right, finishing with equation 2.3, is called the forward pass.

After the forward pass, the last output layer in the network, the size of which is equal to

the number of the target classes, outputs a vector containing probability values for each

class label. In the training phase of the network these values are off by some amount

depending on how far the network has been trained. Thus, after each forward pass, the

weights of the NN are adjusted through a process called the back-propagation. In back-

propagation the network weights are iterated backwards by calculating gradient values

towards the steepest gradient using equation 2.4: [18]

Wi = Wi−1 − γ
dE

dW
(2.4)

where Wi is the new weight, Wi−1 is the old weight, γ is the learning rate, also known

as the step size and dE
dW

is the derivative of the loss with respect to the weight [18]. The

categorical cross-entropy is a loss function, that is used to measure the prediction error

of a DL model with multiple output classes in probability-based classification. Categorical

cross-entropy is calculated using: [17]

E = −
i=n∑︂
i=1

τilog(si) (2.5)

where E is the categorical cross-entropy loss value, si is the output of equation 2.3 and

τi depicts the probability distribution of of each training sample, where a value of one is

given to the correct class and zero to all other classes [17]. The derivative of the loss

described by equation 2.5 with respect to the weight in equation 2.4 is solved using the

6

chain rule, however the solution is not relevant to be discussed further in the scope of this

thesis.

Adam is a widely used method for optimizing the individual learning rates for different

parameters, with a proven performance on a variety of models and datasets [19]. Thus,

Adam is used as the optimizer of choice in this thesis.

Dropout is a stochastic regularization method that is effective at preventing model over-

fitting [19]. Commonly the value for dropout is set to between 0.3 [6] and 0.5 [16], [20]

meaning 30% to 50% of hidden neuron output values are set to zero. The dropped-

out neurons do not participate in forward pass or back-propagation and thus prevent the

network from relying on a single neuron too heavily. The downside of using a dropout

layer in a deep NN is that it roughly doubles the training time of a model to converging.

[16]

2.1.2 Convolutional Neural Network

Convolutional neural networks (CNN) are a type of deep feed-forward NN, which have

achieved great success in image detection, segmentation, and recognition [11]. CNNs

have been a state-of-the-art method in image recognition since AlexNet [16] was devel-

oped in 2012. While image recognition is the main application of CNNs, CNNs have been

used to classify graphs as well [20] [21]. The network gets its name from a particular lin-

ear operation called the convolution. In addition to the convolution, an activation function

and a pooling operation are generally applied to the data [18]. Figure 2.3 presents an

example of a CNN architecture and positions the convolutional and pooling operations to

the structure. The classification step at the end of the architecture contains a deep NN

but is compressed instead and presented as a blank rectangle.

Figure 2.3. An example of a CNN architecture. Adapted from [4], [14].

A convolutional layer of a CNN consists of multidimensional matrices, called filters [20]. A

filter size of 3× 3 is commonly used in image classification applications, such as the [9].

The filters contain weights and biases similarly to the NN neurons and are updated using

7

the same back-propagation principle presented earlier in the equation 2.4. The filters are

convolved over the input matrices to create a feature presentation, that is used as an input

to the next layer in the architecture. The input matrix can be padded to retain the matrix

size after the convolution operation. The padding operation is optional and is decided

based on the context by the NN designer. The stride parameter describes how much the

convolution filter is moved at each convolution. Figure 2.4 visualizes these parameters.

The input matrix is presented in blue and the part of the matrix, which the filter is applied

to is highlighted in green. The filter learned by the CNN is shown in a light orange color.

The part of the input is multiplied by the filter using matrix dot product, and the resulting

matrix is summed into a single value. The next value in the output matrix is calculated

by moving the green input to the right equal to the stride parameter and repeating until

the whole output has been covered. It can be seen, that without padding the matrix, the

output dimension is smaller than the input dimension. [18]

Figure 2.4. The convolution operation on a 5 by 5 matrix with filter size of 3, no padding
and stride of 1.

Similarly to the deep NN, an activation function is required to add non-linearity to the sys-

tem. The ReLU is used between convolution layers and convolution and pooling layers for

the reasons stated in subsection 2.1.1. In the literature, the activation layer is sometimes

referred to as the detector stage [18].

Pooling is the operation of reducing the convolutional layer output matrix dimensionality

to combine semantically similar features [11]. Pooling is invariant to small translations in

the input data, and thus the locations of elements in the matrix can vary between inputs

[18]. Figure 2.5 describes a variation of pooling called the max pooling. Max pooling uses

a kernel of size N ×N over a matrix to choose the maximum value in each kernel. This

diminishes the matrix size to N2th of its original size. Another frequently used method in

ML is average pooling, which follows the same principle, except instead of the maximum

value it uses the average value in each kernel.

8

Figure 2.5. The max pooling operation on a 4 by 4 matrix with a kernel size of 2.

The result that is obtained by applying the presented steps according to figure 2.3 is a

feature map that can be fed into a NN model. The NN, which does the final classification,

was described more in-depth previously in section 2.1.1.

2.1.3 Computer Aided Design

Vertex G4 CAD models consist of elements, which can be either faces, edges or vertices.

The different elements of the CAD model belong to the same volume, that acts as the base

of the model. The division to faces and edges follows the same structure as other CAD

model related ML studies, including Ma et al. [22]. However, a key difference compared

to related studies are the point elements called vertices, which are not widely used in the

literature or in other popular CAD systems. However due to Vertex G4 containing a point

element, which assembly constraints can be set to, it is important to include points in the

element types. Points are either the end points of edges or the center points of circles.

Attributes of a CAD model are divided into three categories in the literature: inherent

attributes, derived attributes and the intended use. Inherent attributes are attributes re-

lated to the geometric or material properties of the model (length, diameter, face, edge,

vertex, etc.), whereas derived attributes involve external disturbance (weight, motion, de-

formation, etc.). The intended use describes the use case of the model and is difficult

to describe numerically. [23] In CAD model classification tasks, the inherent attributes

are the most important because they contain all the parameters that are relevant to the

structure of a CAD model, which is the most important aspect for assembly constraint

classification. Inherent attributes will be used as the main method to depict a CAD model

in this thesis, combined with a minor addition of derived attributes. The intended use is

left out of the scope of this thesis.

In Vertex G4 assembly workflow, the user selects two or more elements from CAD mod-

els, which can be either parts or other assemblies. During each selection, the program

checks the element types for validity to be used in the selected constraints. Other well-

known commercial CAD products, such as Siemens NX [24], utilize a similar assembling

process to Vertex G4. This process differs from some systems, such as Solidworks [25],

9

where the constraint type is selected after the elements have been selected. The main

difference between these two approaches is that the first approach checks element type

validity per constraint in the input phase, whereas the other presents the user only valid

constraints between the two chosen elements. Figure 2.6 presents the process diagram

for the assembling process, following the first presented method. The selected elements

can be related to either parts or other assemblies. Assembly constraints determine the

relative position and allowed movement between the entities [26]. Each constraint re-

moves one to six degrees of freedom (DOF) from either one, or both parts. In the end

the constraint and selected elements are passed onto a constraint solver that does the

mathematical calculations related to the constraint. Adding too many constraints between

entities makes the assembly over-defined causing the geometric constraint solver engine

to be unable to solve the assembly.

Figure 2.6. Process diagram for product assembling process in Vertex G4.

10

Table 2.1. Assembly constraint types and element types combined.

Table 2.1 combines the types of assembly constraints and elements into a single table. In

total there are ten of both. Out of the ten assembly constraints, the first seven are con-

straints that connect two elements together. The last three constraints, highlighted in light

orange color in the table, require more than two elements. The equal distance constraint

needs to be set between four elements, and the symmetric constraint requires a third

element that acts as a symmetry axis. The handle linkage is a unique constraint to the

CAD system at hand, and it uses different elements altogether. The assembly constraint

classifier presented in this thesis focuses on the constraints between two elements, due

to the choices in data structures. Adding more elements would require changes in the

architecture and creating the classifier based on the commonly used assembly constraint

types makes the generalization of the system possible on other fields of CAD develop-

ment. Thus these assembly constraints with more elements are not discussed further in

this thesis.

Depending on the type of the chosen elements the assembly constraints can have slightly

different behavior. For example, adding a distance constraint between two unparallel

planar surfaces automatically includes the parallel constraint, which makes the distance

constraint applicable. Due to the nature of these side effects, going over them in detail is

not inside the scope of this thesis. The side effects are generally minor and dependant

on the previously described attributes of the CAD model. Thus, the effects are redundant

information to the CNN classifier.

11

2.2 Literature Review

Assembly constraint classification has not been widely studied in the ML community. How-

ever, many of the elements relevant to assembly constraint classification are present in

other CAD model related classification applications. The most prominent are manufac-

turing feature classification [3], [6], [7], part type classification [4], [8], [9] and retrieval

of similar parts based on geometry for design reuse purposes [5], [10]. This section re-

views the literature around these applications, focusing on methods which either are or

can be feasibly solved using CNN architectures. Thus, older studies that require manual

feature extraction conducted before CNNs were a state-of-the-art method are left outside

the scope of this thesis.

Zhang et al. [3] solve the problem of machining feature detection from mechanical parts

using geometric data in voxelized form. Voxels (volumetric pixels) are 3D versions of

pixels and can depict a CAD model as a 3D binary matrix grid. While the method reaches

a high classification accuracy of up to 97.4% with 24 classes, it suffers from resolution

limitations of the voxel structure and difficulties differentiating similar features such as

chamfers and rounds. With fast computation times in classification, the method is viable

for real-time use when the input data has been converted to voxelized form before the

start of classification. [3]

Shi et al. [6] present a novel manufacturing feature recognition model utilizing heat kernel

signatures. The model can recognize interacting machining features, which according to

the study, is limited in other manufacturing feature recognition approaches in the litera-

ture. The method converts CAD models into heat persistence maps that are clustered

by grouping similar heat persistence values. Then the clusters are combined with an at-

tributed adjacency graph that contains the concave or convex relations of adjacent faces.

Finally, the adjacency graph is processed into a lower dimensional matrix presentation

that is fed into a CNN. The system achieved a total classification accuracy 98.8% with 11

classes and interacting features. [6]

Hao and Chi [7] present a solution for machining feature detection through scoring each

face in a CAD model with a numerical value based on the concavity or convexity of the

face and its edges, as well as the existence of possible inner loops. The model empha-

sizes the importance of the face more than its edges or inner loops by adding or subtract-

ing from the total score more based on the face geometry. Eight most important faces

related to the main face are selected and used as an input to a NN. However, the study

does not validate the results on any larger dataset and thus the classification accuracy for

the system is unknown. [7]

Dekhtiar et al. [4] convert the solid CAD model into N different images; viewpoints, which

act as a degraded view to the model geometry. A novel data augmentation process is

12

used to make the data more resistant to noise and allow a more consistent behaviour

in real life situations. For maximal strength 52 images are proposed per CAD model.

The advantage of the technique is the possibility of using pre-trained image classification

models, such as the GoogLeNet [27]. In a 30-class classification task the model reached

top-1 accuracy of 82.81% and top-5 accuracy of 90.68% on the testing set. [4]

Hegde and Zadeh [8] propose a 3D model classifier for solving the Princeton ModelNet

[28] classification challenge. The method combines the principles from Zhang et al. [3]

and Dekhtiar et al. [4] to complement the multi-view image pixel data with the volumetric

information of voxels. The method reached the highest classification accuracy of its time

on the ModelNet dataset of 93.11% with 10 possible classes and 90.80% with 40 classes.

[8]

Manda et al. [9] use a light field descriptor that captures 20 images from cameras dis-

tributed evenly around the CAD model. The study differentiates itself from other multi-view

studies by the number of images taken per model to reduce redundancy. In addition, a

post-processing scheme is applied to the CNN output to prevent incorrect classifications

on some of the 20 images due to some classes looking similar from certain view direc-

tions. The post-processing increases the classification accuracy from 93.41% to 95.63%

when classifying between 43 classes. [9]

Zhang et al. [5] proposed a generic face adjacency graph method for design reuse that

considers the pre-existing constraints in assemblies through a system called the mating

face pair. The generic face adjacency graph is based on the face adjacency graph orig-

inally presented by Ma et al. [22]. While neither of these studies uses the adjacency

graphs for CNN input, the studies present methods for mapping the graphs into two di-

mensional presentations valid to be used with CNNs.

Muraleedharan et al. [10] approach the design reuse problem through Part in Whole

Retrieval (PWR). They present a method for part segmentation and normalize the seg-

mentation results through a Gauss map feature extraction process. The output is fed into

a type of unsupervised NN called an autoencoder. However, no detailed description of

autoencoders is presented in the scope of this thesis. The results of the study are val-

idated manually due to the absence of a labelled dataset. The presented method has

limitations with parts that have two segments with a hole going through them. [10]

The literature review demonstrated the theoretical framework for assembly constraint

classification. It presented the commonly used methods based on adjacency graphs,

voxelization and image-based methods. None of the discussed studies explored the as-

sembly constraint classification problem, which shows a research gap to be filled. Be-

cause the CAD related DL field has attracted a lot of attention in the recent years, going

over all the related studies is not possible in the scope of the review. Instead, the review

focused on presenting a variety of different approaches for CAD model classification.

13

3. DATA COLLECTION

3.1 Feature Extraction

3.1.1 Adjacency Graph

CAD models are an instance of unstructured data, which means that their data cannot

be presented as a matrix directly, without losing inner information. The opposite of this

are for example pictures, where all the inner information can be presented by matrices

consisting of pixel values. Unstructured data requires feature extraction, which is a highly

complex and costly process. [4]

Converting CAD model data into a matrix form is required, because a solid model is not

suitable for neural network input. Neural networks require a numerical representation of

the CAD model, which can be achieved through four main methods: 2D projections, ad-

jacency graphs, face score vectors and voxelization [2]–[4], [6], [29]. In addition to these,

point clouds have recently been used in DL to present 3D model data [2]. Adjacency

graphs, voxelization and 2D projections, also known as image-based approaches, are the

state-of-the-art and the most used methods in CAD model classification. Each of these

methods has its advantages and disadvantages, which are compared using three param-

eters: the number of parameters in the matrix presentation, the data extraction speed

from a CAD model and the difficulty of augmentation. These parameters are collected to

table 3.1. The justifications for the selected values are either based on the literature, or

empirical testing done in the CAD environment.

Method Number of parameters Extraction speed Augmentation

Adjacency graph N2 Depends on N Medium

Voxelization 643 [3] Fast [30] Medium [31]

Image-based 256 ∗ 256 ∗ 1 [9] Slow Easy

Table 3.1. Method comparison for CAD model conversion to a matrix presentation based
on important parameters for assembly constraint classification.

The first two comparison parameters are related to the real-time performance of the as-

sembly constraint classifier. For the system to be applicable to CAD design workflow,

the feature extraction needs to happen seamlessly to the software user. This is used as

14

a baseline for the method comparison. Adjacency graphs are presented as a N × N

matrix as described earlier. Thus, the number of parameters in the matrix is N2. In the

case of the assembly constraint classifier, the number of parameters can be selected

based on how widely the surroundings of an element are described. Fewer nodes result

in a very fast extraction speed. The augmentation of graphs is a problem in itself, and

it will be discussed further in section 3.4, however at this point it is enough to state that

the augmentation is similar to the one of voxelization and harder than the one of image-

based classification. While the voxel form of a CAD model can be extracted fast [30], the

number of parameters causes problems in the case of this thesis. Similar augmentation

methods work for voxels as for images, however the extra dimension lowers the augmen-

tation speed [31]. Both of those parameters lead to a requirement of a large dataset,

which as discussed later in section 3.2, is not feasible. Image-based approaches have

the benefit of easy data augmentation, but there are other problems for assembly con-

straint classification. Assemblies often contain parts that are hidden from different angles

or are located inside other parts. This results in irrelevant data when viewed from some

directions and makes some cases unable to be classified. The presented image extrac-

tion speed is based on pre-existing screenshot system in Vertex G4 CAD software, which

is fluently able to capture 24 screenshots per second. According to literature, using 20

images leads to good classification performance, which would require around one second

per CAD part [9]. This makes the use of image-based approaches illogical for real-time

CAD design.

Another aspect to discuss in the assembly constraint classification problem is the method

to present the selected elements of the CAD model to the CNN classifier. The selected

elements are the most important item in the selection of the assembly constraints. For

adjacency graphs the selected element can easily be enforced because the adjacency

graph contains the elements as nodes. This is the most problematic in the voxelization

approach, where elements occupy only a fractional section of a part of the voxels. For

image-based approaches the selected element can be presented in a different color or in

a similar manner. Based on all these discussed factors, adjacency graphs are selected

as the data presentation in this thesis.

Adjacency matrices contain the connections between adjacent elements in an adjacency

graph. The matrix presented in figure 3.1 presents an example of a simple graph and

its adjacency matrix, which can be expanded to cover the adjacency matrices of CAD

models. As described in subsection 2.1.3, CAD models consist of faces, edges, and

points. Each of these elements is a node in the adjacency graph of the model. Similarly

to A, B, C, D and E in figure 3.1, each element in the CAD model is given a unique

identifier. The element connections are presented as edges in the adjacency matrix.

Faces are generally connected to edges and edges are connected to points. Exceptions

are made when a part is a sphere or a torus because they have no edge lines.

15

Figure 3.1. Visualization of a CAD model, its partial adjacency graph and the correspond-
ing adjacency matrix presentation.

Figure 3.1 contains a header row and column of the node identifiers and binary values

for the connections between the nodes. The arrows between nodes present two-way

connections, which make the graph traversable in both directions. A binary value of one

presents a connection between nodes and value zero tells that there is no connection.

A graph with two-way connections always results in a symmetric adjacency matrix. To

check if e.g. nodes A and B are connected, the value on row A and column B is read.

In the example matrix the nodes are connected by the binary value one in the respective

location. The presented matrix is only one of multiple possibilities to present the data in

the graph at issue. By default, there is no specific order for the nodes. The header column

and row can contain values A, B, C, D and E in any permutation, as long as the order is

same for both. This causes problems in CNN training and classification because the data

does not contain spatial structure. This problem will be addressed in depth in section 3.3.

3.1.2 Feature Vector

As described in subsection 3.1.1, the adjacency graph describes only the relational data

between CAD model faces, edges and points. However, only using the relational data is

not enough to describe the complete inner geometrical structure of the model. Thus, ad-

ditional information needs to be introduced to complement the geometrical presentation.

This is done through feature vectors, which add additional data to each adjacency graph

node. Feature vectors are used in graph-based spatial CNN studies, such as [20]. In this

thesis, the feature vector of each node in the graph is split into four categories. The four

categories are chosen to minimize the number of parameters in the presentation in a way

that still provides an extensive depiction of the CAD model. The division to the categories

is based on empirical research and recognized geometrical essentials of a CAD model

from the literature. The first category describes the importance of a node based on its

location related to the selected element of the assembly constraint [20]. The second cate-

gory contains geometrical type information of the node [22] and the third category is used

16

Main class Value Subclass Value

Face 1 Plane 1

Cylinder 2

Sphere 3

Torus 4

Cone 5

Spline surface 6

Edge 2 Line 7

Circle 8

Spline curve 9

Vertex 3 Point 10

Table 3.2. Geometrical type values in the feature vector.

to describe the geometrical form of the node [23]. The fourth category contains the DOF

data of the part [23].

The importance rating can be calculated through different means. As explained later in

section 3.3, the commonly used methods for calculating the importance rating for nodes of

a CAD model are not trivial. Instead, a Boolean value is used to impose the two selected

elements in the assembly constraint. The value true is given to the respective nodes of

those elements in the adjacency graph. For other nodes, the value false is given instead.

The goal of this approach is to guide the CNN classifier towards giving more weight to the

geometrical type information and the geometrical form of the node that is directly a part

of the assembly constraint.

The geometrical type information is divided into geometrical main class and subclass.

The main class contains the three main element types of a CAD models enumerated. The

subclass contains all the subclass types, also known as the element shapes, enumerated.

Table 3.2 presents the values used for the main and subclasses. The faces are divided

into plane, cylinder, sphere, torus, cone and spline surface shapes. The spline surface

covers elements that do not fit to the other face classes. The edges are divided into lines,

circular lines and spline curves. For the vertices there is only one subclass, the point.

The geometrical form parameter is used to add a spatial component to the matrix pre-

sentation. Depending on the element subclass, normal vectors, direction vectors or 3D

points are used. The normal vector is used for planar surfaces, due to it providing relevant

information of the shape. The direction vector is used to present the geometrical form of

cylinder, torus and cone surfaces and line edges. The 3D point is used to describe the

spherical surfaces’ and circular lines’ center points, as well as the point element. The

spline surface normal changes based on the location and similarly, the spline curve has

multiple possible direction vectors. Thus, these elements are described with a zero vector

17

not to hinder the model performance. This decision is based on the fact that the spline

elements are more infrequently used in assembly constraints than the other geometrical

shapes.

To describe the DOFs of the CAD model involved in an assembly constraint, a vector of

size 1× 6 is used. Each degree of freedom is described by a binary value, where a value

of one is used if the DOF is open and a value of zero if it is locked. To make the data able

to be concatenated with the rest of the feature vectors it needs to be padded to size N×6

with zeros. The DOF information is necessary for the assembly constraint classifier due

to some constraints only being sensibly applicable when some of the model’s DOFs are

locked. An example of this is the angle constraint, which is rarely used between two parts

unless only one of the rotational freedoms is open and the other DOFs are locked. In other

cases, the angle constraint is often dominated by the more frequently used coincidence

and distance constraints.

Figure 3.2. Feature vector matrix presentation.

Combining the importance rating, the geometrical type information, the geometrical form

and the DOF information results in a N × 12 matrix. The results are combined by con-

catenating all the information together. The resulting matrix containing the feature vectors

is presented in figure 3.2. It is important to notice, that the geometrical type values are

significantly higher than the other values in the feature vector. It is noted that this can the-

oretically influence the CNN model performance, however these effects are not discussed

further in this thesis.

3.2 Dataset Generation

Even though 3D model related ML has increased in popularity in the last few years, the

deficiency of datasets presents problems for developing more advanced methods. While

there are some datasets, such as the ShapeNet dataset [32] and the DMU-Net dataset

18

[4], they often concentrate on the classification of different shapes and do not contain

necessary assembly constraint information for the case of this thesis. Thus, pre-existing

datasets will not be suitable, and data must be collected from a different source.

Classification using deep learning requires large amounts of data and the performance of

a model is highly dependent on the quality and quantity of the data used [3]. Depending on

the methodology the amount of data per class varies from tens for multi-view classification

[4] to 5000 to 6000 for graph and voxel-based applications [6][3].

A general approach for generating more data is the geometric variation of 3D models

within set limits. This approach works best for parametric CAD systems. However, the

approach is not well suited for the classification approach used in this thesis because the

data used is invariant to scale and only describes the relations between different elements

in a CAD model. Thus, a different approach is needed.

The approach chosen for data collection is to use pre-existing assemblies that have been

created by professional CAD designers. Vertex Systems has access to several profes-

sionally created assemblies that are used to test the functionality of the Vertex G4 CAD

system. Some of the assemblies used are intellectual property of the customers and are

thus privileged information and cannot be presented in depth in this thesis. However, due

to the nature of deep learning this information can be used as training data. Other used

assemblies consist of models created for the internal use of the company and will not thus

be presented either.

The approach provides advantage compared to the geometric variation in data quality

due to the variety of parts used in the assemblies, while the geometric approach provides

more quantitative data. It also does not require manual work in ground truth annotation, or

contain as large of a risk of misclassification, since the assembly constraints have been

carefully selected by skilled designers during the assembly process. Extracting these

values directly from the assemblies, and using them as the classifier ground truth values,

increases the generalization ability of the system due to a broad pool of designers over

multiple expertise fields. The goal of the approach is to capture the essence of CAD

designers and their expertise inside the ML algorithm to make the design process more

fluent.

Assemblies consist of parts and sub-assemblies, of which sub-assemblies can contain

more assembly constraints than what are visible to the main level of an assembly. The

sub-assemblies can contain additional sub-assemblies. To collect all constraints from

an assembly all the sub-assembly constraints need to be collected as well to maximize

the size of the dataset. Algorithm 1 describes two functions that can be used to collect

constraints from assemblies. The first part is a recursive function that goes through all

the sub-assemblies and collects them into a single data container. This function is called

by the second function, that then loops through all the assemblies and all constraints that

19

belong to them. The constraints can be filtered using multiple criteria, however here the

number of elements involved is used to filter out the constraints, that require three or more

elements, such as the equal distance constraint.

Algorithm 1: Algorithm for collecting all constraints recursively from an assembly.

1 Function GetAllChildrenAssemblies (R);
Input : Root assembly R
Output: List of children that are assemblies C

2 children = [];
3 for child in R.children do

// Only assemblies have children
4 if not child of type assembly then
5 continue;
6 end
7 insert child to children;
8 insert GetAllChildrenAssemblies(child) to children;
9 end

10 return children;

11 Function GetAllConstraints (R);
Input : Root assembly R
Output: List of assembly constraints C

12 children = GetAllChildrenAssemblies(R);
13 C = [];
14 for child in children do
15 c = get all assembly constraints from child;
16 for constraint in c do
17 if constraint is between two elements then
18 insert constraint to C;
19 end
20 end
21 end
22 return C;

As described in subsection 2.1.3 volumes act as the base for a CAD model. Thus, a

volume will be used as the starting point for the data collection algorithm. The data

collection is done in three main steps. The first step is to collect faces from a CAD

model volume and add them to the graph. Respectively, the second step collects edges

from faces and the third step collects points from edges and adds them to the graph.

These steps are presented as pseudo-code in algorithm 2. The algorithm checks if a

node already exists in the graph before creating another one to prevent the creation of

duplicate nodes. If the node exists it is fetched from the graph. The result of the algorithm

is an undirected adjacency graph in an object-oriented form.

20

Algorithm 2: Algorithm for creating an adjacency graph from a CAD model.

1 Function CreateAdjacencyGraphFromVolume (V);
Input : Part model volume V
Output: Adjacency graph G

2 S = get surfaces from V ;
3 for surface in S do
4 create surface node sn;
5 E = get edges from surface;
6 for edge in E do
7 if not edge in G then
8 create edge node en;
9 insert en to G;

10 else
11 get en from G;
12 end
13 P = get points from edge;
14 for point in P do
15 if not point in G then
16 create point node pn;
17 insert pn to G;
18 else
19 get pn from G;
20 end
21 connect pn to en;
22 end
23 connect en to sn;
24 end
25 end
26 return G;

Five large scale assemblies were selected from Vertex libraries and the algorithms 1

and 2 were run on them. In total 2580 assembly constraints were collected initially from

the assemblies. Figure 3.3 visualizes the division of assembly constraints between the

selected assemblies sorted in descending order. Each assembly is named in numerical

order to retain anonymity.

Distribution of constraints within possible categories in the five assemblies is presented in

figure 3.4. The coincident constraint is the most used by the designers of the assemblies.

This behavior is expected due to the constraint’s flexibility. The parallel, distance and

concentric constraints are used commonly as well, however not as commonly as the

coincident constraint. The tangent constraint is used relatively little, while the angle and

perpendicular constraints are used very infrequently or not at all.

As it is shown in figure 3.4, the constraint class distribution is imbalanced in the current

dataset. This means that there is skewness in the data, which causes problems for the

21

Figure 3.3. Quantity of constraints extracted from each of five large assemblies.

Figure 3.4. Initial constraint distribution within data extracted from pre-existing assem-
blies.

22

DL classification system. CNNs are not designed for imbalanced classification tasks, and

when a model is trained on an imbalanced dataset, it is due to develop a bias towards the

majority class and predict it more commonly than a minority class [33], [34]. In this case,

the system is prone to learn to predict the coincident constraint in cases, where the other

minority constraint classes are the correct choice. To improve the system, the quantity of

the samples in the minority classes can be increased to balance the overall distribution of

the data [33].

Figure 3.5. Designed CAD models for the manual tangential constraint generation pro-
cess.

The angle constraint and the 90-degree special case for it, the perpendicular constraint,

are virtually not used at all and thus generating samples for them could produce unwanted

behavior in the trained classifier. Thus, those two constraint types are left out of the classi-

fication target classes. This leaves the tangent constraint as the main minority constraint

class, for which data needs to be generated. A manual data generation approach is cho-

sen, in which eight CAD models are designed and combined into assemblies using the

tangential constraint. Due to the method’s invariance to scale, no size variation of the

models is required. Two of the models are used twice, resulting in a total of ten usable

models. The models are visualized in figure 3.5. Each model is designed to present a va-

riety of possible relations of cylindrical and planar surfaces to other surfaces. Tangential

constraints can be placed between parts containing cylindrical surfaces (left) and parts

containing planar surfaces (right). In this instance generating more data of tangential

constraints required creating an assembly, which contained the ten models thrice. A vari-

ation of DOFs was generated for each three sets of ten models. The first had all DOFs

free, the second limited all but one translation leaving the rotations free and the third had

only the rotations free. Adding tangential constraints between one cylindrical surface of

the models on the left in figure 3.5 with one planar surface of the models on the right in

each variation of DOFs results in 3 ∗ 5 ∗ 3 ∗ 5 = 225 tangential constraints. The selected

surfaces are colored with light orange color. The results of the tangential constraints data

generation are shown in figure 3.6.

23

Figure 3.6. Modified constraint distribution after manual tangential constraint generation
and removal of angle-based constraints.

While the constraint distribution is still slightly skewed, especially considering the quantity

of coincident constraints compared to the other constraints, a slight bias might prove use-

ful in the constraint classification task. The data collection from professionally designed

CAD models proves that real-life designers have a bias towards the coincident constraint

and while training the classifier on the current data can lead to bias in the system, the

effects of this bias in the competence of the classifier should be studied. The amount of

assembly constraint data can be increased using another method than manual genera-

tion. The method will be discussed later in section 3.4.

3.3 Data Processing

The data processing step is divided into two parts. The first part is the normalization

of the adjacency graph data, which is done to be able to systematically convert similar

assembly cases into similar two-dimensional presentations. The second part is combining

the extracted features from section 3.1 into a 2D matrix form that is valid to be input into

a CNN classifier.

CNNs are intended to be used with structural data with consistent internal order, which

graphs by default do not contain [6]. While the adjacency graph created in subsection

3.1.1 already has structured data compared to a traditional CAD model, it still lacks the

internal order aspect. Thus, normalization of the data is required. There are two main

methods for creating internal order in a graph. The first is to rank each node in the graph

with a value, such as the heat persistence value used by [6] and sort the adjacency

24

matrix in descending order based on the respective value. The second is to rank each

edge in the graph using an importance rating, such as the betweenness centrality [35],

which measures the centrality of a node based on the number of shortest paths that pass

through that node. [20], [21]

A core difference between the two methods is the dimensionality of the output matrix.

While the node ranking methods result in a two-dimensional adjacency matrix and a

separate two-dimensional feature vector, the edge ranking methods result in a three-

dimensional presentation instead [20]. Both the output matrices are valid for CNN input,

but the latter requires an additional dimension in the CNN filters, which results in more

weight parameters to learn in the CNN architecture. In adjacency graphs extracted from

CAD models, the nodes, i.e. the CAD model faces, edges and points, contain the impor-

tant geometric information of the model. The edges act as connectors between the nodes

and assigning an importance rating to a specific connection through parameters such as

the betweenness centrality is not relevant. For example, a square surface with a hole

and five connected edges is far less central than a surface with ten holes that are directly

connected to the surface node due to how the graph presentation is created. The ground

truth constraint between these two cases is identical, however the centrality values for

the edges are different. Based on these factors, the node ranking method is used in this

thesis.

Breadth First Search (BFS) is used by Ma et al. [20] and Niepert et al. [21] to collect

a local neighborhoods of central nodes. In this thesis, there is only one central node

in each graph, which is the node that corresponds to the element belonging to the as-

sembly constraint. Due to the structure of assembly constraints, the central node’s local

neighborhood contains the most relevant information for the selection of the assembly

constraint. Thus, in this thesis, the rank of a node is solely based on its depth in relation

to the central node. BFS is a graph traversal technique, that is used to collect N nearest

neighbors for the assembly constraint node in order of their depth related to the central

node. Algorithm 3 presents the principle of the traversal algorithm. The visitation status

of each node is tracked and the nearest adjacent neighbor that has not been visited is

chosen at each iteration [36]. This approach is prone to some randomization based on

the implementation technique and the order in which the neighboring nodes are explored.

Once the N nearest neighbors have been collected from the adjacency graph, they can

be converted into an ordered adjacency matrix. The order of the nodes in the first row

and column is equal to the sorted order of the neighbors. The sorting is based on the

depth from the central node, that is the number of edges between the central node and

the specific node. If after this process the adjacency matrix is smaller than the wanted

size, i.e. there are less nodes in the graph than the wanted result size, zero-padding is

applied. In zero-padding the value zero is added to the last columns and rows of the

matrix until the required dimensions are reached [21].

25

Algorithm 3: Algorithm for finding N nearest neighbors. Adapted from [36].

1 Function BreadthFirstSearch (G, s,N);
Input : Graph G, start node s, neighbor count N
Output: List of N nearest neighbors
// Reset visited status for each node

2 for n in G do
3 n.visited = false;
4 end
5 s.visited = true;
6 queue.push(s);
7 nearest = [];
8 while not queue.empty() do
9 n = dequeue(queue);

10 neighbors = n.neighbors;
11 for adjacent in neighbors do
12 if not adjacent.visited then
13 adjacent.visited = true;
14 queue.push(adjacent);
15 nearest.push(adjacent);
16 end
17 if nearest.size > N then
18 return nearest;
19 end
20 end
21 end

After the normalization process, the normalized adjacency matrices are combined with

the feature vectors from subsection 3.1.2, the size of which are N × 12. As presented

earlier, since the feature vector contains node-wise parameters it cannot be combined

with the adjacency matrix to create a three-dimensional matrix presentation. Instead, it is

sorted to match the order of the adjacency nodes from BFS and concatenated directly to

the adjacency matrix to create a two-dimensional N × (N +12) matrix presentation, that

contains both the adjacency data and the node-wise feature vectors. An assembly con-

straint connects two parts, both of which have an adjacency matrix and feature vectors.

The matrix data of each part is stacked on top of each other to create the (2N)×(N+12)

matrix presentation of an assembly constraint.

The values 24 and 12 are chosen for N for comparison in this thesis. This leads to matrix

presentations of size 48×36 and 24×24 respectively. The value 12 is selected to create a

square matrix, while the value 24 is expected to provide insight into the effect of increasing

the neighbor count. The higher the value for N , the more the classifier will know of the

surroundings of the selected elements of an assembly constraint. The increase in input

size also increases the amount of data required to train and validate a classifier. With

larger matrices, it is expected, that the performance of the classifier will decrease, due

26

to the amount of learning required and the relatively small dataset compared to other

classification tasks. In addition, the increase of the nearest neighbor quantity is expected

to increase the training time. Generally, the most important factors that determine the

constraint applied are located nearer the constraint’s selected elements and thus values

higher than the ones tested contain redundant information for the constraint classification.

The values are tested later in sections 4.3 and 5.2, and the hypotheses are analyzed. To

demonstrate the effect of the normalization process, different constraint class samples

are presented in figure 3.7. A value of N = 24 is selected for visualization purposes.

Figure 3.7. Two randomly selected normalized constraints from each class from the
generated dataset.

Figure 3.7 shows randomly selected examples of the constraint classes in 48× 36 matrix

form. The colorbar describes the correspondence between these colors and the values

described in section 3.1. The similarity between the matrices is not obvious to the human

eye. To determine if the normalized values inside each class are similar, the mean abso-

lute error between the matrices is calculated. For this calculation, 100 random samples

from each class are selected from the original dataset. This corresponds on average to

23 % of each dataset and provides an adequate depiction of the whole dataset, while

being computationally less expensive. Each sample is compared to each other sample

inside the class and across other classes. Figure 3.8 shows the results of the calcula-

tions, averaged over the class pairs. The diagonal values describe the differences inside

a class, while the rest of the values describe cross-class differences. The slightly smaller

diagonal values, compared to the rest of the values, state that the normalization method

is functional and indicates that the CNN is predicted to be able to differentiate different

classes from one another. However, this will be validated later. It is important to note, that

while the mean absolute error is not precise for this type of comparison, it provides some

insight to the similarity of the matrices.

27

Figure 3.8. Mean absolute error between class matrix presentations of 100 randomly
picked samples per class.

3.4 Data Augmentation

Data augmentation is common in image classification tasks. In data augmentation, oper-

ations such as mirroring, rotating and pixel shifting are performed on the image data to

create a larger dataset for the image classifier. Even though the newly created data is

fundamentally the same as the original data, the pixel values and their orientations are

completely different while the ground truth values remain the same. Thus, the new data

works as unseen data for the classifier training and validation and reduces the model sen-

sitivity to specific situations and enhances the model robustness [4]. In CAD model clas-

sification the multi-view approaches, such as [4], are the main user of data augmentation.

However, data augmentation offers great potential in other classification applications as

well. As discussed at the end of section 3.3, the two parts’ adjacency matrix and feature

vector combinations are stacked on top of each other. However, this stacking is invariant

to order and can be done in both orders to duplicate the number of assembly constraint

data. This is computationally inexpensive compared to other augmentation approaches

and should be used to maximize the amount of data.

28

While data augmentation for adjacency graphs has been studied relatively little, there are

approaches such as the one developed by Zhao et al. [37] for general graph data aug-

mentation. The problem in data augmentation for graphs is due to the graph structure

being based on node connectivity instead of the position of a node. The approach for

data augmentation in graphs is adding nodes or edges, of which adding possible edges

and removing noisy edges is considered the state-of-the-art approach. [37] Adding or

removing edges from an adjacency graph of a CAD model breaks the geometry presen-

tation and can lead to unintended behavior. Thus, other approaches for adjacency data

augmentation should be explored.

The use of data augmentation for uniformly normalized adjacency graph data is not ratio-

nal when the edges or nodes of the graph cannot be altered. In the case of this thesis, this

means that if each closely similar assembly constraint between two parts produces equal

adjacency graph presentations, the problems in the classification of those situations are

diminished and thus data augmentation is not as necessary. However, in cases, where

the normalization of the graph contains random elements, data augmentation could be

used to enhance classification model performance and robustness, and prevent over-

fitting caused by insufficient amounts of data.

The normalization method presented in 3.3 in its current form does not consider the impor-

tance of a node and treats each node at the same depth as as important. The adjacency

matrix generated using algorithm 3 is dependent on the order the graph traversal algo-

rithm explores the graph. As presented in section 3.3, the normalization of the CAD model

adjacency graph in this thesis is based on the node’s depth in relation to the central node.

This is due to the problem of giving a higher importance rating to a single node compared

to another. This opens an approach for augmentation, which requires the utilization of

the random element in the node exploration order based on the internal implementation.

Random walks are a method for graph exploration similar to graph traversal techniques

such as BFS [36]. Combining the randomization aspect of random walks with the the-

ory of BFS has potential to be a simple method for adjacency matrix augmentation, with

possibility to generate large amounts of data.

Adding a shuffle method call to line ten of algorithm 3 randomizes the order, in which the

nearest neighbors are explored. The algorithm can be run multiple times with different

randomization seeds to collect different matrices from the same adjacency graph. The

method retains the depth order of the graph causing small deviations to the original matrix

data. These deviations are small enough to create a wider presentation of each constraint

class, yet not too large to go over the class borders. The problem with the method comes

in the form of possible duplicate data. In cases where nodes have only few neighbors,

e.g. only zero to one neighbors, the randomization has little to no effect. For example,

shapes such as the torus or the sphere contain this type of nodes. To prevent problems

caused by redundant duplicate data, the created matrices are compared to the previous

29

Constraint type Original count Augmented count Balanced augmented count

Distance 439 3480 1856

Concentric 423 3264 1856

Parallel 490 3664 1856

Coincident 1201 9608 1856

Tangent 250 1856 1856

Total 2803 21872 9280

Average 561 4374 1856

Table 3.3. Constraints per category before and after the data augmentation operation.

augmentation results of the specific constraint case, and exact duplicates are removed.

Thus, the original count multiplied by the number of augmentations does not always equal

to the value in the augmented count column of table 3.3.

The last column of table 3.3 describes an experimental approach to dataset balancing.

Other approaches, such as [9], use data augmentation more on the classes with fewer

data samples to balance the overall distribution. With the data augmentation method used

in this thesis, this would easily lead to duplicate data, which is bad for the classifier model.

The approach tested balances the augmented data count by clipping off the excess data

from all but the class with the minimum number of data samples. This means that the

balanced augmented count for each constraint type is limited to the minimum value of

the augmented count for the constraint types. Using this approach balances the dataset,

which helps eliminate bias in the classifier. However the clipping approach can only be

used for the augmented dataset, because otherwise the data quantity is diminished too

severely for the classifier to be trainable. The approach is tested to explore the effect of

data skewness on the classifier bias, and if balancing the datasets increases or decreases

the classifier performance.

30

4. METHOD FOR ASSEMBLY CONSTRAINT

CLASSIFICATION

4.1 Software System Architecture

A key problem in the system architecture design for the software implementation exists

in the programming language selection. Vertex G4 source code is mainly created using

the C++ programming language. However, Python is commonly used to train ML algo-

rithms due to its ease of use. There exist multiple easy-to-use models and libraries for

Python, such as the TensorFlow Keras sequential model, that have most of the function-

ality related to ML training built in [38]. Based on these factors and the time constraints

in the creation of this thesis, Python and TensorFlow Keras are used to train the classi-

fier model. TensorFlow Keras also offers tools for early stopping and checkpoint creation

of the training algorithm using callbacks. This is especially important in the use case of

this thesis, due to the problem of multiple constraint classes fitting between similar ele-

ments, which can easily lead to over-fitting. However, C++ and Python are not compatible

directly. Thus, running the classifier model requires discussing.

This thesis discusses two main approaches for running the classifier model. The first is

running the model in Python separately from the C++ executable. The implementation

of this approach is the least time consuming. The most critical disadvantage of this ap-

proach is that the software user needs to have a Python interpreter installed to be able

to run the classifier. This requires extra work and expertise to get the system running,

which makes it less likely that the software user gets involved with the new software fea-

ture. The second approach is freezing the python packages using an external software,

such as the PyInstaller [39], and thus packaging the program into standard executables.

This approach consumes more time than the first but is easier for the CAD user. Other

options include integrating a Python interpreter to the CAD system codebase and run-

ning the classifier model as is or porting the Python implementation as whole to C++.

These options require the largest amount of development to get working and thus will not

be considered as the approach of choice. These approaches are left as future develop-

ment targets when the implemented classifier is honed for a later release version. Based

on these factors, the first approach is chosen to be used during development, which is

running the model in Python separately from the C++ executable.

31

To run the Python classifier separately from the C++ code, gRPC [40] is used. gRPC is a

modern, free, lightweight and open-source communication protocol developed by Google.

It is based on the Remote Procedure Call (RPC) framework and protocol buffers [40]. The

more in-depth structure of gRPC is not part of the scope of this thesis.

Figure 4.1 presents a process diagram of using a CNN classifier in assembly constraint

classification. The diagram is split into two categories by a dotted line: the training phase

and the prediction phase. The training phase contains the data collection and feature

extraction from the CAD model library, described in sections 3.2 and 3.1, respectively.

The CNN model is presented as a black box model, meaning it’s only observed by its

inputs and outputs. The black box classifier is trained using the matrix presentations and

ground truth labels from the earlier phase. In the prediction phase, the software user

follows the process presented earlier in figure 2.6. The two selected elements and their

respective CAD models are fed through the feature extraction algorithm, that outputs the

matrix presentations. Compared to the training phase, in the prediction phase the feature

extraction algorithm is not aware of the ground truth label for the constraint. Instead, the

fully trained classifier is used for predicting this constraint label, that is then automatically

placed between the two models as an assembly constraint. Otherwise, the prediction

follows the same principles as the training phase.

Figure 4.1. The training and prediction process of the classifier.

The feature extraction from the CAD models and assemblies is done in the CAD system

source code in C++. In the initial implementation the extracted matrix presentations are

saved to the system hard drive as comma-separated value files, from which they are read

in Python. In the training phase all the matrices are read simultaneously, whereas in the

prediction phase only one matrix is read at once.

32

4.2 CNN Architecture

In recent years, the trend in CNN architectures has been to create deeper networks rather

than wider. Deeper CNN models have more layers with fewer filters per layer. [9] The

network deepness is limited by the input size and the number of convolution and max

pooling layers in the network. As presented earlier, nearest neighbor counts of N = 24

and N = 12 are used for the normalization of the adjacency graph. This results in

input sizes of 48 × 36 and 24 × 24 to the classifier. These input sizes are relatively

small, compared to e.g. image classification tasks, where the input size commonly is a

256 × 256 image [9]. Due to the size difference and the size diminishing feature of the

convolutional layer and the max pooling layer, the maximum depth of the model is limited.

However, the number of values in the matrix is also significantly smaller compared to

image data. The number of values in the input matrices in this thesis are 1728 and 576

respectively, compared to the 65536 parameters for 256× 256 images. Thus, the model

depth requirement is diminished. The chosen model architecture for this thesis contains

three convolutional layers, with 128, 128 and 256 filters respectively, totaling up to 512

filters and 512 * 9 = 4608 parameters with a filter size of 3× 3. The classifier architecture

is presented in figure 4.2. Other architectures with a larger quantity of convolutional

layers were initially tested, but the presented model performs better in the application of

assembly constraint classification. This is most likely due to the small input size to the

network.

Figure 4.2. Presented CNN classifier architecture.

33

The network begins with the input matrix. The matrix is fed into a convolutional layer, the

filter size of which is 3× 3. The same filter size is used for all the following convolutional

layers as well and will not be mentioned again in this section. The first convolutional

layer has 128 filters. The layer is followed by a ReLU layer and a second convolutional

layer that matches the first one. ReLU layers are used as the activation function between

layers, as presented in subsection 2.1.2. A max pooling layer of size 2 × 2 is used to

select the most important values found by the convolutional layer. Similarly to the size of

the convolutional filters, the max pooling size is also fixed. The model up to this part is

highlighted in a blue tone, disregarding the model input. The network is continued with a

wider convolution layer, presented in an orange tone. This layer has 256 filters. The layer

is followed by an activation layer and a max pooling layer.

A yellow tone is used to present the DL NN part of the CNN. The flatten-layer converts

the multi-dimensional output of the CNN into a one-dimensional vector. The vector is

then fed into a dense layer with 32 hidden neurons. The hidden layer is followed by an

activation and the dropout layer, described in white. The dropout value 0.5 is selected

based on its good performance to prevent over-fitting in the literature. Thus, 50% of

hidden neuron output values are randomly set to zero to prevent over-fitting. The network

ends with a green tone. A dense layer with neurons equal to the number of output classes

is connected to a Softmax activation layer, that converts the class-wise outputs into values

between zero and one. These values correspond to the probabilities of each class.

Equal network architectures are used for both input sizes, even though adding more layers

for the larger input is possible. This makes the comparison of the classifiers trained

on different input sizes more systematic and limits the variance caused by the model

architecture, which allows the selection of the best model regardless of the input size.

4.3 Model Training

Before initiating the model training process, the trained models need to be defined. The

division of data into three different datasets was presented previously in table 3.3. The

original non-augmented data is used as a baseline to validate the effectiveness of the

data augmentation method presented earlier in section 3.4. The effect of data skewness

on the bias of the classifier is investigated by training a model on both the augmented

dataset and the balanced augmented dataset, where each class has the same number

of samples. To determine the relationship between the number of graph size and model

performance, models are trained with nearest neighbor counts of N = 24 and N = 12.

Permutations of these parameters are presented in table 4.1 and are used as the model

definitions. Because the clipped dataset is only created from the augmented dataset and

not the original dataset, six permutations of the dataset parameters can be created, which

corresponds to six trainable models.

34

Name Nearest neighbors Augmented Clipped

Model 1 24 Yes Yes

Model 2 24 Yes No

Model 3 24 No No

Model 4 12 Yes Yes

Model 5 12 Yes No

Model 6 12 No No

Table 4.1. Definitions of the trained models.

Hyperparameters are high level parameters that relate directly to the structure or perfor-

mance of a ML model [4]. These parameters are tuned based on the literature and ex-

periments and expectations of the system performance. Table 4.2 presents the relevant

hyperparameters for the assembly constraint classifier model, and the selected values for

those parameters. In medical image classification learning rate value of 0.0001 has re-

sulted in better classification accuracies than the default value of 0.001 used by Adam [19]

and Tensorflow Keras [38] on smaller batch sizes such as 64 [41]. Batch size describes

how many data samples are used to train a single forward or backward pass. A value

of 64 is selected based on its general good performance [41]. Both learning rate values

are experimentally tested on a 20-epoch test training of a single model. Model two, pre-

sented in table 4.1, is used for the conducted test based on its large data quantity. On the

initial test train, the higher learning rate of 0.001 resulted in 11.9% higher accuracy and

41.7% lower loss on the training dataset and 6.9% higher accuracy and 25.9% lower loss

on the validation dataset, respectively. Based on these values, the 0.001 learning rate

is selected to be used in this thesis. Each model is trained to 100 epochs to investigate

the model performance over a longer training time. In addition, a longer training process

presents a more in-depth description of model performance related to over-fitting. The

exponential decay rates β1 and β2 and the ϵ value, that prevents division by zero, are

selected to be the same as with the original Adam optimizer [19].

Hyperparameter Value

Learning rate 0.001

Batch size 64

Epoch count 100

β1 0.9

β2 0.999

ϵ 10−8

Table 4.2. Essential hyperparameters and their values.

35

Early stopping is a method to stop the model training process if a fitness metric of the

model is not improving during the training process [4]. To research the model performance

over the 100-epoch period and make the comparison of different models systematic, an

early stopping is not used directly during the training process in this thesis. However,

keeping track of the point of lowest validation loss is used and model checkpoints are

saved at points of lowest validation loss. This provides the means for returning to these

points later and the comparison of performance metrics at these points, as well as the

training times to reach these points. These comparisons are done later in section 5.2.

The three datasets presented earlier in table 3.3 are each divided into a training, validation

and testing dataset. The training set is used to fit the classifier model and it is the data

the model learns from. The validation set is used for model evaluation simultaneously to

the training process. The model is not trained on this data and thus the validation set

does not directly affect the model performance. The testing set is only used to evaluate

the performance of the final, fully trained model. [12] To retain the maximum number

of training set samples, an 80%, 10% and 10% split is used to divide the data into the

training, validation and testing sets, respectively. Each dataset is randomized to reduce

the inner bias learned by the classifier [4]. The training and validation sets are used during

the training process in this section, while the testing set is used later in section 5.2.

The accuracies of popular image classification systems trained on ImageNet [42] dataset

are benchmarked using two parameters: top-1 accuracy and top-5 accuracy [43]. In

top-k accuracy (k = 1 or k = 5 in this case) the k most probable labels given by the

CNN are compared to the correct ground truth label. If any of the top-k labels is correct,

the prediction is identified as correct [16]. Due to the nature of assembly constraints

described previously, top-k accuracy provides a more accurate description of the model.

While a value of five is commonly used for k, due to the low number of target classes

for the classifier, a lower value of two should be used instead. Top-2 accuracy is rarely

used in the literature around CNNs, but there are some studies such as [44], that use it

in combination with top-1 accuracy due to fewer target classes. In this thesis, the top-1

accuracy, referred to as accuracy later in this thesis, is combined with the top-2 accuracy

due to there only being five constraint classes to classify between.

Figure 4.3 describes the model accuracy (top), top-2 accuracy (middle) and loss (bottom)

on the training dataset. For the accuracy plots, the higher the value is, the better the

model performance is. For the loss plots lower values are preferred. Categorical cross-

entropy (Softmax) is used as the loss function, as explained in subsection 2.1.1. Each

of the six models presented in table 4.1 is trained for 100 epochs and the epoch-wise

metrics are drawn in blue, orange, yellow, green, grey and purple colors for the six mod-

els, respectively. On the accuracy plot, the augmented grey and orange models’ series

ascend quickly to the approximately maximum value resulting in a steep curve. The base-

line purple and yellow models reach a lower accuracy at a relatively similar rate, while the

36

augmented and balanced blue and green models achieve the lowest accuracies. It can

be seen, that the nearest neighbor counts of N = 12 perform better than their N = 24

counterparts in the accuracy department. The top-2 accuracy plot is similar to the accu-

racy plot, where the yellow, blue and green models’ performances remain comparable,

yet lower than the other three models’. The values for the top-2 accuracy are always

higher than or equal to the accuracy, when compared on the same epoch values. On the

loss plot, the order of the model performance is similar to the accuracy plots. Overall, the

augmented models perform the best during the training process followed by the baseline

models. The augmented and clipped datasets perform the worst.

Figure 4.4 describes the model accuracy (top), top-2 accuracy (middle) and loss (bottom)

on the validation dataset. The accuracy and top-2 accuracy follow a similar trend to the

models trained on the training dataset. The main difference is that the models reach

higher accuracies faster than on the training dataset. This is caused by the dropout layer

used on the training dataset models. On the validation dataset all the hidden neuron

values are used because over-fitting is not an issue, and thus the model performance

is better initially. In addition, there is more fluctuation in the model accuracies on the

validation dataset. The model validation loss has the most fluctuation out of all the plots.

The point at which the model validation loss starts consistently increasing is the point

where the model starts over-fitting. This is a problem especially on a smaller dataset, such

as the models with no data augmentation [45]. The bottom plot depicts that the model

two, highlighted in orange, performs best on the model validation loss compartment, with

only little increase in the loss over the 100 epochs. All the other models perform similarly,

with high fluctuation in the validation loss value over the presented scope.

Table 4.3 presents the model training and validation accuracies and losses at the point of

the minimum validation loss. Due to the high fluctuation, the minimum validation loss is

calculated by comparing each loss value to the five next consecutive values and taking the

first point, at which there have been five consecutive increases in the loss value compared

to the original value. Top-k accuracy is left out of this table due to space constraints and

because the training and validation accuracies provide more variation in the description of

the model performance. The table shows that at the point of minimum validation loss the

model validation accuracies are slightly higher than the training accuracies, suggesting

that at that point in the training process the models are slightly under-fitted. Interestingly,

the fifth model, which has performed nearly as well as the second model on the previous

metrics, starts over-fitting soon after epoch 12. This conveys that it is not necessary

to train all the models for the whole 100 epochs and sufficient results can be reached

with a lower epoch count. The table shows that even the model two with the largest

dataset and data presentation gains its lowest validation loss at 19 epochs, which is a

similar rate to the other models. However, the performance is better on both the training

and the validation metrics compared to the other models. To keep the model discussion

37

Figure 4.3. Comparison of model accuracy, top-k accuracy and loss on the training
dataset.

38

Figure 4.4. Comparison of model accuracy, top-k accuracy and loss on the validation
dataset.

39

Name Epoch Training acc. Training loss Validation acc. Validation loss

Model 1 22 0.8113 0.4253 0.8976 0.2760

Model 2 19 0.9074 0.2547 0.9268 0.2137

Model 3 20 0.8573 0.3691 0.8699 0.4015

Model 4 40 0.8276 0.4613 0.8578 0.3344

Model 5 12 0.8737 0.3135 0.9046 0.2521

Model 6 21 0.8947 0.2647 0.8980 0.2618

Table 4.3. Model metrics at the point of minimum validation loss with five epochs of
patience for the early stopping algorithm.

Name Epoch train time (s) Train time to minimum loss (s) Total train time (s)

Model 1 88 1936 8800

Model 2 216 4104 21600

Model 3 53 1060 5300

Model 4 26 1040 2600

Model 5 75 900 7500

Model 6 17 357 1700

Table 4.4. Model training time comparison to the point of minimum validation loss and to
the point of 100 epochs.

systematic further on in this thesis, the models are examined over the whole 100-epoch

period instead of comparing them further at the point of minimum validation loss.

The model is trained on a system consisting of an Intel i5-9600k processors, a GTX 970

graphics card and 16 gigabytes of RAM. Table 4.4 presents the training times per epoch,

the training times to reach the previously described points of minimum validation loss and

the total training times to the point of 100 epochs. The training time increases linearly

between models trained on the nearest neighbor counts N = 24 and N = 12. Models

with the higher nearest neighbor count take longer to train than their counterparts with

fewer nearest neighbors.

4.4 User Interface

A User Interface (UI) allows the software user to pass information to and interact with a

computer system [46]. The usability of the software implementation is the main focus in

the initial UI design of the classifier system. Usability is described as the extent to which

a system can be used by its users to achieve the goal of assembly constraint inputting

with effectiveness, efficiency and satisfaction in the use setting [47]. The UI is designed

to reduce the number of dialog boxes the user must go through during the assembly

process.

40

Figure 4.5. Initial user interface for the classifier system inside the Vertex G4 CAD soft-
ware.

The main problem with the former interface was that the user had to repeatedly start and

close functionalities when they wanted to switch between different constraint types. This

is visible in figure 4.5, where the buttons highlighted in orange are used to start the input

of different assembly constraints in the old software version. In the introduced UI all the

different constraint types can be placed through a single functionality. The "Constraint"-

button, highlighted in green, is used to start the new ML-based functionality. After the

user has selected the elements, between which an assembly constraint is required, the

data in transferred to the CNN classifier using gRPC. The classifier responds with the

probability values of each constraint type that can fit between the selected elements.

Then, the predictions go through a filtering system, that removes the predictions that are

invalid between the elements based on their geometric form or that already exist between

the elements. The most probable of the remaining constraints is automatically applied

between the elements. Simultaneously the CAD parts are animated and moved to their

corresponding places. In addition, a small ribbon is shown to the user at the location

of their cursor, where different constraint types are shown, and the applied constraint is

highlighted in yellow. This allows the software user to change the constraint type fluently,

if necessary, and reduces the required amount of mouse movement. The ribbon can also

be used to undo previous constraints or to stop the assembly functionality altogether.

In an ideal case the ML algorithm can predict most of the constraints correctly and the

incorrect classifications are corrected using the geometric filtering system in the CAD

software.

41

5. RESULTS AND DISCUSSION

5.1 Evaluation Criteria

Before evaluating the results, it is important to determine a foundation for the criteria of

evaluation. The end goal in the assembly process is to remove DOFs until the CAD de-

signer reaches the desirable state. Some constraints, such as the coincident constraint,

are more commonly used and remove more DOFs than others and fit between a larger

variety of elements. Model accuracy is the most used metric for a classification model’s

performance [48]. The accuracy works best to characterize a model that has been trained

on an evenly distributed dataset. With skewed data, other metrics are used to gain more

in-depth information of the performance. For example, if majority of the data belongs to

one class, the model gains high classification accuracy by always predicting that a sam-

ple belongs to that class. In such a case, the accuracy gives a falsely positive portrayal

of the state of the model. A confusion matrix is a C × C matrix, where C is the num-

ber of classes, that holds four main parameters: the number of true positive predictions,

the number of true negative predictions, the number of false positive predictions and the

number of false negative predictions. True positives and true negatives are correct clas-

sifications of a sample either belonging or not belonging to a certain class, respectively.

False positives are samples that were incorrectly classified as belonging to a class, while

false negatives were not recognized belonging to a class. The significance of these val-

ues for the case of assembly constraint classification is discusses later in section 5.2.

[48]

For multi-class classification, such as the instance of assembly constraint classification in

this thesis, there are five commonly used performance metrics for a systematic analysis:

accuracy, error rate, precision, recall and F-score. Three of these measures: precision,

recall and F-score, are averaged using micro-averaging, which considers the distribu-

tion of the data and thus favors larger classes, and using macro-averaging, which is the

traditional averaging method. [48]

Model accuracy describes the average relation of correct classifications to the incorrect

classifications. Using the four confusion matrix values it can be presented in mathematical

terms: [48]

42

∑︁i=n
i=1

TPi + TNi

TPi + FNi + FPi + TNi

n
(5.1)

where TP is the number of true positive, TN is the number of true negative, FP is the

number of false positive, FN is the number of false negative values and n is the number

of classes. The error rate of a model is directly related to the accuracy and describes

the average number of classification errors. The formula for error is equal to one minus

accuracy and can be presented as: [48]

∑︁i=n
i=1

FPi + FNi

TPi + FNi + FPi + TNi

n
(5.2)

Precision is a metric, that describes the quantity of correct positive classifications in re-

lation to the total number of positive classifications. It presents the proportion of pos-

itive predictions that were correct. Micro precision Pµ is calculated based on sums of

per-sample values, while macro precision PM is calculated as an average of per-class

precisions. They are defined as: [48]

Pµ =

∑︁i=n
i=1 TPi∑︁i=n

i=1 TPi + FPi

(5.3)

PM =

∑︁i=n
i=1

TPi

TPi + FPi

n
(5.4)

Recall, also called the model sensitivity, describes the ratio of correct classifications to

the total number of positive data samples. It presents the proportion of positive ground

truths that were identified correctly. Micro recall Rµ and macro recall RM are similar to

the precision metrics, but instead of the false positive values the false negatives are used,

such that: [48]

Rµ =

∑︁i=n
i=1 TPi∑︁i=n

i=1 TPi + FNi

(5.5)

RM =

∑︁i=n
i=1

TPi

TPi + FNi

n
(5.6)

Precision and recall are both invariant to the number of true negative classifications. Im-

proving of precision generally decreases the recall and vice versa. F-score F is a per-

formance metric that combines the precision and recall values to summarize a model’s

43

performance into a single metric. The F-score is valid for comparing constraint classifiers

trained on similar datasets. However, as described later, there is a slight difference be-

tween false positives and false negatives especially on some of the constraint classes.

Whereas in e.g. medical classification this difference is magnified, and a false negative

can lead to not doing further research on a disease, while a false positive can lead to

unnecessary testing, and thus the importance of false negatives is higher than the false

positives. Micro F-score and macro F-score are calculated using the same formula, where

the precision and recall are used with the µ or M subscript based on the case, such that:

[48]

F =
2PR

P +R
(5.7)

Equations 5.1 - 5.7 will be used to calculate performance metrics for each trained clas-

sifier and used as a baseline for their comparison. All the metric values belong to range

[0.0, 1.0]. High accuracy, precision, recall and F-score values refer to high model perfor-

mance.

5.2 Classification Model Validation

The goal of this section is to compare the six trained classification models’ performance

metrics. First, the confusion matrices are presented and analyzed to obtain understanding

of how the matrix values relate to the classification performance of the models. Second,

the confusion matrices are used to calculate the performance metrics discussed in equa-

tions 5.1 - 5.7 and are presented side by side for comparison. In addition, the slowest

of the presented model’s performance is measured by clocking the duration of different

steps in the implementation and the results are generalized to cover the other models’

performance as well.

Figure 5.1 presents the normalized confusion matrices for the trained models. The confu-

sion matrix describes the ratio of ground truth labels on the y-axis to the classifier predic-

tions on the x-axis. The normalization is done by scaling the values on the prediction axis

between zero and one. The diagonal values correspond to the class-wise recall values of

the classifier. A perfect classifier predicts 100% of the the class labels correctly, resulting

in an identity matrix. In analyzing the confusion matrices, most focus is placed on the

model’s ability to differentiate distance constraints from coincident constraints, which de-

picting the confusion matrices, is the most major difference between the different models.

Values outside the diagonal on the vertical axis are interpreted as false positive values,

as presented earlier in section 5.1. Respectively, the values on the horizontal axis are

interpreted as false negatives. Both are bad for the performance of the classifier, and

thus the model that minimizes these values is the optimal choice for the classifier.

44

The model performance in relation to other values than distance and coincidence is nearly

equivalent in figure 5.1. The models can be roughly divided into two categories. Models

one and four have approximately the same number of false positives and false negatives,

within ±5%. This means that the model classifies distance constraints as coincident

constraint approximately as often as vice versa. Models two, three, five and six form

the second category, where the number of coincident constraints classified as distance

constraints is negligible, but some of the distance constraints are classified as coincident

constraints. At this point, it is important to discuss a limitation in the dataset creation.

Sometimes Vertex G4 CAD users prefer to use distance constraint with a value zero

instead of coincidence constraints. Thus, some of the values where the ground-truth

value is distance and the prediction is coincident, are falsely too high. However, correcting

these values manually is impossible because the dataset does not contain the constraint

distance values. It is expected that each of the model datasets has a relatively equal

number of these constraints proportionately to the dataset size, and thus this limitation

does not hinder the ability to compare the models. This is further discussed in section

5.4.

Overall, model two performs the best out of the six models. It has the highest diagonal val-

ues with only 13% of the distance constraints classified as coincident. Model five performs

relatively similarly, with a 21% value for the respective miss-classifications. Models three

and six follow in performance, with a larger number of coincident constraints classified

as distance constraints. The effect of dataset balancing can be seen in the performance

of models one and four, in which 17% and 21% of coincident constraints are classified

as distance constraints, respectively. This is caused by the absence of model bias on

models one and four, whereas the other models’ biases aid the classifier by weighing the

coincident constraint more heavily.

The confusion matrices are used as the basis for the metrics calculations. The accuracy is

calculated using equation 5.1, the precisions and the recalls using equations 5.3 - 5.4 and

5.5 - 5.6, respectively, and the F-score using equation 5.7. These metrics are presented in

figure 5.2. The metric values correspond to the earlier confusion matrix analysis. Models

two and five achieve the highest performance values on all the metrics, followed by models

three and six. Model two reaches a performance of equal or over 95% on each metric.

Respectively, models one and four trained on the balanced dataset perform the worst,

reaching under 90% performance on each metric. The best performing model, model

two, performs on average 6.2% better than the worst performing model, model four. The

averaging is done over all the metrics simultaneously. The increased data quantity and

the corresponding generalization ability achieved through the presented augmentation

method leads to the superior performance of models two and five. While the models one

and four are trained on more data than models three and six, the generalization ability is

diminished by the non-existent bias. The metrics are discussed further in section 5.3.

45

Figure 5.1. Comparison of normalized model confusion matrices.

46

Figure 5.2. Side by side comparison of model test set accuracy, precision, recall and
F-score.

It is debatable, that classifying distance constraints as coincident constraints is better than

vice versa, based on three reasons. First, the coincident constraint is more widely used by

the CAD users, as is demonstrated previously in figure 3.4. Second, the coincident con-

straint is generally more applicable especially between planar elements than a distance

constraint. And third, based on the zero-distance constraint usage mentioned before, the

number of distance constraints classified as coincident constraint cannot be zero for even

the best model without over-fitting. Based on these arguments, the minimum value for

the false positives especially on the coincident constraint is preferred, which as described

by equations 5.5-5.6, equals to a higher recall value. Table 5.1 presents the model recall

values by assembly constraint type. The coincident class recall values for model two and

model five are emboldened to emphasize the highest values in the class. The concentric,

parallel and tangent constraints have similar performance between models, within 6.3%.

The distance and coincident constraints have a lot greater variation and the distance

class recall values can be used to differentiate between the best performing models two

and five. Model two performs around 9.9% better than model five on the distance recall,

which is a significant difference compared to the average performance difference on all

the metrics between the best and worst models.

To validate if the model is feasible for fluent CAD design workflow, the speed of the model

needs to be measured. The model two is used for the measuring due to its good per-

formance and its larger input matrix size of the two choices. Thus, the model classi-

fication time is higher, than the models with the smaller input size. Respectively, if it

47

Name Distance Concentric Parallel Coincident Tangent

Model 1 0.7784 0.9786 0.9379 0.8092 0.9848

Model 2 0.8571 0.9911 0.9617 0.9677 0.9764

Model 3 0.7391 0.9780 0.9333 0.9292 0.9565

Model 4 0.7884 0.9897 0.9351 0.7740 1.0000

Model 5 0.7800 0.9913 0.9727 0.9668 0.9895

Model 6 0.6824 0.9863 0.9541 0.9414 0.9412

Table 5.1. Model recall values by assembly constraint type. The emboldened values are
the highest recall values in the coincident constraint class.

can be validated that this model is applicable to a fluent workflow, the rest of the mod-

els can be determined to be as well. The measurements are taken on a medium sized

CAD assembly by clocking the three phases of the classification: the data collection and

data saving phase, the gRPC communication and classification phase and the constraint

adding phase. These groupings are based on the software components related to each

task, which makes clocking these tasks efficient. In the measurement process 20 assem-

bly constraints are added between different elements and each of the three phases are

clocked using std::chrono C++ library and documented for each of the constraints. Based

on the measurements, the data collection and saving to the system hard drive takes the

lowest amount of time, averaging to 24.6 ms. The process of C++ to Python communi-

cation using gRPC and the constraint classification process take the longest, averaging

to 102.0 ms per constraint. This is an adequate classification duration for real-time CAD

design, which makes it unnecessary to do a more in-depth trade-off analysis between the

different models on the classification speed department. Adding the constraint between

the elements takes on average 44.2 ms by the CAD system. In total, the average time to

add a constraint using the presented system is 170.8 ms. At minimum adding a constraint

took 94 ms, at maximum 256 ms and the standard deviation was 41.9 ms.

The presented ML-based system takes on average 3.9 times the amount of time to add

a constraint than adding a constraint entirely by the program. However, this increase

in duration to add a constraint is insignificant, because there are multiple points in the

workflow of the CAD design process where the user saves time using the novel system.

These include thinking of a constraint type, selecting the functionality, possibly opening,

and closing a constraint dialog box depending on the constraint type and stopping and

restarting the process if the constraint type needs to be changed. To have a point of com-

parison, the time to open and close a dialog box for the constraint adding was measured

by the writer through repeating the operation 20 times. On average opening and closing

a dialog box took 1068 ms, with a standard deviation of 298 ms. While this number is

influenced by the personal skills of an average CAD user, it gives a point of comparison

to the usability of the classifier.

48

5.3 Discussion

The thesis trained six CNN models on different datasets collected from professionally

designed CAD assemblies. Model two, which was trained on nearest neighbor count

N = 24 on the augmented dataset, outperformed the other models on each of the cal-

culated confusion matrix-based metrics. In addition, it achieved the lowest and the most

stable validation loss. The results suggest that model two is the most suitable for as-

sembly constraint classification. This can be validated by comparing the model to the

baseline models trained on the original datasets. Compared to the baseline models three

and six, model two achieved on average 4.7% and 4.6% better performance, respectively.

The recall value was determined to be more important than the other metrics. Model two

outperformed the baseline models by 5.0% and 4.6% on the micro recall and 4.8% and

5.5% on the macro recall. This demonstrates a clear correlation between data quantity

and model performance, but the distribution in the data is important as well. This is es-

tablished by the lower performance metrics of the first and fourth classifier model, trained

on the balanced datasets.

The metrics presented earlier in figure 5.2 visualize that the micro precision, recall and F-

score values for the performance metrics of a model are the same. This is a characteristic

of using the micro values in multi-class classification, and is caused by each prediction

error of class A classified as belonging to class B, where A and B are arbitrary classes,

being a false negative for A and a false positive for B. These values also equal to the model

accuracy. Thus, the macro metrics provide more variety to the model performance.

To combat the classifier bias caused by using pre-existing assemblies, an experimental

approach was selected to balance the constraint datasets by performing a clipping oper-

ation. The performance metrics indicate that this approach is not recommended for the

case of assembly constraint classification. Based on the distribution of the data collected

during the data collection phase, the coincident constraint is the most used constraint with

nearly as many cases as the other constraints combined. While this skewness in the dis-

tribution effects the classifier’s predictions by favoring the coincident constraint over the

others, this bias is considered positive for the classifier’s performance. Because the data

has been collected from professionally designed CAD assemblies, the distribution is able

to be generalized to cover a variety of other CAD assemblies as well. The results indicate

that removing the bias from the dataset using the presented methodology diminishes the

classifier accuracies and increases the categorical loss significantly on both the training

and validation datasets.

The hypothesis, which stated that the models trained on nearest neighbor counts N = 12

would perform better than the models trained on nearest neighbor counts N = 24, was

deemed to be only partially correct. For the hypothesis to be correct, the models four, five

and six would have trained faster and exceeded the performance of models one, two and

49

three due to fewer parameters and the expectation that the most important parameters for

the selection of an assembly constraint would be located within the 12 nearest elements

from the selected elements. Contrary to the hypothesis, model two performed better than

model five on the validation accuracy and validation loss. Of the models trained on the

augmented and balanced datasets, model one trained faster and reached higher accu-

racies than model four. While the classifier solves the problem of assembly constraint

classification successfully with the used nearest neighbor counts, the performance in-

crease caused by the higher neighbor count on some models presents an opportunity for

future research. Nearest neighbor counts N = 36 and N = 48 are logical next options

to explore. The model two performance compared to the model five performance, espe-

cially on the validation loss department, signals that the higher neighbor count makes the

model less prone to over-fitting.

The thesis determined that assigning importance ratings to edges of the adjacency graph,

similarly to what was done by Gilsing et al. [35], is difficult for the case of a CAD model.

Thus, a similar approach to the one used by Shi et al. [6] was selected. The main

difference in the approach was to rank each node in the adjacency graph based on their

depth from the single central node, which was the element selected to be a part of the

assembly constraint by a professional CAD designer. The approach led to a random

element, caused by equal depth values on multiple nodes. This random element opened

a possibility for a novel augmentation method, that to the best of the writer’s knowledge,

has not been used in a similar context before. Compared to the graph data augmentation

methods discussed by Zhao et al. [37], this thesis discussed a graph data augmentation

algorithm using BFS and randomization in situations where exact normalization of graph

data is difficult. The main difference between these approaches is that in the latter, the

graph data remains unaltered during the augmentation process. While the approach

used in this thesis is not usable for data augmentation on graph neural networks, it is

valid for the case of converting the adjacency graph data into a normalized adjacency

matrix based around a single central node.

The presented augmentation method was divided into two sections. Four variations of

the neighborhood were collected and combined with the bidirectional stacking of the two

CAD models to achieve the eight augmented final matrix presentations. Combining the

augmentation algorithm with an adequate data presentation, such as model two, results

in a converged model with less over-fitting than corresponding non-augmented cases

on relatively low quantity of training data. The results of using the data augmentation

algorithm over the baseline methods indicate, that the algorithm is successful at improving

model performance in situations where exact normalization of graph data is difficult.

A central goal of the designed classifier is to reduce the time the CAD user takes to go

through the steps of assembly constraint adding. Based on the measurements taken and

the overall accuracy of the classifier, it can be stated that the classifier fulfills this goal

50

Study Method Accuracy Classes

Zhang et al. [3] Voxels 97.40% 24

Shi et al. [6] Graphs 98.80% 11

Dekhtiar et al. [4] Image-based 82.81% 30

Hegde and Zadeh [8] Voxels and image-based 93.11% 10

Manda et al. [9] Image-based 95.63% 43

This thesis Graphs 95.46% 5

Table 5.2. Recap of CAD model related classification results achieved with different data
presentations and different number of target classes.

adequately. As presented earlier, the total duration to classify a CAD assembly constraint

is 170.8 ms on average on a reasonably average system, which is sufficiently fast for

fluent CAD design. The presented software implementation solves the identified issues

in the original system, and thus improves the usability of the software during the assembly

process.

Comparing the achieved classification results to literature is difficult, due to there being

little to no prior studies on assembly constraint classification. A major limitation for the

model performance was the data quantity, which is clearly presented by the performance

of the augmented models compared to the other models. This limitation also makes

the comparison to other CAD model classification applications difficult. As presented

earlier, the graph and voxel-based applications are commonly trained with 5000 to 6000

per class data samples [6][3]. Whereas in this thesis, the classes have on average 561 to

4374 samples as presented previously in table 3.3. However, these averages are heavily

impacted by the large number of coincident constraints. For reference, these values vary

between 401 and 3066 when the coincident constraints are not considered. In either

case, the number of samples is low. Correspondingly, the number of classes is also

lower than in other CAD model classification studies. Table 5.2 recaps the accuracies

and number of classes for different methods in addition to the results achieved in this

thesis. The comparison is based on the results of the literature review presented earlier

in section 2.2. The comparison provides insight into the model performance, but it is

important to note that many of the other studies had a larger number of target classes,

which makes the classification task more difficult. The method presented in this thesis

provides comparable results to the image-based classification results and is bypassed by

the voxel and graph-based methods considering the sheer classification accuracy.

51

5.4 Future Improvements

While the classifier performance in the assembly design process has been validated ear-

lier in this thesis, the software is not ready for deployment as is. The main future im-

provements required are related to the software system C++ to Python communication,

the classifier’s ability to differentiate coincident constraints from distance constraints and

the initial UI.

As it was proven in section 5.3, gRPC is valid for real-time communication between C++

and Python. The problem with the current implementation is that it requires the user to

manually install a Python interpreter. To make the software as easy to install as possible,

this approach requires improving. Different approaches have been discussed earlier in

section 4.1. In addition, improving the file transferal system to Python can be improved.

The current implementation relies on saving the matrix presentations on the system hard

drive, whereas direct transfer without physical saving would be preferred.

The classifier’s ability to differentiate coincident constraints from distance constraints is

hindered by illogical behaviour of CAD users on the assemblies used as training data. In

the history of Vertex G4, the type of CAD constraint was unable to be changed after the

constraint had been applied. Thus, some of the clientele used distance constraints with

distance value zero instead of coincident constraints for future-proofing the designed as-

semblies. This behaviour is still precedent in some of the senior CAD designers and the

zero-distance constraint was used within some of the assemblies in the created datasets.

The current structure of the classifier makes the classifier unable to differentiate these

cases correctly and causes uncertainty in the behaviour of the classifier in relation to

these two constraint types. This especially affects the model comparison metrics of pre-

cision, recall and F-score because it causes inaccuracies in the number of true negatives

and false positives. To improve this behaviour in the future, a pre-processing step should

be added to the classifier pipeline. Each zero-distance constraint ground truth should

instead be saved as a coincident constraint. However, this change would require a total

recollection of the datasets and a retraining of the classifiers and is thus left as a future

improvement.

The UI designed during the thesis is an initial version that is mainly designed to validate

the convenience of the classifier in a real-time use situation. The usability of the UI can

be improved through small improvements, such as disabling the constraints that are not

available in certain situations. In addition, the CAD users’ attitude towards the novel

UI design choices can be validated by customer surveys and improved based on user

feedback.

52

6. CONCLUSIONS

6.1 Summary

The goal of this thesis was to present a novel method for automating the CAD assembly

process by classifying the assembly constraint types between two geometrical elements

that collectively comprise an assembly constraint. The thesis provided solutions to the

three stated research questions and contributed to the research around CAD model re-

lated classification using DL and CNNs. At the time of writing the thesis, the state of

assembly constraint classification was deficient in the literature. To the best of the writer’s

knowledge, the problem of selecting an assembly constraint between two geometrical el-

ements of two CAD models using ML had not been previously addressed in the literature.

The thesis aimed to identify the most relevant information to be extracted from a CAD

model for the purpose of teaching an assembly constraint classifier. Based on extensive

literature review and empirical research, it was concluded that the adjacency matrices

of both CAD models belonging to an assembly constraint, combined with the geomet-

rical element type information, the geometrical form and DOF data, provides an ade-

quate depiction of a CAD model. The classification results indicate that the presented

method captures the relevant information of the CAD model and presents the constrained

elements, and their respective neighborhoods, in a compact and efficient format. The

element neighborhood presentation was normalized using the BFS algorithm, which pro-

vided the ability to augment the data quantity through randomizing the exploration order

and retaining depth information. Based on the findings, the data augmentation algorithm

can be used to increase the data quantity by eight-fold. Respectively, this increase in

data quantity improved the classifier performance on the confusion matrix metrics by up

to 5.5% and diminished the validation loss calculated using categorical cross-entropy.

In this thesis, algorithms for assembly constraint collection from assemblies and adja-

cency graph creation from volumes were developed. The output of the algorithms com-

bined with the utilized feature vectors facilitate the use of pre-existing CAD assemblies

in the creation of datasets for the classifier development. This approach enabled the uti-

lization of the proficiency of CAD designers, provided a method to avoid the laborious

manual design process and provided advantage over geometric variation due to the vari-

ety of parts used in assemblies. While this approach caused the classifiers to learn bias,

53

the bias was demonstrated to be beneficial to the classifier performance by comparing

the results to the results of classifiers trained on datasets with a balanced distribution of

constraint classes. The models with no bias learned to misclassify distance constraints

as coincident constraints significantly more often than the biased models.

The presented theory was used in practice to automate the time-consuming routine task

of assembly constraint applying to support CAD designers by decreasing the design time

and enhancing the user experience [2]. As part of the thesis, an initial software implemen-

tation of the classifier system was created into a mechanical CAD software, Vertex G4.

By measuring the average duration to classify a constraint from within the software sys-

tem, this thesis has validated that the presented classifier can effectively be incorporated

to the fluent CAD design workflow. The combined duration of C++ to Python communi-

cation using gRPC and the constraint classification using the best performing model was

calculated to be 102 ms on average per assembly constraint on the test system, which is

adequate for real-time CAD design.

To summarize, the main new contributions of this thesis in a descending order of impor-

tance are:

1. Training six CNN classifier models on different datasets collected from profession-

ally designed CAD assemblies and comparing the models based on common per-

formance metrics, such as the test set accuracy, precision, recall and F-score. In

addition, exploring an experimental approach of bias removal from the data distri-

bution through this comparison.

2. Presenting a method for collecting relevant data from a CAD model into a matrix

presentation that is valid for assembly constraint classification.

3. Implementing an assembly constraint classifier into Vertex G4 CAD software and

validating its performance in real-time CAD design workflow based on measure-

ments.

4. Providing a method for graph data augmentation using BFS and randomization in

situations where exact normalization of graph data is difficult.

5. Collecting and comparing the CAD model related classification applications from

the literature.

The importance order is based on how essential each contribution is for answering the

research questions. The contributions that are directly related to answering the research

questions are rated more highly. The last two contributions are an important by-product

that are necessary for answering the research questions. In addition to the contributions,

it is important to discuss the limitations of the thesis. To summarize, the most important

limitations of this thesis in an arbitrary order are:

54

1. The developed classifier’s inability to occasionally differentiate coincident and dis-

tance constraints, due to an error in the dataset generation. The error is caused by

CAD designers using the zero-distance constraint instead of a coincident constraint

due to old habits and/or possibly old CAD assemblies being used as the basis for

the dataset generation. This limitation is present in all the developed models simi-

larly, which allows the models to be compared and validated correctly regardless of

the limitation.

2. The limited data quantity and moderately difficult manual data generation to classes

with lower data quantity. While the models performed adequately regardless of this

limitation, it is important to observe, that the model performance is predictable to

improve if trained on a larger dataset. This is validated by the results of this thesis

as well.

6.2 Future Research

The selection between the utilized graph-based approach and the voxel-based approaches

was heavily influenced by the large number of parameters in the voxel presentation, the

larger dataset requirement and the problems in enforcing the selected elements in the

dataset for the classification purpose. However, based on the CAD model related clas-

sification results achieved by Zhang et al. [3] and Hegde and Zadeh [8], voxels have

immense potential as a CNN input. Even with the disadvantages, the potential of voxels

in CAD assembly constraint classification requires further research. This thesis provides

a point of comparison in the presented graph-based approach and thus enables further

studies to compare their results to the results of this thesis.

Due to very limited amount of angle constraints and perpendicular constraints in the orig-

inal dataset, it was determined that retaining these constraints in the dataset would harm

the model performance. Having more samples of these constraints in the training data

would allow the classifier to learn to classify these constraints as well, marginally increas-

ing the applicability. Having a larger dataset would also open the possibility to explore the

effect of the adjacency graph nearest neighbor count further. As discussed in section 5.3,

the models with lower nearest neighbor counts did not always outperform the models with

higher nearest neighbor counts.

The scope of the thesis did not allow an in-depth investigation into the usability improve-

ment of the initial software implementation over the old system. Such an investigation

could be conducted for example through user interviews and user experience surveys.

Conducting a study that compares the original assembly constraint method to the im-

proved AI based UI would produce information of the system usability and especially the

experiences of new CAD users with no bias towards the old system.

55

REFERENCES

[1] Z. Han, R. Mo, H. Yang, and L. Hao, “Cad assembly model retrieval based on multi-

source semantics information and weighted bipartite graph”, Computers in Industry,

vol. 96, pp. 54–65, 2018, ISSN: 0166-3615. DOI: https://doi.org/10.1016/
j.compind.2018.01.003. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0166361517303780.

[2] C. Krahe, A. Bräunche, A. Jacob, N. Stricker, and G. Lanza, “Deep learning for

automated product design”, Procedia CIRP, vol. 91, pp. 3–8, 2020, Enhancing de-

sign through the 4th Industrial Revolution Thinking, ISSN: 2212-8271. DOI: https:
//doi.org/10.1016/j.procir.2020.01.135. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2212827120307769.

[3] Z. Zhang, P. Jaiswal, and R. Rai, “Featurenet: Machining feature recognition based

on 3d convolution neural network”, Computer-Aided Design, vol. 101, pp. 12–22,

2018, ISSN: 0010-4485. DOI: https://doi.org/10.1016/j.cad.2018.03.006.

[Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0010448518301349.

[4] J. Dekhtiar, A. Durupt, M. Bricogne, B. Eynard, H. Rowson, and D. Kiritsis, “Deep

learning for big data applications in cad and plm – research review, opportunities

and case study”, Computers in Industry, vol. 100, pp. 227–243, 2018, ISSN: 0166-

3615. DOI: https://doi.org/10.1016/j.compind.2018.04.005. [On-

line]. Available: http://www.sciencedirect.com/science/article/pii/
S0166361517305560.

[5] J. Zhang, Z. Xu, Y. Li, S. Jiang, and N. Wei, “Generic face adjacency graph for

automatic common design structure discovery in assembly models”, Computer-

Aided Design, vol. 45, no. 8, pp. 1138–1151, 2013, ISSN: 0010-4485. DOI: https:
//doi.org/10.1016/j.cad.2013.04.003. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0010448513000535.

[6] Y. Shi, Y. Zhang, and R. Harik, “Manufacturing feature recognition with a 2d convo-

lutional neural network”, CIRP Journal of Manufacturing Science and Technology,

vol. 30, pp. 36–57, 2020, ISSN: 1755-5817. DOI: https://doi.org/10.1016/j.
cirpj.2020.04.001. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1755581720300298.

[7] Y. T. Hao and Y. M. Chi, “Ann-based feature recognition to integrate cad and cam”,

English, Applied Mechanics and Materials, vol. 55-57, p. 1269, May 2011. [Online].

Available: https://www- proquest- com.libproxy.tuni.fi/scholarly-

https://doi.org/https://doi.org/10.1016/j.compind.2018.01.003
https://doi.org/https://doi.org/10.1016/j.compind.2018.01.003
https://www.sciencedirect.com/science/article/pii/S0166361517303780
https://www.sciencedirect.com/science/article/pii/S0166361517303780
https://doi.org/https://doi.org/10.1016/j.procir.2020.01.135
https://doi.org/https://doi.org/10.1016/j.procir.2020.01.135
https://www.sciencedirect.com/science/article/pii/S2212827120307769
https://www.sciencedirect.com/science/article/pii/S2212827120307769
https://doi.org/https://doi.org/10.1016/j.cad.2018.03.006
https://www.sciencedirect.com/science/article/pii/S0010448518301349
https://www.sciencedirect.com/science/article/pii/S0010448518301349
https://doi.org/https://doi.org/10.1016/j.compind.2018.04.005
http://www.sciencedirect.com/science/article/pii/S0166361517305560
http://www.sciencedirect.com/science/article/pii/S0166361517305560
https://doi.org/https://doi.org/10.1016/j.cad.2013.04.003
https://doi.org/https://doi.org/10.1016/j.cad.2013.04.003
https://www.sciencedirect.com/science/article/pii/S0010448513000535
https://www.sciencedirect.com/science/article/pii/S0010448513000535
https://doi.org/https://doi.org/10.1016/j.cirpj.2020.04.001
https://doi.org/https://doi.org/10.1016/j.cirpj.2020.04.001
http://www.sciencedirect.com/science/article/pii/S1755581720300298
http://www.sciencedirect.com/science/article/pii/S1755581720300298
https://www-proquest-com.libproxy.tuni.fi/scholarly-journals/ann-based-feature-recognition-integrate-cad-cam/docview/1443592186/se-2
https://www-proquest-com.libproxy.tuni.fi/scholarly-journals/ann-based-feature-recognition-integrate-cad-cam/docview/1443592186/se-2

56

journals/ann-based-feature-recognition-integrate-cad-cam/docview/
1443592186/se-2.

[8] V. Hegde and R. Zadeh, Fusionnet: 3d object classification using multiple data rep-

resentations, 2016. arXiv: 1607.05695 [cs.CV].

[9] B. Manda, P. Bhaskare, and R. Muthuganapathy, “A convolutional neural network

approach to the classification of engineering models”, IEEE Access, vol. 9, pp. 22 711–

22 723, 2021. DOI: 10.1109/ACCESS.2021.3055826.

[10] L. P. Muraleedharan, S. S. Kannan, and R. Muthuganapathy, “Autoencoder-based

part clustering for part-in-whole retrieval of cad models”, Computers & Graphics,

vol. 81, pp. 41–51, 2019, ISSN: 0097-8493. DOI: https://doi.org/10.1016/
j.cag.2019.03.016. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0097849319300391.

[11] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning”, Nature, vol. 521, no. 7553,

pp. 436–444, May 2015, ISSN: 1476-4687. DOI: 10.1038/nature14539. [Online].

Available: https://doi.org/10.1038/nature14539.

[12] J. Schmidhuber, “Deep learning in neural networks: An overview”, Neural Networks,

vol. 61, pp. 85–117, 2015, ISSN: 0893-6080. DOI: https://doi.org/10.1016/
j.neunet.2014.09.003. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0893608014002135.

[13] P. Suresh Kumar, H. Behera, A. K. K, J. Nayak, and B. Naik, “Advancement from

neural networks to deep learning in software effort estimation: Perspective of two

decades”, Computer Science Review, vol. 38, p. 100 288, 2020, ISSN: 1574-0137.

DOI: https://doi.org/10.1016/j.cosrev.2020.100288. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S1574013720303889.

[14] M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S. Nasrin, M. Hasan,

B. C. Van Essen, A. A. S. Awwal, and V. K. Asari, “A state-of-the-art survey on deep

learning theory and architectures”, Electronics, vol. 8, no. 3, 2019, ISSN: 2079-

9292. DOI: 10.3390/electronics8030292. [Online]. Available: https://www.
mdpi.com/2079-9292/8/3/292.

[15] L. Lu, Y. Shin, Y. Su, and G. E. Karniadakis, “Dying relu and initialization: The-

ory and numerical examples”, Communications in Computational Physics, vol. 28,

no. 5, pp. 1671–1706, Jun. 2020, ISSN: 1991-7120. DOI: 10.4208/cicp.oa-2020-
0165. [Online]. Available: http://dx.doi.org/10.4208/cicp.OA-2020-0165.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks”, Commun. ACM, vol. 60, no. 6, pp. 84–90, May

2017, ISSN: 0001-0782. DOI: 10.1145/3065386. [Online]. Available: https://
dl.acm.org/doi/10.1145/3065386.

[17] K. Ghiasi-Shirazi, “Competitive cross-entropy loss: A study on training single-layer

neural networks for solving nonlinearly separable classification problems”, Neural

Processing Letters, vol. 50, no. 2, pp. 1115–1122, Oct. 2019, ISSN: 1573-773X.

https://www-proquest-com.libproxy.tuni.fi/scholarly-journals/ann-based-feature-recognition-integrate-cad-cam/docview/1443592186/se-2
https://www-proquest-com.libproxy.tuni.fi/scholarly-journals/ann-based-feature-recognition-integrate-cad-cam/docview/1443592186/se-2
https://www-proquest-com.libproxy.tuni.fi/scholarly-journals/ann-based-feature-recognition-integrate-cad-cam/docview/1443592186/se-2
https://arxiv.org/abs/1607.05695
https://doi.org/10.1109/ACCESS.2021.3055826
https://doi.org/https://doi.org/10.1016/j.cag.2019.03.016
https://doi.org/https://doi.org/10.1016/j.cag.2019.03.016
https://www.sciencedirect.com/science/article/pii/S0097849319300391
https://www.sciencedirect.com/science/article/pii/S0097849319300391
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/https://doi.org/10.1016/j.neunet.2014.09.003
https://www.sciencedirect.com/science/article/pii/S0893608014002135
https://www.sciencedirect.com/science/article/pii/S0893608014002135
https://doi.org/https://doi.org/10.1016/j.cosrev.2020.100288
https://www.sciencedirect.com/science/article/pii/S1574013720303889
https://doi.org/10.3390/electronics8030292
https://www.mdpi.com/2079-9292/8/3/292
https://www.mdpi.com/2079-9292/8/3/292
https://doi.org/10.4208/cicp.oa-2020-0165
https://doi.org/10.4208/cicp.oa-2020-0165
http://dx.doi.org/10.4208/cicp.OA-2020-0165
https://doi.org/10.1145/3065386
https://dl.acm.org/doi/10.1145/3065386
https://dl.acm.org/doi/10.1145/3065386

57

DOI: 10.1007/s11063-018-9906-5. [Online]. Available: https://doi.org/10.
1007/s11063-018-9906-5.

[18] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http:
//www.deeplearningbook.org.

[19] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2017. arXiv:

1412.6980 [cs.LG].

[20] T. Ma, H. Wang, L. Zhang, Y. Tian, and N. Al-Nabhan, “Graph classification based

on structural features of significant nodes and spatial convolutional neural net-

works”, Neurocomputing, vol. 423, pp. 639–650, 2021, ISSN: 0925-2312. DOI: https:
//doi.org/10.1016/j.neucom.2020.10.060. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0925231220316374.

[21] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional neural networks for

graphs”, CoRR, vol. abs/1605.05273, 2016. arXiv: 1605.05273. [Online]. Available:

http://arxiv.org/abs/1605.05273.

[22] L. Ma, Z. Huang, and Y. Wang, “Automatic discovery of common design struc-

tures in cad models”, Computers & Graphics, vol. 34, no. 5, pp. 545–555, 2010,

CAD/GRAPHICS 2009 Extended papers from the 2009 Sketch-Based Interfaces

and Modeling Conference Vision, Modeling & Visualization, ISSN: 0097-8493. DOI:

https://doi.org/10.1016/j.cag.2010.06.002. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0097849310000853.

[23] S. Finger, T. Tomiyama, and M. Mäntylä, Eds., Knowledge Intensive Computer

Aided Design. Springer US, 2000. DOI: 10.1007/978-0-387-35582-5. [On-

line]. Available: https://doi.org/10.1007%5C%2F978-0-387-35582-5.

[24] Siemens. (2021). “Siemens NX home page”, [Online]. Available: https://www.
solidworks.com (visited on 04/26/2021).

[25] D. S. S. Corporation. (2021). “Solidworks home page”, [Online]. Available: https:
//www.solidworks.com (visited on 04/26/2021).

[26] K. Lupinetti, J.-P. Pernot, M. Monti, and F. Giannini, “Content-based cad assembly

model retrieval: Survey and future challenges”, Computer-Aided Design, vol. 113,

pp. 62–81, 2019, ISSN: 0010-4485. DOI: https : / / doi . org / 10 . 1016 / j .
cad.2019.03.005. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0010448518305451.

[27] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-

houcke, and A. Rabinovich, Going deeper with convolutions, 2014. arXiv: 1409.
4842 [cs.CV].

[28] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, 3d shapenets: A

deep representation for volumetric shapes, 2015. arXiv: 1406.5670 [cs.CV].

[29] B. R. Babic, N. Nesic, and Z. Miljkovic, “Automatic feature recognition using arti-

ficial neural networks to integrate design and manufacturing: Review of automatic

feature recognition systems”, English, Artificial Intelligence for Engineering Design,

https://doi.org/10.1007/s11063-018-9906-5
https://doi.org/10.1007/s11063-018-9906-5
https://doi.org/10.1007/s11063-018-9906-5
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1412.6980
https://doi.org/https://doi.org/10.1016/j.neucom.2020.10.060
https://doi.org/https://doi.org/10.1016/j.neucom.2020.10.060
https://www.sciencedirect.com/science/article/pii/S0925231220316374
https://www.sciencedirect.com/science/article/pii/S0925231220316374
https://arxiv.org/abs/1605.05273
http://arxiv.org/abs/1605.05273
https://doi.org/https://doi.org/10.1016/j.cag.2010.06.002
https://www.sciencedirect.com/science/article/pii/S0097849310000853
https://www.sciencedirect.com/science/article/pii/S0097849310000853
https://doi.org/10.1007/978-0-387-35582-5
https://doi.org/10.1007%5C%2F978-0-387-35582-5
https://www.solidworks.com
https://www.solidworks.com
https://www.solidworks.com
https://www.solidworks.com
https://doi.org/https://doi.org/10.1016/j.cad.2019.03.005
https://doi.org/https://doi.org/10.1016/j.cad.2019.03.005
https://www.sciencedirect.com/science/article/pii/S0010448518305451
https://www.sciencedirect.com/science/article/pii/S0010448518305451
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1406.5670

58

Analysis and Manufacturing : AI EDAM, vol. 25, no. 3, pp. 289–304, Aug. 2011. [On-

line]. Available: https://www.researchgate.net/publication/220306695_
Automatic_feature_recognition_using_artificial_neural_networks_
to_integrate_design_and_manufacturing_Review_of_automatic_feature_
recognition_systems.

[30] Y. Zhang, S. Garcia, W. Xu, T. Shao, and Y. Yang, “Efficient voxelization using

projected optimal scanline”, Graphical Models, vol. 100, pp. 61–70, 2018, ISSN:

1524-0703. DOI: https://doi.org/10.1016/j.gmod.2017.06.004. [On-

line]. Available: https://www.sciencedirect.com/science/article/pii/
S152407031730053X.

[31] A. Neb, I. Briki, and R. Schoenhof, “Development of a neural network to recognize

standards and features from 3d cad models”, Procedia CIRP, vol. 93, pp. 1429–

1434, 2020, 53rd CIRP Conference on Manufacturing Systems 2020, ISSN: 2212-

8271. DOI: https : / / doi . org / 10 . 1016 / j . procir . 2020 . 03 . 010. [On-

line]. Available: https://www.sciencedirect.com/science/article/pii/
S2212827120305552.

[32] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese,

M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and F. Yu, Shapenet: An information-rich

3d model repository, 2015. arXiv: 1512.03012 [cs.GR].

[33] I. Valova, C. Harris, T. Mai, and N. Gueorguieva, “Optimization of convolutional

neural networks for imbalanced set classification”, Procedia Computer Science,

vol. 176, pp. 660–669, 2020, Knowledge-Based and Intelligent Information & En-

gineering Systems: Proceedings of the 24th International Conference KES2020,

ISSN: 1877-0509. DOI: https://doi.org/10.1016/j.procs.2020.09.038.

[Online]. Available: https://www.sciencedirect.com/science/article/
pii/S1877050920319335.

[34] P. Branco, L. Torgo, and R. Ribeiro, A survey of predictive modelling under imbal-

anced distributions, 2015. arXiv: 1505.01658 [cs.LG].

[35] V. Gilsing, B. Nooteboom, W. Vanhaverbeke, G. Duysters, and A. van den Oord,

“Network embeddedness and the exploration of novel technologies: Technologi-

cal distance, betweenness centrality and density”, Research Policy, vol. 37, no. 10,

pp. 1717–1731, 2008, Special Section Knowledge Dynamics out of Balance: Knowl-

edge Biased, Skewed and Unmatched, ISSN: 0048-7333. DOI: https://doi.
org/10.1016/j.respol.2008.08.010. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S004873330800190X.

[36] M. Kurant, A. Markopoulou, and P. Thiran, “On the bias of bfs (breadth first search)”,

in 2010 22nd International Teletraffic Congress (lTC 22), 2010, pp. 1–8. DOI: 10.
1109/ITC.2010.5608727.

[37] T. Zhao, Y. Liu, L. Neves, O. Woodford, M. Jiang, and N. Shah, Data augmentation

for graph neural networks, 2020. arXiv: 2006.06830 [cs.LG].

https://www.researchgate.net/publication/220306695_Automatic_feature_recognition_using_artificial_neural_networks_to_integrate_design_and_manufacturing_Review_of_automatic_feature_recognition_systems
https://www.researchgate.net/publication/220306695_Automatic_feature_recognition_using_artificial_neural_networks_to_integrate_design_and_manufacturing_Review_of_automatic_feature_recognition_systems
https://www.researchgate.net/publication/220306695_Automatic_feature_recognition_using_artificial_neural_networks_to_integrate_design_and_manufacturing_Review_of_automatic_feature_recognition_systems
https://www.researchgate.net/publication/220306695_Automatic_feature_recognition_using_artificial_neural_networks_to_integrate_design_and_manufacturing_Review_of_automatic_feature_recognition_systems
https://doi.org/https://doi.org/10.1016/j.gmod.2017.06.004
https://www.sciencedirect.com/science/article/pii/S152407031730053X
https://www.sciencedirect.com/science/article/pii/S152407031730053X
https://doi.org/https://doi.org/10.1016/j.procir.2020.03.010
https://www.sciencedirect.com/science/article/pii/S2212827120305552
https://www.sciencedirect.com/science/article/pii/S2212827120305552
https://arxiv.org/abs/1512.03012
https://doi.org/https://doi.org/10.1016/j.procs.2020.09.038
https://www.sciencedirect.com/science/article/pii/S1877050920319335
https://www.sciencedirect.com/science/article/pii/S1877050920319335
https://arxiv.org/abs/1505.01658
https://doi.org/https://doi.org/10.1016/j.respol.2008.08.010
https://doi.org/https://doi.org/10.1016/j.respol.2008.08.010
https://www.sciencedirect.com/science/article/pii/S004873330800190X
https://www.sciencedirect.com/science/article/pii/S004873330800190X
https://doi.org/10.1109/ITC.2010.5608727
https://doi.org/10.1109/ITC.2010.5608727
https://arxiv.org/abs/2006.06830

59

[38] TensorFlow Core. (2021). “Tensorflow sequential model”, [Online]. Available: https:
//www.tensorflow.org/guide/keras/sequential_model (visited on 03/08/2021).

[39] P. D. Team. (2021). “PyInstaller home page”, [Online]. Available: http://www.
pyinstaller.org (visited on 04/30/2021).

[40] gRPC Authors. (2020). “gRPC documentation”, [Online]. Available: https://grpc.
io/docs/ (visited on 04/21/2021).

[41] I. Kandel and M. Castelli, “The effect of batch size on the generalizability of the

convolutional neural networks on a histopathology dataset”, ICT Express, vol. 6,

no. 4, pp. 312–315, 2020, ISSN: 2405-9595. DOI: https://doi.org/10.1016/
j.icte.2020.04.010. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S2405959519303455.

[42] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei, “Imagenet: A large-scale

hierarchical image database”, in 2009 IEEE Conference on Computer Vision and

Pattern Recognition, 2009, pp. 248–255. DOI: 10.1109/CVPR.2009.5206848.

[43] Papers With Code. (2021). “Image classification on imagenet”, [Online]. Available:

https://paperswithcode.com/sota/image-classification-on-imagenet
(visited on 03/04/2021).

[44] D. J. V. Lopes, G. W. Burgreen, G. dos Santos Bobadilha, and H. M. Barnes,

“Automated means to classify lab-scale termite damage”, Computers and Elec-

tronics in Agriculture, vol. 168, p. 105 105, 2020, ISSN: 0168-1699. DOI: https:
//doi.org/10.1016/j.compag.2019.105105. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0168169919313687.

[45] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov,

Improving neural networks by preventing co-adaptation of feature detectors, 2012.

arXiv: 1207.0580 [cs.NE].

[46] “Iso/iec/ieee international standard - systems and software engineering – vocabu-

lary”, ISO/IEC/IEEE 24765:2010(E), pp. 1–418, 2010. DOI: 10.1109/IEEESTD.
2010.5733835.

[47] “Ergonomics of human-system interaction — human-centred design for interactive

systems”, en, International Organization for Standardization, Standard ISO 9241-

210:2019, Jun. 2019. [Online]. Available: https://www.iso.org/obp/ui/#iso:
std:iso:9241:-210:ed-2:v1:en.

[48] M. Sokolova and G. Lapalme, “A systematic analysis of performance measures

for classification tasks”, Information Processing & Management, vol. 45, no. 4,

pp. 427–437, 2009, ISSN: 0306-4573. DOI: https://doi.org/10.1016/j.
ipm.2009.03.002. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0306457309000259.

https://www.tensorflow.org/guide/keras/sequential_model
https://www.tensorflow.org/guide/keras/sequential_model
http://www.pyinstaller.org
http://www.pyinstaller.org
https://grpc.io/docs/
https://grpc.io/docs/
https://doi.org/https://doi.org/10.1016/j.icte.2020.04.010
https://doi.org/https://doi.org/10.1016/j.icte.2020.04.010
https://www.sciencedirect.com/science/article/pii/S2405959519303455
https://www.sciencedirect.com/science/article/pii/S2405959519303455
https://doi.org/10.1109/CVPR.2009.5206848
https://paperswithcode.com/sota/image-classification-on-imagenet
https://doi.org/https://doi.org/10.1016/j.compag.2019.105105
https://doi.org/https://doi.org/10.1016/j.compag.2019.105105
https://www.sciencedirect.com/science/article/pii/S0168169919313687
https://www.sciencedirect.com/science/article/pii/S0168169919313687
https://arxiv.org/abs/1207.0580
https://doi.org/10.1109/IEEESTD.2010.5733835
https://doi.org/10.1109/IEEESTD.2010.5733835
https://www.iso.org/obp/ui/#iso:std:iso:9241:-210:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:9241:-210:ed-2:v1:en
https://doi.org/https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/https://doi.org/10.1016/j.ipm.2009.03.002
https://www.sciencedirect.com/science/article/pii/S0306457309000259
https://www.sciencedirect.com/science/article/pii/S0306457309000259

	Introduction
	Background
	Basic Concepts
	Supervised Deep Learning
	Convolutional Neural Network
	Computer Aided Design

	Literature Review

	Data collection
	Feature Extraction
	Adjacency Graph
	Feature Vector

	Dataset Generation
	Data Processing
	Data Augmentation

	Method for Assembly Constraint Classification
	Software System Architecture
	CNN Architecture
	Model Training
	User Interface

	Results and discussion
	Evaluation Criteria
	Classification Model Validation
	Discussion
	Future Improvements

	Conclusions
	Summary
	Future Research

	References

