

Joni Tuominen

EVALUATION OF FLUTTER AS
A MIGRATION TARGET

Faculty of Information Technology and Communication Sciences
Master’s thesis

January 2021

-i-

ABSTRACT

Joni Tuominen: Evaluation of Flutter as a migration target
Master’s thesis
Tampere University
Master's Programme in Computer Science
January 2021

This thesis evaluated Flutter, a cross-platform framework, as a potential migration target for mo-

bile application development. The evaluation was done from the perspective of Piceasoft Ltd, a

client of the thesis. While evaluation was done from Piceasoft’s perspective, the overall perspec-

tive remained generic. The evaluation was based on selection criteria discovered in existing re-

lated research, in addition to requirements set by Piceasoft. The evaluation emphasized commu-

nication with natively developed libraries, but other aspects of the framework were also examined.

Motive for the evaluation was to determine Flutter's suitability for long-term cross-platform mobile

application development. Flutter’s common codebase for Android and iOS applications is ex-

pected to simplify the development process, improve maintainability, and reduce workload of de-

velopers.

The outcome of the evaluation was that Flutter is fulfilling requirements set by Piceasoft for most

aspects. Flutter contains all required aspects to develop versatile applications that are capable of

utilizing native Android and iOS libraries. In addition to the capability to utilize native libraries,

Flutter provides a rich set of user interface components and a relatively easy-to-learn develop-

ment language. Flutter’s common codebase, user interface components, and resource/localiza-

tion management would potentially lead to reduced workload, increased maintainability, and in-

creased similarity on both platforms. While fulfilling most of the requirements, a long-term evalu-

ation of Flutter’s operating system support could be recommended. Overall, Flutter can be rec-

ommended for application development for Piceasoft, but it could be safe to start development

with Flutter on smaller applications or projects.

Keywords: Mobile application, Mobile development, cross-platform, Flutter, Android, iOS

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

-ii-

Table of contents

1 Introduction ... 1

2 Motivation and approaches for cross-platform development 4

2.1 Motivation 4

2.2 Approaches 6

2.2.1 Hybrid approach 6
2.2.2 Interpreted approach 6
2.2.3 Cross-compiled approach 7
2.2.4 Model-driven approach 7
2.2.5 Progressive web application approach 7

3 Criteria for framework selection and evaluation 9

3.1 Native mobile features 10

3.1.1 Communication with natively developed libraries 11

3.2 Performance 12

3.3 Licensing 12

3.4 Target platforms 12

3.5 Support 13

3.6 Look, feel, and usability 13

3.7 Battery consumption 14

3.8 Security 15

3.9 Scalability 15

3.10 Maintainability 15

3.11 Availability of third-party libraries 16

3.12 Localization management 16

3.13 Resource management 16

3.14 Testing 17

3.15 UI development version control conflicts 17

4 Native mobile application development .. 18

4.1 Android 18

4.1.1 Programming languages 18
4.1.2 User interface development 19
4.1.3 Dependency management 20
4.1.4 Resource management 21

4.2 iOS 22

4.2.1 Programming languages 22
4.2.2 User interface development 23

-iii-

4.2.3 Dependency management 25
4.2.4 Resource management 26

5 Flutter ... 29

5.1 Dart 29

5.2 Project structure 30

5.3 User interface development 30

5.4 Dependency management 32

5.5 Resource management 32

6 Results .. 34

6.1 Native mobile features 34

6.1.1 Accessing natively developed libraries 35
6.1.2 Pigeon 37

6.2 Performance 37

6.3 Licensing 38

6.4 Target platforms 38

6.5 Support 38

6.6 Look, feel, and usability 39

6.7 Battery consumption 39

6.8 Security 40

6.9 Scalability 40

6.10 Maintainability 40

6.11 Availability of third-party libraries 42

6.12 Localization management 42

6.13 Resource management 42

6.14 Testing 43

7 Conclusions .. 44

8 References .. 46

-1-

1 Introduction

Mobile devices are widespread and come in different forms. A large proportion of mobile

devices are mobile phones, but often also tablet computers and, to some extent, smart

watches and wristbands. There are 5.25 billion (rounded) unique mobile devices globally

(GSMA Intelligence, 2021). Based on registered subscriptions, the number of devices is

higher when devices without a subscription are counted (GSMA Intelligence, 2021). Mo-

bile phones and tablets today are divided mainly into Android and iOS operating systems.

The Android operating system covers about 71.99 percent of all mobile devices, and iOS

devices account for about 27.42 percent of mobile devices (Statcounter GlobalStats,

2021).

Methods, technologies, and tools used for developing mobile applications depend some-

what on the mobile device's operating system. Mobile operating systems have their own

development methods and development languages. Native Android applications are pro-

grammed with Java or Kotlin, while iOS applications are written in Swift or Objective-

C; both platforms can also be developed with C and C++ languages. Significant differ-

ences in these development tools bring challenges to application development if the same

application is to be developed for both platforms.

In many cases, mobile application developers publish their applications on both platforms

via their respective application stores. Sometimes, these applications are developed using

some cross-platform framework that allows the application to be developed using the

same technologies and tools for both platforms. For example, the mobile applications of

Facebook, Instagram, Discord, and Baidu have been developed using cross-platform

frameworks/development tools such as React Native or Flutter (Flutter, 2021a. Facebook

Engineering, 2016. Discord, 2019. Instagram Engineering, 2017).

Cross-platform frameworks and toolkits are technologies that depending on the technol-

ogy, provide the functionality, methods, and tools to implement applications on multiple

platforms using the same source code. Several different frameworks are available for mo-

bile platforms that can be used to develop an application across Android and iOS plat-

forms. Commonly used and well-known frameworks for mobile platforms currently are

React Native, Flutter, Apache Cordova, Ionic, and Xamarin, according to a developer

survey by Statista (Statista, 2020).

-2-

These frameworks provide tools for user interface development. They variously include

libraries and functionality for other software development needs, such as network re-

quests, file management, additional UI components, and application dependency man-

agement. Development with application frameworks is often done using a programming

language different from the language used in native development. For example, frame-

works mentioned earlier utilize JavaScript, Dart, or C # depending on the framework (Re-

act Native, 2021. Flutter, 2021b. Microsoft, 2021). In addition, some frameworks use

markup languages, such as HTML and CSS, as in the case of Apache Cordova (Apache

Cordova, 2021).

This thesis evaluates suitability of Flutter cross-platform framework as a potential migra-

tion target. Flutter is evaluated for a scenario where native mobile application develop-

ment is intended to be replaced partially. This thesis examines development restrictions

and requirements for cross-platform development and their fulfillment with Flutter. Re-

search methods for this thesis are testing/prototyping with Flutter application develop-

ment, examination of literature, research, and documentation related to Flutter, and cross-

platform mobile application development.

The client for this research is Piceasoft Ltd. Piceasoft, a company founded in Tampere in

2012 that produces solutions focused on the lifecycle management of mobile devices. The

company produces software products that can perform mobile device diagnostics, device

erasure, data transfer, and implement mobile device resale. Some of the issues regarding

the suitability and feasibility will be discussed from Piceasoft’s perspective, but the over-

all perspective will remain generic.

Research questions for Flutter evaluation are following:

Is Flutter cross-platform framework suitable for long-term application development

with existing native libraries?

In this case, suitability is affected by multiple factors, for example, availability of required

functionality, supported operating system versions, licensing. One of the main factors is

Flutter’s ability to communicate with native libraries since Piceasoft uses multiple in-

house developed native libraries. Long-term suitability is affected by the frequency of

updates for the framework. Criteria for suitability are discussed in the criteria and require-

ments for the framework selection chapter.

Does it reduce workload of development?

-3-

Reduction of workload is one of the main research questions since the potential reduction

of workload with a cross-platform framework is one of the expected advantages of cross-

platform development. The actual reduction of workload may be difficult to measure in

the short term, but shared codebase, resource management, continuous integration, and

testing are expected to reduce workload. Therefore, reduction is examined via these at-

tributes with Flutter.

What are the challenges and restrictions to cross-platform development with flut-

ter?

In addition to resolving known challenges and restrictions related to migration to Flutter

framework, the aim is also to discover new issues if such exists. Therefore, it is essential

to understand all potential issues related to the development with Flutter framework be-

fore starting technology adoption. Discovery of issues can affect potential migration or

the actual development process with the framework.

This thesis consists of 9 chapters. The first chapter contains an introduction to the thesis.

The second chapter examines motivation and different kinds of approaches for cross-

platform application development. Approaches are identified from previous research. The

third chapter examines selection criteria for cross-platform framework selection based on

existing research. Selection criteria are examined from Piceasoft’s perspective while

maintaining a certain degree of genericity. The fourth and fifth chapters contain a brief

introduction to both native and Flutter application development. Chapters 6 and 7 discuss

Flutter framework evaluation results based on research questions, motivations, and selec-

tion criteria. Chapter 8 briefly mentions potential topics for further research. Chapter 9

contains a list of referenced studies, articles, and documentation.

-4-

2 Motivation and approaches for cross-platform development

2.1 Motivation

In native mobile application development, the development is often done separately for

both Android and iOS platforms. Development for both platforms can result in a time and

money-consuming development process since the application is required to be imple-

mented separately for both platforms. Cross-platform development can potentially have

a positive impact on issues mentioned earlier. The following rationale for cross-platform

development is Piceasoft specific but can also apply generally.

Improvements to development process

A cross-platform framework is expected to improve development process mainly by im-

proving maintainability through a common codebase for the UI part of the application.

User interface codebase can potentially comprise a considerable part of the application.

While it may not be feasible to have a common codebase for all parts of the application,

having a common codebase on the UI part on both platforms could have a positive effect

on the development process. Testing is also expected to be simplified by having one code-

base and user interface to be tested.

Storyboards on the iOS platform are XML files that contain user interface implementation

of natively developed iOS applications. These storyboard files are edited via Xcode IDE’s

Storyboard editor with a graphical user interface, and changes in the editor are reflected

in the Storyboard file. While the Storyboard file can be displayed as an XML file, it may

be hard to develop a user interface by editing XML since Apple does not provide any

documentation for the keys and values used in the Storyboard file. In addition, Xcode

also modifies some values of the Storyboard file automatically. Automatic changes, hard-

to-read XML, and multiple developers working with the same Storyboard file can result

in version control conflict, which can be difficult to merge. A cross-platform framework

is expected to reduce these conflicts on the iOS platform via a completely different UI

development method. At Piceasoft, this has been an issue, with multiple developers work-

ing on a single Storyboard file; while it does not always result in a conflict, it happens

often enough to be considered an issue. On Android, this issue does not exist since it uses

XML files for UI development with distinct tags and attributes with extensive documen-

tation. Both Android and iOS UI development will be further discussed in the native mo-

bile application development section.

Improvements to overall quality of software

-5-

Developing the same application separately for multiple platforms can introduce several

issues to the development process. When an application is developed with the same ar-

chitecture for both platforms, there is a risk of the disparity in the codebase of applica-

tions. The disparity may not have any effect on the functionality of the developed appli-

cation. However, it complicates the maintenance of the codebase by having two different

kinds of implementations. With one architecture approach, it is preferable to aim for sim-

ilar implementation on both platforms to improve maintainability and simplify further

development.

With separate projects for both platforms, there is a possibility of mismatches in locali-

zation texts and other resources. Different platforms may use different formats for local-

ization string. By managing multiple localization files and formats, there is a possibility

for a mismatch in localization keys and values. Managing multiple localization resources

in multiple places can also result in outdated or missing localisations by mistake. A sim-

ilar issue can happen with other resources, such as images and colour codes.

Other issues related to maintaining similarity may arise from platform-specific user in-

terface components. For example, Android has built-in implementation for check box UI

element, while iOS does not and prefers to the use of switch UI elements instead. While

having different kinds of UI elements for the same tasks may not impact functionality, it

impacts user experience and usability. Having the same look and feel for the application

on different platforms with native UI elements may not be possible for some companies.

Maintaining the same user interface can be an important requirement for application de-

velopment.

Reduction of work times and development costs

Development of application separately for both Android and iOS platforms can be costly

and time-consuming, depending on the size and complexity of the project. Costs tend to

be higher because development needs to be done twice; this could be reduced by migrat-

ing to a cross-platform framework to remove the need to develop separately for both plat-

forms. When an application does not need to be developed twice, resources could be al-

located to other tasks or reduce the workload of developers and testers. Common code-

base could reduce times to fix bugs if bugs are present on both platforms. Changes to the

user interface could also be implemented in a shorter timeframe. Having only one UI

implementation could also simplify implementing UI testing, such as automation tests on

the user interface.

-6-

2.2 Approaches

Cross-platform development refers to a development method in which application devel-

opment is done with a single codebase that is used on several different platforms. Cross-

platform development approaches often focus on user interface development, providing

various libraries, user interface components, or APIs for user interface development.

However, depending on the implementation, the cross-platform frameworks may provide

functionality other than user interface components or related interfaces, such as function-

ality related to mobile device features or components. Device-related functionalities can

include, for example, APIs to sensors or other device features such as a camera.

In their survey of cross-platform mobile development, Biørn-Hansen, Grønli, and Ghinea

(2018) provide a taxonomy of different approaches used to implement cross-platform so-

lutions. Approaches mentioned in the article are hybrid, Interpreted, cross-compiled,

model-driven, and progressive web applications. This thesis examines cross-compiled ap-

proach with Flutter framework as a potential migration target.

Cross-platform frameworks can be divided into the approaches mentioned above. Ap-

proaches can differ significantly in terms of their implementation and functionality. There

may be differences in performance as well as usability.

2.2.1 Hybrid approach

The hybrid approach uses traditional web technologies such as HTML, CSS, and Javas-

cript. With these technologies, hybrid cross-platform frameworks implement their user

interface and operational logic. Parts implemented with web technologies are bundled

into a native application and then displayed in the native web view. Web view refers to a

UI component that displays a website in an application without the need to open a browser

application. Some frameworks provide two-way communication with the native parts of

the application; this is called bridging, allowing the use of native features. (Biørn-Hansen,

Grønli, Ghinea, 2018)

2.2.2 Interpreted approach

The interpreted approach builds a native interface utilizing interpretable languages. While

the interpreted approach may take advantage of web development-specific tools, such as

JavaScript, it does not need a web view for the presentation of the application. Instead,

interpreted approach renders a native interface based on the source code written in the

interpretable language with an on-device interpreter, such as a Javascript interpreter. Alt-

hough JavaScript is a common language in the interpreted approach, it is not the only

-7-

option. The Interpreted approach also uses a bridging technique so that native function-

alities can be used in the application. (Biørn-Hansen, Grønl, Ghinea, 2018)

2.2.3 Cross-compiled approach

In the cross-compiled approach, the application is written in a common language for both

platforms, and this common source code is translated into native byte code. As the appli-

cation is compiled into a native application, there is no need to use a web view or inter-

preters, like in hybrid and interpreted approaches. The cross-compiled approach also does

not need a bridging layer to utilize native device features or functionalities since these

features are exposed via the framework’s SDK, with implementations that are mapped to

the native SDK’s implementations. The cross-compiled approach also generates compo-

nents from byte code that are rendered as native components. (Biørn-Hansen, Grønli,

Ghinea, 2018)

2.2.4 Model-driven approach

The model-driven approach differs significantly from the above. It utilizes domain-spe-

cific languages in the development and does not require the developer to know the pro-

gramming languages used by the platforms. In the model-driven approach, the application

is modelled through user interface models and business logic. After modelling, the model

can be transformed into an application for different platforms. The models are translated

into native applications in application generation, i.e., the generator develops the appli-

cation model. (Biørn-Hansen, Grønli, Ghinea, 2018)

2.2.5 Progressive web application approach

The progressive web application approach uses web technologies for application devel-

opment with enhanced capabilities. Applications or websites can be developed to have a

native-like look and feel with HTML and CSS languages. Web sites can be used via an

internet browser. Progressive web applications can be installed on the device similar to

regular applications, and these applications download all the resources required for offline

use during installation. The progressive web application approach uses service workers

introduced in iOS 11.3 version to enable these applications to function with additional

capabilities compared to traditional web apps. Service workers were introduced in iOS

11.3 version, and on Android, they are included in API level 24. With progressive web

application approach, applications are opened on the device as artifact-less browser win-

dows with downloaded resources, without browser’s address bar, setting icons, or other

browser-related UI elements.

-8-

-9-

3 Criteria for framework selection and evaluation

Adopting a new technology always requires that the requirements related to the new tech-

nology are adequately recognized and understood. The requirements for technology often

create constraints that need to be prepared for before the migration or adoption for pro-

duction to run smoothly. If the new technology does not meet the requirements or creates

too many constraints for the development, then the migration or adoption may not be

worthwhile.

Choosing the correct framework is influenced by several different things. When choosing

a framework, the constraints on the development set by the framework must be consid-

ered. In addition to the limitations, it is good to assess the requirements for the software

and the product requirements set for it. In the article How to Pick the Right Mobile De-

velopment Approach? Haire proposes the following criteria for the selection of the frame-

work:

1. Does it require hiring additional skills?

2. Walled garden or open ecosystem?

• Walled garden refers to low-code development platforms, where “every-

thing you need is contained within the platform and controlled and li-

censed by the vendor.” (Haire, 2021) For example, Kony, Mendix, and

Outsystems platforms. In the walled garden approach, application devel-

opment is usually done via a platform-specific graphical editor, which

only contains functionality implemented by the vendor.

• Open ecosystems refer to platforms that provide SDKs, which can be used

to implement functionality without boundaries.

3. What kind of partner are you looking for?

• Does it provide support for development?

• Does it provide long-term versions?

4. Importance of design and UX consistency across teams and projects?

5. Evolution of ecosystems?

The article Framework Choice Criteria for Mobile Application Development examines

the essential criteria related to selecting a cross-platform framework and discusses the

fulfillment of the criteria by approaches of cross-platforms frameworks. The article ex-

amines the criteria proposed by Andrew Haire and suggests the following additional ques-

tions as criteria for choosing a framework:

1. Does it need access to native mobile features?

-10-

2. Does it need high performance?

3. Will it be published as a free app or under a license?

4. What are the targeted platforms?

5. Does it need support after publishing it?

6. Does it need a native look and feel?

7. Does it need to consume little power from the phone battery?

8. Does it have to implement an advanced security standard?

9. Does it need to be scalable?

Flutter was chosen as the cross-platform UI framework for this thesis. Flutter was selected

for a variety of reasons, including extensive documentation and similarity of Dart pro-

gramming language to languages used in native mobile application development. Also,

UI development was considered similar to Apple’s SwiftUI. Piceasoft requires open eco-

systems for software development without limitation to development, and Flutter is seen

as a potential migration target from this perspective. This thesis focuses on the mobile

development aspect; therefore, UX consistency is between mobile projects and projects

on other platforms is not discussed. UX consistency between mobile platforms on the

same project is expected to be a feature of Flutter.

From the long-term partner perspective, Google is seen as a reliable developer for such a

framework due to the size of the company and Android development. Ecosystem evolu-

tion is somewhat hard to predict in the mobile device industry, and huge changes can

happen in a fairly short time. Good examples of huge changes are the development, de-

cline, and discontinuation of Symbian and Windows Phone operating systems.

3.1 Native mobile features

Piceasoft requires access to native mobile features, such as APIs for various mobile de-

vice components. Piceasoft develops applications that perform mobile device diagnostics;

therefore, it is a significant factor in framework selection. Access to native mobile fea-

tures is one of the main requirements for migration. Native mobile features are generally

an important factor to consider. If an application is not initially planned to use these fea-

tures, it is a possibility that they are required later for the implementation of some feature.

Although depending on the cross-platform framework, there may not be a framework-

specific approach to access certain platform-specific APIs, evaluation of API needs of the

application is essential when choosing a framework.

-11-

3.1.1 Communication with natively developed libraries

Piceasoft's main requirement for migration is communication with existing natively de-

veloped libraries. Some libraries can have features that prevent translation of library into

Dart programming language. For example, a library can utilize a platform-specific feature

that does not have API implementation in Dart. While some libraries cannot be migrated

to the target framework’s language, they may still be crucial for the functionality of an

application. Therefore, the cross-platform framework is required to have the functionality

to integrate these libraries as they are.

In the development of mobile applications, there is sometimes a need to implement plat-

form-specific functionalities, in which case the development often must be done with

native methods and languages. For example, the platform-dependent implementation can

utilize hardware-related programming interfaces, and these interfaces may not be acces-

sible without native implementation. These hardware-related interfaces may provide

functionality related to, for example, the sensors of the device. If an application needs to

handle the interfaces of device components frequently, then it may be worthwhile to iso-

late this functionality into a separate software library.

Figure 1. High-level architecture example for cross-platform application framework se-

lection.

-12-

Figure 1 demonstrates a potential development use case for the selected cross-platform

framework. In figure 1, the application is a part of the software that manages most of the

application's user interface and should be implementable with Flutter. The application

part depends on in-house developed libraries that are platform-specific. Libraries provide

most of the functionality for the application that is relevant from the product requirements

perspective. Flutter application is required to exchange values with libraries. Libraries are

not to be changed, and application is required to communicate with libraries as they are.

Libraries can be interacted with method calls and return values, or in some cases, with

interface/delegate listener pattern. One of the internally developed libraries has a user

interface required to be accessible from Flutter application user interface.

3.2 Performance

Performance is an important factor to consider since it may have a direct impact on user

experience. For example, slow view transition and responsiveness negatively impact user

experience; therefore, the cross-platform application is required to have equal or better

performance compared to natively developed application. Poor performance also impacts

negatively on battery consumption, causing the battery to drain faster.

3.3 Licensing

Licensing of the selected cross-platform framework is an essential factor for selection

since the license can directly affect a company’s possibility to publish and monetize the

application. License controls how software can be used, copied, and distributed. Some

licenses can prevent commercial distribution completely if the application utilizes

frameworks with a license that does not allow commercial use. Different licenses also

affect possibilities to modify the framework to suit better into developer’s needs. For

example, if a developer needs to customize the framework, then the license of that

framework must allow it. In Piceasoft’s case, a license of the framework is required to

allow commercial use.

3.4 Target platforms

Cross-platforms can differ greatly in their support for different platforms; therefore, target

platforms are a major factor in framework selection. This criterion may not be relevant

when targeting only mobile platforms since most mobile cross-platforms support Android

and iOS, which comprise roughly 99% of the mobile devices (Statcounter GlobalStats,

2021). However, if the developer is required to support other platforms, such as desktop

-13-

or web, this criterion is essential. Targeting specific platforms may restrict approaches to

cross-platform development.

3.5 Support

New versions of the operating system may bring changes to the user interface components

or their functionality. In the case of significant changes, developers often must respond

to these changes for the application to be compatible with the new version of the operating

system. Operating system versions may also affect the performance of cross-platform

frameworks with the new version, depending on the approach. The availability of a cross-

platform framework for the latest operating system version is vital if the application is

required to support the latest operating system versions and devices at their release.

In addition to always supporting new operating system versions, it may be important for

the developer to support older versions. Supporting older versions to some degree is usu-

ally beneficial since some mobile devices have only older operating system versions

available. Some applications, by nature, may be required to support older devices for

software that performs diagnostics on the device.

3.6 Look, feel, and usability

Look and feel can be important for companies. Some companies are very strict in main-

taining their specific appearance and brand in their products. Look and feel also contribute

to the usability and user experience. For example, a simple and distinct look for a button

clarifies that it is interactable by pressing. Frameworks implement user interface compo-

nents and their management differently; some maintain a more native look and feel while

others do not. While frameworks may not restrict companies from implementing their

own specific-looking UI, some frameworks can simplify the development by providing

some functionality of UI automatically, such as view transition animations.

Article A Case Study on Cross-Platform Development Frameworks for Mobile Applica-

tions and UX by Angulo and Ferre examines UX of cross-platform frameworks using

Titanium framework. The research was conducted by developing a similar application

with native methods and with Titanium and by evaluating implementations. The evalua-

tion was done with laboratory and longitudinal studies in which performance and UX was

measured with 37 participants. Results favored the native approach slightly without any

extreme differences. A longitudinal study displayed that the iOS users had a stronger

preference for the native version of the application. While the results of the study may

-14-

not be entirely applicable for Flutter development, it shows that look and feel should be

considered in framework selection.

3.7 Battery consumption

Battery consumption in mobile devices is a common problem that can be difficult to ad-

dress. Most mobile devices use lithium-ion battery technology and contain batteries with

an average capacity of 3,500mAh (Android Authority, 2018). Battery life can be difficult

to determine based on capacity alone, as consumption is also affected by other compo-

nents of the device and the processes performed by the device and their number. The

processes and applications performed on the device can differ significantly from user to

user, and in addition, the applications consume battery power according to their own re-

quirements. Although average battery capacity has increased somewhat over the past five

years, this may not directly improve the battery life of mobile devices. Despite the in-

crease in battery capacity, the development of more efficient components and communi-

cation methods may negatively affect battery consumption, reducing device lifespan (An-

droid Authority, 2018).

Battery consumption can be influenced in application development by producing opti-

mized applications by eliminating unnecessary computational processes. Often, graphics

processing is costly to perform in terms of battery consumption, which is why battery

consumption is often clearly noticed in mobile games (Singhai, Bose, 2013). The operat-

ing systems themselves also tend to save resources with various features such as Android

App standby buckets, which aim to prioritize application resources (Google Developers,

2021a). The importance of battery consumption of application varies depending on the

nature of the application. For example, optimization of battery consumption of applica-

tions that are used several times during a day could be beneficial compared to applications

with less usage. Applications with continuously running background processes could also

be optimized to reduce battery consumption. On the other hand, applications that are used

infrequently, such as application performing diagnostics, may not require significant

measures to reduce battery consumption because the operations it performs are infrequent

and likely to last a short time.

When choosing a cross-platform framework, attention should be paid to the battery con-

sumption of the Framework. Battery consumption is affected by the performance over-

heads of the frameworks, which can vary greatly depending on different cross-platform

development approaches. The hybrid approach should be avoided if battery consumption

is a significant selection criterion (Biørn-Hansen, et al. 2020). Battery consumption

-15-

should always be considered when developing an application, as battery life is an im-

portant feature for consumers of mobile devices (Global Web Index, 2019).

3.8 Security

Security is expected to be a built-in feature of the potential migration target framework;

it is required to be secure and robust. While security-related implementation can be im-

plemented with native programming languages and APIs, it is preferred that the frame-

work and its programming language could provide security-related functionality as well.

Applications are, in some cases, required to access or manage sensitive data such as de-

vice-related identifying data, customer data, or location data; therefore, the framework is

required to provide encryption and authentication-related functionality.

3.9 Scalability

Scalability is an important attribute for software development since it directly affects the

application’s ability to grow or change based on user’s or customer’s demands. Therefore,

it is preferred that the framework provides the necessary tools and functionality for de-

veloping scalable applications, even though scalability may not be a crucial factor for

framework selection. In many cases, scalability can be implemented through application

design and correct architectural choices.

3.10 Maintainability

Most software requires maintenance in the forms of bug fixing, new feature implementa-

tions, improvements in usability and performance. Maintainable code is easy to read, con-

tains documentation and comments. While maintainability is affected mainly by the de-

veloper's choices, it is preferred that the syntax of the programming language of the cross-

platform framework is easy to read. Defects are very common in software, and in most

cases, these defects need to be fixed. Therefore framework should also provide tools to

detect defects and monitor performance to make it easier to detect and fix defects. Also,

technology changes are extremely common and affect existing software very often; there-

fore, maintainability is essential so that the software can be easily adapted to these new

changes.

The framework is expected to increase the maintainability of the application by having

only one implementation compared to native development, with its separate implementa-

tions on both platforms. The common codebase is expected to affect maintainability pos-

itively since changes and bug fixes are required to be implemented only once. In addition,

-16-

common localization files and resource management are also expected to increase main-

tainability since all localisations, and resource changes and additions are implemented to

only one project instead of two separate projects.

3.11 Availability of third-party libraries

Application may be dependent on some third-party implementation. These implementa-

tions are integrated into mobile applications as libraries so that their functionality can be

utilized within the application that is being developed. The functionality provided by the

libraries may be essential for development if the application which is being migrated has

been developed initially to take advantage of these functionalities. Replacing or imple-

menting the functionality of third-party implementations may be too large for the com-

pany in terms of workload, and abandoning them in the event of migration may not be an

option. If the functionality cannot be abandoned or replaced by another library, then the

availability of that library for the new technology must be verified before the migration.

3.12 Localization management

Applications commonly have support for multiple languages besides English or the na-

tive language of the developer. When an application is developed separately for multi-

ple platforms, then localization files need to be managed separately for each project for

each platform. Managing multiple localization files is slow and exposes the application

to bugs. Bugs related to localizations are usually misspellings or incorrect localization

strings in UI elements. Bugs may appear when localization files use different formats,

and original localization strings from the translator are being formatted to project-spe-

cific formats.

3.13 Resource management

Like localization management, if an application is developed separately for multiple

platforms, it requires managing different resources separately on those platforms. Re-

source management includes managing images, colour constants, videos, audio files,

and other resources. Resources commonly are referenced with keys or names corre-

sponding to the resource. For example, an image with a warning sign could have a key

“icon_warning” that could be used to retrieve that specific resource if needed. Manag-

ing resources for different applications on different platforms increases workload and

potential issues, like missing resources, misspellings in keys, and mismatches in colour

resources.

-17-

3.14 Testing

Testing is an important part of the software development process. Correctly used, testing

can be an efficient way to discover defects early. Early discovery of defects can signifi-

cantly reduce the cost of fixing them (Wiegers, Beatty. 2013). If a defect is found long

after it has been created, fixing it could have an impact on other implemented features as

well, and those features may require changes as well. Fixing defects may also require an

additional release to distribute the fix.

The cross-platform framework should have testing tools and testing-related libraries

available to enhance the discovery and prevention of defects. Testing tools should provide

the necessary functionality to implement unit and integration testing.

3.15 UI development version control conflicts

While version control and conflicts are not essential factors in cross-platform selection

and development, they should still be considered. Version control conflicts are common,

especially if multiple developers are working on the same codebase. Usually, this is not

an issue, but on iOS storyboard-based user interface development, this can be a hindrance.

iOS storyboards are preferred to be developed by the Xcode storyboard design tool; this

tool generates XML based on the developed user interface, which is usually hard to read.

It is common to encounter conflicts with these storyboard files, and these conflicts can be

difficult to resolve into a working Storyboard file. Again, while this may not be a crucial

criterion for framework selection, it can be beneficial if the framework uses an approach

that makes conflicts related to user interface development easier to resolve.

-18-

4 Native mobile application development

4.1 Android

Android is a Linux-based mobile operating system developed by Google that is com-

monly used on smartphones, tablets, televisions, smart wearables, and some other de-

vices. Android was initially developed by Android Inc., but ownership passed to Google

after Google’s acquisition of Android Inc. in 2005. Android is an open-source operating

system on which multiple device manufacturers have developed their own Android vari-

ations for their devices. Android development tools are available for Windows, Various

Linux distributions, macOS, and Chrome OS via the Linux beta feature (Google Devel-

opers, 2021b).

Native Android development often takes place with Android Studio, an IDE developed

by Google and JetBrains. There are alternative IDEs for development, but this thesis fo-

cuses on development only from the perspective of Android Studio. Android Studio

comes with a tool that can be used to download Android software development kit, in-

cluding the libraries, debugger, emulator, documentation, and other resources needed to

develop Android. Android uses Gradle as the build Automation tool and Java or Kotlin

as its primary development language.

4.1.1 Programming languages

Android’s native libraries are written using C and C++ languages, which both can be used

for application development as well. The use of C/C++ requires use of native develop-

ment kit, also known as NDK. While development with NDK is possible, it may not be

required in many cases since Google has exposed some of the native functionality via

Java API framework (Google Developers, 2021c).

Java has been the primary development language of Android until Google announced to

switch primary development language to Kotlin in 2019 (Google Developers, 2021d).

While Android uses Java language, it does not use Java byte code or Java virtual machine;

instead, it is compiled to Dex byte code with Android Runtime or Dalvik runtime envi-

ronments (Google Android source, 2020). Dex files containing byte code are packaged

into APK archive file for distribution, along with other resources of the application

(Google Developers, 2020a).

The current primary development language is Kotlin, developed by the JetBrains com-

pany that has created IntelliJ Idea IDE, which Android Studio is based on (Google De-

-19-

velopers, 2021e). Kotlin was adopted as the primary language in 2019, and since the An-

droid documentation and tutorials have been written primarily using Kotlin (Google De-

velopers, 2021d). Kotlin is an object-oriented programming language designed to work

with Java virtual machine. In addition to working with Java virtual machine, it can be

compiled to JavaScript, extending Kotlin language’s use cases. JavaScript compilation

could be used for cross-platform development on iOS and Android platforms, but it would

only be limited to business logic (Kotlin, 2021).

4.1.2 User interface development

User interface development on native Android applications can be done in three different

ways: user interface editor, editing XML files, and programmatically. Android Studio

contains a graphical layout editor for editing Android application’s user interfaces. Edit-

ing of user interfaces happens by drag and drop actions on different kinds of components.

In addition to adding components, attributes of those components can be edited via layout

editor. Editing via XML files is similar to editing any XML file; it contains tags for UI

components, which have properties of the related components as attributes. Implementing

the user interface programmatically is done by creating View objects in the source code.

View objects' look and behavior can be changed by manipulating and accessing their

properties via mutators and accessors and by adding these components to the Activity

objects or ViewGroup objects as child Views.

Android SDK contains many different kinds of UI components for all kinds of purposes,

for example, buttons for interacting and layouts for grouping components. All native An-

droid application user interfaces are built with View and ViewGroup objects, ViewGroup

objects being layouts containing child View, and View objects being actual UI compo-

nents (Google Developers, 2020b). All native user interface components extend the View

class. For example, a button is a View object with button-specific implementations and

the ones inherited from View (Google Developers, 2020b). ViewGroup classes contain

functionality to arrange, organize and manage views within the ViewGroup. Also View-

Group class extends the View class (Google Developers. 2020c).

XML files represent layout or graphical user interface constructed with View and View-

Group objects, with their attributes. Layouts specified in the XML files are commonly set

as views for Activity objects. Activity is a class that contains activities that the applica-

tion’s user can interact with and see. The activity class contains lifecycle methods related

to the layout it displays, and it can also reference layout components and contain back-

ground logic for UI elements (Google Developers, 2020d). For example, Activity pro-

cesses button events or gestures.

-20-

Image 1. Screenshot of Android studio, with layout editor displaying user interface XML

containing “Hello, world!” text field.

4.1.3 Dependency management

In Android development, Gradle build automation tool is used for dependency manage-

ment (Google Developers, 2021f). Gradle is a build tool that runs on Java virtual machine,

and it can be used to manage a project’s dependencies. Dependencies can be local or

remote modules and binaries (Gradle inc, 2021). In addition to managing dependencies,

Gradle manages the build process of Android applications. Gradle can be used to run

custom build scripts that can be written in Groovy or Kotlin (Gradle inc, 2021). Depend-

encies are managed by editing the project's build.gradle file, located in the Android app

module.

Android application project contains multiple Gradle files, for example, one containing

top or project-level configurations for the project and one for the app module. The project-

level build file is located in the project directory. The module build file is located in the

app module directory named “app” by default. The project-level build file contains con-

figurations that are common for all modules. A project can have multiple modules con-

-21-

taining different Gradle configurations with varying dependencies for each module. An-

droid Studio has a panel for examining and interacting with Gradle configurations and

scripts for the project and each app module. (Google Developers, 2021f)

4.1.4 Resource management

An Android project can include different kinds of resources ranging from localization

strings to images. Resources of Android projects are located in a directory called “res,”

which is located in the app module folder in the project (Google Developers, 2021g). The

resource directory contains all static content of the project. These resources can be ac-

cessed from the application code by using IDs generated automatically during the build

process to the project’s R class (Google Developers, 2020e). Resource directory contains

predefined subfolders for different types of resources; supported folder names for re-

sources are the following: animator, anim, colour, drawable, mipmap, layout, menu, raw,

values, xml, and font (Google Developers, 2020e).

The type of contents within subfolders vary depending on the names of those folders. For

example, the layout folder contains XML files describing the user interface layout, and

the drawable folder contains image resources. String resources are defined in XML files

into the values directory (Google Developers, 2020f).

Image 1. Example of string resource file, containing one example string value.

String resources are defined as in Image 1. Defining values into XML files is not restricted

to string type only; files can be used to store boolean, colour, dimension, ID, integer, and

array values as well. These values can be referenced via the R class. For example, the

value in Image 1 could be referenced in code with R.string.example. In other XML files,

Image 1 example string could be accessed using @string/string_name reference. (Google

Developers. 2020)

Localization strings are stored in a similar manner to other string resources but by using

alternative resources feature. Alternative resources for localizations can be defined by

creating additional values directories into resource directory with a language-region com-

bination. For example, the res/values-fi/strings.xml file would contain Finnish localiza-

-22-

tion strings for the application. If values directory with required language-region combi-

nation does not exist in the application, the application uses default localization. (Google

Developers, 2019)

4.2 iOS

iOS is an operating system based on an open-source operating system called Darvin

(GitHub: Apple, 2021). iOS is developed by Apple Inc. and is used as an operating system

in Apple’s iPhones and iPods. Apple’s tablet, iPad, also previously used iOS but was

changed to use iPadOS in 2019. iPadOS is variant of iOS with additional features (Apple,

2021a). Even though Darvin is open source, iOS is closed source only available on de-

vices developed by Apple. Unlike Android applications, iOS applications cannot be de-

veloped on operating systems other than macOS (Apple, 2018a).

iOS development is usually done with Xcode, An IDE developed by Apple. Xcode is used

for development for all platforms developed by Apple in addition to iOS (Apple, 2021b).

Xcode provides tools for code and UI editing. In addition to editors, Xcode also provides

debugger, simulators, documentation, and software development kits for Apple’s prod-

ucts. Xcode. iOS applications can be developed using alternative development tools to

some degree. For example, the developer can write Objective-C or Swift code with other

IDEs or editors. However, development with alternative tools usually requires use of

Xcode since there are no alternative tools for Xcode’s Storyboard editor. iOS uses Objec-

tive-C and Swift as main development languages (Apple, 2014. Swift, 2021a). iOS project

settings and build process is managed with Xcode’s project settings tool.

4.2.1 Programming languages

Native iOS development can be done using C, C++, Objective-C, or Swift languages. iOS

applications can be usually written mainly using Objective-C or Swift since most objects

iOS developer works with are provided by Cocoa Touch framework (Apple, 2014). Co-

coa/Cocoa Touch API provides functionality from system services like threading to UI

development with UIKit (Apple, 2018b). Some of the APIs provided by the Cocoa Touch

may require use of C (Apple, 2018b). While Cocoa Touch API uses mainly Objective-C

language, it can be utilized by Swift language since Swift contains full support for Ob-

jective-C interoperability (Apple. 2021).

Objective-C is a programming language designed to enable object-oriented programming

for the C language. As a superset of C language, it inherits functionality from C language

while providing its own features such as blocks, NSObject root class, reference counting,

-23-

and other features. Apple acquired Objective-C language along with NeXT company in

1996, and since it has been used for iOS development along with other Apple’s platforms

(Hsu, 2017). In 2015, Apple published Swift language, which is intended to replace C,

C++, and Objective-C on Apple’s platforms (Swift, 2021a).

Swift is an open-source programming language developed by Apple. Swift has cross-

platform support; therefore, it can be used to develop applications on Apple’s platforms,

Linux, and Windows (Swift, 2021b). Swift introduces multiple improvements to iOS de-

velopment, such as better null safety with additional flow control mechanics (Swift,

2021a).

4.2.2 User interface development

On iOS development, there are multiple ways to approach UI development. One way for

UI development is to use Storyboards. Storyboards are XML files that are edited via Sto-

ryboard editor, a graphical user interface editor (Apple, 2021c). Storyboard files can con-

tain multiple UIViewController objects, which can contain UI components, such as but-

tons and labels (Apple, 2021d). A storyboard can also contain navigation-related objects,

like UINavigationControllers and Segues, to implement navigation between views ob-

jects (Apple, 2021d). While Storyboard files can be displayed and edited as XML files, it

can be difficult to make working changes to the file since Apple does not provide any

documentation to the XML structures. Also, compared to Android’s XML files, iOS’s

XML files are more difficult to read since some of the tags are not self-explanatory. Sto-

ryboard editor contains a side panel similar to Android’s layout editor, enabling the de-

veloper to change UI components' properties. Adding new components happens via drag

and drop action from the UI component selection menu. UIViewController class is some-

what similar to Android’s Activity, and it commonly holds references to UI components

and handles events on the user interface. Similar to Android, iOS UI components extend

one super class called UIView, excluding some components like UIBarButtonItem (Ap-

ple, 2021e). The user interface could also be created programmatically, for example, ini-

tializing UI components in the UIViewController class’s implementation.

-24-

Image 2. Screenshot of Xcode’s Storyboard editor, with UI element selection menu open.

Image 3. Screenshot of Xcode, with SwiftUI preview displaying user interface code con-

taining “Hello, world!” text field.

At Apple’s Worldwide Developers Conference 2019, Apple announced SwiftUI as a new

UI development toolkit. SwiftUI differs from Storyboard development, as SwiftUI devel-

opment is done programmatically instead of using a graphical user interface editor. With

-25-

SwiftUI developer adds components to the View struct by declaring them programmati-

cally by calling the constructor function, like in Image 3. Adding child views for compo-

nents also happens by using the constructor of the components in the trailing closure of

the parent, like in the View on line 11 in Image 3. Properties of a component can be mod-

ified by using functions of the object returned by the constructor function. In SwiftUI,

components also inherit common properties and functions, but instead of inheriting them

from the super class, they are defined by View protocol (protocol is an abstraction, similar

to Java’s interface) (Apple, 2021f).

4.2.3 Dependency management

Dependency or package management of an iOS project can be a frustrating experience

since Apple did not provide any decent dependency manager with remote repository sup-

port until the introduction of Swift packages. Without any third-party managers, depend-

ency management is done manually via Xcode by adding binaries as dependencies to the

project file (AIM Consulting, n.d.). Adding dependencies manually to projects can cause

issues and increase workloads since every dependency must be downloaded and added

manually (AIM Consulting, n.d.). Furthermore, in the case of updating, the dependency

management process is done multiple times for a single dependency.

For iOS dependency management, there are popular third-party tools, like CocoaPods and

Carthage. CocoaPods is an open-source Ruby library that manages the project's depend-

encies, and it can automatically add, remove, and update dependencies by using a single

command (GitHub: CocoaPods, 2021). With CocoaPods, dependencies are declared in

the Pods file of the project, which determines what packages are downloaded and with

what version. CocoaPods supports multiple version control systems for remote reposito-

ries (CocoaPods, 2021).

Like CocoaPods, Carthage is an open-source third-party dependency manager for Xcode

projects. Unlike CocoaPods, Carthage is written mainly by using Swift programming lan-

guage. Carthage uses a file named Cartfile to declare dependencies for Xcode projects.

Also, Carthage supports multiple different remote repositories and can be configured to

use specific versions of dependencies. (GitHub: Carthage, 2021)

Along with Swift 3.0 version, Apple released Swift package manager (Swift, 2021c). It

is integrated into the Swift build system and has built-in Xcode support since version 11

(Swift, 2021c. Apple, 2021g). Xcode support makes dependency management much more

manageable without third-party solutions. Swift package manager supports linking de-

pendencies from remote repositories, similarly to CocoaPods, Carthage, and Android’s

-26-

Gradle (Swift, 2021c). Swift packages are modules that contain code and Package.swift

manifest file, containing the configuration of the package (Swift, 2021c). Each Swift

package is organized into modules with its own namespace and access control to enforce

visibility of functionality outside of the package (Swift, 2021c). Even though Swift pack-

age name indicates points at Swift language, packages can also contain Objective-C, Ob-

jective-C++, C, and C++ code (Apple, 2021h).

4.2.4 Resource management

iOS uses an asset catalog for resource management (Apple, 2018c). An asset catalog is

basically a directory that contains assets or resources, such as images, for the project. The

asset catalog directory is identified by giving the directory xcassets extension. Apple in-

structs to create asset catalogs via a new file menu. However, they can be created manu-

ally by creating the asset directory with a file manager and by adding a reference to it into

the Xcode project file (Apple, 2020a).

Image 4. Screenshot of Xcode with image asset visible.

An asset catalog can contain groups that are directories used for organizing resources

(Apple, 2018c). Unlike the catalog directory, the group directory does not have an exten-

sion (Apple, 2018c). Assets can be placed directly into catalogs or groups. Also, the asset

itself is a directory that contains the actual resource files, and these files are called content

files (Apple, 2018c). Asset directories have extensions that describe the contents of the

asset directory. For example, an asset containing an image has .imageset extension (Ap-

-27-

ple, 2018d). Asset directory can have variations of the same content file for different en-

vironments, scenarios, and devices. Image 4 demonstrates an image asset containing mul-

tiple content files with different dimensions for various scaling options. Xcode also pro-

vides tools to inspect and manipulate attributes of the resources, as seen on the right side

of Image 4. Each directory in the asset catalog also contains a JSON file that encodes the

attributes of resources (Apple, 2018d). Content JSON files are hidden in Xcode but can

be found with a file manager. Assets in the asset catalog are referenced in the code by

using the asset name. For example, asset visible in Image 4 is referenced with im-

age_block string. While asset catalog can be used for managing different types of re-

sources, it may have restrictions on some resource types on different iOS versions. For

example, colour (also known as named colour) assets can be used with iOS 11 or above

versions (Apple, 2021i).

Image 5. Content JSON file of image asset displayed in image 4.

While asset catalog can be used to manage multiple types of resources, it is not used to

manage localizations, like Android app uses XML resource management system for lo-

calizations as well. On iOS, application localizations are added via project file, and local-

ized strings are defined into language-specific .strings files (Apple, 2020b). Strings files

use a key-value pair system for localized strings. Values can be accessed by calling the

-28-

NSLocalizedString macro function by passing it the key of the localized string as a pa-

rameter (Apple, 2020b. Apple, 2021j). Other resources can also be localized. For exam-

ple, images could be shown with regionalized content (Apple, 2020c). Xcode generates

directories with .lproj extension to contain language-specific versions of resources (Ap-

ple, 2020c). .lproj extension is preceded by a language identifier using ISO 639-1 stand-

ard. For example, Finnish localization resources would be placed into fi.lproj directory

(Apple, 2020d).

-29-

5 Flutter

Flutter is an open-source, cross-platform framework developed by Google (GitHub: Flut-

ter, 2021). Flutter was introduced in 2015 at the Dart developer summit. Flutter is de-

signed to enable application development for multiple platforms, using the same code

base for all supported platforms. Flutter currently supports development on mobile, web,

and desktop platforms (Flutter, 2021c). Flutter uses Flutter engine to host its applications.

Flutter engine provides all that is required for Flutter application development, from 2D

graphics rendering with Skia graphics library to Flutter core libraries and Dart runtime

(GitHub: Flutter engine, 2021). Google provides Flutter development plugins for Android

Studio and IntelliJ IDEA integrated development environments; plugins are also provided

for Visual Studio Code and Emacs editors.

5.1 Dart

Dart is a programming language that is designed to be a client-side language. In its doc-

umentation, it is described as optimized for UI. Syntactically Dart bears similarity to lan-

guages used in native mobile application development, excluding Objective-C. Dart con-

tains multiple features for managing asynchronous operations and events in the form of

Future, async, await functionalities. Future is an object that represents potential value or

error, which will be available later; it uses call-back functions to complete events (Dart,

2021a). Async keyword is used to mark that function is asynchronous, and it changes the

function’s return type into Future class (Dart, 2021b). Future class supports genericity;

therefore, if an asynchronous function has a return value with a specific type, then the

generic type of Future is replaced with the return value’s type (Dart, 2021b). Await key-

word is used to mark that the code needs to wait for Future completion (Dart, 2021b).

Dart also uses isolate-based concurrency, meaning that separate threads have their own

memory heaps and event loops; these are called isolates (Kathy Walrath, 2019. Dart,

2021c). Since threads are isolated from one another, their variables cannot be mutated

from outside of the isolate. While isolates do not have access to each other directly, they

can communicate via a message system, where the receiver handles the message in its

own event loop (Kathy Walrath, 2019).

In addition, features related to threading, Dart contains multiple libraries to provide core

features of the language and basic functionality like file handling and web requests. Dart

also supports null safety; it uses question marks similarly to Kotlin and Swift to mark

optional or nullable types. (Dart, 2021d)

-30-

5.2 Project structure

In the context of mobile development, Flutter project basically consists of three projects,

Flutter project itself and two sub-projects for Android and iOS platforms. Android project

is contained in a directory called “android”, and it contains Android-specific source code

along with other Android-specific files. Like the Android sub-project, the iOS project and

its files are contained in a directory called “ios”. Flutter application itself has its source

code in a directory called “lib”. The project folder also contains other directories and files

like optional “test” and “assets” directories and pubspec.yaml file. “test” and “assets”

directories contain unit tests and assets for the project, and pubspec file contains project

configurations and metadata.

5.3 User interface development

Flutter uses Dart language for user interface development. The user interface usually con-

sists of Widget objects, which are building blocks of the user interface in Flutter; they are

used to represent almost anything from containers to buttons (Flutter, 2021d). Unlike on

Android and iOS, Flutter does not have a layout or user interface editor, and its user in-

terface is implemented programmatically. Flutter user interface is implemented by creat-

ing a class that inherits from the Widget class, which has a build function that builds

widget objects with all of its children and properties. build function has a tree-like struc-

ture since it can contain multiple child widgets and their properties, as seen in Image 6.

-31-

Image 6. Screenshot of Android emulator running Flutter application with user interface

declared on the right side of the screenshot.

There are two types of Widgets in Flutter in the sense of state and interactivity, and these

Widgets are stateful and stateless. StatelessWidget class is used to declare parts of the

user interface that are not required to change during runtime. StatefulWidget class has a

state which can be changed during runtime. Widget’s state enables changes to the user

interface components based on different events, such as completing HTTP requests. (Flut-

ter, 2021e)

Since Flutter does not have a graphical layout editor, the changes to the user interface are

hard to detect without running the application on an emulator or actual device. Flutter

provides functionality and tools like Hot reload and Flutter Inspector for experimenting

and detecting modifications to the user interface. Hot reload enables developers to refresh

the user interface of running applications to see changes without re-running and building

the whole application again (Flutter, 2021f). Hot reload injects updated source code to

Dart virtual machine, and then Flutter framework proceeds to rebuild widget tree by call-

ing build functions (Flutter, 2021f). Hot reload preserves the application’s state. For ex-

ample, data received with HTTP requests do not reset or change (Flutter, 2021f). If a state

-32-

is required to reset, the application must restart with either Hot restart or Full restart func-

tionality. On the other hand, Flutter inspector is used to visualizing and inspecting widget

trees and their properties. Flutter inspector can detect errors in layouts or visualize

changes to layouts by testing different alignments for Widgets (Flutter, 2021g).

5.4 Dependency management

Every Flutter project contains a YAML file called “pubspec”, this file contains project-

specific configurations, including dependencies of the project (Flutter, 2021h). Flutter

supports adding Dart packages as dependencies using pubspec files (Flutter, 2021i).

These packages can be targeted for specific platforms, meaning they can contain imple-

mentation only for a specific platform (Flutter, 2021j). Packages can be published via

Google's pub.dev service. Flutter projects can also use private packages, enabling devel-

opers to create Dart packages without publishing them (Flutter, 2021j). Flutter support

adding local dependencies with a file path. It also has support for Git repositories (Flutter,

2021i). Since Flutter supports file paths and Git repository URLs for dependency man-

agement, private packages can be declared into pubspec files using either option. Addi-

tionally, pubspec file can have configurations for packages to use only specific version(s)

of the packages (Flutter, 2021i).

Flutter also supports the use of native libraries/frameworks as dependencies. Native de-

pendencies are declared in the platform-specific sub-projects. Android-specific depend-

encies can be declared in the Gradle file located in the app module within the Android

sub-project. iOS dependencies can be declared with the iOS project file located in the

directory of the iOS sub-project. Native dependencies are further examined in chapter

6.1.

5.5 Resource management

Flutter resource/asset management is done with pubspec YAML file. pubspec file is used

to declaring and referencing asset files of the project. Actual asset files are in directories

that are located in the root directory of the project. These resource directories can be freely

named, and they can have sub-directories to contain different kinds of assets. For exam-

ple, Flutter project could have an “assets” directory, which could have directories called

images and sounds for image and audio files. Asset files with their paths need to be de-

clared in pubspec file. For example, it could contain declaration like assets/images/exam-

ple_image.jpg, for some image asset. Flutter supports multiple types of assets ranging

from JSON files to multiple types of image files. Flutter resource/asset system does not

support declaration of colour defines or string assets similarly to Android, although

-33-

JSON/XML assets could be used to create somewhat similar functionality. (Flutter,

2021k, Flutter 2021i)

Accessing assets can be done by using the resource path of an asset that is declared in

pubspec file. For example, an image could be instantiated using AssetImage class’ con-

structor and passing the asset path for it as a parameter. Flutter also provides functionality

to use these resources within native sub-projects. For example, assets declared in pubspec

file can be referenced in Swift/Objective-C/Kotlin/Java classes. Resources and assets are

further examined in chapter 6.13. (Flutter, 2021k).

Flutter supports localizations via an additional Flutter package called flutter_localiza-

tions. To localize application, the flutter_localizations package is required to be set as a

dependency into the pubspec file. Flutter uses ARB file format, which is similar to JSON,

to store localized texts. Dart file containing localizations is generated from these ARB

files, which can be used to access localizations from the code. Each localization string

has a key that is used to reference the localization. Each language has a separate ARB file

which contains keys for specific localizations and their localized strings. For example, a

Flutter project can have two ARB files, app_en.arb and app_fi.arb files, then these files

could contain language-specific strings with the same key. Flutter also provides an addi-

tional plugin for the development tools to provide syntax highlighting and automatic for-

matting for ARB files. (Flutter, 2021l)

-34-

6 Results

6.1 Native mobile features

Flutter has a functionality called method channel for communication with native features.

Method channel works by initializing MethodChannel class with name parameter defin-

ing the communication channel’s name, and this needs to be done in Flutter and iOS sides

of the project. Since Flutter projects contain native sub-projects for Android and iOS and

automatically creates Flutter-related Activity and AppDelegate classes for both sub-pro-

jects, these classes can be used to implement native features and register MethodCall-

Handlers. MethodCallHandler is an interface that defines only onMethodCall function

for handling method call via MethodChannel. MethodCallHandler’s only function, on-

MethodCall, has two parameters, Call and Result objects, containing information about

the method call and implementation to respond to a method call. MethodCallHandler is

created by calling MethodChannel’s setMethodCallHandler function on the native side

and passing MethodCallHandler as an anonymous class as a parameter for setMethod-

CallHandler function call. When Flutter side has registered MethodChannel, and the na-

tive side has set MethodCallHandler, then MethodChannel can be used to invoke methods

using MethodChannel’s invokeMethod function to call native functionality specified by

invokeMethod’s method name parameter. In order to invokeMethod to work, it is required

to have implementation within the anonymous implementation of the MethodCall-

Handler interface. On invocation of the method, the MethodCallHandler’s onMethodCall

implementation receives a Call object with properties to differentiate which functionality

is being called. After the required native functionality has been run, the caller can be

notified about the result of the method call with the Result object by calling its functions.

Result object can be used to return values to Flutter implementation by passing values as

parameters for Result’s functions. (Flutter, 2021m)

MethodChannel uses serialization and deserialization for values that are passed between

the native and Flutter sides of the application. Values that can be passed are required to

be supported by Flutter’s StandardMessageCodec class, which encodes and decodes

passed messages. Supported values are described in TABLE 1. (Flutter, 2021m)

Dart Java Kotlin Objective-C Swift

null null null Nil (NSNull

when nested)

nil

bool java.lang.Boolean Boolean NSNumber num-

berWithBool:

NSNumber(value:

Bool)

-35-

int java.lang.Integer Int NSNumber num-

berWithInt:

NSNumber(value:

Int32)

Int, if 32 bits not

enough

java.lang.Long Long NSNumber num-

berWithLong:

NSNumber(value: Int)

double java.lang.Double Double NSNumber num-

berWithDouble:

NSNumber(value:

Double)

String java.lang.String String NSString String

Uint8List byte[] ByteArray FlutterStand-

ardTypedData

typedDataWith-

Bytes:

FlutterStand-

ardTypedData(bytes:

Data)

Int32List int[] IntArray FlutterStand-

ardTypedData

typedDa-

taWithInt32:

FlutterStand-

ardTypedData(int32:

Data)

Int64List long[] LongArray FlutterStand-

ardTypedData

typedDa-

taWithInt64:

FlutterStand-

ardTypedData(int64:

Data)

Float64List double[] DoubleArray FlutterStand-

ardTypedData

typedDataWith-

Float64:

FlutterStand-

ardTypedData(float64:

Data)

List java.util.ArrayList List NSArray Array

Map java.util.HashMap HashMap NSDictionary Dictionary

Table 1. Table of conversion of types between languages. (Flutter, 2021m)

6.1.1 Accessing natively developed libraries

MethodChannel can be used to invoke native functionality via Activity or AppDelegate

classes, and it can be used to invoke the functionality of natively developed libraries.

Since Flutter projects contain Android and iOS projects as sub-projects, it is possible to

add dependencies for those sub-projects via the project settings file on iOS or Gradle on

Android. Both sub-projects can access the functionality of dependency libraries from Ac-

tivity or AppDelegate; therefore, MethodChannel can be used to call functions from those

libraries.

-36-

Figure 2. Diagram demonstrates invocation of operation from a third-party native library

via MethodChannel.

MethodChannel uses Future objects to manage flow in the Dart implementations. The

Future class represents the potential result that can be available at some point after a

function call. Future uses callback functions to handle future results, and it provides func-

tions like then, timeout, and whenComplete for the developer to implement actions based

on the result.

Call of native library function can be invoked from Dart class by calling MethodChannel

instance’s invokeMethod function, which returns Future object. When the invokeMethod

function is called, it is received on the native side’s MethodChannel’s method handler.

After receiving method invocation, the method handler proceeds to run the implementa-

tion of the method; this implementation can utilize functions and classes from native li-

braries. If implementation from the library uses interface/protocol listener pattern to no-

tify results, then Activity or AppDelegate class can be modified to implement required

-37-

interfaces. Results of the method invocation can be returned to the calling dart class via

Future object once MethodChannel returns the result of the method invocation. If the

application is required to navigate to native UI classes such as Activities or UIViewCon-

trollers, then navigation to these can also be implemented into Activity or AppDelegate

classes.

While MethodChannel and method handlers can be created within the Activity or AppDel-

egate class, I would prefer to separate these implementations to MethodChannelManager

classes, as seen in Figure 2. Separate class for MethodChannel related functionality pre-

vents cluttering or bloating the Activity or AppDelegate classes. These classes have other

uses as well, especially if the application communicates with multiple native libraries via

MethodChannel. Separating MethodChannel implementation from Activity and AppDel-

egate makes the implementation easier to read. Depending on the number of native li-

braries, there could be multiple MethodChannelManager implementations for each li-

brary. Multiple MethodChannelManager implementations would provide uncluttered and

distinct implementations for each library. On Flutter side of the application, MethodChan-

nel implementation could also be separated into its own class. Isolating MethodChannel

implementations on Flutter side would provide a simple entry point for the native imple-

mentations.

6.1.2 Pigeon

Alternatively, the developer can use Pigeon to use the native side of the application. Pi-

geon is a Dart package developed by Flutter’s development team. Pigeon is a code gen-

erator tool that generates code for message handlers to the application. Generated mes-

sage handlers can be used to send messages in either direction, from native to Flutter/Dart

and vice versa. Pigeon also does not require declaring the same arguments and datatypes

for messages, unlike MethodChannel. While Pigeon seems to simplify communication

between native and Flutter code, it is still in pre-release stage, and future releases may

introduce breaking changes. (Flutter, 2021m. Pub.dev, 2021a)

6.2 Performance

Jarkko Saarinen examines and evaluates cross-platform application performance in his

thesis, Evaluating cross-platform mobile app performance with video-based measures.

Saarinen used video-based measurement to measure performance of cross-platform

frameworks. Cross-platform frameworks were tested with different tasks on similar user

interfaces created with tested frameworks. Tasks included testing of button reaction de-

lay, performance of lists, heavy computation, and vibration functionality. Flutter on both

-38-

Android and iOS platforms performs well compared to native and other frameworks on

most. Compared to native, Flutter does not seem to have significant advantages or disad-

vantages in the sense of performance. (Jarkko Saarinen, 2019)

6.3 Licensing

Piceasoft develops and publishes commercial software, and therefore license of selected

framework needs to permit this. Flutter is licensed under the BSD 3-Clause "New" or

"Revised" License, and it allows commercial use, distribution, modification, and private

use. The license requires BSD copyright and license notice to be included in the product.

Since the license allows commercial use, distribution, and modification, it can be used to

develop Piceasoft’s applications.

6.4 Target platforms

The main targets of Piceasoft's mobile products are Android and iOS platforms. Flutter is

designed for mobile platforms, so this requirement is met without any problems. Since

Piceasoft’s mobile applications are not targeted on other platforms, Flutter works in this

situation. Flutter is also developing support for web as well as desktop platforms, and

there are experimental versions of these available. Although web and desktop applications

are not criteria for cross-platform framework selection, it is good to be aware that devel-

opment on those platforms could be possible at some point.

6.5 Support

Flutter supports the iOS platform from the iOS 9 version and Android from API level 19.

Flutter development team states that they are committed to providing full support for the

latest features of Android and iOS platforms. In addition to the commitment to support

the latest features, they try to support older versions as long as they can. Flutter develop-

ment team monitors API changes and announcements from the platform developers to

quickly react to the upcoming changes. (Ray Rischpater, 2014)

Flutter also states in their frequently asked questions site that Flutter’s interop and plugin

system allows developers to access new features immediately without the need to wait

for Flutter team to expose them (Flutter, 2021n). Long-term support of Flutter is chal-

lenging to evaluate, and it would require examination on a more extended period. Now

Flutter seems to have very active development on its GitHub repository, and it has had

frequent releases in 2021 (GitHub: Flutter, 2021).

-39-

6.6 Look, feel, and usability

For user interface development, Flutter provides sets of widgets. These sets implement

widgets using Material and Cupertino (iOS style) design languages, the latter referencing

Apple’s design language (Flutter, 2021n). Flutter encourages to use other than the Cuper-

tino widget set if the application is designed to work on platforms other than iOS (Flutter,

2021o). Using common set for UI components reduces differences of the application on

different platforms; therefore, the look and feel of the application remain similar. Com-

mon UI elements also converge usability on different platforms when components are

designed to behave similarly. Flutter application can use separate widget sets based on

the target platform with defaultTargetPlatform property.

Flutter uses the Skia graphics engine to render its own UI components instead of imple-

menting an abstraction layer to use native UI libraries. Using its own components and

separate graphics engine ensures that the components are always rendered the same way

regardless of the platform. Flutter also provides a Dart package for animations, therefore

providing developers the possibility to use the same animations on both platforms without

additional implementations. (Flutter, 2021p. Pub.dev, 2021b)

6.7 Battery consumption

Battery consumption of an application is usually related to its hardware and performance

requirements. For example, an application with heavy computation requires more from

the device’s CPU, resulting in increased power consumption. Battery consumption de-

pends significantly on the nature of the application; how much the application consumes

the device’s hardware resources? And for how long?

An Empirical Investigation of Performance Overhead in Cross-Platform Mobile Devel-

opment Frameworks article examined performance overheads in cross-platform frame-

works. The investigation concluded in the article compares the performance of cross-

platform frameworks on tasks utilizing file system, contact lists, GPS, and accelerometer.

Flutter required slightly more CPU usage than native implementation in all tasks, exclud-

ing file system tasks. Overall, Flutter also consumes more memory than native implemen-

tation. While CPU and memory use are not the only factors of the power consumption, it

may indicate that Flutter application may consume more power on some features than the

native application.

-40-

6.8 Security

Dart provides http package for HTTP communication in Flutter applications; this package

also supports HTTPS (Pub.dev, 2021c). Flutter, by default, has forced HTTPS connec-

tions since Android 28 and iOS 9 versions. Clear text connections require changes to

AndroidManifest.xml and Info.plist files (Flutter, 2021p). Dart also provides a crypto

package for hash functions (Pub.dev, 2021d).

In addition, to secure network communication, Flutter has the local_auth package to en-

able development on biometric authentication APIs, TouchID on iOS, and fingerprint

APIs on Android (Pub.dev. 2021e). In addition to packages developed by the Dart or

Flutter teams, Flutter has multiple security-related third-party packages covering authen-

tication, encryption, iOS keychain, and Android Keystore (Pub.dev, 2021f. Pub.dev,

2021g. Pub.dev, 2021h).

Flutter uses a branching model with stabilization period beta and stable branches on the

development prior to release. The stabilization period on beta and stable branches is used

only to introducing fixes, if needed, to stabilize the release. Flutter’s branching model

enables testing feature locked branch before release, therefore increasing the stability of

the released product. Flutter also receives regular releases to introduce new features and

to fix found defects. (Tim Sneath, 2020)

Since Flutter is a product of Google, it follows Google’s security philosophy, including a

vulnerability disclosure policy and reward program. (Flutter. 2021q, Google, n.d.)

6.9 Scalability

As stated in the 5.9 section, scalability is an important factor but may not be crucial in

selecting a cross-platform framework for mobile application development. Flutter and

Dart offer very similar architectural and application design options to languages and li-

braries used on native application development. Scalability in the sense of application’s

ability to adapt to changes can be achieved with well documented, tested, structured, and

modular codebase in addition to design and architectural choices. On mobile develop-

ment, scalability, or the application’s ability to adapt to demands set for it, can also be

affected by factors, such as the device's limited hardware resources.

6.10 Maintainability

Maintainability of the application can be examined on multiple different aspects of the

application, such as extensivity of documentation, readability, modularity, and structure

-41-

of the code. All attributes mentioned above affect how easy it is to expand, maintain, and

update the application, especially for newly hired developers.

Since Flutter provides a single codebase for the application, or at least for part of it, it can

potentially increase maintainability by requiring changes to only one project. For exam-

ple, defects are required to be fixed only in one place. Similarly, new additions to the

application can be implemented only once, reducing the possible defects or dissimilarities

between projects for different platforms. Maintainability of resources and localizations

can also be done only for one project instead of two.

While Flutter can increase the maintainability of the developed application, it can also

have a decreasing effect on some aspects. For example, maintainability can decrease

along with the increase of complexity, when application relies heavily on natively devel-

oped libraries and is constantly required to utilize their functionality. With native librar-

ies, the developer must maintain additional components responsible for communication

with these libraries. Although maintaining classes’ that communicate with native libraries

can be a smaller task than developing two separate user interfaces for different platforms.

In addition to native libraries, changes in third-party dart libraries may require additional

work if they contain platform-specific functionality.

Readability, modularity, and structure are attributes where also development, architec-

tural, and design choices greatly impact the maintainability of the application. Flutter and

Dart provide similar tools and functionality to implement robust and highly maintainable

code than the native tools, and programming languages have. Flutter also provides exten-

sive documentation for the development; this is likely to have an increased effect on the

maintainability of Flutter applications.

Since Flutter has its own user interface development tools with its own user interface

components, Flutter removes version control conflicts related to iOS storyboard user in-

terface development. However, iOS storyboard issues can persist if Flutter application

relies on native user interface implementations for the iOS platform.

Examination of Flutter’s advantages and disadvantages regarding maintainability more

extensively proved to be difficult. The more extensive examination would have required

examination on a more extended period with natural application development with Flut-

ter, instead of limited testing.

-42-

6.11 Availability of third-party libraries

Flutter has a great number of third-party frameworks or libraries available via pub.dev

site. pub.dev site contains over 17000 published Dart and Flutter packages usable with

Flutter applications (Pub.dev, 2021i). In addition to Dart packages, Flutter can use native

packages, developed for iOS or Android, via Flutter projects native subprojects and

MethodChannel functionality.

6.12 Localization management

Flutter provides all the necessary tools for the localization of developed applications. The

localization package provided by Flutter differs from native ones, but by having JSON-

like localization files, it is relatively easy to structure localization strings into Flutter lo-

calization files. Since Flutter provides tools for user interface development for both plat-

forms, the localization can also be implemented for both platforms only once, therefore

removing the need to add/update localized strings into two separate projects.

6.13 Resource management

Similar to localization management, Flutter has the functionality to support extensively

different file formats as resources or assets. Also, similarly to localization management,

Flutter simplifies resource management by requiring their management only once for both

platforms.

While managing resources only on a project developed with Flutter is simpler compared

to managing them on two separate projects with native implementation, it is not without

issues. The issue I encountered with Flutter’s resource management is the burdensome

reference system, where asset/resource is required to be referenced with the full path to

the resource instead of a simple identifier, like on native development. Referencing a full

path can be burdensome when the application has a vast number of different kinds of

resources in a complex directory structure. Also, referencing the full path can cause issues

when references are in multiple files when resources are relocated or refactored. Refactor

can result in broken references when assets are no longer available in the same directories.

However, this issue could potentially be fixed with a wrapper class that would have func-

tions to provide resources by appending the full path to a simple file name given as a

parameter.

-43-

6.14 Testing

Flutter and Dart development teams provide additional packages for implementing dif-

ferent kinds of testing. For unit testing, the Dart development team provides test package

via pub.dev site. test package contains functions like test and expect, which can be used

to implement unit tests with expectation evaluation. expect function takes anonymous

function/lambda/closure as a parameter, which is used to perform the actual evaluation of

the result. Tests can also be grouped with group function. test package also contains func-

tions for test setup and tear down. Since Flutter is a cross-platform framework, the test

package also contains a platform selector for running tests only on specific platforms.

(Pub.dev, 2021j)

In addition to unit testing, Flutter has flutter_test package for widget testing. flutter_test

package is built on top of the test package; it provides functionality for performing user

interface component (Widget) and integration testing. flutter_test package has functions

like testWidget, pumpWidget, and find. testWidget function creates the test, pumpWidget

builds and renders Widget and find can be used to find Widget object from widget tree

with properties like text. (Flutter, 2021r)

-44-

7 Conclusions

Mobile application development has multiple approaches, Flutter framework being one

of them among other cross-platform frameworks and native development. Usually, the

native development approach provides the best results since native languages' APIs tend

to be more optimized for the developed platforms. Also, it is common for cross-platform

frameworks to utilize the native APIs as well; therefore, native approach removes third-

party-related issues. Nevertheless, implementing the same application for multiple plat-

forms can increase workload, development costs, and mismatch between the applications.

This thesis examined Flutter cross-platform framework developed by Google. Flutter pro-

vides tools to develop applications for multiple platforms, although this thesis examined

the development mostly from a mobile application development perspective. While the

thesis evaluates Flutter’s overall applicability for mobile application development, it

strongly focuses on communication between natively developed libraries and Flutter ap-

plications. In addition to the examination of Flutter, the thesis has a brief overview of

Flutter’s development language Dart and native mobile application development on An-

droid and iOS platforms.

In the thesis, Flutter was evaluated via existing research, documentation, and develop-

ment of test application. The evaluation was done from the perspective of Piceasoft Ltd,

a client for this research. Piceasoft develops mobile solutions utilizing in-house developed

native libraries for both Android and iOS platforms, steering the focus into communica-

tion with native libraries.

As a result of the evaluation, Flutter can be seen as a potential framework for application

development for Piceasoft, at least for smaller projects with a careful approach. Flutter

provides all required functionality to utilize existing natively developed libraries. In ad-

dition to communication with native libraries, it provides a rich palette of different kinds

of widgets to standardize user interface on both platforms, with its own rendering engine.

Flutter also provides simplified management for resources/assets and localizations with

reduction of workload of the mobile application development team of Piceasoft, even

though resource management could require additional wrapper class implementation.

Also, the common codebase results in reduced workload and arguably increased main-

tainability, even though communication with native libraries may require additional im-

plementations. pub.dev site also provides multiple third-party libraries in addition to ex-

isting third-party native libraries if such is required in the development. Flutter also pro-

-45-

vides commonly used testing tools and functionality that can be used to increase the qual-

ity of applications and to detect defects in the application. These testing tools can likely

be utilized in automated testing.

Flutter’s development process and dense release frequency increase the framework’s re-

liability, although this is one of the aspects I would recommend evaluating further. I

would recommend re-evaluating iOS and Android version support after few iOS and An-

droid version releases. Re-evaluation would provide more information about Flutter and

its reaction times to operating system version changes. Gaining more information about

Flutter’s support for new operating system versions and API changes could help devel-

opers to adjust the development process to react to these changes. However, Flutter’s

interop and plugin system should provide access to new and updated features immedi-

ately, at least according to their frequently asked questions site (Flutter, 2021n). Overall,

Flutter seems reliable framework by a reliable developer, and it has matured a develop-

ment process. Also, Google is likely to be committed to the development of Flutter, as

they released Flutter 2 in 2021, along with news of the adoption of Flutter, by companies

like Toyota, Canonical, Sony, Samsung, and Microsoft (Sneath, 2021).

While Flutter provides all essential tools to implement mobile applications that can utilize

natively developed libraries, it still could be useful to evaluate maintainability over a more

extended period. Also, comparison to similar cross-platform frameworks could be useful.

Another interesting topic would be Flutter’s ability to react to operating system changes;

this could provide information on how quickly Flutter applications could be updated to

support new OS features or API changes. In addition to the evaluation of cross-platform

frameworks, the suitability of Kotlin language for long-term cross-platform development

could provide interesting alternatives.

Summarily, Flutter provides an interesting alternative to native mobile application devel-

opment. Furthermore, as stated earlier, Flutter provides features to implement an applica-

tion that can utilize native libraries. Therefore, I could recommend the adoption of Flutter,

but I would also recommend caution with adoption, for example, by testing it on smaller

products first. Flutter has the potential for versatile mobile application development.

-46-

8 References

AIM Consulting. n.d. Choosing the Right iOS Dependency Manager. Retrieved from:

https://aimconsulting.com/insights/choosing-the-right-ios-dependency-manager/ (Ac-

cessed: 15.4.2021)

Apache Cordova. Overview. Retrieved from: https://cordova.apache.org/docs/en/lat-

est/guide/overview/index.html (Accessed: 3.2.2021)

Apple. 2014. Documentation archive: About Objective-C. Retrieved from: https://devel-

oper.apple.com/library/archive/documentation/Cocoa/Conceptual/Program-

mingWithObjectiveC/Introduction/Introduction.html (Accessed: 9.4.2021)

Apple. 2018a. Documentation: Start Developing iOS Apps. Retrieved from: https://de-

veloper.apple.com/library/archive/referencelibrary/GettingStarted/DevelopiOSAppsS-

wift/ (Accessed: 9.4.2021)

Apple. 2018b. Documentation archive: Cocoa (Touch). Retrieved from: https://devel-

oper.apple.com/library/archive/documentation/General/Conceptual/DevPedia-Co-

coaCore/Cocoa.html (Accessed: 9.4.2021)

Apple. 2018c. Documentation: Asset catalog format overview. Retrieved from:

https://developer.apple.com/library/archive/documentation/Xcode/Reference/xcode_ref-

Asset_Catalog_Format/index.html (Accessed: 15.4.2021)

Apple. 2018d. Documentation: Asset catalog types overview. Retrieved from: https://de-

veloper.apple.com/library/archive/documentation/Xcode/Reference/xcode_ref-As-

set_Catalog_Format/AssetTypes.html (Accessed: 15.4.2021)

Apple. 2020a. Documentation: Create asset catalogs and sets. Retrieved from:

https://help.apple.com/xcode/mac/current/#/dev10510b1f7 (Accessed: 15.4.2021)

Apple. 2020b. Documentation: Add a language. Retrieved from: https://help.ap-

ple.com/xcode/mac/current/#/devafa3a605f (Accessed: 17.4.2021)

Apple. 2020c. Documentation: Make a resource localizable. Retrieved from:

https://help.apple.com/xcode/mac/current/#/dev7c584bb2a (Accessed: 17.4.2021)

https://aimconsulting.com/insights/choosing-the-right-ios-dependency-manager/
https://cordova.apache.org/docs/en/latest/guide/overview/index.html
https://cordova.apache.org/docs/en/latest/guide/overview/index.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://developer.apple.com/library/archive/referencelibrary/GettingStarted/DevelopiOSAppsSwift/
https://developer.apple.com/library/archive/referencelibrary/GettingStarted/DevelopiOSAppsSwift/
https://developer.apple.com/library/archive/referencelibrary/GettingStarted/DevelopiOSAppsSwift/
https://developer.apple.com/library/archive/documentation/General/Conceptual/DevPedia-CocoaCore/Cocoa.html
https://developer.apple.com/library/archive/documentation/General/Conceptual/DevPedia-CocoaCore/Cocoa.html
https://developer.apple.com/library/archive/documentation/General/Conceptual/DevPedia-CocoaCore/Cocoa.html
https://developer.apple.com/library/archive/documentation/Xcode/Reference/xcode_ref-Asset_Catalog_Format/index.html
https://developer.apple.com/library/archive/documentation/Xcode/Reference/xcode_ref-Asset_Catalog_Format/index.html
https://developer.apple.com/library/archive/documentation/Xcode/Reference/xcode_ref-Asset_Catalog_Format/AssetTypes.html
https://developer.apple.com/library/archive/documentation/Xcode/Reference/xcode_ref-Asset_Catalog_Format/AssetTypes.html
https://developer.apple.com/library/archive/documentation/Xcode/Reference/xcode_ref-Asset_Catalog_Format/AssetTypes.html
https://help.apple.com/xcode/mac/current/#/dev10510b1f7
https://help.apple.com/xcode/mac/current/#/devafa3a605f
https://help.apple.com/xcode/mac/current/#/devafa3a605f
https://help.apple.com/xcode/mac/current/#/dev7c584bb2a

-47-

Apple. 2021a. New features available with iPadOS. Retrieved from: https://www.ap-

ple.com/ipados/ipados-14/features/ (Accessed: 9.4.2021)

Apple. 2021b. Documentation: Xcode. Retrieved from: https://developer.apple.com/doc-

umentation/xcode/ (Accessed: 9.4.2021)

Apple. 2021c. Documentation: Using interface builder. Retrieved from: https://devel-

oper.apple.com/library/archive/documentation/ToolsLanguages/Concep-

tual/Xcode_Overview/UsingInterfaceBuilder.html (Accessed: 11.4.2021)

Apple. 2021d. Documentation: Designing with Storyboards. Retrieved from: https://de-

veloper.apple.com/library/archive/documentation/ToolsLanguages/Concep-

tual/Xcode_Overview/DesigningwithStoryboards.html (Accessed: 11.4.2021)

Apple. 2021e. Documentation: UIView class. Retrieved from: https://developer.ap-

ple.com/documentation/uikit/uiview (Accessed: 11.4.2021)

Apple. 2021f. Documentation: View protocol. Retrieved from: https://developer.ap-

ple.com/documentation/swiftui/view (Accessed: 11.4.2021)

Apple. 2021g. Xcode 11 release notes. Retrieved from: https://developer.apple.com/doc-

umentation/xcode-release-notes/xcode-11-release-notes (Accessed: 15.4.2021)

Apple. 2021h. Documentation: Swift Packages. Retrieved from: https://developer.ap-

ple.com/documentation/swift_packages (Accessed: 15.4.2021)

Apple. 2021i. Documentation: UIColor class init function. Retrieved from: https://devel-

oper.apple.com/documentation/uikit/uicolor/2877380-init (Accessed: 17.4.2021)

Apple. 2021j. Documentation: NSLocalizedString macro. Retrieved from: https://devel-

oper.apple.com/documentation/foundation/nslocalizedstring (Accessed: 17.4.2021)

Android Authority. 2018. Fact check: Is smartphone battery capacity growing or staying

the same? Retrieved from: https://www.androidauthority.com/smartphone-battery-ca-

pacity-887305/ (Accessed: 25.2.2021)

https://www.apple.com/ipados/ipados-14/features/
https://www.apple.com/ipados/ipados-14/features/
https://developer.apple.com/documentation/xcode/
https://developer.apple.com/documentation/xcode/
https://developer.apple.com/library/archive/documentation/ToolsLanguages/Conceptual/Xcode_Overview/UsingInterfaceBuilder.html
https://developer.apple.com/library/archive/documentation/ToolsLanguages/Conceptual/Xcode_Overview/UsingInterfaceBuilder.html
https://developer.apple.com/library/archive/documentation/ToolsLanguages/Conceptual/Xcode_Overview/UsingInterfaceBuilder.html
https://developer.apple.com/library/archive/documentation/ToolsLanguages/Conceptual/Xcode_Overview/DesigningwithStoryboards.html
https://developer.apple.com/library/archive/documentation/ToolsLanguages/Conceptual/Xcode_Overview/DesigningwithStoryboards.html
https://developer.apple.com/library/archive/documentation/ToolsLanguages/Conceptual/Xcode_Overview/DesigningwithStoryboards.html
https://developer.apple.com/documentation/uikit/uiview
https://developer.apple.com/documentation/uikit/uiview
https://developer.apple.com/documentation/swiftui/view
https://developer.apple.com/documentation/swiftui/view
https://developer.apple.com/documentation/xcode-release-notes/xcode-11-release-notes
https://developer.apple.com/documentation/xcode-release-notes/xcode-11-release-notes
https://developer.apple.com/documentation/swift_packages
https://developer.apple.com/documentation/swift_packages
https://developer.apple.com/documentation/uikit/uicolor/2877380-init
https://developer.apple.com/documentation/uikit/uicolor/2877380-init
https://developer.apple.com/documentation/foundation/nslocalizedstring
https://developer.apple.com/documentation/foundation/nslocalizedstring
https://www.androidauthority.com/smartphone-battery-capacity-887305/
https://www.androidauthority.com/smartphone-battery-capacity-887305/

-48-

Biørn-Hansen Andreas, Grønli Tor-Morten, Ghinea Gheorghita. 2018. A Survey and Tax-

onomy of Core Concepts and Research Challenges in Cross-Platform Mobile Develop-

ment. ACM Comput. Surv. 51, 5, Article 108 (November 2018), 29 pages.

https://doi.org/10.1145/3241739

Biørn-Hansen Andreas et al. 2020. An Empirical Investigation of Performance Overhead

in Cross-Platform Mobile Development Frameworks. Empirical software engineering :

an international journal 25.4 (2020): 2997–3040. Web.

CocoaPods. 2021. CocoaPods about. Retrieved from: https://cocoapods.org/about (Ac-

cessed: 15.4.2021)

Dart. 2021a. Documentation: Future class. Retrieved from: https://api.dart.dev/sta-

ble/2.12.0/dart-async/Future-class.html (Accessed: 7.5.2021)

Dart. 2021b. Documentation: Asynchronous programming: futures, async, await. Re-

trieved from: https://dart.dev/codelabs/async-await (Accessed: 7.5.2021)

Dart. 2021c. Documentation: Language tour, Isolates. Retrieved from:

https://dart.dev/guides/language/language-tour#isolates (Accessed: 7.5.2021)

Dart. 2021d. Dart overview. Retrieved from: https://dart.dev/overview (Accessed:

7.5.2021)

Discord. 2019. How Discord achieves native iOS performance with React Native. Re-

trieved from: https://blog.discord.com/how-discord-achieves-native-ios-performance-

with-react-native-390c84dcd502 (Accessed: 3.2.2021)

Esteban Angulo and Xavier Ferre. 2014. A Case Study on Cross-Platform Development

Frameworks for Mobile Applications and UX. In Proceedings of the XV International

Conference on Human Computer Interaction (Interacción '14).

Association for Computing Machinery, New York, NY, USA, Article 27, 1–8.

https://doi.org/10.1145/2662253.2662280

Facebook Engineering. 2016. Dive into React Native performance. Retrieved from:

https://code.facebook.com/posts/895897210527114/dive-into-react-native-performance/

(Accessed: 3.2.2021)

https://doi.org/10.1145/3241739
https://cocoapods.org/about
https://api.dart.dev/stable/2.12.0/dart-async/Future-class.html
https://api.dart.dev/stable/2.12.0/dart-async/Future-class.html
https://dart.dev/codelabs/async-await
https://dart.dev/guides/language/language-tour#isolates
https://dart.dev/overview
https://blog.discord.com/how-discord-achieves-native-ios-performance-with-react-native-390c84dcd502
https://blog.discord.com/how-discord-achieves-native-ios-performance-with-react-native-390c84dcd502
https://doi.org/10.1145/2662253.2662280
https://code.facebook.com/posts/895897210527114/dive-into-react-native-performance/

-49-

Flutter. 2021a. Application showcase. Retrieved from: https://flutter.dev/showcase (Ac-

cessed: 3.2.2021)

Flutter. 2021b. Flutter documentation. Retrieved from: https://flutter.dev (Accessed:

3.2.2021)

Flutter. 2021c. Documentation: supported platforms. Retrieved from: https://flut-

ter.dev/docs/development/tools/sdk/release-notes/supported-platforms (Accessed:

7.5.2021)

Flutter. 2021d. Layout in Flutter. Retrieved from: https://flutter.dev/docs/develop-

ment/ui/layout (Accessed: 14.5.2021)

Flutter. 2021e. Adding interactivity to your Flutter app. Retrieved from: https://flut-

ter.dev/docs/development/ui/interactive (Accessed: 14.5.2021)

Flutter. 2021f. Hot reload. Retrieved from: https://flutter.dev/docs/develop-

ment/tools/hot-reload (Accessed: 14.5.2021)

Flutter. 2021g. Using the Flutter inspector. Retrieved from: https://flutter.dev/docs/devel-

opment/tools/devtools/inspector (Accessed: 14.5.2021)

Flutter. 2021h. Flutter and the pubspec file. Retrieved from: https://flutter.dev/docs/de-

velopment/tools/pubspec (Accessed: 24.5.2021)

Flutter. 2021i. Using packages. Retrieved from: https://flutter.dev/docs/develop-

ment/packages-and-plugins/using-packages (Accessed: 24.5.2021)

Flutter. 2021j. Developing packages & plugins. Retrieved from: https://flut-

ter.dev/docs/development/packages-and-plugins/developing-packages (Accessed:

24.5.2021)

Flutter. 2021k. Adding assets and images. Retrieved from: https://flutter.dev/docs/devel-

opment/ui/assets-and-images (Accessed: 24.5.2021)

Flutter. 2021l. Internationalizing Flutter apps. Retrieved from: https://flutter.dev/docs/de-

velopment/accessibility-and-localization/internationalization (Accessed: 24.5.2021)

https://flutter.dev/showcase
https://flutter.dev/
https://flutter.dev/docs/development/tools/sdk/release-notes/supported-platforms
https://flutter.dev/docs/development/tools/sdk/release-notes/supported-platforms
https://flutter.dev/docs/development/ui/layout
https://flutter.dev/docs/development/ui/layout
https://flutter.dev/docs/development/ui/interactive
https://flutter.dev/docs/development/ui/interactive
https://flutter.dev/docs/development/tools/hot-reload
https://flutter.dev/docs/development/tools/hot-reload
https://flutter.dev/docs/development/tools/devtools/inspector
https://flutter.dev/docs/development/tools/devtools/inspector
https://flutter.dev/docs/development/tools/pubspec
https://flutter.dev/docs/development/tools/pubspec
https://flutter.dev/docs/development/packages-and-plugins/using-packages
https://flutter.dev/docs/development/packages-and-plugins/using-packages
https://flutter.dev/docs/development/packages-and-plugins/developing-packages
https://flutter.dev/docs/development/packages-and-plugins/developing-packages
https://flutter.dev/docs/development/ui/assets-and-images
https://flutter.dev/docs/development/ui/assets-and-images
https://flutter.dev/docs/development/accessibility-and-localization/internationalization
https://flutter.dev/docs/development/accessibility-and-localization/internationalization

-50-

Flutter. 2021m. Documentation: Writing custom platform-specific code. Retrieved from:

https://flutter.dev/docs/development/platform-integration/platform-channels (Accessed:

7.5.2021)

Flutter. 2021n. Frequently asked questions. Retrieved from: https://flutter.dev/docs/re-

sources/faq (Accessed: 25.5.2021)

Flutter. 2021o. Cupertino library. Retrieved from: https://api.flutter.dev/flutter/cuper-

tino/cupertino-library.html (Accessed: 25.5.2021)

Flutter. 2021p. Insecure HTTP connections are disabled by default on iOS and Android

library. Retrieved from: https://flutter.dev/docs/release/breaking-changes/network-pol-

icy-ios-android (Accessed: 25.5.2021)

Flutter. 2021p. Flutter architectural overview. Retrieved from: https://flutter.dev/docs/re-

sources/architectural-overview (Accessed: 25.5.2021)

Flutter. 2021q. Security. Retrieved from: https://flutter.dev/security (Accessed:

25.5.2021)

Flutter. 2021r. An introduction to widget testing. Retrieved from: https://flut-

ter.dev/docs/cookbook/testing/widget/introduction (Accessed: 3.6.2021)

GitHub: Apple. 2021. Darwin-XNU kernel Git reporitory. Retrieved from:

https://github.com/apple/darwin-xnu (Accessed: 9.4.2021)

GitHub: Carthage. 2021. Carthage Git repository. Retrieved from:

https://github.com/Carthage/Carthage (Accessed: 15.4.2021)

GitHub: CocoaPods. 2021. CocoaPods Git reporitory. Retrieved from:

https://github.com/CocoaPods/CocoaPods/ (Accessed: 15.4.2021)

GitHub: Flutter. 2021. Flutter Git repository. Retrieved from: https://github.com/flut-

ter/flutter (Accessed: 7.5.2021)

GitHub: Flutter engine. 2021. Flutter engine Git repository. Retrieved from:

https://github.com/flutter/engine (Accessed: 7.5.2021)

https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/resources/faq
https://flutter.dev/docs/resources/faq
https://api.flutter.dev/flutter/cupertino/cupertino-library.html
https://api.flutter.dev/flutter/cupertino/cupertino-library.html
https://flutter.dev/docs/release/breaking-changes/network-policy-ios-android
https://flutter.dev/docs/release/breaking-changes/network-policy-ios-android
https://flutter.dev/docs/resources/architectural-overview
https://flutter.dev/docs/resources/architectural-overview
https://flutter.dev/security
https://flutter.dev/docs/cookbook/testing/widget/introduction
https://flutter.dev/docs/cookbook/testing/widget/introduction
https://github.com/apple/darwin-xnu
https://github.com/Carthage/Carthage
https://github.com/CocoaPods/CocoaPods/
https://github.com/flutter/flutter
https://github.com/flutter/flutter
https://github.com/flutter/engine

-51-

Global Web Index. 2019. Which Smartphone Features Really Matter to Consumers? Re-

trieved from: https://blog.globalwebindex.com/chart-of-the-week/smartphone-features-

consumers/ (Accessed: 25.2.2021)

Google. n.d. Application Security. Retrieved from:

https://www.google.com/about/appsecurity/ (Accessed: 28.5.2021)

Google Android source. 2020. Android documentation: Android Runtime (ART) and

Dalvik. Retrieved from: https://source.android.com/devices/tech/dalvik#features (Ac-

cessed: 25.3.2021)

Google Developers. 2019. Android documentation: Localize your app. Retrieved from:

https://developer.android.com/guide/topics/resources/localization (Accessed: 3.4.2021)

Google Developers. 2020a. Android documentation: Build and run your app. Retrieved

from: https://developer.android.com/studio/run (Accessed: 25.3.2021)

Google Developers. 2020b. Android documentation: Layouts. Retrieved from: https://de-

veloper.android.com/guide/topics/ui/declaring-layout (Accessed: 28.3.2021)

Google Developers. 2020c. Android documentation: ViewGroup class. Retrieved from:

https://developer.android.com/reference/android/view/ViewGroup (Accessed:

28.3.2021)

Google Developers. 2020d. Android documentation: Activity class. Retrieved from:

https://developer.android.com/reference/android/app/Activity (Accessed: 3.4.2021)

Google Developers. 2020e. Android documentation: App resources overview. Retrieved

from: https://developer.android.com/guide/topics/resources/providing-resources (Ac-

cessed: 3.4.2021)

Google Developers. 2020f. Android documentation: String resources. Retrieved from:

https://developer.android.com/guide/topics/resources/string-resource (Accessed:

3.4.2021)

Google Developers. 2021a. Android documentation: App Standby Buckets. Retrieved

from: https://developer.android.com/topic/performance/appstandby (Accessed:

19.3.2021)

https://blog.globalwebindex.com/chart-of-the-week/smartphone-features-consumers/
https://blog.globalwebindex.com/chart-of-the-week/smartphone-features-consumers/
https://www.google.com/about/appsecurity/
https://source.android.com/devices/tech/dalvik#features
https://developer.android.com/guide/topics/resources/localization
https://developer.android.com/studio/run
https://developer.android.com/guide/topics/ui/declaring-layout
https://developer.android.com/guide/topics/ui/declaring-layout
https://developer.android.com/reference/android/view/ViewGroup
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/guide/topics/resources/providing-resources
https://developer.android.com/guide/topics/resources/string-resource
https://developer.android.com/topic/performance/appstandby

-52-

Google Developers. 2021b. Android studio downloads. Retrieved from: https://devel-

oper.android.com/studio#downloads (Accessed: 25.3.2021)

Google Developers. 2021c. Android documentation: Platform architecture. Retrieved

from: https://developer.android.com/guide/platform (Accessed: 25.3.2021)

Google Developers. 2021d. Android documentation: Android’s Kotlin-first approach.

Retrieved from: https://developer.android.com/kotlin/first (Accessed: 25.3.2021)

Google Developers. 2021e. Android documentation: Meet Android studio. Retrieved

from: https://developer.android.com/studio/intro (Accessed: 27.3.2021)

Google Developers. 2021f. Android documentation: Add build dependencies. Retrieved

from: https://developer.android.com/studio/build/dependencies (Accessed: 3.4.2021)

Google Developers. 2021g. Android documentation: Project overview. Retrieved from:

https://developer.android.com/studio/projects (Accessed: 3.4.2021)

Gradle inc. 2021. Gradle documentation: What is Gradle?. Retrieved from:

https://docs.gradle.org/current/userguide/what_is_gradle.html (Accessed: 3.4.2021)

Gradle inc. 2021. Gradle documentation: Writing Build Scripts. Retrieved from:

https://docs.gradle.org/current/userguide/writing_build_scripts.html (Accessed:

3.4.2021)

GSMA Intelligence. Unique mobile subscribers. Retrieved from: https://www.gsmaintel-

ligence.com/data/ (Accessed 3.2.2021)

Haire Andrew. How to Pick the Right Mobile Development Approach?. Retrieved from:

https://ionicframework.com/resources/articles/how-to-pick-the-right-mobile-develop-

ment-approach (Accessed: 5.2.2021)

Hansen Hsu. 2017. A Short history of Objective-C. Retrieved from: https://me-

dium.com/chmcore/a-short-history-of-objective-c-aff9d2bde8dd (Accessed: 9.4.2021)

https://developer.android.com/studio#downloads
https://developer.android.com/studio#downloads
https://developer.android.com/guide/platform
https://developer.android.com/kotlin/first
https://developer.android.com/studio/intro
https://developer.android.com/studio/build/dependencies
https://developer.android.com/studio/projects
https://docs.gradle.org/current/userguide/what_is_gradle.html
https://docs.gradle.org/current/userguide/writing_build_scripts.html
https://www.gsmaintelligence.com/data/
https://www.gsmaintelligence.com/data/
https://ionicframework.com/resources/articles/how-to-pick-the-right-mobile-development-approach
https://ionicframework.com/resources/articles/how-to-pick-the-right-mobile-development-approach
https://medium.com/chmcore/a-short-history-of-objective-c-aff9d2bde8dd
https://medium.com/chmcore/a-short-history-of-objective-c-aff9d2bde8dd

-53-

Instagram Engineering. 2017. React Native at Instagram. Retrieved from: https://insta-

gram-engineering.com/react-native-at-instagram-dd828a9a90c7#.3h4wir4zr (Ac-

cessed: 3.2.2021)

Jarkko Saarinen. 2019. Evaluating cross-platform mobile app performance with video-

based measurements. Retrieved from: http://urn.fi/URN:NBN:fi:tuni-201905161720 (Ac-

cessed: 25.5.2021)

Karl Wiegers, Joy Beatty. 2013. Software Requirements, Third Edition.

Kathy Walrath. 2019. Dart asynchronous programming: Isolates and event loops. Re-

trieved from: https://medium.com/dartlang/dart-asynchronous-programming-isolates-

and-event-loops-bffc3e296a6a (Accessed: 7.5.2021)

Khachouch Mohamed Karim. Korchi Ayoub. Lakhrissi Younes. Moumen Anis. 2020.

Framework Choice Criteria for Mobile Application Development. In: Proc. of the 2nd

International Conference on Electrical, Communication and Computer Engineering, 12-

13.

Kotlin. 2021. Documentation: Javascript overview. Retrieved from: https://kotlin-

lang.org/docs/js-overview.html (Accessed: 27.3.2021)

Microsoft. What is Xamarin?. Retrieved from: https://dotnet.microsoft.com/learn/xama-

rin/what-is-xamarin (Accessed: 3.2.2021)

Pub.dev. 2021a. Pigeon package. Retrieved from: https://pub.dev/packages/pigeon (Ac-

cessed: 25.5.2021)

Pub.dev. 2021b. Animations package. Retrieved from: https://pub.dev/packages/anima-

tions (Accessed: 25.5.2021)

Pub.dev. 2021c. HTTP package. Retrieved from: https://pub.dev/packages/http (Ac-

cessed: 28.5.2021)

Pub.dev. 2021d. Crypto package. Retrieved from: https://pub.dev/packages/crypto (Ac-

cessed: 28.5.2021)

https://instagram-engineering.com/react-native-at-instagram-dd828a9a90c7#.3h4wir4zr
https://instagram-engineering.com/react-native-at-instagram-dd828a9a90c7#.3h4wir4zr
http://urn.fi/URN:NBN:fi:tuni-201905161720
https://medium.com/dartlang/dart-asynchronous-programming-isolates-and-event-loops-bffc3e296a6a
https://medium.com/dartlang/dart-asynchronous-programming-isolates-and-event-loops-bffc3e296a6a
https://kotlinlang.org/docs/js-overview.html
https://kotlinlang.org/docs/js-overview.html
https://dotnet.microsoft.com/learn/xamarin/what-is-xamarin
https://dotnet.microsoft.com/learn/xamarin/what-is-xamarin
https://pub.dev/packages/pigeon
https://pub.dev/packages/animations
https://pub.dev/packages/animations
https://pub.dev/packages/http
https://pub.dev/packages/crypto

-54-

Pub.dev. 2021e. Crypto package. Retrieved from: https://pub.dev/packages/local_auth

(Accessed: 28.5.2021)

Pub.dev. 2021f. Oauth2 package. Retrieved from: https://pub.dev/packages/oauth2 (Ac-

cessed: 28.5.2021)

Pub.dev. 2021g. Cryptography package. Retrieved from: https://pub.dev/packages/cryp-

tography (Accessed: 28.5.2021)

Pub.dev. 2021h. Flutter secure storage package. Retrieved from: https://pub.dev/pack-

ages/flutter_secure_storage (Accessed: 28.5.2021)

Pub.dev. 2021i. Packages. Retrieved from: https://pub.dev/packages (Accessed:

2.6.2021)

Pub.dev. 2021j. test package. Retrieved from: https://pub.dev/packages/test (Accessed:

3.6.2021)

Ray Rischpater. 2014. Providing operating system compatibility on a large scale. Re-

trieved from: https://medium.com/flutter/providing-operating-system-compatibility-on-

a-large-scale-374cc2fb0dad (Accessed: 25.5.2021)

React Native. Introduction. Retrieved from: https://reactnative.dev/docs/getting-started

(Accessed: 3.2.2021)

Singhai, Amit & Bose, Joy. 2013. Reducing Power Consumption in Graphic Intensive

Android Applications. 10.1109/COMSNETS.2014.6734921.

Statcounter GlobalStats. 2021. Mobile Operating System Market Share Worldwide. Re-

trieved from: https://gs.statcounter.com/os-market-share/mobile/worldwide (Accessed:

3.2.2021)

Statista. 2020. Cross-platform mobile frameworks used by software developers world-

wide in 2019 and 2020. Retrieved from: https://www.statista.com/statis-

tics/869224/worldwide-software-developer-working-hours/ (Accessed: 18.3.2021)

Swift. 2021a. About Swift. Retrieved from: https://swift.org/about/ (Accessed: 9.4.2021)

https://pub.dev/packages/local_auth
https://pub.dev/packages/cryptography
https://pub.dev/packages/cryptography
https://pub.dev/packages/flutter_secure_storage
https://pub.dev/packages/flutter_secure_storage
https://pub.dev/packages
https://pub.dev/packages/test
https://medium.com/flutter/providing-operating-system-compatibility-on-a-large-scale-374cc2fb0dad
https://medium.com/flutter/providing-operating-system-compatibility-on-a-large-scale-374cc2fb0dad
https://reactnative.dev/docs/getting-started
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://www.statista.com/statistics/869224/worldwide-software-developer-working-hours/
https://www.statista.com/statistics/869224/worldwide-software-developer-working-hours/
https://swift.org/about/

-55-

Swift. 2021b. Platform support. Retrieved from: https://swift.org/platform-support/ (Ac-

cessed: 10.4.2021)

Swift. 2021c. Package Manager. Retrieved from: https://swift.org/package-manager/

(Accessed: 15.4.2021)

Tim Sneath. 2020. Flutter Spring 2020 Update. Retrieved from: https://medium.com/flut-

ter/flutter-spring-2020-update-f723d898d7af (Accessed: 28.5.2021)

Tim Sneath. 2021. Announcing Flutter 2.2 at Google I/O 2021. Retrieved from:

https://medium.com/flutter/announcing-flutter-2-2-at-google-i-o-2021-92f0fcbd7ef9

(Accessed: 28.5.2021)

https://swift.org/platform-support/
https://swift.org/package-manager/
https://medium.com/flutter/flutter-spring-2020-update-f723d898d7af
https://medium.com/flutter/flutter-spring-2020-update-f723d898d7af
https://medium.com/flutter/announcing-flutter-2-2-at-google-i-o-2021-92f0fcbd7ef9

