

SERNAZ NAEENA AHMED

AGILE SCRUM IN MEDICAL DEVICE

SOFTWARE DEVELOPMENT PROCESS

Faculty of Information Technology and Communication Sciences

M. Sc. Thesis

JUNE 2021

ABSTRACT

Sernaz Naeena Ahmed: Agile Scrum in Medical Device Software Development Process

M.Sc. Thesis

Tampere University

Master’s Degree Programme in Software Development

June 2021

Because of the advancement of information technology, the medical industry has been integrated with

innovative technologies such as automated devices and software to control their functionalities. Therefore,

the traditional medical industries now develop more lightweight software systems and complex regulatory

systems. This new dimension creates a scope for implementing new design methods and different

frameworks for the medical device industry.

Medical Device Software Industry has international quality assurance standards; authorized

organizations regulate all the development works. Adopting agile practices is often a source of concern for

the developers of safety-critical software where there is a high risk of financial cost uprise and loss of

control. The number of regulatory standards that medical device software development companies must

meet before selling their software is often overwhelming. Standards and guidelines have been established

for various regions to help businesses comply with regulatory requirements. Nonetheless, medical device

software development companies face a significant challenge in adhering to the stringent regulatory

requirements imposed due to the domain's safety-critical nature and maintaining productivity in the

software development process.

 This research is initiated for exploring the implementation of Scrum as a framework of the Medical

Device Software Development in compliance with the regulatory environment. The purpose of this study

is to identify the complications of implementing Scrum for developing Medical Device Software and

proposing feasible solutions to mitigate the complications. A literature review is performed, and interviews

are conducted to understand the current practices. Thesis findings are reviewed by comparing the results

of the interviews, and the results are reported in conjunction with feedback from practitioners.

The research outcome shows that adopting Scrum in the medical device domain may have

complications. Those complications can be mitigated by integrating the regulatory concerns into the

development lifecycle of medical device software. By taking the necessary measures such as defining

products considering regulatory compliance, balancing the flexibility and restrictions to make changes,

integrating risk management activities, introducing roles to monitor the development from a regulatory

perspective, it is possible to implement Scrum and comply with the regulatory requirements successfully.

Key words and terms: Software development, medical device, agile, scrum, software process improvement,

medical device software development, safety critical system, regulatory systems, methods, traditional

model, plan-driven.

The originality of this thesis has been checked using the Turnitin Originality Check service.

Contents

1 Introduction.. 1

2 Key Concepts .. 4

2.1 Agile Software Development Methodology ... 4

2.2 Scrum .. 6

2.3 Safety Critical Software Development ... 10

2.4 Regulations for Safety Critical Software Development .. 11

3 Medical Device Software Development .. 14

3.1 IEC 62304 for Medical Device Software Lifecycle .. 14

3.2 Plan-Driven Sequential Software Development .. 16

3.3 Agile Software Development .. 19

3.4 Complications of Adopting Agile ... 20

3.5 Complications of Adopting Scrum ... 24
3.5.1 Product Definition & Quality Assurance .. 24
3.5.2 Flexibility in Requirement Changes.. 24
3.5.3 Unpredictability and Variability ... 25
3.5.4 Documentation & Traceability .. 25
3.5.5 Validation and Verification ... 26
3.5.6 Risk Management ... 26
3.5.7 Self-organized and Self-controlled Team ... 27
3.5.8 Number of Roles ... 27

4 Mitigating the Complications .. 28

4.1 Agile Mitigating the Complications .. 28

4.2 Scrum Tailored to Mitigate Complications .. 30

4.3 Mitigate complications of Implementing Scrum in MDSD 35

5 Interview .. 37

5.1 Interview Design .. 37

5.2 Interview Participants.. 37

5.3 Interview Questions ... 39

5.4 Interview Results ... 40
5.4.1 Tailored Scrum Complying with Regulations ... 41
5.4.2 Product Definition and quality Assurance .. 41
5.4.3 Flexibility in Requirement Changes.. 42
5.4.4 Documentation and Traceability ... 43
5.4.5 Risk Management ... 43
5.4.6 Unpredictability and Variability ... 44
5.4.7 Verification and Validation ... 44
5.4.8 Self-organized and Self-controlled Team ... 45
5.4.9 Number of Roles ... 45

6 Discussion .. 47

6.1 Scrum Events incorporating Compliance ... 48
6.1.1 Requirement Elicitation .. 48

6.1.2 Implementation ... 49
6.1.3 Release .. 51

6.2 Scrum Roles and Artifacts incorporating Compliance ... 52

6.3 Solutions Mapped to Complications ... 54

7 Conclusion ... 57

References ... 58

Appendix 1 ... 67

Appendix 2 ... 69

-1-

1 Introduction

Agile principles have become an accepted methodology for developing various

complex or multiplex systems and software for different fields. The term scrum comes

from the word scrummage, which refers to a rugby player squad (Vogelzang, 2019).

Scrum is an agile project management methodology applicable for complex projects with

aggressive deadlines and complicated requirements, which create a degree of uniqueness

and reduce design and development timeframes employing a collaborative approach.

Medical device manufacturing has to adhere to specific regulatory standards

governed by national and international authorities to confirm the safety issues of the

patients for whom it is used for. According to the European Commission, medical device

software is also considered to be a medical device since these software systems are

synchronized with medical devices or used for medical health care activities (Regulation

(EU) 2017/745).

Agile methods and medical device software development have been studied and

reported in many research publications since 2000. But, particularly for Scrum, there has

not been much research on how to implement Scrum in the field of medical devices

feasibly. It is still under research whether agile Scrum falls in line with the safety-critical

requirements of traditional regulatory standards.

This research aims to find possible solutions for adopting agile Scrum in Medical

Device Software Development (MDSD). A literature review studies the current state of

the practices for adopting Scrum in the medical device domain to determine the

complications of adopting Scrum in Medical Device Software (MDS). Afterwards,

possible solutions to adopt this methodology in practice on regulated software

development are researched. Interviews are conducted with practitioners who currently

work in companies that develop applications for medical devices. The practitioners

review the findings of this research by participating in interviews. The analysis of their

review provides a more comprehensive perspective to this research work regarding

compliance with medical regulatory requirements

-2-

The research questions are as follows:

RQ1: What are the complications to adopt ”Scrum” in developing medical device

software?

RQ2: Can Scrum mitigate complications to develop medical device software?

The objective of this research is to see how far regulatory requirements can be met

by Scrum implementation, which processes of medical device development can be

covered by implementing Scrum, the current practices, and additional practices required

for complying with regulation. This research starts with a literature review to learn more

about this subject and the challenges of incorporating Scrum into MDSD processes. As a

part of this study, an interview is performed among the developers of MDS in Tampere,

Finland. This interview aims to assess the results of the literature review and learn the

complications to adopt scrum practices in the development lifecycle when developing

MDS and find how to implement Scrum in the medical device domain successfully

complying with the regulatory requirements.

Research steps are as follows:

1. Background study on Scrum, safety-critical systems, and other related topics.

2. Understand the current practices and barriers of implementing Scrum in MDSD.

3. Interview practitioners from companies about the barriers to adopting Scrum to comply

with regulations.

4. Analyzing how Scrum practices can mitigate the complications while developing

software systems for medical devices.

The expected outcome of the thesis work is to demonstrate the complications of

adopting Scrum in MDSD and representing how Scrum can overcome these

complications. This research also discusses how Scrum, as a development technique, can

be used to develop MDS effectively.

The following is the paper's outline: Chapter 2 provides the most relevant of the key

concepts from background studies are described briefly, then in Chapter 3, there is the

literature review about medical device software development. Chapter 4 discusses the

mitigation of complications of implementing Scrum in the medical device domain.

Chapter 5 consists of the interview design, interview participants, interview questions,

interview findings and analysis of the interview. Chapter 6 discusses the research

-3-

findings. Chapter 7 contains a conclusion and future work of this research, and the last

section contains all the references exercised for this research.

-4-

2 Key Concepts

2.1 Agile Software Development Methodology

Agile software development is a methodology that requires continuous iterations for

breaking the product into individual elements called practices during the development of

a product in the Software Development Lifecycle (Shore, 2007). Compared to agile,

Waterfall or other plan-driven development model follows sequential steps. Analysis,

design, implementation, testing, and maintenance are all steps in the process. Nothing in

the middle of the development process is deliverable. Agile is an alternative to traditional

models of software project development. Agile has four ideal values and twelve

principles, which are described in the Agile Manifesto. Agile allows solving problems

earlier than other models such as Waterfall. Agile involves collaboration, face-to-face

interaction, communication among the developers, different stakeholders, clients,

and other members of the team who develop the product (Shore, 2007).

Values of the agile mentioned in the Agile Manifesto (Beck et al., 2001):

“Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan”

Principles of agile stated in the Agile Manifesto (Beck et al., 2001) include the

following:

1. Our highest priority is to satisfy the customer through early and continuous

delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes

harness change for the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of

months, with a preference to the shorter timescale.

4. Businesspeople and developers must work together daily throughout the

project.

5. Build projects around motivated individuals. Give them the environment and

support they need and trust them to get the job done.

-5-

6.The most efficient and effective method of conveying information to and

within a development team is face-to-face conversation.

7.Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers,

and users should be able to maintain a constant pace indefinitely.

9.Continuous attention to technical excellence and good design enhances agility.

10. Simplicity—the art of maximizing the amount of work not done—is

essential.

11.The best architectures, requirements, and designs emerge from self-

organizing teams.

12. At regular intervals, the team reflects on how to become more effective, then

tunes and adjusts its behavior accordingly.

The development life cycle in agile development is broken down into smaller

fragments called “iterations”, as shown in Figure 1, rather than the single broad

development process model used in traditional software development. Each of these small

iterations consists of the phases of a conventional development process. After each

iteration is complete, a working software build is delivered. All of the `builds` have an

increment in terms of product features. The project’s final build includes all of the

functionality requested by the customer (Pawar, 2015).

Figure 1. Agile Methodology, adapted from (Pawar 2015).

-6-

Agile software development has traditionally been known to be best suited for

small groups of experts (Awad, 2005). It is based on flexibility and allows

changes at any time. Such methods are lightweight, design and execution are always

simple but effective in such approaches. It responds to changes quickly and

efficiently. The key goal of agile is to keep the consumer satisfied by delivering a product

on a regular basis. For that, it encourages feedback from the end-user and clients

and adjusts teams’ behaviour accordingly.

2.2 Scrum

Scrum is derived from a move in the sport of rugby, in which players must be in precise

positions with a particular intent in order to accomplish a shared goal (Sutherland,

2014). Scrum is principally a management model for developing software proposed by

Schwaber and Sutherland (Sutherland & Schwaber, 2020). The key concept of Scrum is

to use process control theory to achieve flexibility, adaptability, and productivity when

developing software (Abrahamsson et al., 2002). It acts upon a set of values and

principles.

Figure 2. Base of Scrum (Bhavsar et al., 2020).

Figure 2 shows that Scrum is founded on an empiricism control theory that is

controlled by Scrum’s Artifacts, Values, Pillars, Roles, and Events (Bhavsar et al.,

2020). Bhavsar discussed empiricism as a theory stating that information comes from

experience and that decisions should be made based on what is experienced.

The core pillars of Scrum that uphold this theory are Adaptation, Inspection and

Transparency. Scrum optimizes predictability and controls risk by employing an iterative

and incremental approach. Scrum engages groups of experts who collectively have

-7-

all the skills to do the work and implement the empirical Scrum pillars in each event.

Scrum values and principles strongly support technical practices, but there are no clear

professional practices for Scrum implementation in a development project presented.

“Scrum gives value on providing frequent feedback, embracing and leveraging

variability, being adaptive, balancing upfront and just-in-time work, continuous learning,

value-centric delivery and employing sufficient ceremony,” by (Rubin, 2012).

It assists effective development solutions by employing sufficient events. Scrum allows

developers to apply various procedures and techniques to simple and complex software

projects.

The Scrum framework consists of the following according to the Scrum Guide

(Schwaber & Sutherland, 2020):

o Scrum Roles

o Scrum Artifacts and

o Scrum Events

Figure 3. Scrum Framework (Schwaber & Sutherland, 2012).

Figure 3 shows actions from planning to software delivery in Scrum as outlined

by Schwaber and Sutherland (Schwaber & Sutherland, 2012). Here, Scrum artifacts

consist of the product backlog and the Sprint backlog and increment. Scrum events are

labelled as Sprint planning, Sprint, Daily Scrum, Sprint Review, Sprint Retrospective.

Scrum roles are indicated as a team

-8-

Scrum Team consists of a number of roles as following:

o Product Owner

o Scrum Master and

o Development Team

Scrum Teams are self-organizing and multi-functional, allowing them to complete

their tasks independently. They have the freedom to decide on strategies and tasks to

achieve the Sprint Goals instead of being controlled or being managed by others who are

not members of the team (Sutherland & Schwaber, 2020). Scrum is intended for small

collaborative development teams of about six to nine members. The success of

Scrum relies on team members becoming more proficient in living five specific values as

Courage, Focus, Commitment, Respect, and Openness (Sutherland & Schwaber,

2013). The Scrum Team is driven by these principles in their work, acts, and conduct.

Scrum defines three artifacts (Schwaber & Sutherland, 2020) such as product

backlog, Sprint backlog and increment. Scrum artifacts are designed to maximize the

transparency of key information. Each artifact contains a commitment ensuring that it

provides information and enhances transparency. In addition, Scrum artifacts reinforce

empiricism.

The product backlog is an ordered list of improvements that must be made to the

product. Product backlog items that a Scrum team can complete within one Sprint are

deemed ready for selection in a Sprint Planning event. The Scrum team’s long-term goal

is called the Product Goal. The Product Goal is the commitment for the product backlog.

The Sprint Goal is the single objective for the Sprint. The Sprint backlog is a plan

by and for the Developers to accomplish during the Sprint in order to achieve the Sprint

Goal. The Sprint backlog is updated throughout the entire Sprint. It should have enough

detail that they can inspect their progress in the Daily Scrum.

The Definition of Done (DoD) is a description of the status of an Increment when

it meets the quality measures required for the product. The moment a product backlog

item meets the Definition of Done, an Increment is born, which is a concrete stepping

stone toward the Product Goal. Each Increment of the Sprints is additive to the last

Increment and thoroughly verified, ensuring that all Increments work together.

Increments are presented at the Sprint Review, thus supporting empiricism. However, an

Increment may be delivered to stakeholders prior to the end of the Sprint.

-9-

There are special events in Scrum as following (Sutherland & Schwaber, 2020):

o Sprint

o Sprint Planning

o Daily Scrum

o Sprint Review

o Sprint Retrospective

These events have been created to establish regularity and enable

transparency, inspect, and adapt Scrum artifacts continually. The Sprint is the main

skeleton that holds the other events within this.

The development process is split into four-week iterations in Scrum, as illustrated

in Figure 4. This iteration is called Sprint. At the end of each Sprint, the team builds a

deliverable working increment of the product, allowing developers to forecast and

measure progress and provide opportunities to the customer to make changes such as

adding or redo a specific requirement. Before each of the Sprint, a Sprint-planning

meeting is held, allowing the developers to select the tasks for the Sprint in collaboration

with other stakeholders. After each Sprint, there is a piece of the project ready for the

customer, reflecting the increment of the project development.

Figure 4. Sprint is the main skeleton of Scrum Framework (Rubin, 2012).

-10-

The customer reviews each increment of a Sprint for feedback gathering in Sprint

review. After this, the deliverable is released to the customer. Sometimes the customer

plays the role of a Product Owner in Scrum. User stories are created to encapsulate

customer requirements, and then they are compiled into a prioritized product backlog.

The product backlog is a “living” document since it is updated regularly and reflects the

current understanding of customer requirements (Hron, 2018).

Every Scrum team needs a Scrum Master to oversee everyday work and ensure

that the Scrum process is followed. Daily standup meetings named Daily Scrum, at which

team members update each other on their progress and assignments for the following day,

keep up the work speed. Learning is aided by retrospectives, which take place after each

Sprint and allow the team to reflect on the work practices of the concluded Sprint.

2.3 Safety Critical Software Development

A safety-critical system is a complex, sensitive system that may result in death or injury

of people, environmental damage, or significant financial loss, if it fails (Bozzano, 2011).

According to the experts, “a safety-critical system is a system that poses a physical hazard

to human life. If a failure occurs and exposes a hazard, it might cause physical harm

to users, patients, practitioners, doctors, nurses, bystanders, and even people in the

proximity of an accident. Examples of safety-critical systems include medical

instruments, antilock brakes in motor vehicles, power hand tools, aircraft, and control

systems in chemical plants” (Fowler, 2004). Fowler addresses the concern in safety-

critical systems is that these must be developed thoughtfully with carefulness. They also

require traceability for every detail of the development process.

According to Ericson (2011), such systems are typically subjected to a stringent

safety assurance procedure such as safety certification. He also stated that the

certification aims is to ensure conformity of the system so that the system is proved safe

for use in a particular environment under certain conditions. For software-intensive

applications, product and process certification is generally the most difficult

step (Kornecki et al., 2009). He added that a common way to gain confidence in safety is

to set and achieve safety targets that reduce the potential safety risks that a system can

pose while in operation. These goals are typically based on safety criteria that apply to

the domain where the device intends to be used. Complying with a standard entail

collecting persuasive evidence during the system’s lifecycle to endorse the standard’s

protection objectives (Nair et al., 2013).

-11-

Since electronic devices are becoming increasingly complex, software

development processes are now much more interlinked with hardware devices used in

the medical industry. The combination of hardware and software systems makes a vital

contribution to the medical device domain to be used for health services. Therefore, in

the medical industry, the number of such safety-critical software systems is growing.

Software reliability associated with design flaws, cannot be calculated employing

statistical reliability growth models for safety-critical systems. The number of failure

cases observed is insufficient to allow any statistical analysis of the

results, as discussed in (Bouissou et al., 1999). Consequently, the traditional method

based on statistical dependability models cannot be used for the assessment of

such safety-critical software systems.

2.4 Regulations for Safety Critical Software Development

Regulatory software systems are designed and manufactured following customer’s

requirements along with national or international regulatory standardization, or even

with both national and international in some cases (Mc Hugh, 2019). Usually, these

regulations are specific for the area in which the software is intended to be marketed and

used. There are different sets of standards and regulations to serve as a roadmap for the

implementation of safety-critical systems (FDA, 1997). For safety-critical systems such

as medical devices, regulatory standards give frameworks for developing such systems,

but it does not specify how each step of the development process occurs.

In the EU region, currently three directives enforced by the European Commission

govern the manufacture of medical devices. The EU countries must implement these

directives in national legislation, according to the European Commission. The EU

legislative framework for medical devices consists of three existing Directives and

two additional Regulations (MDCG, 2021):

 Council Directive 90/385/EEC on Active Implantable Medical Devices

(AIMDD),

 Council Directive 93/42/EEC on Medical Devices (MDD),

 Council Directive 98/79/EC of the European Parliament and of the Council on

vitro Diagnostic Medical Devices (IVDMD),

 Regulation (EU) 2017/745 on medical devices (MDR), fully applicable from 26

May 2021 and

-12-

 Regulation (EU) 2017/746 on in vitro diagnostic medical devices (IVDR), fully

applicable from 26 May 2022.

Regulation (EU) 2020/561 amending Regulation (EU) 2017/745 on medical devices is

adopted by the Council due to the covid-19 outbreak.

The principal directive for medical devices is Council Directive 93/42/EEC on

Medical Devices (MDD, 1993). Council Directive 90/385/EEC (AIMDD) and Council

Directive 98/79/EC (IVDMD) may be required to follow depending on the product

type. In order to apply similar regulations in all the countries, harmonization work is

done by authorities such as Global Harmonization Task Force (GHTF) and the

International Medical Device Regulators Forum (IMDRF) (Granlund, 2016).

International Organization for Standardization (ISO) and International Electrotechnical

Commission (IEC) are organizations to produce international standards harmonized in

the EU region. These are referred to as `harmonized standards´. The directives and the

regulations are significant part of European Union´s harmonization legislation on health,

protection and safety, and efficiency of products in the internal market. These

legislations establish the fundamental criteria of products intended to be marketed in the

EU. Technical information and solutions to support those requirements are stated in

European standards that have been harmonized. The regulatory medical products are

developed following the applicable specifications of the relevant harmonized European

standards. These standards provide solutions for implementing Medical Device

Directives (MDD). The main objective of these standards is to ensure safe and effective

products in the medical device domain.

Valvira (2009) is the National Supervisory Authority for Welfare and Health. It

regulates medical device manufacturing in Finland (Granlund, 2016). All medical devices

eligible to be marketed in Finland must conform to existing EU regulations and be safe

to use. Manufacturers of medical devices in the EU must prove the performance and

reliability of their products and their suitability for the intended use; they must prove

compliance with the Medical Device Regulations, MDR (Regulation (EU) 2017/745).

The main objective of imposing these regulations is to provide a general

framework for the manufacturer in order to protect the users by guarding against unsafe

medical products. MDR does not differentiate between the physical medical devices and

medical device software used for patients directly or with other physical medical

-13-

devices. Regulation 2020/561 amending Regulation (EU) 2017/745, Article 2 states in

the definition section that,

 “ …‘medical device’ means any instrument, apparatus, appliance, software, implant,

reagent, material or other article intended by the manufacturer to be used, alone or in

combination, for human beings for one or more of the following specific medical

purposes: diagnosis, prevention, monitoring, prediction, prognosis, treatment or

alleviation of disease….. and which does not achieve its principal intended action by

pharmacological, immunological or metabolic means, in or on the human body, but

which may be assisted in its function by such means.”

The MDR regulations guarantee that medical devices run smoothly by setting high

quality and safety standards to address and resolve common safety concerns. MDR

defines general guidelines for the placement on the market, rendering available on the

market, or bringing into operation in the Union of medical devices and accessories for

human use, which is applied to clinical trials involving such medical devices and

accessories. These rules are in place to ensure the protection and efficacy of devices

designed for human use.

According to Fowler (2004), these regulations do not prescribe particular practices to

be used during such software development. In preference, such regulations provide a

framework that enables manufacturers to create design controls consistent with the rules

and appropriate for their system development. Henceforth, the regulatory guidelines and

harmonized standards provide frameworks for developing MDS where manufacturers can

choose their development processes. In addition, they can tailor the details of the

development lifecycle according to their convenience.

-14-

3 Medical Device Software Development

3.1 IEC 62304 for Medical Device Software Lifecycle

International harmonized standards are discussed in Section 2.4. European standards that

are harmonized for developing MDSD are as follows (Commission communication in the

framework of the implementation of the council directive 93/ 42/EEC concerning medical

devices, 2017):

 ISO 13485:2016 for a quality management system,

 IEC 62304 for software development lifecycle activities,

 ISO 14971 for risk management,

 IEC 62366-1 for usability engineering,

 IEC 82304-1 for medical device software.

These are harmonized against the old legislation acts MDD and IVDD. No harmonized

standards for the new legislation act MDR and IVDR are in action till May 2021. IEC

62304 is the main standard that provides a guideline for software development lifecycle

activities. Other standards may also be applicable for an MDS depending on the class and

type of the software.

Currently, the emphasis has increased on the medical device's software system's

reliability and the risks associated with it at all levels of use since the embedded software

systems have become more demanding in the medical device domain nowadays. IEC

62304 is a harmonized standard for software development in the medical device domain

adopted by the European Union (EU) that has become a global international standard for

software development lifecycle management. Medical device manufacturers implying

this standard will ultimately comply with the MDD. Certainly, it ensures the production

of high-quality software through a well-defined and well-controlled software

development process, including a collection of specifications based on the software's

safety class assigned to the software system considering the potential risks associated

with the usage of the system. The production of a safety-critical software system can be

split into items if the constituent parts of an MDS possess different risks and non-identical

safety classes. It is a crucial necessity that the software splitting is appropriate to confirm

the highest quality possible and the safety of the end-user. Software development

processes must include verification processes, integration testing and system testing, a

well-established risk management system and documentation for all software regardless

-15-

of the safety classes in MDSD, according to the IEC 62304 (2006).The safety-classes the

manufacturers must assign to software based on the potential to create hazardous situation

are as follows (IEC 62304, 2006); the higher the safety class, the more effort is required

to ensure safety:

 Safety Class A: No injury or damage to health is possible.

 Safety Class B: Non serious injury is possible.

 Safety Class C: Death or serious injury is possible.

IEC 62304 (2006) demands process, activity, and task to be applied in the software

development lifecycle to incorporate the compliance. This standard has nine sections,

where the first four sections (1 to 4) are: scope, normative references, terms and

definitions, general requirements. Then it defines five processes (5-9) such as:

 Software Development Process, the main process including all other processes

from planning to release,

 Software Maintenance Process to form of the software development process

for handling risks and bugs,

 Software Risk Management Process for risk assessment,

 Software Configuration Management Process to control code and system

development environment, to manage builds and releases and

 Software Problem Resolution Process for bug tracking and resolving.

The standard defines activities in software development process (section 5) as the

following:

 Software Development Planning (define the project's scope of work),

 Software Requirements Analysis (convert requirements into software

requirements and define the features that must be incorporated),

 Software Architectural Design (high level design of the software, including

partitioning the constituent parts of the software with different risks),

 Software Detailed Design (define the software units and their interfaces such

as state diagrams, data structures, and risk controls),

 Software Unit Implementation & Verification (verify the coding and testing,

 Software Integration & Integration Testing (test to merge software

components ensuring that all of them work properly together and with the

associated hardware system, in cases),

-16-

 Software System Testing (verification of entire software system against the

requirements) and

 Software Release (deploy a verified version of the software).

The software maintenance process is described in section 6 of IEC 62304 (2006),

which includes: establish a software maintenance plan, problem and modification

analysis and implementation of modification.

The software risk management process in section 7 includes activities and tasks (IEC

62304, 2006) such as analysis of software contributing to a hazardous situation, risk

control measures, verification of risk control measures and risk management of software

changes.

Hence, IEC 62304 legitimizes MDS development, providing general guidelines to

follow during the software lifecycle and safety requirements to implement within the

medical device domain to comply with the regulation. However, this standard does not

specify the manufacturer's organizational structure and does not dictate which parts of the

organization are responsible for the process, activity, or task. For example, it includes

tasks documentation, but it is up to the standard's user or the manufacturer to decide how

to produce this documentation. This standard does not mandate a particular life cycle

model; the medical device manufacturers are responsible for choosing a life cycle model

for the software to map the required processes, activities, and tasks.

3.2 Plan-Driven Sequential Software Development

MDS is often a part of physical medical devices or hardware systems. It must be

developed under the regulatory requirements to ensure that the system is safe, reliable,

and secure to be operated. System developers usually use a plan-driven sequential

Software Development Lifecycle (McCaffery, 2011). According to Boehm and Turner

(2005), plan-driven methods (such as Waterfall, Spiral, and V-model) are common

approaches for software development based on quality disciplines. They are characterized

by strong documentation and traceability throughout the life of the system. These models

focus on predictability and validation. A vital part of the development process is the risk

management process.

The Waterfall Model or V-Model software development methodologies are

commonly used when developing software for safety-critical domains (Xiaocheng et al.,

-17-

2010; Bulska, 2011)]. These life cycles are characterized by upfront design, which places

a great deal of emphasis on the production of documentation (Xiaocheng et al., 2010).

According to Zema et al. (2015), the Waterfall model is a linear sequential plan-

driven method in which software implementation progress is viewed as streaming steadily

downwards like a waterfall through the development phases, as shown in Figure 6. In the

Waterfall model, the client's specifications must be specified at the requirement elicitation

phase before moving on to the next step of the development life cycle, as the requirement

phase must be completed before the design phase can begin.

Figure 6. Waterfall Model (Balaji & Sundararajan, 2012).

In this model, risk management activities or safety requirements can be included

in the requirement elicitation phase. Then other phases such as development, testing,

deployment is followed one by one. Considering the IEC 62304, these activities are

required to fulfil the requirements of the assigned safety class defined by the regulatory

bodies. If the client wants any changes in requirements during the development phase, it

will not be considered.

Consequently, the issues with one process are never fully resolved during that

phase. Many issues with a process occur after the phase has been fully closed. These cause

inflexibility and rigidness (Balaji & Sundararajan, 2012).

The V-model, also known as the validation and verification model, is a modified

version of the Waterfall method (Balaji & Sundararajan, 2012). This balanced

developmental model necessitates verification from the previous process before moving

on to the next. MDS developers widely use the V-Model (Bulska, 2011) because it

provides critical deliverables such as requirement traceability at all levels of the software

development lifecycle, which is a vital point for regulatory approval (McCaffery, 2011).

-18-

It is necessary to have clear linkages among different development phases and maintain

traceability to confirm regulatory compliance, including risks or safety, throughout the

various stages of the software development life cycle. Clear demonstration

is required on how the development life cycle is followed (McCaffery, 2011).

It is also possible to incorporate the risk management practices into the typical

stages of the development process according to the classical V-model (Scholtes et al.,

2018). Hence, the V-model is remarkably appropriate for regulatory requirements

(McCaffery, 2013) from international standards such as IEC 62304.

Figure 7. V-model (Balaji & Sundararajan, 2012).

Balaji and Sundararajan (2012) stated that V-model relates each specification

phases (left tail of the V) to the testing phases (right tail of the V) as shown in Figure 7,

where tails meet represents development phases. The System Test cases are created based

on the requirements. High-Level Design and Low-Level Design are used to describe

integration test cases. The coding is then completed. Unit-testing, integration testing and

system testing are performed in an orderly sequence after the coding is finished. If any

changes happen middle of the development, phases such as functional specification, high-

level design, low-level design, unit testing, system testing, integration testing are affected

even though requirement changes are said to be embraced at in any time during the

development in this model. Documentation prepared from different phases needs to be

updated as well. Though it creates scope to integrate regulatory requirements, it may also

be considered as being rigid and inflexible if there is a change after the development

process has started.

-19-

Although traditional models such as Waterfall or V-model are rigid as described

above and have several limitations, these are still valid today. Özcan-Top and McCaffery

(2017) listed some reasons why these are still valid as follows:

(a) With these models, producing the required deliverables to meet regulatory

audit requirements is relatively simple (since, these models follow predefined

requirements as discussed above).

(b) In the development of MDS, verification, validation, and risk assessments are

especially significant, and these procedures are designed and performed following

the V-Model's development phases (as mentioned above, risk management

activities are integrated into the typical development phases). (c) Each process

must be completed before moving on to the next in these models.

According to them, these models work appropriately when the requirements are

specified with high confidence. However, even though these models seem to be structured

in a way that enables regulatory compliance, consistently confirming the regulatory

requirements is an inevitable difficulty that MDS manufacturers encounter who adopt

such methods for their project development (McCaffery, 2017). Because continuous

requirements change is not a problem to be solved; rather, it is the nature of the software

projects (Scholtes et al., 2018).

Some other companies surpass the change throughout the development process

by being well-timed to market, guaranteeing high quality, safety, and high productive

capacity (McCaffery, 2017). When it comes to a focus of overcoming rigidity and

inflexibility, the agile software development approach has shown to be successful

(Abrahamsson et al., 2002) in different regulatory fields such as MDSD.

3.3 Agile Software Development

Agile software development techniques have gained universal recognition and use in all

sectors worldwide. As discussed in Section 3.1, the use of a specific lifecycle for MDSD

is not defined by regulatory criteria or development specifications provided by EU (ICE

62304, 2006). Instead, MDS can be built using a traditional or iterative approach

according to the convenience of the manufacturers. Hence, developers of today´s critical

systems have concerns about implementing agility instead of the conventional inflexible

models. Therefore, medical device manufacturing companies are adopting modern

-20-

methods to attain not only agility but also safety and reliability (McCaffery, 2017), even

though there are issues to solve when doing so.

 3.4 Complications of Adopting Agile

Agile methodology and safety-critical regulatory systems are considered incompatible

with each other (Stålhane, 2012; Fitzgerald, 2013). This may be due to a disaffirmation

between the Agile Manifesto (Fowler, 2001) and regulatory requirements since agile

provides the developers with ease rather than formality.

Agile Manifesto depicts four fundamental value propositions for agile, as

mentioned in Section 2.1. The agile framework advocates more value the left part of the

statements, whereas the regulatory environments acknowledge more importance of the

right parts (Fitzgerald, 2013). Hence, this assessment might reach out an agreement that

agile approaches and regulated systems are not commensurable.

In a systematic literature review, Heegar and Nielsen (2018) clarified four

concerns for adopting agile method to the safety-critical software development.

First one is “Light documentation”. Safety-critical software development

processes rely on formalized processes focused on documentation, while agile processes

rely on face-to-face communication and informal collaboration.

The next issue is “Flexible requirements in user stories”. Agile methodologies

promote changeability of specifications and a less formal specification. Changes, on the

other hand, pose challenges to documentation in a safety-critical production, and

specifications documentation must be done formally. Here the term “formal” means field

specific formal notations and methods such as VDM, LOTOS and so on (Bowen, 1993).

`Iterative and incremental life cycle´ is another area of concern while

implementing agile in safety-critical systems. To foster learning and adoption, the agile

development approach implies an iterative life cycle. In contrast, in safety-critical

systems, implementation reliability is prioritized, and development follows a strict life

cycle.

The last issue found in their literature review is `Test-first processes´. Test-driven

development and iterative testing are central to agile methodologies. In safety-critical

development, on the other hand, the testing is performed in the final stages of the

project. Instead of using test-driven production, detailed test plans are used.

-21-

Mc Hugh et al. (2017) conducted a questionnaire-based survey of MDSD

companies in Ireland, inquiring about the perceived barriers to agile adoption and the

actual barriers to adopting agile practices. The survey revealed the following barriers:

Percieved Barriers

 25% of respondents reported “Lack of Documentation”.

 25% of respondents reported “Regulatory Compliance”.

 16% of respondents reported “Lack of Up-Front planning”.

 17% of respondents reported “Insufficient coverage of risk management

activities.

Actual Barriers

 50% of respondents reported “Lack of Experience”.

 33% of respondents reported “Having to change the existing lifecycle”.

 16% of respondents reported “Management Opposed to Change”.

 16% of respondents reported “Team size”.

 17% of respondents reported that “Getting stakeholder buy-in” as a barrier.

 17% of respondents reported “Level of retraining required” as another barrier to

agile adoption.

100% of the respondents of the survey (Mc Hugh et al., 2017) were developing

MDS for using in Europe. Among them, 79% were also developing MDS for the US

market. The survey results clearly represent that, the issues arising from implementing

agile methods relate to the lack of formal processes, the organizational structure, and the

expertise level of the team.

In practice, several contradictions exist with implementing agile in safety-critical

systems. As such, the informal evaluation technique (without any field-specific formal

method) is one of the principal contradictions. This issue might lead to inadequacy in the

quality of safety-critical systems (Turk et al., 2002). Boehm and Turner (2005) discovered

that combining risk management activities with agile can be challenging. This issue can

be an obstacle to implement agile practices in the safety domain because agile concepts

do not include sufficient guidance about conducting the requisite risk management

activities. Another challenge for adopting agile practices is ensuring the highest quality

and efficiency. Boehm and Turner (2005) mentioned that software developed using agile

practices has a lower quality assurance than software developed using traditional plan-

-22-

driven life cycles. This challenge is one of the 40 perceived barriers to agile

implementation identified by them in an annual workshop at the University of Southern

California Center for Software Engineering. Since MDS is safety-critical, it must ensure

the highest possible quality even in a limited or short release, which agile methodologies,

such as Scrum, allow for (Abrahamsson et al., 2002). It is unreasonable to release

unfinished software and wait for input when designing software for a medical device. The

software must be thoroughly checked and functional before being used to treat patients

(FDA, 2007).

Aside from these issues, the lack of management control is another possible major

roadblock to adopting agile methods when designing safety-critical applications. Project

teams should be self-organizing, according to agile methodology. This approach of self-

organizing teams deprives management of any decision-making authority (Moe et al.,

2008). Consequently, this can lead to a lack of management power in the organization

(Salo & Abrahamsson, 2005). The paper also mentions the need for organizational

resources for agile practices to succeed.

A regulatory system such as MDS development requires up-front planning for a

complete design scheme to comply with the regulatory requirements. In contrast, in agile,

the processes are incremental to encourage continuous learning.

Changes in requirements are welcomed in any phase because of the incremental

approach. These changes may also raise an issue for regulatory compliance. There are

two types of requirements considered when developing medical device software in

practice. One is internal requirements including process and product requirements

(usability, performance, code, UI design), the other is the external regulatory requirement

(requirements from the standards and regulations). Requirement change is possible in the

MDS development process, but some boundaries cannot be crossed. If the required

change is a functional requirement that does not affect the regulatory requirements, then

the change can be allowed. Otherwise, the change may not be possible.

For satisfying the regulations, it is mandatory to include risk management in the

development lifecycle while the agile processes do not introduce such activities. Other

concerns are existing between agile and MDS development.

-23-

Table 1: Complications of agile implementation in MDS development.

Agile Software Development Regulatory Medical Device Software Development

Agile lacks up-front planning

for a complete design.

Requires complete design scheme developed to comply safety

requirements.

Agile allows flexible

requirements and changes in

any phase.

Requirements include both regulatory requirements and functional

requirements in MDS development. Requirements related to

functionality can be changed or altered if required. Regulatory

requirements cannot be changed without the approval of notified

body.

Agile possesses an incremental

life cycle.

Follows a sequential flow of work for satisfying the regulatory

requirements.

Agile prioritizes informal

coordination over

documentation, lacks

formalized documentation.

Regulatory compliance requires detailed technical documentation

in every phase of the development cycle from requirement

elicitation to testing phase as per the regulatory bodies need for the

compliance. Upon a request of the regulatory body, all documents

must be available.

Agile lacks detailed test-plan.

Regulatory compliance demand high quality and safety,

consequently, requires detailed test-plan to ensure safety measures.

Agile does not specify risk-

management activities, thus

possesses less quality assurance.

For regulatory compliance, risk management activities must be

included in the development cycle, not only for functional risks

related to code, but also for patient´s safety.

Agile teams are self-controlled,

lacks management control.

Involvement of regulatory bodies outside the team is a must for

regulatory compliance. Regulatory bodies are responsible for

approving the release and other necessary verification.

In Table 1, all the possible complications of adopting agile, which are derived from

the above discussion, are listed in the first column. The second column describes the

actions required and measures to be considered to mitigate those complications regarding

the regulatory medical device domain.

Despite recognizing these concerns, several researchers such as Rayside et al. (2009)

and Black et al. (2009) argued that while there are challenges in implementing agile

-24-

methods in safety-critical development, none of these predicaments will restrict agile

methods in safety-critical development under any circumstances.

 3.5 Complications of Adopting Scrum

The agile approach has some complications when implementing in regulatory

environments such as MDS development, as discussed in Section 3.4. Similar problems

are perceived for Scrum since Scrum is a software development methodology based on

the agile philosophy. In addition to that, the Scrum approach has more specific rules and

principles. Thereupon several issues arise when software manufacturers implement

Scrum in the MDS development process. Regarding fulfilling the regulatory compliance,

the following complications have been persuaded in this research: product definition,

requirement changes, uncertainty and unpredictability, documentation and traceability,

verification and validation, risk management, self-organized team, number of roles.

3.5.1 Product Definition & Quality Assurance

Scrum Team members must have a shared DoD as discussed in Section 2.3. However, it

provides no concrete guideline on what should be in the DoD. Teams themselves define

it. It is of high risk for regulatory systems if development is considered complete without

proper testing, proper documentation, or other safety requirements that ensure that the

product is ready to be used. It may be hard to satisfy the quality requirement of the MDR

if the DoD is defined without considering the Regulations.

According to paragraph 4, article 10, Regulation (EU) 2017/745, amended by

Regulation (EU) 2020/561, the requirements need to be demonstrated following the

conformity assessment to allow the device's conformity with the requirements of this

Regulation. Article 9 states that manufacturers must establish proper documentation,

implementation, maintenance and need to improve quality management system to ensure

regulatory compliance with this Regulation in the most effective manner.

3.5.2 Flexibility in Requirement Changes

Scrum welcomes requirement changes at any phase of the development to enable

continuous learning. It does not have stability in the requirement specification. The

requirements are listed in the product backlog; the team can make changes to them by

consulting with the Product Owner.

-25-

On the contrary, regulatory requirements require prior specifications of the

requirements because some changes may result in disaffirmation or contradiction to the

regulations. According to paragraph 9, article 10, Regulation (EU) 2017/745, amended

by Regulation (EU) 2020/561, manufacturers must ensure that processes are followed to

ensure that series production meets the Regulation's requirements regarding conformity.

Any changes in the design or characteristics of a device must be considered promptly.

This confrontation may also be an issue while adopting Scrum in MDS development.

3.5.3 Unpredictability and Variability

Scrum leverages variability and uncertainty (Rubin, 2012). In Scrum, all processes

follow a well-defined set of steps. At the same time, Scrum supports the fact that some

level of variability is required to create something innovative. Each Sprint allows the

team to learn continuously to improve what they build and how they build. Hence, Scrum

leverages unpredictability when dealing with complex projects. Even the project's design

scheme does not include the complete design of the project since solutions are innovative

and designs are creative in Scrum methodology as it follows an iterative and incremental

approach.

On the contrary, regulatory compliance demand predictability to conform to the

safety issues and require a complete design scheme, according to article 10, Regulation

(EU) 2017/745, amended by Regulation (EU) 2020/561. Where there is unpredictability,

there is a risk of unconformity.

3.5.4 Documentation & Traceability

Scrum principles include transparency, but it does not emphasize documentation. On top

of that, changes are allowed in requirements anytime during the Sprint. If the developers

do not trace changes and their effects on the development processes, it might be a big

issue for regulatory compliance. Documentation of each phase is needed to trace the

changes in regulatory MDS development.

According to paragraph 8, article 10, Regulation (EU) 2017/745, amended by

Regulation (EU) 2020/561, upon request by a competent authority, the manufacturers

should be able to provide required technical documentation. Examples of technical

documentation are product requirement document, UX design document, software

architecture document, user-manual, source code document and so on.

-26-

3.5.5 Validation and Verification

Scrum manages development-related risks by continuous learning and adaptation. It has

no validation and verification processes imposed on the iterations rather than testing after

each iteration when it releases an increment. After the iterations, the development team

releases a deliverable to the customer by performing unit testing. Releases do not wait

for the testing or validation of the increments after merging them with the complete

project. Regulatory and safety requirements demand a detailed test plan to validate a

product before it is released and verify that product's safety.

According to paragraph 3, article 10, Regulation (EU) 2017/745, amended by

Regulation (EU) 2020/561, manufacturers must evaluate their development under the

regulatory requirements. Consequently, Scrum in the medical device domain may require

different additional approaches to satisfy regulatory compliance.

3.5.6 Risk Management

In general, a software development process risk is the functional risks mainly related to

requirements, process, or environment, or coding; or related to the failure caused by

associated hardware (Chittister & Haimes, 1993). MDSD focuses less on that type of

risk, focusing on the clinical risk or patient´s risk of the product. Risk management

activities must be planned before starting the development or coding to verify the quality

aspects. Risk management activities include identifying potential risks, mitigating

unacceptable risks and updating the risk management file continuously.

 Scrum reduces operational risks by continuous learning but does not introduce

any domain-specific risk management activity. In contrast, safety-critical MDS

development requires field-specific risks related to the safety of the product´s user to be

mitigated or managed since regulatory compliance enforces risk management measures.

Manufacturers need to maintain a quality management system that covers all

processes during the development, including risk management according to paragraph 9,

article 10, Regulation (EU) 2017/745, amended by Regulation (EU) 2020/561. In section

3 of Annex I, it is clearly stated that manufacturers shall establish, implement, document,

and iteratively maintain a risk management system. Risk management activities include

a risk management plan, identifying the foreseeable hazards associated with the device,

estimation, and evaluation of the risks associated with and occurring during, along with

controlling risks following the regulatory requirements. For this reason, the Scrum

-27-

framework has a contrariety with medical device regulatory software system

development.

3.5.7 Self-organized and Self-controlled Team

The Scrum software development method allows teams to be self-organized, and teams

make decisions on their own. Oppositely for regulatory compliance, the decisions should

be made considering the regulations imposed by the authorities, according to paragraph

4, Article 10 of Regulation (EU) 2020/561. The Scrum team usually does not involve

anyone from outside in the development process. Consequently, incompetent or

unsatisfactory decisions might contradict the regulatory requirements if the team does not

take into account regulations while implementing Scrum. Less involvement of other

parties in checking on quality measures in the project makes it less likely to maintain the

highest quality.

3.5.8 Number of Roles

The Scrum team has a Product Owner, Scrum Master and Development Team. They

employ themselves with enough workload during the development process. For

implementing Scrum in MDS development, the developer team needs to communicate

the safety requirements for regulatory compliance. If the Scrum Master handles the

regulatory conformance, the workload will be way too high. To check on the requirements

regarding the safety or regulatory issues regularly, a team of at least one person other than

the Scrum Master must focus on this particular area. Hence, Scrum advocates the

insufficient number of roles for regulatory compliance.

According to paragraph 1, article 15, Regulation (EU) 2017/745, amended by

Regulation (EU) 2020/561, manufacturers must have at least one person responsible for

regulatory compliance. Furthermore, this person must possess the required expertise in

medical devices with proper evidence (diploma, certificate, degree, or four years of

professional experience in regulatory affairs). Hence, Scrum advocates an insufficient

number of roles for regulatory compliance.

 However, Complications of Scrum in MDS development do not stop

organizations from implementing it because Scrum has the scope to mitigate all

complications with the necessary extension added to the typical Scrum development

lifecycle.

-28-

4 Mitigating the Complications

4.1 Agile Mitigating the Complications

Stephenson et al. (2006) have also mentioned four issues in their study on the application

of agile software development in safety-critical health systems. They are discussed

below:

1. Since agile is a communication-based approach, safety concerns must be

communicated adequately to share the understanding while implementing agile in

the safety domain to improve communication.

2. The safety engineer and the system engineer may have different reasoning for

choosing the design schemes when integrating agile in the safety domain. It

requires capturing a design that is the justifiable and reasonable from multiple

points of view.

3. Agile development is incremental, and changes have effects. In safety-critical

systems, there is no expectation of change. To adopt agility in such systems, it is

mandatory to trace the changes and their effects automatically.

4. In general, agility accomplishes one area of functionality and gradually improves

to achieve a complete design. On the other hand, safety analysis focuses on a

depiction of a complete system. To implement agile in safety models, the

practitioners must include assumed details about the complete design in the

automatic traceability to fill in the “blanks” in the design. So that further

deployment in all those areas can be evaluated to see how well it adheres to the

current assumptions (Stephenson et al., 2006).

In practice, manufacturers can develop safety-critical systems by meshing, which is

referred to as the “mixing, balancing, and merging of software processes, parts of

processes, and process components” (Turk et al., 2005). Boehm and Turner (2005)

developed a mesh approach called “Five-Step Method for Balancing Agile and Plan-

Driven Methods” and described multiple aspects, all of which are of significance for

software development in general. The steps are as follows (Boehm & Turner, 2005):

Step 1. Identify and rate the environmental, agile, plan-driven risks and uncertain

risks by prototyping or other data collection methods; visualizing the data using

the polar chart.

-29-

Step 2. Use a risk-based plan-driven development method or risk-based agile

development method; if the risks with agility dominate, the plan-driven risks or

plan-driven risks dominate agile risks.

Step 3. Create a project-specific hybrid development method when the risks are

mixed by architecting the application to encapsulate the agile parts.

Step 4. Create a project management and development plan which integrates risk

mitigation plans for each risk identified in step 1.

Step 5. Continually improve the development capabilities, value-oriented

capabilities, communication capabilities, and expectations management

capabilities and track progress and apply corrective action whenever the

opportunity arises.

Boehm and Turner (Boehm & Turner, 2005) categorized the risks into three

categories. Categories of environmental risks include technology uncertainties, diverse

stakeholders, the complexity of systems. Agile risks are scalability and criticality,

extensive refactoring due to the simple design, loss of tacit knowledge due to personnel

turnover, insufficient skills in agile methods. Categories of plan-driven risks hold

emergent requirements, fast-paced changes in modern technology, conditions of the

market, the desire of rapid output, insufficient people skilled in plan-driven methods.

Agile or Plan-driven is applied to the project based on the risk analysis, as mentioned in

Step 2. The project is segmented into plan-driven and agile if it is not appropriate for pure

agile or pure plan-driven, referred to as hybrid in step 3. And then, other steps are

followed.

Boehm and Turner (Boehm & Turner, 2005) analyzed this risk-based method for

three sample projects: SupplyChain.com (medium-sized application and intermediate

complexity), Event Planning (small application and relatively non-critical), National

Information System for Crisis Management -NISCM (extensive application and highly

critical). They concluded that future trends are toward application developments that need

agility during the development and discipline, where discipline refers to well-organized

processes. Therefore, balanced and tailored hybrid methods can combine the benefits of

both agility and discipline of plan-driven methods.

Other researchers also suggested that it is possible to develop safety-critical

software by implementing agile practices (Abdelaziz et al., 2015; Schooenderwoert &

-30-

Shoemaker, 2018). Nonetheless, to fulfil the regulatory requirements, the development

processes need to be tailored or modified (Stålhane et al., 2012) since agile processes do

not comply with regulatory requirements in their original form.

Rasmussen and Rottier (2018) identified in their research that when designing

medical device applications, no agile methods (including scrum) could be strictly

followed because they do not cover all of the areas needed to achieve regulatory

compliance. Besides this fact, they also encountered that using agile techniques during

the creation of regulatory frameworks can be beneficial if they are carefully selected and

integrated with a plan-driven lifecycle.

Henceforth, agile methods can be tailored to comply with regulatory requirements

of the safety domain, such as a medical device to comply with the regulations. Hybrid

methods can be introduced by implementing agile and plan-driven approaches within one

project. The upfront planning for the design scheme can be developed to satisfy regulatory

requirements. Safety concerns need to be communicated within the team to understand

the safety requirements to balance the flexibility to the required changes to the necessary

boundaries. Changes during the development must be traced using the proper toolset or

by formal documentation to ensure safety. A detailed test plan needs to be introduced. In

the development lifecycle, risk-management activities must be integrated for regulatory

compliance so that the quality is maintained according to the regulatory perspective. The

involvement of authorized notified bodies needs to be allowed to approve the release of

the project. Agile methods can be more efficient for the medical device domain if the

developers tailor them reasonably.

4.2 Scrum Tailored to Mitigate Complications

Scrum is the most popular agile technique, having been implemented by a large number

of companies. Scrum is a software development method that provides a framework for

the development processes. It describes how to structure the Sprints. However, it does

not describe or define every individual Sprint and does not define the tasks for each of

the iterations.

An assessment of how to adapt Scrum is performed by three experts in software

development, certification, and agile development, respectively (Stålhane et al., 2012).

They have proposed “Safe Scrum” to make Scrum a practically functional approach for

developing safety-critical systems. They have considered the following issues: structure

-31-

the development, plan for validating safety, create, review, select, design to ensure safety,

write requirements for module testing, and test and evaluate the outputs from the safety

lifecycle.

In Safe Scrum, safety-critical constraints and other design-related requirements

are inserted into product backlogs by the development team, as shown below in Figure 7.

By engaging an iterative and incremental approach, the development team can learn and

adapt continuously, re-plan the project for progression and improvement on the basis of

their experiences through the development. The product backlogs can be re-prioritized

which makes the process flexible. The RAMS (Reliability, Availability, Maintainability,

and Safety) validation process will be applied to each increment after each Sprint to

reduce risk. When all the Sprints are complete, a final RAMS validation is performed,

which is less extensive which will ultimately minimize the time and cost required for

certification. Such a composition of a safety-oriented and agile software development

process allows continuous feedback to the customer, the development team, and the

independent test team, test-driven development, map functional requirements to safety

requirements and enhance traceability (Stålhane et al., 2012). Summarizing these

benefits, Stålhane et al. mentioned that this combination aids in making the production

process more transparent and thereby allowing for better control.

Figure 7. Safe Scrum (Stålhane et al., 2012).

Hanssen et al. (2016) worked with Autronica Fire & Security from 2014 to 2016

to perform a case study on the Safe Scrum process. They concluded that the project

needed some clarification on “quality assurance” and the Scrum Master had a significant

-32-

workload to maintain compliance with regulatory requirements. Consequently, they

proposed a specialized Quality Audit position in the line organization for additional

functioning. They decided to add this QA function to the Scrum team to conduct quality

assurance keeping close connection to the development team.

Some other examples of Scrum implementation in the safety-critical domain are

discussed briefly in the following paragraphs in this Section.

Wolff (2012a) presented an approach for implementing Scrum combined with a

formal specification language in a fighter aircraft project. The project employed formal

executable specifications to verify functionality, best explain the system's requirements,

and more specifically implement the product (Abrahamsson et al., 2002). Along with

implementing Scrum in the software implementation, formal specification models were

implemented simultaneously. Tasks within a Sprint were incorporated with formal

specification investigation tasks predefined by formalists who work within the team of

the software engineers. Hence, it adjusted agile Scrum processes with formal methods

commonly used in industry to model and validate high-risk system properties (Wolff,

2012a).

 Figure 8a. Scrum Overview and (Wolff, 2012a).

Figures 8a (above) and 8b (below) show how formal specification methods are

integrated into Scrum Sprints, where Figure 8a represents the overview of Scrum with a

30-day sprint and 8b represents the integration of the formal method into the Scrum

process.

-33-

 Figure 8b. Integration of formal method into Scrum (Wolff, 2012a).

Wolff (2012b) presented an industrial case study where development engineers

developed an executable model using a formal specification language VDM (Vienna

Development Method) to implement on a fighter aircraft project. Wolff also mentioned

that using a formal model and lightweight formal method principles such as the scenario-

based tests and manual inspection of the generated proof obligations proved to be very

valuable (Wolff, 2012b). The project outcome was quite positive, and the customer was

satisfied too.

Regulated Scrum (Fitzgerald, 2013) is an example of an adapted approach that

has been implemented and validated in a highly regulated organization. An example of

implementing Scrum with Test Driven Development, Continuous Integration, and Pair

Programming in a regulated environment is a European space industry company named

QUMAS (Ahmad et al., 2010).

QUMAS had employed the Waterfall model since the company was founded in

1994. This methodology resulted in a long time-to-market and a significant release

overhead, which were considered drawbacks in the quickly changing market in which

QUMAS operates. Eventually, they have adopted the Scrum methodology over

approximately two years, as mentioned in an industry case study (Stålhane et al., 2012)

of implementing agile in a regulated environment. This company solved the core issues

that conflict with Scrum, such as quality assurance, safety and security, effectiveness,

traceability, and verification and validation by adding enhancements to the generic Scrum

methodology to meet the compliance requirements of a regulated environment. The

regulated Scrum by QUMAS is presented as R-Scrum in the case study.

-34-

Figure 9. R-Scrum (Regulated Scrum) in QUMAS (Ahmad et al., 2010).

As shown in Figure 9, QUMAS implements QA (quality assurance) audits at the

end of each Sprint, allowing improved visibility, traceability, and measurement.

Traceability facilitates “Continuous compliance” with the regulatory environments. They

undertake QA audits to verify that the output from each Sprint adheres to the required

procedures and standards. Eventually, risk mitigation is facilitated significantly by the

transparency of ascertaining project status at a glance by the outputs of the audits, which

allows solving safety issues. QUMAS also operates a four-stage prioritization scheme for

tasks and bugs to prioritize better risk factors, ranging from P1 to P4. Regular customer

audit and verification by the auditor of functionality implemented in the product via the

agile processes enhanced the effectiveness of their development. Full end-to-end

traceability is established by using toolset such as JIRA, Confluence, and others, which

can trace all initial requirements, tasks and sub-tasks, design documentation, source code,

builds unit tests, and bugfixes. At the start of and production of Sprint, requirements are

explicitly checked with the Product Owner. Unit tests are done within JIRA, and

functional tests are the responsibility of the test team using a specific quality center testing

suite. Any failures are recorded, and emails are sent to the developers and Scrum Master.

QA does not sanction a release with any open issues, ‘definition of done’ must also

include regulatory compliance. QUMAS ensures the verification and validation of their

product. Therefore, agile methodology such as Scrum is highly suitable when tailored to

meet the needs of regulated environments and supported with appropriate tools

represented in this case study (Fitzgerald, 2013).

-35-

Kircher and Hofman (2012) documented the experiences of Siemens Healthcare, a

leading provider of biomedical technology worldwide, in resolving challenges when

transitioning a large-scale dispersed platform development organization to Scrum.

According to them, Siemens Healthcare integrates both approaches: PLE (Product Line

Engineering) and Scrum to leverage the long-term benefits; PLE for strategic reuse and

agile practices for achieving steady progress. Scrum is merged into their software

development process and, in addition to that, implements "feature orientation" practice to

resolve the challenge of managing the flow of requirements coming from several product

lines. "Feature Orientation" refers to the sum of understanding about the structuring and

development of features described clearly in the report (Kircher & Hofman, 2012). This

process is a pure example of implementing Scrum in the medical device domain.

Furthermore, Abrahamsson et al. (2002) compared different agile software

development methods. Based on the comparison, he stated that Scrum processes could

cover project management, requirements specification, integration test, and system test

phases as required (McCaffery, 2017). However, it's complicated because there are

inconsistencies between agile and plan-driven processes (Heegar & Neilson, 2020).

Despite the barriers or complexities, organizations developing safety-critical software

increasingly seek to create better practices by combining agile and plan-driven

development processes (Heegar & Neilson, 2020). However, in the above research

papers, it is commonly mentioned that Scrum has not been used in the safety-critical

domain with its original versions. Instead, it is tailored for this domain and combined with

supplementary practices to ensure safety and regulatory compliance. Therefore, Scrum

cannot be implemented directly to the safety-critical MDS development without any

modification or tailoring.

4.3 Mitigate complications of Implementing Scrum in MDSD

After studying different methods of integrating Scrum in regulatory software

development for the safety domain, it is comprehensible that there are some issues

manufacturers or developers must consider during the development process of MDSD.

The concerns listed below for these issues are supposed to successfully mitigate all

complications, including risk factors, while implementing Scrum in the Medical device

domain.

-36-

The required actions to mitigate the complications of adopting Scrum in MDSD are listed

as follows:

1. In consideration of the safety life cycle, safety requirements should be inserted

into product backlogs along with other user requirements or design requirements.

2. The project should be designed to handle the flow of requirements from both the

customer and regulatory bodies.

3. DoD must consider regulatory compliance.

4. Integrate risk-management activities into Scrum process to mitigate risks.

5. Traceability must be enhanced for both changes and effects of changes to maintain

transparency and accountability to the regulatory authorities.

6. Each increment must go through a clinical verification process to minimize end-

user risk.

7. Develop a complete test plan to apply on each of the features of the product to

meet the safety domain's requirements.

8. The Scrum team should possess both flexibility and accountability to the

regulatory bodies.

9. Assign an individual in charge of the team (other than the Scrum Master) to

handle the conformity and quality with respect to the regulations. Additionally,

assign a team outside the development team to ensure regulatory compliance.

Involve notified bodies in the development process.

10. Continuous compliance must be considered to a higher degree.

-37-

5 Interview

5.1 Interview Design

The thesis has illustrated the perceived complications of implementing Scrum in MDSD

reported in Scrum and Safety-Critical Regulatory Software studies. In order to gain

insights into the complications and practices of implementing Scrum in MDSD, we

further interviewed practitioners who have been working with MDSD for more than five

years, being firmly involved in regulatory compliance for the medical device domain.

This interview process intends to answer the second research question:

RQ2: Can Scrum mitigate these complications to develop medical device software?

This interview is a semi-structured interview with a combination of directive and

non-directive questions (Hove & Anda, 2005). The interview form is open-ended to

encourage the participants to express their opinions and feelings freely and extensively.

Four experts are interviewed who are strongly involved in developing software for the

medical device domain.

Upon the suggestions of the interviewees, the interviews have been arranged in

Microsoft Teams or Zoom video conferencing online. The question set was shared with

the interviewee before the interview to familiarize them with the research topic and

interview goals. The interviews have initially started with a discussion about the

background of the interviewees, their work experience, and current positions. Later the

questions and answering proceeded to an explanatory and spontaneous conversation.

Three of the interviews have been recorded; one was conducted by taking notes during

the interview and asking necessary tails later via email.

The interview results provide broad coverage of issues implementing Scrum in

the medical device domain and help connect the outcomes of the studies to current MDS

development practices.

 5.2 Interview Participants

Candidates of the interview are IT personnel working in different IT companies at

Tampere, Finland, offering strategic consulting, service design, software development,

analytics, cloud services, application and integration services, reliable technological

solutions for health care use and other operational services in Finland, Sweden, Denmark,

Estonia, Belgium, and Germany. These companies facilitate modern approaches for their

-38-

product and service development processes. The participant interviewees have been

playing different roles in these companies.

Roles of the participants:

 Product Owner

 Scrum Master

 Developer

 Regulation Affairs Specialist

Table 2 lists the job title and the company, the year of experience on working in

the MDSD field. The length of the interviews varies, ranging from 45 minutes to one

hour.

 Table 2: Overview of the Interviewees.

The first interviewee is a regulation specialist currently working in a renowned

company at Tampere. He has been involved in regulatory MDSD for the last five years.

He is highly acquainted with the agile process implementation, conformity assessment,

QA audits, technical file assessment, medical product development, international

standards, regulatory perspectives, and other development practices in the medical device

industry. Currently, he is a Regulation Affairs Specialist in a medical device

manufacturing company and a PhD researcher at Tampere University. His extensive

knowledge of different software development methodologies, compliance, regulatory

frameworks, and standardization contribute to cover a broad range of practical

information in the interview session.

The second interviewee has also been working with MDS since 2013, closely

experiencing regulatory compliance and implementation of Scrum in this domain.

Job Title Company

Name

Year of experience

with SD/MDSD

Duration of the

Interview

Interview

Date

Regulatory Affairs

Specialist

A

12 / 5 60 minutes 22.04.2021

Product Owner/

Scrum Master

B 9 / 6 50 minutes 03.05.2021

Junior Fullstack Software

Developer

C 11/ 5 45 minutes 04.05.2021

Software Specialist D 9 / 7 60 minutes 05.05.2021

-39-

Currently, he is a Software Specialist, working for the leading Finnish supplier of health

care laboratory and diagnostics information systems. He is also researching "Continuous

Development of Medical Device Software under European Union Regulatory

Framework."

Another interview participant is working on a thesis project, "AHMED (Agile and

Holistic Medical Software Development)," related to the pain points of regulated

development. He is also serving as a full-stack software developer at the University of

Helsinki. The other interviewee has been working in multiple companies for more than

five years as Scrum Master, Product Owner, Software Developer proving experience with

agile coaching, servant-leadership, Scrum and MDSD.

The author has recruited them for the interview because of their profound

knowledge of agile, Scrum and multidisciplinary experiences in implementing agile

methods, standardization, and compliance in MDSD in the industry.

 5.3 Interview Questions

Findings from the literature review extract the essence that Scrum can be implemented in

MDS with necessary alteration adapted within the basic framework. Since some medical

device manufacturers antecedently apply Scrum for developing such software systems,

this thesis endeavours to formulate feasible solutions, based on the current practices, to

mitigate complications considered to be encountered while implementing Scrum.

The questions of the interview are composed prospectively to obtain in-depth

information possible to perceive the argument on how organizations negotiate with the

trade-offs while applying Scrum during their development process. All the interview

questions are the gateway to the discussions about the eight issues confined from the

literature review. Anticipating each complication to require some modifications, the

author set the interview questions to pinpoint the current industry's related practices to

find the answer for the last research question. Thereupon, the questions are prepared

accordingly to focus on the subject matter to view how organizations mitigate the

complications of implementing Scrum in MDSD alongside maintaining the regulations.

All the interview questions are listed in Appendix 1. Some of the most relevant

interview questions are listed below.

-40-

General Questions

1. What are specified as regulatory requirements? When are they specified for a

project? When are they analyzed? How are they adjusted into the project

requirements?

Related Questions to RQ2

1. To consider a project (or piece of project) to be Done/Complete, what sort of

validation or verification does it require to comply with regulations? Who is

responsible for specifying the product definition?

2. Have you ever faced problems to handle continuous changes in requirements for

the development of a regulatory medical device software? If yes, how did you

handle it?

3. How do you introduce risk management in the development lifecycle for complying

with regulations?

4. What kind of documents are required in medical software development in

compliance with regulations?

5. Do you think it is necessary to introduce roles such as Regulation

Specialist/Regulation Officer within or outside the development team to comply

with the regulatory requirements?

6. How do you think “Unpredictability/Uncertainty” of SCRUM conflicts with the

rules of regulatory requirements?

In the last question, the author emphasized that Scrum leverages uncertainty and

flexibility, whereas regulatory systems such as MDS enforce predictability for complying

with regulation. This question is utilized to outstretch an all-embracing, pervasive

conversation to collect a wide-ranging view from the interviewees to figure out the

conflicts regarding the unpredictability of Scrum, the practices imposed to mitigate the

conflicts. All the other questions are orientated in harmony to derive the other practices

to mitigate all the eight complications listed in Section 3.5.

 5.4 Interview Results

The interview sessions have covered practical implementation techniques and issues such

as tailoring agile methods such as Scrum, flexibility in requirement changes in the

medical device software domain, documentation and traceability issues concerning the

-41-

regulatory requirements, verification and validation processes required for regulatory

compliance, mandatory risk management activities to ensure safety, issues related to self-

controlling of the Scrum development team, the number of roles to handle the regulatory

conformity during the development of MDS projects. During the interview, the

interviewees were cooperative enough to discuss all the practicalities relevant to this

research.

 5.4.1 Tailored Scrum Complying with Regulations

The interview participants commonly described that all agile approaches currently used

in MDSD are hybrid methods since they require a plan-driven part and agility and

incremental aspects during the development. Some companies still follow plan-driven

sequential models as the development base, but they also integrate agile principles into

their development process. Companies implementing agile methods also include plan-

driven quality management processes in their development procedure, which must

comply with the regulation. In the case of implementing Scrum, other processes require

to be used on top of the regular framework of Scrum. One of the interviewees mentioned,

"Processes outside the core software development are always plan-driven. On top of

Scrum, we need to use them, also."

Interviewees reported that commonly manufacturers have a compliance

department, and it is expected that a person is responsible for an R&D project's

compliance activities. In handling regulatory compliance, there are variations in different

companies. Some companies may also handle it by employing a separate compliance team

of several members or hiring outsourced specialists. In addition, International and

Harmonized standards require a Quality Management System (QMS) to confirm the

effectiveness of a product. It ascertains the consistency in design, development, and

delivery of MDS that is safe for the end-users. Henceforth, the development process is

designed in association with the QMS.

5.4.2 Product Definition and quality Assurance

For developing MDS, the most crucial concern is compliance with regulations. The

regulation requires a QMS to be followed, as mentioned above. After verifying the

product by the internal regulatory team, an external body should also verify the product

to be released. A development team cannot release a piece of product whenever that is

ready.

-42-

“We cannot release any product or a piece of the product when we want. We need

to go through external bodies for assessment. It could take even several months, but we

need to wait,” a participant expressed the idea of QA audits in these words. Once a product

is ready and the documentation must be adequately prepared, the notified body

responsible for the regulatory compliance performs an external quality assessment to

check the reliability and safety issues. There are two companies to perform in Finland as

the notified body: SGS Finland (Finnish) and Eurofins (French). Once the assessment is

done, the notified body approves the release of the product.

5.4.3 Flexibility in Requirement Changes

In MDSD, all the requirements are documented, verified by the regulatory bodies.

Requirements in MDS development include two types of requirements: product

requirements (including product definition, DoD) and regulatory requirements from the

harmonized standards. While implementing agile Scrum as a development methodology,

there may be some changes in the requirements during developing a product that satisfies

certain conditions.

Another interviewee responded this way regarding the flexibility in requirement

changes, “In medical device development, we need to comply with certain process

requirements of the standards, in addition to product requirements. Within these

boundaries, teams can make decisions - as long as regulatory requirements are met.” It

means a requirement cannot be added or deleted, or altered if it contradicts the regulatory

standards, if the requirement change seems unsafe or unreliable for the user, or if the

requirement change hinders the clinical efficiency of the software or the associated

medical device. A verification process is conducted by the regulatory teams from the

compliance department that manufacturers commonly have to check these issues.

One participant discussed an example of this issue during the interview. While

developing an MDS, once a development team improved a better version of the algorithm

used in the development after starting the development process. However, since the

notified body did not approve it, they could not implement it even though the better

efficiency of the algorithm was already tested and verified by the team.

Therefore, with some limitations, it is possible to change requirements in the

development process. However, since Scrum iterations and Sprints possess functional

-43-

improvements during the development, there should not be any problem learning and

adapting continually, keeping a reasonable boundary.

5.4.4 Documentation and Traceability

One of them stated this for explaining the traceability issue in the medical device domain,

“When we think of traceability in medical device software development, we think of the

requirement management and traceability between artifacts.” For ensuring traceability,

all the phases are documented in the medical device domain, starting from requirement

elicitation to testing. Technical documentation (such as Usability Specification Document

or User guide) can be done using tools such as Jira, Confluence or other technical

management tools; or manually by utilizing verified and licensed documentation

templates for different development phases (Michaud, 2012). Regarding the quality

assurance issue, the interviewees described that there should be enough tool support for

documentation and requirement management to ensure the highest quality of a product.

Another of the interviewees shared additional information regarding the

documentation required. “We still have some documentation in Word and Excel -format.

Requirements are written as Gherkin scenarios and stored in Github. All documents are

stored as PDF as well. We plan to get rid of Word and Excel and start using Confluence

and Jira instead, as we can pull data to Github directly from those, without need to do

PDF conversions.” It means there is various documentation required in a different format.

Requirements are documented as Gherkin scenarios and stored in Github for easy access

online. Gherkin scenarios are formalized syntax to exemplify the behaviour of a software

system under development. These scenarios may be sub-parts of the requirement

specification, or the test suite used to gather information among stakeholders, testers, and

developers (Gutiérrez et al., 2017). Other required documentation is done by using MS

Word, MS Excel as per the need. All documents are to be accessed easily by the team or

delivered to other parties if needed. Hence, documents are also stored in PDF format for

future reference. Jira and Confluence are two agile project management tools: both

support documentation by allowing direct file access from Github. Using such tools save

time and help to maintain organized documentation. Most of the companies now use Jira

and Confluence to maintain the required documentation, confirmed two interviewees.

-44-

5.4.5 Risk Management

According to the interviewees, while implementing Scrum, risk management starts with

risk identifying during the Sprint planning. Across the execution of the Sprints, the risk

management file is updated with necessary risk mitigation.

“When I was working on a medical project, we identified risks and documented

them (in association with one backlog) in Sprint planning. The compliance team verified

them. After that, we mitigated the risks; simultaneously, we updated the risk file. The

compliance team always reviews updated risk files”, one interviewee addressed the risk

management activities in the project he was involved in.

Risks are verified and appropriately documented during the Sprint. The

operational risks mentioned in the first paragraph are verified by testing and peer review

among the developers and manual checks. However, the end-user risk is reviewed and

checked by the clinical specialist or by the compliance team. The compliance team also

reviews the updated risk management file.

5.4.6 Unpredictability and Variability

Through the interview session, the issue of unpredictability and variability is also

discussed. As discussed earlier, the medical device domain requires enough predictability

regarding safety issues. The interviewees spontaneously responded that Scrum is not

contradictory to this issue. One participant detailed, "We need to have a high-level

understanding of the product: clinical benefits, clinical performance, and efficiency.

Those need to be scientifically proven, so there might be, and usually is, clinical trials

with real persons. So implicitly, the environment where software development is

happening is not chaotic, where Scrum works best. Inside the software development, we

can be more agile as long as we implement product level requirements.

Predictability is required for the clinical performance and efficiency perspective,

even if it is not required for the development perspective. Predictability or uncertainty

may be possessed depending on the situation and the product's requirements during the

development process.

5.4.7 Verification and Validation

Verification and validation are a must for regulatory compliance. Different verification

methods are employed in different stages of development. Before the development

-45-

begins, the requirements are also verified. There is a different person responsible for the

different verification processes.

One of the interview participants exclaimed this for answering questions related

to the verification and validation process in the MDS domain, “The team is following pre-

defined workflow, which ensures that different verification activities are carried by the

right persons at the right time. When we think about high-level product requirements, the

Product Owner would be the right person for verifying product requirements. Then again,

if we think about software requirements, it could be a lead architect or the person who is

responsible for the tech leading.”

5.4.8 Self-organized and Self-controlled Team

In MDSD, teams can be self-organized, but they are not always self-controlled. Team

members cannot make their own decisions without approval from the compliance

department. Indeed, they can make some decisions that are not contradictory to the

compliance or do not disaffirm the standards, but not in every aspect. In some cases, the

team needs an audit trail for approving decisions.

While discussing the team's decisions, one of the interviewees who has been

working with MDS development for the last eight years set an example.

"We cannot make our own decisions regarding a project without approval from

the regulatory department. One example is that we wanted to start a pilot project with an

existing product and a new client located in Spain. Local regulations require that in Spain,

the medical device must be available in the Spanish language. So, in this specific case,

we could not decide to enter Spain with our current product version."

5.4.9 Number of Roles

All the interviewees mentioned that there must be a team or a person who must work on

the compliance issues. Most companies have a regulatory team; some may have one

person involved directly in the development who can handle the regulatory compliance.

It is possible that the compliance checking is done by an entirely different team outside

the development team.

Generally, companies have roles such as compliance officers and regulation

specialists. The number of staff in that role may vary depending on the size of the

-46-

company. Large-scale companies may have extra members such as clinical specialists to

handle the risk-control activity for satisfying the regulatory standards.

Though the interview is conducted particularly in a particular region, it portrays the

perspectives and standpoints of the regulatory medical device development worldwide

regarding the EU regulatory framework.

-47-

6 Discussion

Scrum software development methodology advocates an adaptive approach, whereas

MDSD administers a regulated procedure to comply with the regulatory standards and

guidance. Scrum adaptation in MDS development arises complications in this

circumstance. However, Scrum does not specify each step of the development, leverages

flexibility, provides freedom to the team. These confinements leave significant scope for

the Scrum team to accommodate the regulatory requirements within the development

procedure, which allows the medical device manufacturers to modernize their

development approaches and maintain compliance in regulatory environments.

The literature review suggests that Scrum must impose some tailoring to meet

regulatory requirements. Tailoring is an inevitable necessity to employ specific improvers

to balance the essence of Scrum and the regularity. The activities described in IEC 62304

standard requires a linear sequence. However, this thesis represents that development

teams can practice agility during the development process while developing MDS by

adopting practices to balance the agility of Scrum to incorporate the regulatory

standardization.

The components of a Scrum framework are Scrum events and Scrum roles, and

Scrum artifacts. Each one necessitates some additional effort. The predicaments in

adapting Scrum in MDS development include product definition, flexibility in

requirements, unpredictability, documentation, verification, risk management, self-

controlled team, and the number of roles in the Scrum team. Resolving these issues,

manufacturers can administer an efficient development for their product using Scrum

proven that Scrum fits the regulatory framework for the medical device domain.

Only a few manufacturers have already made the transformation from the plan-

driven traditional approach to Scrum. Different companies may encounter different

complications because of their internal organizational structure and work principles.

Since Scrum has some complications considered as trade-offs, it is possible to adopt a

Scrum model for the organizational needs and for fulfilling all the demands of the

regulatory standards. This provides the development team with the freedom to choose

modernized approaches to ensure the highest productivity and efficiency. This thesis

intends to summarize all the measures to prevent Scrum from becoming complicated for

the manufacturers.

-48-

6.1 Scrum Events incorporating Compliance

For implementing Scrum in MDS, the MDSD can be divided into three stages, and they

are Requirement Elicitation, Implementation and Release, where all the three stages must

incorporate risk management activities and documentation.

6.1.1 Requirement Elicitation

Usually, Scrum starts with requirement gathering from the Product Owner. The Product

Owner defines the requirements and the definition of done. Then the development team

inserts the requirements into the product backlog. For complying with regulations, the

product definition, including all requirements, must be verified by the regulatory bodies.

Requirements must append the regulatory requirements into the product backlog. The

processes required for the Quality Management System (QMS) begin in the same phase.

In the requirement elicitation phase, the Product Owner defines the customer's need and

the project's goal, which entail a plan-driven approach to follow. At the same time, the

Quality Manager or the Regulation Specialist specifies how to achieve the goals and the

boundaries from a regulatory perspective. The team must document each requirement.

Hence, the documentation and verification must start from the requirement elicitation

phase while developing MDS to satisfy standards such as IEC 62304, even though Scrum

does not prioritize activities such as documentation and verification.

Scrum holds flexibility in requirement change. In any phase, the Scrum team can

make changes in requirements listed as the product backlog, as required. Regulatory

compliance demands quality management for ensuring safety, also restricts changes if the

change affects the safety concerns. While developing MDS implementing Scrum

methodology, the requirement change requires an inspection from the regulatory bodies.

If the proposed change or additional requirement disaffirm the clinical safety of the end-

user of the software or tend to be unreliable, then the change must not be accepted.

Otherwise, it is possible to accept if the change does not affect the safety issues. The way

the IEC 62304 requirements are converted into practical procedures varies from company

to company, depending on the scope of the software and the safety risks it poses. The

methods for managing the requirements in a low-risk device would vary from those used

to handle software in a complex, safety-critical system.

-49-

6.1.2 Implementation

After the requirement analysis, the Scrum team plans time-boxed Sprints to develop

product features one by one as prioritized in the product backlog. A Sprint starts with a

Sprint planning meeting within the team. The development team defines the Sprint

backlog in this meeting. Finally, items in the Sprint backlog are verified by peer review.

Risk management is incorporated with the whole implementation process of the

software. Accordingly, the Scrum team must perform risk identification during the Sprint

planning. All the identified risks must be documented in the risk management file. There

may be a case that there are no such risks identified for the product’s use since it is neither

directly applied for sensitive medical machinery nor relate to a health hazard of the users.

Regardless of this, the team must carry on the formal risk management procedure because

regulatory compliance requires a risk management file.

For maintaining the traceability required to comply with the regulations, the

documentation in each step is a must. It can be done for easier access of the documents

by using tools such as Jira, Confluence, and other management tools as standards such as

IEC 62304 do not dictate any particular type of documentation. Using such a tool also

provides a better management experience for the team.

Afterwards, Sprint execution starts. Each Sprint follows the same workflow

during the development. Functional risks are mitigated by testing and verification through

manual checks and peer-reviews among the developers. The development team must

mitigate the patient’s risk during the Sprints. Each of the identified end-user risks is

reviewed and checked by the Clinical Specialist or by the compliance team to ensure safe

use of the product. At the end of each Sprint, the team tests the increment developed in

that Sprint. The software development team have to set up configuration management and

bug tracking systems at the beginning of the project to manage risks according to the

standard. If there is any bug detected in the operation of the software, the team must solve

it. Then they must check risks for that particular piece of product to identify any

possibility of a hazardous situation. The risk management file is updated when risk is

mitigated. However, the updated risk management file is required to be reviewed by the

compliance department.

-50-

Figure 11. Sprint during Scrum implementation in MDSD.

Figure 11 is summarized from the discussion which represents how a Sprint in a

Scrum process can be executed in order to mitigate the possible complications during

MDS development in compliance with regulatory requirements. With the regular Scrum

events mentioned in Section 2.2 (Figure 4), such as Sprint Planning and Sprint Execution,

the regulatory confirmation requires some additional activities to be performed, as such

clinical trials for increment produced during a Sprint and risk management. Accordingly,

the figure includes “Clinical Trial” as a part of the sprint. It also indicates the verification,

documentation and involvement of additional roles (such as regulation specialist, clinical

specialist) during the Sprint required to comply with the regulations.

As we discussed in Sub-section 3.5.3, Scrum leverages variability. Subsequently,

the development in Scrum is considered unpredictable. Since medical device regulatory

software development requires enough predictability regarding the end-user's safety, the

Scrum team needs to balance the variability during the development. From the

development perspective, unpredictability or inconsistency may be present in the

production phase depending on the product's requirements. Predictability must be

employed from the regulatory perspective to prove the clinical performance and

efficiency of the product by following the guidance from the Regulation Specialist, which

contains a planned process to maintain compliance. Henceforth, the development can be

more agile by leveraging variability if there is no conflict with regulations.

-51-

Similarly, the Scrum team must shrink the self-control by involving regulatory

bodies during MDS manufacturing. The development process must be highly controlled

from the beginning as the complexity of the software process is more than for hardware;

the problems in software are not easily detectable later in the development process. The

teams can decide the development tasks and other issues until the decision disregards the

regulatory requirements. If a team's decision contradicts the development and the

regulatory compliance, they cannot take it into action. Otherwise, within a specific

reasonable boundary, the team can make their decisions. All the decisions need to be

communicated within the development team, including Product Owner, Scrum Master

and verified by the Compliance Officer or Regulation Specialists. These roles enact

further verification within or outside the development team if necessary. In addition, the

Clinical Specialist is involved in performing the clinical trials and verifying the safety of

the user. The responsibilities of these roles are further discussed in Section 6.2.

6.1.3 Release

Scrum allows short releases of the product during the Sprint iterations. After each

Sprint, the Scrum team delivers a deliverable increment to the Product Owner and the

customer in some cases. Regulatory MDS development does not allow short releases

without system testing and verifying the entire software system. On this account, the

Scrum team has to hold the releases till the final product is ready. The product increment

can be tested by employing a clinical specialist who can perform medical or clinical trials.

The increment is accepted once it is verified clinically on the condition that the increment

will be integrated into the final releasable product.

Figure 12 depicts the whole process of Scrum implementation for developing

MDS in compliance with the regulations and harmonized standards from requirement

elicitation to release.

-52-

Figure 12. Scrum in compliance with regulation in MDSD.

When the final product is ready with all the proposed features from the product

backlog and the regulatory requirements, the features are integrated into the final product.

The product must be tested, engaging in system testing, and submitted to the notified body

responsible for the final verification of the product. This external body performs not only

the functional verification but also the conformity assessment. Once the external

conformity assessment is done, the notified body approves the product's release to the

stakeholders to place in the market.

In Section 4.2, “Safe Scrum” is discussed, which applies to tailor Scrum for

implementation in any critical systems regardless of the field. Then a case study of

“Regulated Scrum” is discussed, which applies Scrum in the regulated domain as such

space industry. These tailored Scrum implementations proposed a Quality Audit position

to check on the quality assurance and continuous compliance according to the regulatory

requirements. On top of that, Safe Scrum employs RAMS validation. Regulated Scrum

facilitates significant risk mitigation by prioritizing risk factors and maintaining

traceability. Above-described tailored Scrum is highly focused on the medical device

domain, which applies every measure to mitigate the complication of Scrum when

developing MDS. It proposes quality and compliance checking by a Regulation Specialist

instead of general quality audit roles. Similar to Regulated Scrum, traceability and risk-

mitigation is highly considered in this process, focusing on regulatory standards such as

“IEC 62304” to confirm compliance to the highest degree.

-53-

6.2 Scrum Roles and Artifacts incorporating Compliance

As discussed in Section 6.1, the tailored Scrum method employs verification and

documentation in each step of the development. The team shares artefacts continuously.

All decisions and development progress are documented and communicated,

incorporating the standardization. The development phases are appropriately traced to

comply with regulations. The Scrum team in this process require regular Scrum Roles

such as Product Owner, Scrum Master, Development Team and customer or other

stakeholders who play similar roles to a Scrum approach as described in Section 2.2.

Developing a regulated and critical MDS system, the software development team must

involve regulatory bodies in the development as mentioned in Sub-section 3.5.8 and

introduce some new roles to the team such as a Regulation Specialist or Compliance

Officer and a Clinical Specialist to enforce the compliance. The Regulation Specialist is

responsible for guiding the development team on how to proceed with the development

through setting up boundaries as a part of the QMS. Through the entire development

process, he must check and verify the compliance being close to the development team.

This position can also be titled as a Compliance Officer since it is the key role to manage

compliance conformity. The clinical Specialist is responsible for the clinical trials of the

software increments, which is entailed by the risk management process during the

development of the MDS.

 According to the latest EU legislations (MDR & IVDR), cybersecurity checking

is also a part of regulatory compliance (Granlund, 2017) to ensure data and system

security since the medical devices are now linked to IT networks and may be vulnerable

to cybersecurity threats (such as viruses) as well as unanticipated problems caused by

deteriorated network performance, software glitches, or the installation of operating

system patches or malware protection updates among other things (Hrgarek, 2012).

Henceforth, organizations may also need a cyber-security analyst to ensure data

protection and the safe online use of the software. All or some of the roles can be

responsible for continually checking the regulatory compliance throughout the

development procedure.

The notified body is involved in the development though they are not a part of the

team. Notified body approves the release of the software. The development team performs

the integration test for the whole software system; then, they send it to the notified body

-54-

for approval. Finally, the software is ready to be released after the efficiency of the

software is validated by this external body.

Figure 13. Scrum roles involving regulatory bodies.

Figure 13 shows the Scrum roles mentioned above required to be involved in the

software development lifecycle for regulatory compliance in the medical device domain.

Depending on the company's organizational scale, it can differ from company to

company. A separate compliance team must be formed if the manufacturer works on a

large scale in the MDSD industry.

6.3 Solutions Mapped to Complications

In the circumstances of regulatory MDS development, companies manufacturing

such software engage Scrum in the development lifecycle because of some significant

advantages. Scrum allows developers to maintain agility even though the standards and

regulation impose control on them. In Scrum, the Project Managers or Quality Managers

can track the workflow very easily. Scrum introduces the latest tool support for

developing and managing the development processes, making it more convenient for the

developers and manufacturers of MDS.

The tailored Scrum procedure prescribed above summarizes the argument that

Scrum can successfully resolve the entanglements that originated from implementation

in MDSD in conformance of regulatory proclamations. Furthermore, the complications

of Scrum implementation in MDSD can be mitigated by adopting the discussed measures

in the development process. Solutions to each complication are mapped in this section to

provide a detailed view of how Scrum can be applied in MDSD, mitigating all conflicts

with regulatory requirements.

-55-

Table 3: Complications mapped with corresponding solutions.

Complications Solutions to mitigate the complications Practices for complication-mitigation

Product

Definition and

Quality

Assurance

Definition of done for the product features must

be defined by the regulatory compliance team

(Sub-section 3.5.1). All product backlogs and

Sprint backlogs during the Scrum process must

be verified. Before releasing, the product must

be verified by the regulatory bodies (Sub-section

3.5.5 & 5.4.2).

Regulation Specialist handles the QMS by

defining the regulatory boundaries and Product

Owner defines the product backlogs. Development

team verifies the Sprint backlogs. The external

notified body verifies the product before releasing

the software.

Flexibility in

Requirement

Changes

Feature of the software can be structured, and

the project should be developed accordingly to

manage the flow of requirements from both the

customer and the regulatory compliance team.

No change can be made without approval (Sub-

section 3.5.2 & 5.4.3).

The software development team adopt functional

changes if there is no contradiction with regulatory

standards. The Regulation Specialist or

Compliance Officer can negotiate the changes

within the team

Validation and

Verification

Validation process must be applied for each

increment to reduce risk. Detailed test plan of

the final product should be designed, clinical

trials must be applied on each of the features to

satisfy the requirements of the safety domain

(Sub-section 3.5.5 & 5.4.7).

Unit testing for functional risks is performed by

development team, peer review is applied for

verification of code. Each increment is tested by a

clinical specialist to ensure safety. The final

product is validated by the notified body to ensure

efficiency.

Documentation

and Traceability

Traceability must be enhanced for both changes

and effects of changes to maintain transparency

and accountability to the regulatory bodies

(Sub-section 3.5.4 & 5.4.4).

Documentation is produced for each of the

development phases including requirement

elicitation, implementation, release, risk

management; all through the Sprints.

Risk

Management

Extra attention should be given to risk

mitigation, risk controlling measures can be

considered along with safety requirements

(Sub-section 3.5.6 & 5.4.5).

Risk management begins from the requirement

elicitation phase. Risk identification is done during

Sprint planning. Identified risks are mitigated

during the Sprints and documented accordingly.

Unpredictability

and Variability

Safety critical requirements can be inserted into

product backlogs along with other functional

requirements to avoid uncertainty related

problems with regulatory requirements A

complete design scheme can be introduced for

the final product, scope for the changes in

functional design can be allowed. (Sub-section

3.5.3 & 5.4.6).

Safety requirements are inserted into the product

backlog by the Regulation Specialist in the

beginning of the Scrum process. The final product

can never be uncertain since the regulatory

requirements are very clear in the beginning since

the efficiency of the software is also required.

Complete design and test plan are documented

before the development begins. Uncertainty is

leveraged only for the functional perspective

which does not disaffirm the regulation.

Number

of Roles

Regulatory conformity assessment & Quality

Assurance can be handled by involving

regulatory bodies, by assigning a person in

charge within the team to focus on regulatory

perspective (Sub-section 3.5.8 & 5.4.9).

Roles include (a)Regulation Specialist, (b)Clinical

Specialist, (c)Cyber Security Specialist, depending

on the scale of the manufacturing organization.

Compliance department is often formed for

conformity assessment. Notified body is involved

at the end of the development for releasing the

software.

Self-organizing

&

Self-controlled

Team

Safety requirements must be considered during

the decision making within the team. Decisions

must be verified by the compliance team (Sub-

section 3.5.7 & 5.4.8).

Though the team is self-organizing, they are not

self-controlled. The development is always

monitored and incorporated with compliance;

hence the team must adhere to the internal or

external compliance team regarding the

development of MDS.

Table 3 exhibits the complications mapped with corresponding solutions to

mitigate the complications to comply with the regulatory requirements. The items in the

first column are the complications listed in Section 3.5. The second column describes

what is required for mitigating those complications based on the findings from the

-56-

literature review. Finally, the last column encapsulates what practices MDS

manufacturing companies may associate to incorporate the regulatory standards while

developing their projects implementing agile Scrum as the software development model,

according to the interview participants.

These solutions are derived from the interview process. Practitioners from

different companies provided similar frameworks for their regulatory development in the

case of MDS. They discussed different aspects of encountering the complications during

the development. In addition, they discussed the corresponding alterations they adopt to

mitigate those complications. The modifications conclude a general overview of mapping

the complication to a particular solution that may solve the conflict between agility and

regulatory requirements.

-57-

7 Conclusion

Scrum principles do not specifically address issues in relation to regulatory requirements

or quality management processes. In the previous research in this domain, researchers

have studied how agile can be implemented in MDSD and how efficiently agile can be

integrated into such a domain. However, there is insufficient research on integrating

Scrum in the MDS development regulatory framework.

This research has been initiated to identify the complication of adopting agile

Scrum in MDSD. Agile, especially Scrum, has a structure where it is always flexible to

changes. When implemented within a sequential plan-driven regulatory software

development lifecycle, there is always a risk management process required. The thesis

provides a general overview of the complications and proposed possible solutions for

developing MDS implementing Scrum. It provides a clear idea of how Scrum can be

implemented in the medical device domain by mitigating the complications related to

safety and quality issues for regulatory compliance. This idea is validated by the feedback

analysis for Scrum practices in the MDSD sector. Feedback from the domain experts has

provided strong views of how organizations allow Scrum to mitigate the complications

of adopting it under regulatory compliance. Furthermore, practitioners provided sufficient

information regarding the current practices engaged in developing regulatory medical

device software during the interview, which helped to portray the necessary enhancement

to be adopted while implementing Scrum. Henceforth, the developers of today´s MDS

may reconsider their methods and make a transition to Scrum if they are currently using

pure plan-driven approaches only to comply with the regulatory standards.

The scope of this thesis calls for further research to specifically propose guidance to

adopt Scrum in the medical device domain. For example, a risk management process in

the Scrum framework satisfying the regulations, a complete validation and verification

plan including 100% traceability for the final delivery according to safety requirements

of the regulatory framework.

-58-

References

AAMI, ANSI/AAMI/IEC 62304 (2006), Medical Device Software-software life cycle

processes. Association for the Advancement of Medical Instrumentation,94-101.

Abdelaziz, A. A., El-Tahir, Y., & Osman, R. (2015, September). Adaptive Software

Development for developing safety critical software. In: Proceedings of the 2015

International Conference on Computing, Control, Networking, Electronics and

Embedded Systems Engineering (ICCNEEE) (pp. 41-46). IEEE.

Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2002). Agile software

development methods: Review and analysis. ESPOO 2002, VTT Publications 478.

107p.

Ahmad, E., Raza, B., Feldt, R., & Nordebäck, T. (2010). ECSS standard compliant agile

software development: An industrial case study. In: Proceedings of the 2010

National Software Engineering Conference, 1-6.

Awad, M. A. (2005). A comparison between agile and traditional software development

methodologies. University of Western Australia, 30.

Balaji, S., & Murugaiyan, M. S. (2012). Waterfall vs. V-model vs. agile: A comparative

study on SDLC. International Journal of Information Technology and Business

Management, 2(1), 26-30.

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,

Jeffries, R. (2001). Manifesto for agile software development.

Bhavsar, K., Shah, V., & Gopalan, S. (2020). Scrum: An agile process reengineering in

software engineering. International Journal of Innovative Technology and

Exploring Engineering (IJITEE) ISSN: 2278-3075, vol. 9, no. 3, 840-848.

-59-

Black, S., Boca, P. P., Bowen, J. P., Gorman, J., & Hinchey, M. (2009). Formal versus

agile: Survival of the fittest. Computer, 42(9), 37-45.

Boehm, B., & Turner, R. (2003). Balancing agility and discipline: A guide for the

perplexed. Addison-Wesley Professional.

Boehm, B., & Turner, R. (2005). Management challenges to implementing agile

processes in traditional development organizations. IEEE Software, 22(5), 30-39.

Bouissou, M., Martin, F., & Ourghanlian, A. (1999). Assessment of a safety-critical

system including software: A bayesian belief network for evidence sources. In:

Proceedings of the Annual Reliability and Maintainability. Symposium. 1999 (Cat.

no. 99CH36283), 142-150.

Bozzano, M., Cimatti, A., & Mattarei, C. (2019). Formal reliability analysis of

redundancy architectures. Formal Aspects of Computing, 31(1), 59-94.

Bowen, J., & Stavridou, V. (1993, April). The industrial take-up of formal methods in

safety-critical and other areas: A perspective. In: International Symposium of Formal

Methods Europe (pp. 183-195). Springer, Berlin, Heidelberg.

Bulska, K., & Górski, J. (2011). Applying agiile practices to the development of safety-

critical software. Zeszyty Naukowe Wydziału ETI Politechniki

Gdańskiej.Technologie Informacyjne, 1, 65-68.

Commission communication in the framework of the implementation of the council

directive 93/ 42/EEC concerning medical devices. (2017). Official Journal of the

European Union.

-60-

Chittister, C., & Haimes, Y. Y. (1993). Risk associated with software development: a

holistic framework for assessment and management. IEEE Transactions on Systems,

Man, and Cybernetics, 23(3), 710-723.

Derek Rayside, Aleksandar Milicevic, Kuat Yessenov, Greg Dennis, and 1764 Daniel

Jackson (2009, October). Agile specifications. In: Companion to the 24th Annual

ACM SIGPLAN Conference 1766 on Object-Oriented Programming, Systems,

Languages, and Applications, 1767 OOPSLA 2009, Shail Arora and Gary T.

Leav1765 ens, Orlando, Florida, USA, pages 999– 1768 1006. ACM.

Ericson, C. A. (2011). Concise encyclopedia of system safety: Definition of terms and

concepts John Wiley & Sons.

FDA (1997). Design control guidance for medical device manufacturers. U.S. Food &

Drug Administration.

Fitzgerald, B., Stol, K., O'Sullivan, R., & O'Brien, D. (2013). Scaling agile methods to

regulated environments: An industry case study. In: Proceedings of the 35th

International Conference on Software Engineering (ICSE), 863-872.

Fowler, K. (2004). Mission-critical and safety-critical development. IEEE

Instrumentation & Measurement Magazine, 7(4), 52-59.

Ge, X., Paige, R. F., & McDermid, J. A. (2010). An iterative approach for development

of safety-critical software and safety arguments. In: Proceedings of the 2010 Agile

Conference, 35-43.

Gutiérrez, J., Ramos, I., Mejias, M., Arévalo, C., Sánchez-Begines, J. M. & Lizcano, D.

(2017). Modelling Gherkin Scenarios Using UML. In: Proceedings of the ISD2017

-61-

on Information Systems Development: Advances in Methods, Tools and

Management. ISBN: 978-9963-2288-3-6.

Granlund, T. (2016). Implementing a medical device software risk management process

by ISO 14971 in compliance with agile principles, Master´s Thesis, Tampere

University

Granlund, T. Vedenpää, J., Stirbu, V., & Mikkonen, T. (2017). On Medical Device

Cybersecurity Compliance in EU, Regulation (IVDR), 746, p.2.

FDA (2011). Guidance for industry and FDA staff. Center for Devices and Radiological

Health (CDRH),

Hanssen, G. K., Haugset, B., Stålhane, T., Myklebust, T., & Kulbrandstad, I. (2016).

Quality assurance in scrum applied to safety critical software. In: Proceedings of the

International Conference on Agile Software Development, 92-103.

Harvey, J. (1959). TITLE 21—FOOD AND DRUGS CHAPTER I—FOOD AND DRUG

ADMINISTRATION, DEPARTMENT OF HEALTH, EDUCATION, AND

WELFARE SUBCHAPTER B—FOOD AND FOOD PRODUCTS Part 121—FOOD

ADDITIVES DEFINITIONS AND PROCEDURAL AND INTERPRETATIVE

REGULATIONS. Food, Drug, Cosmetic Law Journal, 14(4), 269-290.

Heeager, L. T., & Nielsen, P. A. (2018). A conceptual model of agile software

development in a safety-critical context: A systematic literature review. Information

and Software Technology, 103, 22-39.

Heeager, L. T., & Nielsen, P. A. (2020). Meshing agile and plan-driven development in

safety-critical software: A case study. Empirical Software Engineering, 25(2), 1035-

1062.

-62-

Hron, M., & Obwegeser, N. (2018). Scrum in practice: An overview of scrum adaptations.

In: Proceedings of the 51st Hawaii International Conference on System Sciences,

5445-5454.

Hrgarek, N. (2012). Certification and regulatory challenges in medical device software

development. In: Proceedings of the 4th International Workshop on Software

Engineering in Health Care (SEHC), 40-43.

Kircher, M., & Hofman, P. (2012). Combining systematic reuse with agile development:

Experience report. In: Proceedings of the 16th International Software Product Line

Conference-Volume 1, 215-219.

Kornecki, A., & Zalewski, J. (2009). Certification of software for real-time safety-critical

systems: State of the art. Innovations in Systems and Software Engineering, 5(2),

149-161.

Bozzano, M., (2010). Design and safety assessment of critical systems (1st ed.) Auerbach

Publications.

Mc Caffery, F., Casey, V., Sivakumar, M. S., Coleman, G., Donnelly, P., & Burton, J.

(2012). Medical Device Software Traceability. In: Cleland-Huang J., Gotel O.,

Zisman A. (eds) Software and Systems Traceability. pp. 321-339. Springer-Verlag.

Mc Hugh, M., Cawley, O., McCaffcry, F., Richardson, I., & Wang, X. (2013). An agile

v-model for medical device software development to overcome the challenges with

plan-driven software development lifecycles. In: Proceedings of the 2013 5th

International Workshop on Software Engineering in Health Care (SEHC), 12-19.

Mc Hugh, M., McCaffery, F., & Casey, V. (2012). Barriers to using agile software

development practices within the medical device industry.

-63-

Moe, N. B., Dingsøyr, T., & Dybå, T. (2008). Understanding self-organizing teams in

agile software development. In: Proceedings of the 19th Australian Conference on

Software Engineering (Aswec 2008), 76-85.

Medical Device Corporation Group Document (2021), MDCG 2021-05,

Guidance on standardisation for medical devices April 2021.

Myklebust, T., & Stålhane, T. (2018). The agile safety case Springer.

Michaud, C. (2012). Templates repository for software development process. Published

on 18 January 2012. Retrieved on 10 May,2021 from https://blog.cm-

dm.com/pages/Software-Development-Process-templates.

Nair, S., de la Vara, Jose Luis, Sabetzadeh, M., & Briand, L. (2013). Classification,

structuring, and assessment of evidence for safety--a systematic literature review. In:

Proceedings of the 2013 IEEE Sixth International Conference on Software Testing,

Verification and Validation, 94-103.

Özcan-Top, Ö, & McCaffery, F. (2017). How does scrum conform to the regulatory

requirements defined in MDevSPICE. In: Proceedings of the International

Conference on Software Process Improvement and Capability Determination, 257-

268.

Pawar, R. P. (2015). A comparative study of agile software development methodology

and traditional waterfall model. IOSR Journal of Computer Engineering (IOSR-

JCE), Vol. 2, No. 2, 1-8.

Rasmussen, R., Hughes, T., Jenks, J. R., & Skach, J. (2009). Adopting agile in an FDA

regulated environment. In: Proceedings of the 2009 Agile Conference, 151-155.

-64-

Rottier, P. A., & Rodrigues, V. (2008). Agile development in a medical device company.

In: Proceedings of the Agile 2008 Conference, 218-223.

Rubin, K. S. (2012). Essential scrum: A practical guide to the most popular agile

process Addison-Wesley.

Regulation (EU) 2017/745 of the European Parliament and of the Council of 5 April 2017

on medical devices. http://data.europa.eu/eli/reg/2017/745/oj

Regulation (EU) 2017/746 of the European Parliament and of the Council of 5 April 2017

on in vitro diagnostic medical devices. https://eur-lex.europa.eu/legal-

content/EN/TXT/?uri=CELEX%3A32017R0746

Regulation (EU) 2020/561 of the European Parliament and of the Council of 23 April

2020 amending Regulation (EU) 2017/745 on medical devices. https://eur-

lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32020R0561

Salo, O., & Abrahamsson, P. (2005). Integrating agile software development and software

process improvement: A longitudinal case study. In: Proceedings of the 2005

International Symposium on Empirical Software Engineering, 2005. 10 pp.

Scholtes, M., Buedenbender, S., Behrend, A., Sohrabi, K., & Gross, V. (2018).

Integrating a usability engineering process into a consisting risk

management. Current Directions in Biomedical Engineering, 4(1), 645-647.

Schooenderwoert, N. V., & Shoemaker, B. (2018). Agile Methods for Safety-Critical

Systems: A Primer Using Medical Device Examples. CreateSpace Publishing.

-65-

Schwaber, K., & Sutherland, J. (2012). Software in 30 days: How agile managers beat

the odds, delight their customers, and leave competitors in the dust John. Wiley &

Sons.

Shore, J. (2007). The art of agile development: Pragmatic guide to agile software

development. O'Reilly Media, Inc.

Stålhane, T., Myklebust, T., & Hanssen, G. K. (2012). The application of safe scrum to

IEC 61508 certifiable software. In: Proceedings of the 11th International

Probabilistic Safety Assessment and Management Conference and the Annual

European Safety and Reliability Conference, 6052-6061.

Stephenson, Z. R., McDermid, J. A., & Ward, A. G. (2006). Health modelling for agility

in safety-critical systems development. In: Proceedings of the 1st Institution of

Engineering and Technology International Conference on System Safety

Engineering, 260-265

Sutherland, J. (2014). Scrum: A revolutionary approach to building teams, beating

deadlines, and boosting productivity. Random House.

Sutherland, J., & Schwaber, K. (2020). The scrum guide. The Definitive Guide to Scrum:

The Rules of the Game. Published on November 2020. Retrieved on 11 February,

2021 from https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-

US.pdf

Turk, D., France, R., & Rumpe, B. (2002). Limitations of agile software processes.

In: Proceedings of the Third International Conference on eXtreme Programming

and Agile Processes in Software Engineering, 43-46.

-66-

Turk, D., Robert, F., & Rumpe, B. (2005). Assumptions underlying agile software-

development processes. Journal of Database Management (JDM), 16(4), 62-87.

Vogelzang, J., Admiraal, W. F., & van Driel, J. H. (2019). Scrum Methodology as an

Effective Scaffold to Promote Students' learning and motivation in context-based

secondary chemistry education. EURASIA Journal of Mathematics, Science and

Technology Education, vol. 15, no. 12, em1783.

Wolff, S. (2012a). Scrum goes formal: Agile methods for safety-critical systems. In: 2012

First International Workshop on Formal Methods in Software Engineering:

Rigorous and Agile Approaches (Formsera), 23-29.

Wolff, S. (2012b). Using Executable VDM++ Models in an Industrial Application - Self-

defence System for Fighter Aircraft. Technical Report Electronics and Computer

Engineering, 1, 1-18.

Zema, M., Rosati, S., Gioia, V., Knaflitz, M., & Balestra, G. (2015). Developing medical

device software in compliance with regulations. In: Proceedings of the 37th Annual

International Conference of the IEEE Engineering in Medicine and Biology Society

(EMBC), 1331-1334.

-67-

Appendix 1
Interview Questions

General Questions

1. How many years have you been working in Medical Device Software

Development?

2. Have you worked in any project which adapted SCRUM for the medical software

development? If yes, to what extend was the SCRUM integrated into the

development process? and what type(s) of medical software was delivered by the

project?

3. What are the most important issues with developing medical device software?

(Software lifecycle, regulatory constraints or what else?)

4. What are the main concerns for developing medical device software using an

`Agile´ software development lifecycle? (Safety, regulations, anything else)

5. What are specified as regulatory requirements? When are they specified for a

project? When are they analyzed? How are they adjusted into the project

requirements?

Related Questions to RQ2

1. How do you mitigate the “Lower Quality Assurance” of agile development model

while working on a medical software project? What sort of verification and

validation you impose?

2. To consider a project (or piece of project) to be Done/Complete, what sort of

validation or verification does it require to comply with regulations? Who is

responsible for specifying the product definition?

3. Have you ever faced problems to handle `continuous changes in requirements´ for

the development of a regulatory medical device software? If yes, how did you

handle it?

4. Do you consider it unacceptable/inappropriate for regulatory software to release a

piece of project (an increment, according to SCRUM) without detailed testing of

the whole project in the medical device domain?

5. How do you introduce “Risk management” in the development lifecycle for

complying with regulations?

-68-

6. What kind of documents are required in medical software development in

compliance with regulations? What sort of tools do you use for documentation and

requirements? Name some if possible.

7. For maintaining the compliance with regulatory requirements, who requires to be

involved in the development process? Do you think it is necessary to introduce

roles such as Regulation Specialist/Regulation Officer” within/outside the

development team to comply with the regulatory requirements?

8. How do you think “Unpredictability/Uncertainty” of SCRUM conflicts with the

rules of regulatory requirements? Does medical device software development

require predictability in every aspect? Being unpredictable, how Scrum can handle

this issue to comply with regulations?

-69-

Appendix 2
Abbreviations

MDS Medical Device Software

MDSD Medical Device Software Development

MDR Medical Device Regulation

IVDR In-Vitro Diagnostic medical device Regulation

MDD Medical Device Directives

IVDD In-Vitro Diagnostic Device Directives

	1 Introduction
	The following is the paper's outline: Chapter 2 provides the most relevant of the key concepts from background studies are described briefly, then in Chapter 3, there is the literature review about medical device software development. Chapter 4 discus...

	2 Key Concepts
	2.1 Agile Software Development Methodology
	2.2 Scrum
	The customer reviews each increment of a Sprint for feedback gathering in Sprint review. After this, the deliverable is released to the customer. Sometimes the customer plays the role of a Product Owner in Scrum. User stories are created to encapsulat...
	Every Scrum team needs a Scrum Master to oversee everyday work and ensure that the Scrum process is followed. Daily standup meetings named Daily Scrum, at which team members update each other on their progress and assignments for the following day, ke...
	2.3 Safety Critical Software Development
	2.4 Regulations for Safety Critical Software Development

	3 Medical Device Software Development
	3.1 IEC 62304 for Medical Device Software Lifecycle
	3.2 Plan-Driven Sequential Software Development
	3.3 Agile Software Development
	3.4 Complications of Adopting Agile
	3.5 Complications of Adopting Scrum
	3.5.1 Product Definition & Quality Assurance
	3.5.2 Flexibility in Requirement Changes
	3.5.3 Unpredictability and Variability
	3.5.4 Documentation & Traceability
	3.5.5 Validation and Verification
	3.5.6 Risk Management
	3.5.7 Self-organized and Self-controlled Team
	3.5.8 Number of Roles

	4 Mitigating the Complications
	4.1 Agile Mitigating the Complications
	4.2 Scrum Tailored to Mitigate Complications
	4.3 Mitigate complications of Implementing Scrum in MDSD

	5 Interview
	5.1 Interview Design
	5.2 Interview Participants
	5.3 Interview Questions
	5.4 Interview Results
	5.4.1 Tailored Scrum Complying with Regulations
	5.4.2 Product Definition and quality Assurance
	5.4.3 Flexibility in Requirement Changes
	5.4.4 Documentation and Traceability
	One of them stated this for explaining the traceability issue in the medical device domain, “When we think of traceability in medical device software development, we think of the requirement management and traceability between artifacts.” For ensuring...
	Another of the interviewees shared additional information regarding the documentation required. “We still have some documentation in Word and Excel -format. Requirements are written as Gherkin scenarios and stored in Github. All documents are stored a...
	5.4.5 Risk Management
	5.4.6 Unpredictability and Variability
	5.4.7 Verification and Validation
	5.4.8 Self-organized and Self-controlled Team
	5.4.9 Number of Roles

	6 Discussion
	6.1 Scrum Events incorporating Compliance
	6.1.1 Requirement Elicitation
	6.1.2 Implementation
	6.1.3 Release

	In Section 4.2, “Safe Scrum” is discussed, which applies to tailor Scrum for implementation in any critical systems regardless of the field. Then a case study of “Regulated Scrum” is discussed, which applies Scrum in the regulated domain as such space...
	6.2 Scrum Roles and Artifacts incorporating Compliance
	6.3 Solutions Mapped to Complications

	7 Conclusion
	References
	Appendix 1
	Appendix 2

