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Tausta: Plasman lipidomin geneettisen arkkitehtuurin yksityiskohtainen ymmärtäminen antaa 
tarkemman kuvan rasva-aineiden metabolian säätelystä ja rasva-aineiden yhteydestä 
kardiometabolisiin sairauksiin. Tein työssä 437 erilaisen plasman rasva-aineen (=lipidomi) 
kokogenomin laajuisen assosiaatioanalyysin (GWAS) ja käytin sitä täydentävää 
koneälytekniikkaa ns. fenotyyppi-genotyyppi moni-moneen suhdeanalyysiä (engl. PGMRA), 
löytääkseni monimutkaisia aikaisemmin tunnistamattomia lipidifenotyyppi-genotyyppi verkostoja 
ja uusia vielä tuntemattomia geenejä, joilla on vaikutuksia ihmisen rasva-aineenvaihduntaan ja 
plasman lipidomiin. 
 
Tavoitteet: Käyttää toisiaan täydentäviä datapohjaisia GWAS ja koneoppimismenetelmiä ja 
selvittää ihmisen lipidomin monimutkainen ja aikaisemmin suurimaksi osaksi tuntematon 
geneettinen arkkitehtuuri. 
 
Aineisto ja menetelmät: Aineisto koostui 1426 iältään 30–45 vuotiaasta Suomalaisesta 
miehestä ja naisesta (53 %), jotka osallistuivat Lasten ja nuorten Sepelvaltimotaudin Riskitekijät 
seurantatutkimukseen (engl. Young Finns study). GWAS tehtiin 437:lle erityyppiselle plasman 
rasva-aineelle käyttäen 546,677 genotyypattua yhden emäsmuutoksen aiheuttamaa DNA 
geenivarianttia eli geenimuunnosta (engl. single nucleotide polymorphisms SNPs). Plasman 
lipidomi määritettiin massaspektrometria (LC-MS/MS) tekniikalla ja genotyypien määritys tehtiin 
Illuminan mikroarray teknologialla käyttäen Illuminan Custom 670K genotyypitys sirua. 
Aineistosta tunnistettiin PGMRA:llä biklusteroimalla sen henkilöihin liittyviä SNP- ja 
lipidifenotyyppiryhmiä, jotka liittyivät tilastollisesti merkitsevästi toisiinsa hypergeometrisessa 
testissä (vertailtavat ryhmät sisälsivät samoja henkilöitä). Näin tunnistettujen tilastollisesti 
merkitsevien geeniryhmien biologista toimintaa tutkittiin edelleen bioinformaattisella 
geeniryhmien rikastusanalyysillä (engl. GSEA) GSEA:lla analysoitiin yhteensä 28922 biologisiin 
prosesseihin ja geeniontologiaan perustuvaa geeniryhmää. Työn analyyseissä käytettiin sekä R-
kielistä ohjelmistoympäristöä ja koodistoja sekä PLINK-ohjelmaa (koodit 1–12 esitetty tekstissä). 
 
Tulokset: Lipidominlaajuisessa GWAS analyysissä löysimme 266 näihin 437 plasman rasva-
aineeseen tilastollisesti merkittävästi (P <5 ×10−8) yhteydessä olevaa SNP:iä. PLINK-ohjelmalla 
tehdyssä regressioanalyysissä löytyi lisäksi 18,370 erillistä nominaalisesti merkitsevää 
(P <5 ×10−4) SNP-rasva-aine assosiaatiota. PGMRA jatkoanalyysissä käytimme näitä 
nominaalisesti merkitseviä SNP:ejä ja lipidifenotyyppi dataa.  

  PGMRA-analyysissä aineistosta löytyi 93 tilastollisesti merkittävää suhdetta biklusteroimalla 
saatujen (genotyyppi-henkilö) vs. (lipidifenotyyppi-henkilö) ryhmien välillä. Näiden biklustereiden 
välisiin suhteisiin sisältyi yhteensä 5977 eri SNP:iä. Viimeisimpään genominrakennereferenssiin 
(ensemble assembly GRCh37, versio 102) sijoitettuina nämä SNP:t paikallistuivat 3164 eri 
geenilokukseen, jotka assosioituivat tilastollisesti merkitsevästi plasman rasva-aineenvaihduntaa 
kuvaaviin lipidiryppäisiin. Näistä 93 ryhmästä 35 oli erillisiä, eli niihin ei sisältynyt yhtään samaa 
SNP:iä tai henkilöä.  

Näistä 35 erillisestä geneettisestä lipidomialaryhmästä 18:ta ryhmän sisältämät geenivariantit 
kertyivät tilastollisesti merkitsevästi GSEA:ä useisiin biologisesti merkittäviin prosesseihin tai 
aineenvaihduntateihin. Näiden biologisten prosessien ja aineenvaihduntateiden välittäminä 
löydetyt geenivariantit voivat säädellä ja vaikuttaa plasman lipidiprofiileihin. 

 
Päätelmät: Ihmisen plasman lipidomiin vaikuttaa yli 3164 eri geeniin paikallistuva geneettinen 
variaatio ja ihmiset voidaan sen suhteen luokitella 35 erilaiseen geneettiseen 
lipidifenotyyppialaryhmään. Tämän työn uutuusarvona on sen tulosten lisäksi se, että siinä on 
ensimmäisen kerran sovellettu GWAS-PGMRA-GSEA menetelmien yhdistelmää ihmisen 



lipidomin monimutkaisen geenitaustan tutkimiseen. Työn tuloksena on löydetty joukko uusia 
lipidomin säätelyyn, sen biologisiin prosesseihin ja aineenvaihduntateihin vaikuttavia tilastollisesti 
merkitsevästi liittyviä geenivariantteja ja geenejä. Tutkimuksen tulokset täytyy kuitenkin vielä 
varmistaa toisessa vastaavassa, mutta riippumattomassa aineistossa. 

 
 
Avainsanat: Genominlaajuinen assosiaatiotutkimus (GWAS), PGMRA, lipidomi, geenien 

rikastamisanalyysi, genetiikka. 
 
 

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck –ohjelmalla, työnumero 
1606086384. 
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Background: Understanding the genetic architecture of plasma lipidome could provide better 
insights into regulation of lipid metabolism and its link to cardiometabolic diseases. I performed 
genome-wide association study (GWAS) of 437 quantified plasma lipid species followed by a use 
of a novel machine learning method, phenotype-genotype many to many relationships analysis 
(PGMRA), to uncover the hidden complex genotypic–phenotypic networks and novel genes i.e. 
missing inheritance for human lipid metabolisms and plasma lipidome.   

 
Objectives: To use GWAS and a complementary data-driven machine learning methods to 
uncover the complex and hidden genetic architecture of human plasma lipidome. 

 
Subjects and Methods: The study sample consisted of 1426, 30–45-year-old Finnish men and 
women (53 %) taking part in ongoing Young Finns study (YFS). GWAS was performed between 
lipidome data with 437 mass-spectrometry (LC-MS/MS) quantified plasma lipid species and 
546,677 single-nucleotide polymorphisms (SNPs) genotyped using Illumina 670K custom bead 
chip. Genotype data consisting of nominally significant SNPs from GWAS (p <5x10-4) and 
lipidome data were further analysed with a novel machine learning method, phenotype-genotype 
many to many relationship analyses (PGMRA). PGMRA involved biclustering of genotype and 
lipidome data independently yielding SNP-subject sets and lipid-subject sets from genotype and 
lipidome data respectively. Then, association analysis between the SNP-subject sets and the 
lipid-subject sets was done by calculating overlap of subjects in each pair of sets using 
hypergeometric test. Biological significance of the significant SNP sets was further studied by 
using gene set enrichment analysis (GSEA). Using GSEA altogether 28922 Biological process 
Gene Ontology based gene sets were analyzed. The biostatistical analyses were done in open 
access R-statistical environment using R-based coding and using PLINK-program (codes 1-12 
shown in the text). 
 
Results: We identified 266 SNPs significantly associated (p-value<5 x 10-8) and 18370 SNPs 
nominally significantly associated (p-value<5 x 10-4) with 437 studied molecular lipids with 
traditional lipidome wide GWAS analysis over whole lipidome. Using PGMRA biclustering 
analysis for a subset of genotype data with these nominally significant SNPs as preselected SNPs 
and lipidome data as phenotypes, we found 93 statistically significant genotype-subject vs. lipid 
phenotype-subject group relations involving 5977 separate SNPs. After their gene annotation to 
latest available genome reference (ensemble assembly GRCh37, the version 102) these SNPs 
were located into 3164 separate gene loci. Thirty-five of the significant SNP sets did not share 
any SNP or subject, therefore representing 35 genetically distinct lipidomic profiles i.e. genetic 
lipidomic subgroups. GSEA of the SNPs involved in 18 out of these 35 distinct genotype-lipidome 
relations revealed several statistically significantly enriched biological processes and pathways 
through which the identified SNPs can influence plasma lipid profiles.   

 
Conclusions: Human plasma lipidome has 35 genetically distinct subject subgroups and are 
influenced by genetic variations in 3164 genes via several biological processes and pathways. 
The novelty of the work, in addition to its results, is that in the first time we apply the GWAS-
PGMRA-GSEA method combination in unravelling the complex genetics of plasma lipidome. The 
results of the present study should however be replicated in other corresponding and independent 
data set. 

 
Keywords: Genome wide association study, PGMRA, lipidome, GSEA, genetics. 
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1.  INTRODUCTION 

Cardiovascular diseases (CVDs) are significant causes of death worldwide – nearly 16,7 

million people died of these diseases (1). In Finland, cardiovascular disease caused 

every fifth death (2). In EU, CVDs cause 40% of all deaths and are estimated to cost EU 

economy almost 200 billion euros a year (Figure 1). The ageing European population is 

heavily affected by CVDs as this malady develops over the lifetime and takes various 

forms with the potential culmination in CVD death. 

 

Figure 1. Pie chart of WHO cardiovascular deaths in 2015. Modified from (1). 

 
Atherosclerosis (Figure 2), the underlying pathology behind majority of CVDs is a heter-

ogeneous and multifactorial disease with roots varying from genetics to lifestyle factors. 

The rising prevalence of atherosclerosis is primarily due to the increase of the age of the 

population and of the occurrence of variable risk factors, such as hypertension, 

dyslipidemia, obesity and insulin resistance, clustering together as metabolic syndrome 

(MetS). Lipidomic has revealed, ceramides, phospholipids and other lipid species which 

are hypothesized to be associated with many of the central atherosclerosis processes 

such as lipoprotein aggregation, uptake of lipoprotein and accumulation of cholesterol 
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within macrophages, production of superoxide anions and expression of different cyto-

kines and inflammation (3). Therefore, monitoring ratios and plasma concentrations of 

selected ceramides and phospholipids as well other lipid species may provide insights 

into the metabolic regulation of such events  (3). 

Plasma total cholesterol, LDL-cholesterol (LDL-C) and HDL-cholesterol (HDL-C) con-

centrations have been used for risk prediction of cardiometabolic disease outcomes. 

LDL-C has become the main therapeutic target in the management of patients with car-

diometabolic outcomes, such as MetS, type 2 diabetes (T2D) and cardiovascular dis-

eases with atherosclerotic etiology (i.e. coronary artery disease, stroke and peripheral 

artery disease). However, the increase in the number of patients with cardiometabolic 

Figure 2. Shows the development of atherosclerosis and subsequent coronary artery 
disease. Modified from (98). 
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outcomes and identification of their residual cardiometabolic risks demands more de-

tailed lipid analyses both for diagnostic purposes and for monitoring the efficacy of pre-

scribed therapy. 

In Finland, the relative proportion of aging people in population and expected life expec-

tancy are both increasing and therefore the importance of prevention of CVDs is empha-

sized. Inheritable traits are known to increase the risk of coronary artery disease, but the 

role of heritable traits in the beginning and during development of atherosclerosis are not 

yet known well enough. As the gene-based personalized care-plans become more com-

mon, it is important to clarify the connection between genetic diseases such as athero-

sclerosis and the whole lipidome (hundreds of different fat molecules).  

Data science is an important part of research that involves big genetic and molecular 

datasets. Development, evaluation and implementation of new analysis methods are in 

a key position, as the amount of data and capabilities of computers are increasing (4). 

The connection of clinical lipids as a risk factor to coronary artery disease is well re-

searched (5). However, there is no previous study where the plasma lipidome has been 

studied using the new bioinformatic PGMRA (phenotype-genotype many-to-many rela-

tionship analysis) method as in the present work. Neither has genotype-lipidome clus-

ters, obtained with such method, been studied for their connection to cardiometabolic 

diseases, such as obesity, metabolic markers, early subclinical or clinical atherosclerosis 

or type 2 diabetes.  

Instead, there are several studies done using the classical GWAS method to identify the 

genetics of basic lipids (6-8), as well the genetics of nuclear magnetic resonance (NMR) 

measured plasma metabolites (9, 10).  

Only one classical lipidome-wide GWAS study has been (11), in that study 141 lipid spe-

cies were available for plasma lipidome analysis. It has been proposed that single nucle-

otide polymorphisms (SNPs) discovered by genome-wide association studies (GWAS) 

account for only a small fraction of the genetic variation of complex traits in human pop-

ulation (12). The remaining unexplained variance or missing heritability is thought to be 

due to marginal effects of many loci with small effects and has eluded attempts to identify 

its sources  (13). 

The new (PGMRA) method enhances the traditional genome-wide and linear regression 

based GWAS method by identifying relevant SNPs within subsets of studied population. 

The traditional GWAS identifies relevant SNPs across the entire population and therefore 

can miss the SNPs that are specific to only distinct sub-populations.  (13-16)  
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The method is a good fit for studies where the studied expression of phenotype is multi-

molecular, such as the plasma lipidome in this work, which includes the concentration 

measurements of 437 different quantified plasma lipid molecules. Using PGMRA 

method, multi-molecular phenotype data such as lipidome can be analysed against 

whole human genomes including around 40-400 million gene variants (i.e. 1000G/TOP-

Med imputed GWAS data). 

Clustering is another suitable method for multidimensional datasets, which allows im-

proved statistical power as clustering reduces number of statistical tests (for multiple 

testing correction) from individual molecules to cluster of molecules, when compared to 

a more traditional subject-wise linear regression methods of analysis, like GWAS. The 

new method, PGMRA-pipeline, differs from previous linear regression method in that it 

is non-linear, allowing to study, in addition to the main genotypic effects, their interactions 

with other genes and many environment reflecting factors (like our personality or plasma 

lipidome). Our research team has already successfully utilized the new method for find-

ing the “missing” genetics of temperament, character and personality and found 972 re-

lated genes, which together are a near complete explanation for the whole inheritance 

of temperament, character, and personality.  (14-16) 

In this thesis, my aim is, for the first time, to apply this complementary bioinformatic 

GWAS-PGMRA-GSEA platform for uncovering detailed lipidome-wide genetic architec-

ture and through extensive bioinformatic gene annotation, define the role of this common 

variation in the regulation of human lipid metabolism and content of plasma lipidome. 
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2. REVIEW OF LITERATURE 

2.1 Human genome and classification of genetic variation 

The Trans-Omics for Precision Medicine (TOPMed) program seeks to elucidate the ge-

netic architecture and disease biology of heart, lung, blood, and sleep disorders, with the 

goal of improving diagnosis, treatment, and prevention (17). TOPMed Imputation Server 

(TOPMed Imputation Server (nih.gov) is a database and reference panel of 97 256 

deeply sequenced human genome samples and 410,323,831 genetic variants 

(381,343,078 SNVs and 28,980,753 indels) distributed across the 22 autosomes and the 

X chromosome (17). 

Careful analysis of the human genome and its coding and non-coding variants in diverse 

populations continue to give more information on the mutational history and evolution of 

the human genome (18), increased information on structural coding and non-coding var-

iations (19) and the development of new algorithms and techniques for detecting such 

rare and common structural variations (20). 

2.2 Human lipidome and lipid classification 

 A lipid is a macro biomolecule used to store energy, serving as a signal both inside and 

outside a cell and used in cell membranes as a structural component, outside of biology 

and biochemistry, it also sees use in various forms of industry, such as food and cos-

metics.  

Lipids are characterized by needing non-water solvent and include fats, oils and hor-

mones. Humans and other mammals have the own biosynthetic pathways for breaking 

down and synthesizing some lipids, but some essential lipids and fatty acids can only be 

obtained from their diet (21). 
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Lipids are an essential part of life, playing three major roles and comprise around one-

third of all human body metabolites (22). Lipids are often divided into eight categories, 

which are then further divided into classes, subclasses and sometimes into subclasses 

of subclasses (23) (Figure 3). These classifications arise both in detection methods and 

data display tools (23), with machine learning being used to classify both known and 

novel lipids (24).  

 

The establishment of lipidomics standards (https://lipidomics-standards-initiative.org) 

and LIPIDS Initiatives (https://www.lipidmaps.org) are both advancing the standardiza-

tion of lipidomics methodologies and annotations (22). The massive amounts of data in 

lipidomics and its analysis can easily allow for systemic errors to creep in, which has led 

to multiple strategies being developed to handle them (25). The lipidomic structure of the 

brain is an important area of study (26) and may have important connections to Alz-

heimer’s disease (27) yet more new things are still being discovered about the develop-

ment (28) and population (29) differences in lipids. In collaboration, we have widely used 

these methods to find novel lipidomics markers like ceramides and phospholipids spe-

cies which have also been commercialized as Cardiovascular Event Risk Test (CERT) 

or in Finnish as HERTTA tests (https://zora.fi/?lang=fi) and can be used in the prediction 

of many cardiovascular disease outcomes and death.  

These new lipidomic markers also improve CVD detection beyond their classical risk 

factors  (30, 31). Plasma lipidomic architecture is also shared by subclinical markers of 

Figure 3. Shows an example in depth characterization of plasma lipidome using either 
shotgun or targeted lipidomic mass-spectrometry (LC MS/MS) based platforms. (Permis-
sion from R. Laaksonen) 
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osteoporosis and atherosclerosis (32), thus they can be used also as biomarkers for 

primary prevention purposes.    

In circulation, the lipids are transported in different lipoprotein fractions to and from pe-

ripheral tissues to the liver and other organs (Figure 4).  

Figure 4. Lipoprotein pathways and lipid metabolism. (99). Abbreviations: ABCG5/8,
ATP-binding cassette sub-family G member 5/8; ABCA1, ATP-binding cassette trans-
porter A1; apolipoproteins AI, AII, AIV, AV, C, E, B48, B100; Lp(a), lipoprotein (a); LPL, 
lipoprotein lipase; HTGL, hepatic triglyceride lipase; LCAT, lecithin–cholesterol acyl-
transferase; CD36, cluster of differentiation 36 or fatty acid translocase; SRB1, scaven-
ger receptor B1; LRP, LDL receptor related protein or apoB/E receptor; LDL, low-density 
lipoprotein; VLDL, very low-density lipoprotein; IDL, intermediate-density lipoprotein; 
HDL, high-density lipoprotein;  apo B/E, apolipoprotein B/E receptor or LDL-receptor. 



8 
 

2.3 DNA genotyping array technology 

Whole-genome genotyping provides an overview of the entire genome, enabling ge-

nome-wide discoveries and associations (33). Using high-throughput next-generation 

sequencing (NGS) and microarray technologies, researchers can obtain a deeper un-

derstanding of the genome, 

providing insight into the func-

tional consequences of genetic 

variation. Array genotyping is a 

widely used tool that enables the 

assessment of several millions of 

genetic markers in thousands of 

individuals while also being cost-

effective

 

(34). Recently, advancements have been made in creating more portable genotyping 

devices and supposedly cheap tests, the devices which include USB attachments and 

smartphones (35). The principle of microarray genotyping and individual well colour 

readouts is given in Figure 5. One chip array can contain millions of this kind of mi-

crowells, allowing millions of simultaneous genotyping.  

Within the last year, multiple studies have been made on the subject (36-40). Some ap-

proaches have been made to assess various challenges, including repetitive DNA ele-

ments and accurate copy numbers quantification (41) and opportunities for possible use 

of long-term stored serum samples, that are generally understood to provide insufficient 

amounts of DNA (42). 

2.4 DNA/RNA sequencing techniques 

While whole-genome microarrays can currently interrogate over 4 million markers per 

sample, NGS-based whole-genome sequencing provides a comprehensive base-by-

base method for interrogating the 3.2 billion bases of the human genome (33). Each 

technology offers unique advantages in price, data analysis, and throughput depending 

on study goals (33). Deep sequencing technologies have greatly improved the study of 

Figure 5. In the chip array each genotype locus alleles are coloured by one of two 
fluorescent labelling dyes. Heterozygous and homozygous genotypes are differentiated 
by the relative intensity of these two colours. Modified from (33). 
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transcriptomes and genomes, allowing the investigation of posttranscriptional mecha-

nisms as RNA editing and splicing at unprecedented throughput and resolution (43). Ad-

vancements have also been made in creating novel methods for delivering nucleic acid 

probes to living cells to better image telomerase RNA (44). 

Sequencing technologies are still improving (45), with massively parallel sequencing and 

now nanopores, a technique to sequence DNA without synthesizing or amplification, has 

seen successful use (46). 

2.5 Lipid determination with LC-MS/MS based techniques 

Liquid chromatography tandem mass spectrometry (LC-MS/MS) emerged as an analyt-

ical technology with a wide number of applications, an overview of its use in lipidomics 

is show in Figure 6. When compared to gas chromatography-mass spectrometry (GC-

MS), LC-MS/MS is applicable to a larger number of analytes and easier to use (47). It 

has since seen a wide variety of use  (36, 48-50).  

 

LC-MS/MS operates with a combination of chromatography and multiple quadrupole 

mass spectrometers (Figure 7). First the chromatographic system separates the different 

components, the first quadrupole ionizes the molecules, selected molecular ions are then 

fragmented in the second one, selectively isolated by the third and final quadrupole for 

measurement by a detector (www.mccrone.com).  

Figure 6. Shows a typical analytic pipeline of shotgun lipidomics. (100) 
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This series (11) of processes provides highly sensitive detection, which can be as sen-

sitive as several parts per billion and are consistently in the part per million range. 

2.6 Genome wide association study (GWAS) 

A genome-wide association study (GWA study, or GWAS), with aliases whole genome 

association study (WGA study, or WGAS), is an observational  study to find variants as-

sicioted with a chosen trait, performed with a genetic variants genome-wide and from 

different individuals to find possible associations. GWA studies typically focus on asso-

ciations between single-nucleotide polymorphisms (SNPs) 

and traits like major human diseases 

(https://www.ebi.ac.uk/gwas/). A single-nucleotide polymor-

phism (SNP, pronounced snip) is a single nucleotide variation 

occurring in a DNA sequence, these differences can exist be-

tween different members of the same species or in paired 

chromosomes in a single subject, the different nucleotides are 

adenine (A), thymine (T), cytosine (C), or guanine 

(G)(https://isogg.org/wiki/Single-nucleotide_polymor-

phism). (Figure 8). 

An example illustration of a Manhattan plot (Figure 9.) depicting the chromosome spread 

of SNPs found in GWAS analysis of the AcylCarnatine 18:2 lipid, each dot represents 

a SNP, with the X-axis showing genomic location and Y-axis showing association level 

(P-values).  

Figure 8. DNA-SNP 
model  (102) 

Figure 7. The principle of tandem mass spectrometry. (101) 



11 
 

GWA studies compare the DNA of control participants to cases DNA having varied phe-

notypes for a particular trait or disease. These participants may be cases (people with a 

disease) and controls (without the disease) (51), or they may be people with different 

values (phenotypes) for a particular trait, for example high vs. low LDL-cholesterol (52). 

GWA studies classify participants by the clinical manifestation, called phenotype-first, 

instead of their genetic manifestation. Participants give samples of DNA that are then 

analysed using SNP arrays. If an allele, a type of the variants for genetic traits, is found 

to be more frequent, it is called to be associated with the phenotype (clinical trait or 

disease being investigated. SNPs found this way are associated and are then marked in 

the regions in the human genome that could influence the disease risk. (https://en.wik-

ipedia.org/wiki/Genome-wide_association_study). Since the discovery of the human ge-

nome (53) and the correlation between nearby genetic variations  (54), many advances 

have been made. For example, with the extension of the number of genotypes since first 

HapMap database (55), advancements in statistical methods (56), and since the first 

genome wide association study (57) thousands GWAS studies for many different traits 

have been performed. 

Figure 9. Manhattan plot of SNPs for a lipid in the GWAS analysis. The x-axis is 
chromosome, y-axis is p-value in scientific notation. 
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A postulation of GWAS is that individuals are predisposed to complex diseases by car-

rying multiple alleles with small independent effects that can combine, manifesting as, 

among others, coronary artery disease. 

The ability of GWAS is limited in finding rare novel variants that occur in just few families, 

as compared to more laborious sequencing techniques which allows also the discovery 

of these novel and rare variants (58). 

GWA studies identify variants in DNA and SNPs, this can find associations with diseases   

and can help narrow down causalit y among genes. The first successful GWA study was 

published in 2002 and it studied myocardial infarction (59). After that, the 2021-06-08 

version of the GWAS Catalog contains 5106 publications and 258738 associations 

(https://www.ebi.ac.uk/gwas/). 

 

2.7 Biostatistical analysis methodology 

PGMRA is a web server-based machine learning program, that uses a generalised fac-

torization method to identify SNP sets and phenotype sets from GWAS data and uncover 

relations among them. PGMRA avoid possible bias by and distinguishes itself by (12): 

(i) unsupervised machine learning, a grouping strategy using no previous knowledge and 

not consider the status of subjects in the data to form datasets; (ii) subjects, SNPs and 

features can belong to more than one relation; (iii) SNPs within a SNP set can be located 

anywhere in the genome; (iv) dimensionality of phenotype features is not reduced; (v) 

have no predefined SNP sets, phenotype sets or relations; (vi) relations between pheno-

type and SNP sets are found using the probability of subject intersection, without con-

sidering disease status; (vii) disease risk is estimating in a unbiased way by adding dis-

ease state afterwards into each relation and analysing the frequency of cases, relatives 

and controls (12, 13). 
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3. THEORY 

3.1 Transcription, translation, and gene expression regulation 

Cells make all the proteins needed by the body with transcription and translation using 

information stored in DNA. DNA and RNA are built from four bases (C-G, A-T in DNA 

and A-U in RNA as shown in Figure 10). The DNA pieces for a gene are copied in the 

cell nucleus as messenger RNA (mRNA). The DNA template information is carried by 

the mRNA to the cytoplasm. Information brought by the mRNA sequence is used to make 

proteins, i.e. in cytosol the mRNAs are then “translated” into proteins by large cell ma-

chines called ribosomes. In translation process, transfer RNA (tRNA) brings amino acids 

one-by-one to the ribosome as the mRNA proceeds through the ribosome in a matching 

codon sequences with amino acids specific tRNAs (multiple codons can code the same 

amino acid). The joining of tRNA to the mRNA strand codons (nucleotide triplets) creates 

a growing protein chain by adding amino acids and joining together in a sequence until 

mRNA sequence ends to termination codon (stop codons UAA, UAG or UGA) and the 

ribosome will release the protein Figure 10. 

 

Figure 10. Gene transcription and translation process and a codon translation table.
Modified from (103). Abbreviations: mRNA, messenger RNA; tRNA, transfer RNA. 
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The transcriptome-wide massive parallel sequencing has led to the discovery that most 

parts of mammalian genomes are actively transcribed into RNA, but only 2% to 3% of 

the genome, is further translated into protein (60). The majority of RNAs represents a 

heterogeneous group of noncoding RNAs comprising ribosomal RNA, transfer RNA, 

lncRNA, microRNA (miRNA), circular RNA, and other small RNA molecules (Figure 11-

13) (61). Many lncRNAs, 5’UTRs, and pseudogenes are translated, and some are likely 

to express functional proteins as shown by Ji, Z et al. using a new bioinformatic method 

to analyse ribosome profiling data, found that 40% of lncRNAs and pseudogene RNAs 

expressed in human cancer related cells are translated (61). The translation efficiency 

of cytoplasmic lncRNAs in these cancer cells are nearly comparable to that of mRNAs, 

suggesting that cytoplasmic lncRNAs are engaged by the ribosome and translated. While 

most peptides generated from lncRNAs may be highly unstable byproducts without func-

tion (61), but at least a small number of the peptides translated have changed little over 

the course of evolution (61). 

 

Figure 11 Transmission of genetic information. Primary transcripts give rise to pro-
tein-coding messenger RNAs (mRNAs) and a large variety of noncoding RNAs. mRNAs 
are further translated into protein. However, most noncoding RNA molecules can be 
broadly subdivided into long noncoding RNA (lncRNA), circular RNA (circRNA), mi-
croRNA (miRNA), transfer RNA (tRNA), ribosomal RNA (rRNA), small nuclear RNA 
(snRNA), etc, which act in the nucleus or cytoplasm (60). 
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Figure 12 LncRNAs have versatile modes of action in the nucleus and the cyto-
plasm. Nuclear-localised lncRNA regulate gene expression in various modes such as in 
a response to stimuli (signal), sequester transcription factors/protein complex (decoy), 
bring together multiprotein complexes (scaffold) or guide transcription factors/protein 
complex to specific target site (guide) to activate or repress transcriptional and induce 
chromosomal looping to increase association between enhancers and promoter region 
(enhancers). Cytoplasmic lncRNAs (linear or circular) can stabilise ribonucleoprotein 
complexes, regulate mRNA stability or sponge miRNAs, thus controlling translational 
events. Further regulatory functions may involve protein signalling (e.g. phosphorylation 
status) and trafficking. LncRNA indicates long noncoding RNA, and miRNA, microRNA. 
(60). 

LncRNA was observed to not have many homologues if the species are separated by 

more than 50 million years, suggesting that new lncRNA appear with high frequency (62), 

with multiple different mechanisms, including duplication, loss of coding potential of pro-
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tein-coding genes, formation of new transcriptional units following a transposable ele-

ment (TE, transposon, or jumping gene) integration, mutations that stabilize cryptic tran-

scripts by enhancing splicing and exaptation of sequences that were previously non-

coding (62). 

Genomic and transcriptomic analyses are revealing that as much as 85% of the human 

genome is transcribed (63). The role of lncRNA as a regulator of transcription has been 

gaining traction, with many proposed mechanisms for accomplishing this, including sig-

nal, decoy and guide RNAs (Figure 12)(63). 

LncRNAs are molecules defined by lack of computationally, protein-coding potential, and 

come in many diverse classes. With current RNA-sequencing and epigenomic methods 

and technologies, the discovery rate of new lncRNA genes is easily outpacing the efforts 

to characterize them, due to, among other reasons, the many experimental difficulties in 

studying lncRNA in comparison to protein-coding ones (64).  

Figure 13 MicroRNA (miRNA)—biogenesis and function. The biosynthesis of miR-
NAs, as well as their activity in translational repression (RNA interference (RNAi)) and 
transcriptional modulation (RNAa or RNAi), is represented diagrammatically. Pre-
miRNA, precursor miRNA; RISC, RNA-induced silencing complex; RNAa, RNA activa-
tion (65).  
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MicroRNAs (Figure 13) are endogenous, short (20–22 nucleotides in length) non-

coding RNAs that control the expression of many genes. MicroRNAs have been associ-

ated with several physiological activities, such as tissue development, lipid metabolism, 

cell differentiation, apoptosis, and stem cell division (65). In humans, approximately 70% 

of known miRNAs reside in non-protein-coding regions of the genome, while the remain-

ing 30% are transcribed from the intergenic regions (65). 

3.2 Theory of GWAS 

Genome wide associating study, GWAS in short, is a method of comparing the genomes 

between different groups such as between sick and healthy, case-control groups, and 

attempts to identify SNPs, single nucleotide polymorphisms, that occur more often in 

those with a disease than those without (https://medlineplus.gov/genetics/understand-

ing/genomicresearch/gwastudies/). The analysis is performed using software such as 

PLINK v1.90b3q 64-bit (https://www.cog-genomics.org/plink2)  (66), there is also a 

newer v2.x of PLINK which is computationally faster.  

 GWAS is based on linear regression model which is a statistical technique to investigate 

association between one or several explanatory variables such as SNPs and an outcome 

variable such as a disease. Regression can be used in both explanatory and predictive 

models, a common example being the connection between sale of fans and alcohol use 

to smoking. (67) 

Multivariable regression can be shown using the following formula. 

Y = a + b1X1 + b2X2 

Where Y is the factor to be explained (outcome), let a be the default constant, X1 and 

X2  the explaining variables and b1 and b2 their regression multipliers (coefficients). 

3.2.1 Limitations 
 

GWAS must adopt a high level of significance to account for multiple tests, lowering the 

detection power due to high signal thresholds, leading to GWAS missing a large amount 

of proposed heritability in the genome. This leads to that GWAS being unlike to ever 

identify all genetic determinants for complex traits. The clinical value of GWAS is also 

limited due to missing heritability and that genetic screening of an entire populations is 

unfeasible (68). 
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3.3 Theory of phenotype-genotype many-to-many relationship 
analysis 

Now PGMRA functions without open-source code as a web server, implemented using 

PHP (PHP: Hypertext Pre-processor), it uses a bash script to communicate with the dif-

ferent biclustering and post processing implementations (13). The biclustering methods 

are written in C but are used through their respective Perl or R wrappers. The PGMRA 

implementation uses several R-project packages (12):  

- pheatmap for the heatmap graphs 

- latticeExtra, akina, tgp, animation and plotrix for 3D risk graphs 

- rpart and rpart.plot for classification trees 

- SKAT for the statistical analysis of SNP sets 

- biclust, fabia and BicARE for the Cheng&Church, FABIA and FLOC biclustering    meth-

ods, respectively 

3.3.1 Clustering 
 

Clustering is a proven approach to the analysis of large data sets, like tens of thousands 

of gene expressions, it is also known as one-way clustering, in which gene data can be 

gathered based on their profiles. 

The purpose of clustering is to group elements of the data, trying to optimize either ho-

mogeneity, where the groups information is as same as possible or separation, where 

the information of the groups is as dissimilar to each other as possible. Clustering has 

brought significant results in genetic research (69-72), but one of its assumption is that 

that all members of an elements share a similar function.  

Clustering is performed separately either on the rows or columns of a data matrix. It is 

called biclustering when performed on both dimensions at the same time, looking for 

sub-matrixes that can overlap. Fuzzy, possibilistic and probabilistic clustering comprise 

the conceptual field of so-called soft clustering methods (73).  

 

3.3.2 Biclustering 
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This technique clusters both rows and columns simultaneously, as opposed to clustering 
only rows or only columns. Let Y be a m × n matrix. The goal of biclustering now is to 
find subgroups of rows and columns which are as similar as possible to each other and 
as different as possible to the rest  (74, 75). 

This basically comes down to clustering on both the row and column dimension simulta-

neously and while clustering methods on one dimension derive a global model, biclus-

tering algorithms will produce a local model (75).  

For example, in clustering algorithms each row in a cluster is defined over all the col-

umns, however a row in a bicluster is selected using only a subset of columns. Going 

back to the matrix Y, this corresponds to looking for submatrices with a high similarity of 

elements. This submatrix above is what is called a bicluster (Figure 14)(75).   

Biclustering functions by attempting to minimize the mean squared residue score, but 

this can lead to simple one gene, one condition sets as that more easily satisfy the as-

sumptions. A way to overcome this is, defining A(I,J) as a δ - bicluster if H(I, J) ≤ δ. 

Assuming that this threshold indicates strong similarity, you can confine the search to 

find large δ-biclusters (76). 

When searching for matrixes, the algorithm first starts by removing rows and columns 

which have the greatest H values, so that H (I, J) < δ, then adding rows and columns 

until it is no longer possible to do so without H exceeding δ. The remaining sub-matrix is 

declared a bicluster if the matrix is empty then none were found. The algorithm is com-

pletely deterministic, finding the same biclusters every time, thus for it to find more than 

one, the previous bicluster must be masked, this is done by filling the positions of the 

bicluster with random values, these new values are unlikely to form patterns and are first 

candidates for removal on subsequent runs of the algorithm   (77). 

Figure 14. Biclustering finds objects (subjects) and variables with a similar value A 
and reports them as a bicluster (submatrix). (104) 
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The BiclustGUI R Package - 1.1.3 developed by De Troyer Ewoud serves an easy user-

friendly interface in R Commander for the users to different types of biclustering analyses 

and their visualisation (see below)  (75).  

 

3.3.3 NMF- nonnegative matrix factorization 
 

Nonnegative matrix factorization (NMF) is a technique for acquiring information from 

high-dimensional data, it has been successfully used in, among others, signal pro-

cessing, face recognition and text mining. NMR theory development has resulted in var-

ious applications with multiple algorithms and methods on commercial platforms, one if 

which is R Commander (Figure 15). Free applications tend to have hurdles in their usage, 

such as requiring programming skills, limiting their use in the wised research community 

(77). 

NMF, also known as positive matrix factorization and nonnegative matrix approximation 

(78), is a technique with wide application in both clustering and classification. It is a 

method for approximating nonnegative high dimensional data in a low dimensional space 

(79). Figure 16 shows an example of a biclustering algorithm. Below is a quoted review 

of the nonnegative matrix factorization. 

Given a nonnegative matrix X ∈ Rm × n, each column of X is a data sample. The NMF 

algorithm aims to mate this matrix by the product of two nonnegative matrices U ∈ Rm × 

k and V ∈ Rk × n (80). To achieve this, the following objective function is minimized: 

𝑂 = ||𝑋 − 𝑈𝑉 ||𝐹
2  𝑠. 𝑡. 𝑈 ≥ = 0, 𝑉 ≥ = 0                (1) 

Figure 15. Screen capture of R-commander biclustering options. 
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where ||. ||ி  denotes the Frobenius norm (79). 

saNMF is an essential part of PGMRA pipeline which is a commercial platform (no open 

code available). Our objective is to apply this method in the biostatistical analysis of lip-

idome- and genome-wide omic data and prove the suitability of fuzzy FNMF method as 

a part of solving complex, especially non-linear biological problems. For that purpose, 

Gaujoux R and Seoighe C (2010). “A flexible R package for nonnegative matrix factori-

zation.” (77) have developed a package for the R/BioConductor platform. The package 

ports public code to R and is structured to enable users to easily modify and/or add 

algorithms. It includes several published NMF algorithms and initialization methods and 

facilitates the combination of these to produce new NMF strategies. Commonly used 

benchmark data and visualization methods are provided to help in the comparison and 

interpretation of the results (77). Documentation, source code and sample data are avail-

able from: R Latest stable release from CRAN (77): http://cran.r-project.org/pack-

age=NMF. PGMRA pipeline uses Factorization method (NMF) proposed and termed 

Fuzzy NMF (FNMF) and first introduced by our collaborators (13) as a web-based server. 

FNMF allows overlapping among sub-matrices and detection of outliers and is imple-

mented as the default option. 

Figure 16 Shows how biclustering algorithm works in principle by picking up groups 
with similar features (= subject x gene SNP biclusters). (105) 
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3.3.4 Sequence kernel association SKAT-test 
 

Sequence kernel association test (74) or SKAT is used in PGMRA pipeline to test for 

associations between SNP sets and phenotypes. SKAT is a kernel association test which 

quantify the similarity between pairs of subjects and tests if this similarity is associated 

with trait similarity. Kernel methods relate covariate outcomes in terms of pairwise simi-

larities and are related to distance-based multivariate regression methods (81, 82), with 

differences in the way the p-value is computed, kernel methods calculate it analytically 

while distance-based methods mainly calculate by permutation methods. Kernel meth-

ods are a family of flexible representative approaches for aggregative variant association 

analysis and advances in these methods have extended its use to a diverse array of 

study designs and outcome types  (82). 

3.3.5 Hypergeometric test 
 

A hypergeometric distribution describes a probability of drawing a set number of ‘good 

items’ from a collection of ‘good’ and ‘bad’ items in a certain number of draws, more 

formally, the probability of drawing exactly k desired people from a population of N with 

desired attribute K.  

 Pr(𝑋 = 𝑘) = 𝑓(𝑘; 𝑁 , 𝐾, 𝑛) =  
ቀ಼

ೖቁቀಿష಼
೙షೖ ቁ

ቀಿ
೙ቁ

,             (2) 

 

The hypergeometric test checks for over-representation, where the p-value is the prob-

ability of randomly drawing k or more successes in n draws, or under-representation, 

where the p-value is the probability of drawing k or fewer successes (83).  
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4. OBJECTIVES 

To perform lipidome-wide GWAS analysis first between 437 separate plasma lipid spe-

cies and 546,677 genotyped SNPs and then between five separate eigenlipid classes 

derived from PCA analysis (i.e. used as surrogate markers for these 437 lipids) and 

546,677 genotyped SNPs.  

 

The specific objectives of this work were: 

1. To use complementary PGMRA analysis for lipidome-wide GWAS uncovering 

the detailed genetic architecture of a human plasma lipidome by studying the 

significance of nominally associated (p < 5x10-4) 18,370 SNPs revealed by lip-

idome-wide GWAS (= 437 separate GWAS) using PGMRA-analysis to find the 

true significance of these hidden “grey area” SNPs in the regulation of plasma 

lipidome.  

2. To study weather PCA analysis can be used to find surrogate markers called 

hereafter eigenlipids for the whole lipidome, to lower the time-consuming compu-

tational load as compared to lipidome-wide GWAS analysis.  

3. To discover new genetic base for lipidome classification and study the biological 

significance of significant lipidome associated SNPs set by using gene set en-

richment analysis. 
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5. STUDY SUBJECT AND METHODS 

5.1 Study subjects and risk factor follow-up data 

5.1.1 The Cardiovascular Risk in Young Finns Study (YFS) 
 

The Cardiovascular Risk in Young Finns Study (YFS) is a Finnish longitudinal general 

population study on the evolution of cardiovascular risk factors from childhood to adult-

hood (84). The study began in 1980, when 3,596 children and adolescents aged 3, 6, 9, 

12, 15 and 18 years were randomly selected from five university hospital catchment ar-

eas in Finland (31). In 2007, 2,200 participants aged 30-45 years attended the 27-year 

follow-up. Of these subjects, we included to final analysis those for whom the GWAS 

genotype data and the lipidomic parameters and covariate data were available. There-

fore, 1,426 participants contributed to the final association analyses of GWAS and 

plasma lipidome profile and final PGMRA analysis. Figure 17 shows the general descrip-

tion of The Young Finns Study 40-year-follow-up and its three-generation study. The 

more general aims of the study are presented in project internet pages (https://young-

finnsstudy.utu.fi) (84). 

5.1.2 YFS ethical issues 

 

Figure 17. Young Finns study follow-up study timepoints (T0-T5) between 1980-2020.
Abbreviations:T2D, type 2 diabetes; MetS, metabolic syndrome; RF, risk factor; MET, met-
abolic; LIF, life-style; ENV, environmental; CVD, cardiovascular diseases; G, generation 
G0,G1 and G2.  
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The YFS was approved by the 1st ethical committee of the Hospital District of Southwest 

Finland and by local ethical committees (1st Ethical Committee of the Hospital District of 

Southwest Finland, Regional Ethics Committee of the Expert Responsibility area of Tam-

pere University Hospital, Helsinki University Hospital Ethical Committee of Medicine, The 

Research Ethics Committee of the Northern Savo Hospital District and Ethics Committee 

of the Northern Ostrobothnia Hospital District) (10, 31). The study protocol of each study 

phase corresponded to the proposal by the World Health Organization. All present sub-

jects gave written informed consent, and the study was conducted in accordance with 

the Helsinki declaration. At prior follow-ups of YFS, informed consent of every participant 

under the age of 18 was obtained from a parent and/or legal guardian (10, 31). 

5.2 Genotyping for GWAS 

 

From whole blood samples of YFS the genomic DNA was extracted from peripheral 

blood leukocytes using a commercially available kit and Qiagen BioRobot M48 Work-

station according to the manufacturer’s instructions (Qiagen, Hilden, Germany) (85). 

Genotyping was performed at the Welcome Trust Sanger Institute using a custom-made 

Illumina Human 670k BeadChips. Genotypes were determined using the Illuminus clus-

tering algorithm. Fifty-six samples failed the Sanger genotyping pipeline QC criteria (i.e. 

duplicated samples, heterozygosity, low call rate, or Sequenom fingerprint discrepan-

cies)(85). Three samples were removed due to a low genotyping call rate (< 0.95) and 

54 samples were excluded for possible relatedness (pi.hat > 0.2). A total of 11,766 single 

SNPs were excluded based on the variation from Hardy-Weinberg equilibrium (HWE) 

test (p ≤ 1.0 x 10-6), 7,746 SNPs failed the missingness test (call rate < 0.95) and 34,596 

SNPs failed the frequency test (MAF < 0.01). After quality control there were 2,443 sam-

ples and 546,677 genotyped SNPs available for further analysis  (85). 

 

5.3 Lipidome-wide analysis with mass-spectrometry 

Lipids in the plasma were separated using the previously described method (86). Lip-

idomic analysis were performed before with an unfocused mass-spectrometry (LC-

MS/MS) method from the plasma (Zora Biosciences Oy, Espoo, Finland). The method is 

described in more detail in (87).  



26 
 

The analysis was made with a hybrid-triple quadrupole/linear ion trap utilizing mass-

spectrometry (QTRAP 5500, AB Sciex, Concord, Canada), equipped with ultra-high-per-

formance liquid chromatography (Nexera-X2, Shimadzu, Kyoto, Japan) (31). Chromato-

graphic separation of the lipidomic screening platform was performed on an Acquity BEH 

C18, 2.1 × 50 mm id. 1.7 µm column (Waters Corporation, Milford, MA, USA). The data 

were collected using a scheduled multiple reaction monitoring algorithm and the data 

were processed using Analyst and MultiQuant 3.0 software (AB Sciex) (31, 88). The list 

of studied 437 lipids and their annotations are in Table 6S. 

5.4 Phenotype-genotype many to many relationship analysis 

This work uses a new bioinformatic statistical method framework PGMRA (13)(Figure 

18), which our research team has previously used in cooperation with the developers 

(14-16), a screen capture of the web server can be seen in Figure 19. 

Figure 18. PGMRA framework. Modified from (12) 
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It is based on NMF (nonnegative matrix factorization), where clusters are made of both 

phenotype data (phenotype features x subjects) and genotype data (SNPs x subjects), 

the data is first factorised using Fuzzy NMF (13) (89), after which the significance of 

overlapping subject (ID) is tested over each genotype x phenotype co-clusters. To do so, 

the algorithm uses a co-cluster test based on hypergeometric statistics, where the co-

herence between two bicluster is evaluated by their common observations. Then, coher-

ent bicluster are encoded as relational bicluster or simply relations. (13) (Figure 20). 

Then, by incorporating a posteriori the subject status within each relation, we can estab-

lish the risk surface of a disease (in our research risk for subclinical atherosclerosis) in 

an unbiased mode.  

The analysis is performed using R, Python and C programming languages, with artificial 

intelligence based counting algorithms and from them coded wide capable calculating 

platform. This platform produces the virtualization of the results, which is easy to interpret 

and understand. In this work, many-phenotype (P) from the 437 quantitative lipid mole-

cules measured using the LC-MS/MS method from plasma and the genome wide SNP 

data as the explainer, from which the pre-selected nominally significant (gene variants  

 

 

Figure 19. Screen capture of the PGMRA website 
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(SNPs) are chosen. These gene variants are picked by performing a GWAS analysis for 

each one of the lipidome containing lipid species.  

Concentrations of the 437 molecular lipid species in the data were measured from 

plasma using LC-MS/MS-method. In this bioinformatic work, before the actual PGMRA 

analysis, a GWAS analysis was performed for each of the 437 lipids, from where the 

genetic variants for the PGMRA were chosen.  

For this reason, due to a hard requirement on our available computing capacity we had 

to limit the individual (437+5) GWAS analyses to just genotyped 546,677 SNPs instead 

of available 40 million (1000 genome reference) imputed SNPs. 

5.5 Gene set enrichment analysis 

The gene set enrichment analysis (GSEA) was done using overrepresentation method 

implemented in the clusterProfiler R package (doi: 10.1089/omi.2011.0118), chosen 

since we just had a list of genes to which the SNPs were mapped. The analysis was 

done using a R-program and codes 11 and 12 shown below in chapter g. Altogether 

28922 Biological process Gene Ontology based gene sets were analyzed.  

Figure 20. Clusters are formed and evaluated from data; good clusters are then an-
alysed in how they relate. Modified from (13). 
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6. BIOSTATISTICAL ANALYSES 

 

6.1 Data pre-processing for biostatistical analysis 

The data for the study was analysed on a standard desktop computer (AMD Ryzen 7 

3700X, 32 GB ram, Windows 10). The data consists of three parts, covariate data, lip-

idomic data and SNP data. The data was read using R Statistical package v. 4.0.2 

(http://www.r-project.org), together with RStudio v. 1.3.1073 (https://rstudio.com/) (Code 

1). 

 

Lipids were coded differently in the files, differences such as using “_”, “:” or “.”, and were 

then renamed to match the data file naming scheme. This was primarily done using 

gsub() function, which searches for a given set of characters from a string and replaces 

it with another given set (Code 2).  

The lipidomic data was read into memory in string format and is changed back to numeric 

with a use of lapply() and gsub(), which apply a given function to every entry in a list 

(Code 3). 

 
2 
 

4 
 

6 
 

8 
 

staualab07 <-read_sas("staualab07.sas7bdat") 
 
lipidAnnotation <- as.data.frame(read.csv2("YFS_Zora_lipids_annota-
tion.csv")) 
 
lipido <- read.csv("Young_Finns_lipid.csv", header = T, sep = ";") 
 
lipidNames <- read.table("lipidlist.csv", sep = ";") 

Code 1. Loading data to memory. 

 

 
2 
 

4 
 

6 
 

8 
 

valist<-c("tutkno", gsub("_", ".", lipidAnnotation[lipidAnnotation$Li-
pid_class1==lclass,]$SAS_DATA_NAME)) 

 
if (lclass == "Glycerophospholipid"){ 

  valist <- valist[-2:-77] 
  ##The replaced list of names for the lipids 
  valist <- c(valist , "LPC.14.0_sn1", …, "LPE.P.20.0") 
} 

Code 2. Renaming lipids to match the data. 
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6.2 Dimensionality reduction of lipidomic data with Principal 
Component Analysis 

 
The LC-MS/MS based analysis results of plasma lipids were classified to five eigenlipid 

groups, Fatty_acyl, Sterol_lipid, Sphingolipid, Glycerolipid and Glycerophospholipid by 

dimensional reduction using PCA. The specific classification (annotation) of all analysed 

lipids is found in Supplemental Table 1S.   

PCA was performed in a for() loop within a try({}), repeating so for each of the above five 

groups separately and due to the try({}), if something in a loop fails, it will simply move 

to the next loop instead of interrupting the code, with a warning message printed  to the 

console. One of the first things the loop performs is the data pre-processing mentioned 

previously and the following check (Code 4), where the data is checked for missing value 

(NA, not available) values, the numeric conversion is confirmed and the lipidomic data is 

normalised using the scale() generic function from the base R package. 

 
2 
 

4 
 

6 
 

8 
 

#Copy the lipid data from the list of chosen lipids 
pheno <- lipido[,valist] 
 
#Changing the string values back to numeric using lapply and gsub, 
substituing ',' for '.'. 
 
pheno[,2:length(names(pheno))]<-laply( 
pheno[,2:length(names(pheno))], function(x) as.nu-
meric(gsub(",",".",x)))} 

Code 3. Using lappy() and gsub to switch “,” with “.”. 
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for (val in names(pheno)[2:length(names(pheno))]){ 
  n <- length(pheno$tutkno) - length(pheno[!is.na(pheno[, val]), val]) 
  ##print(sprintf("%s NA: %s n: %s", val, n, length(pheno[,val]))); 
   
  ## IF value not numeric, like in the case of TUTKP11 variable, skip 
to next loop 
  if(!is.numeric(pheno[, val])) next 
   
   
   
  #If there are more than 0 non-NA values, add to p the non-NA values. 
Then scale the values in p$val amongs each other. 
  if (n > 0){ 
    pn <- p[!is.na(p[,val]),] 
    p <- pn 
    rm(pn) 
  } 
  p[,val] <- scale(p[,val]) 
} 

Code 4. Checks the data for NA (=missing) values, confirm numeric nature and 
scale the lipidomic data. 
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Then in preparation for the PCA analysis, subject ID numbers are stored into row-names, 

the ID value row is removed and the PCA analysis is run (Code 5), after the analysis is 

done, a temporary empty data frame is made, to which the first principal component 

(PC1) is extracted from the PCA results, the subject ID values column is renamed, and 

the data is then merged to an out of loop object by subject ID.  

 

6.3 Genome-wide association analysis of human lipidome  

Illumina 670k custom-built chip was used in the Young Finns study genotyping. All 

GWAS analyses were done by using PLINK v1.90b3q 64-bit (29 May 2015) and using 

genotyped data. 

The data was first preformatted, a .fam file was made with subject IDs that matched the 

ones in use and the files required for the GWAS analysis were loaded, the pheno.link 

object contains the pre-calculated genetic principal components (PC1-10) for the 

staualab7 data (Code 6).  
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#Add tutkno ID to the rownames as the prcomp did not like the ID 
values. Then remove tutkno ID entry. 
row.names(p) <- p$tutkno 
p <- p[,-1] 
 
#PCA analysis 
pca <- prcomp(p,scale=T, rank. = 5) 
 
#Refresh p for use as a data from for extracting the data from the pca 
analysis. 
#Tehn pick the PC1 entry values as numeric. 
p <- data.frame() 
 
#Extract the rowname information that holds the subject ID values 
p <- data.frame(as.numeric(names(pca$x[,"PC1"]))) 
 
#Gather the data to p, into a column called by the lclass name cur-
rently ongoing in the loop 
p[,lclass] <- pca$x[,"PC1"] 
names(p)[names(p) == "as.numeric.names.pca.x..PC1.."] <- "tutkno" 
 
#Merge data into an out-of-loop data frame by tutkno ID values. 
collection <- merge(collection, p, by.x = "tutkno", by.y = "tutkno", 
sort = F, all = T) 

Code 5. PCA analysis and data extraction. 
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The code is run a loop, with separate scripts made for the lipid groups and the larger 

individual lipids, but the main point stays the same, first the data for a GWAS run is 

gathered, renamed and checked for NA values, then a text file is created with the lipid 

data and all the covariate data (Code 7). The nlist loop element is a list of names for the 

lipids or the lipid groups and is written in the txt file as well as used to name it.  
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linkkiID <- read.delim("ID_Linkki_laseri.txt") 
 
staualab07_lim <- staualab07[,c("Tutkno07", "ika07", "TUTKNO80", "SP", 
"bmi07", "diabet207", "fhlaak07")]  
 
staualab7_lim <- merge( staualab07_lim, pheno_link[,c("tno", 
paste("PC", 1:10, sep = ""))], 
        by.x = " Tutkno07", by.y = "tno", all = F, sort = F 
) 

Code 6. File load for GWAS. 
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for (name in nlist){ 
  combined <- merge(staualab07_lim, p, by.x = "Tutkno07", by.y = 
"tutkno", sort = F, all = T) 
 
  combined <- combined[,c("TUTKNO80","Tutkno07", "SP", name,  
                          "bmi07", "ika07", "diabet207", "fhlaak07")] 
   
  names(combined)[names(combined)=="TUTKNO80"] <- "FID" 
  names(combined)[names(combined)=="Tutkno07"] <- "IID" 
   
  combined <- merge(combined, linkkiID, by.x = "FID", by.y = 
"tutk_nro", all = F, sort = F) 
 
  combined[,"FID"] <- combined$Sanger_ID 
  combined[,"IID"] <- combined$Sanger_ID 
   
  names(combined)[names(combined)=="SP"] <- "sex" 
  names(combined)[names(combined)=="ika07"] <- "age" 
  names(combined)[names(combined)=="bmi07"] <- "bmi07" 
   
  combined <- combined[!is.na(combined[, name]),] 
  combined <- combined[!is.na(combined[,"bmi07"]),] 
  combined <- combined[!is.na(combined[,"sex"]),] 
  combined <- combined[!is.na(combined[,"diabet207"]),] 
  combined <- combined[!is.na(combined[,"fhlaak07"]),] 
  
  ##Switch numbers for sex 
  combined[,"sex"] <- ifelse(combined[,"sex"]==1, 2, 1) 
   
  phenolist<- paste("GWAS_Lipid_Loop/pheno_", name, ".txt", sep = "") 
  write.table(cbind(combined[,c("FID","IID", "sex", name, "age", 
"bmi07", "diabet207", "fhlaak07)]),  
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The latter half of the loop creates two strings, one to hold all covariates used and then 

the actual command for the GWAS run, which is run directly from RStudio using system 

(), which allows one to run system commands (Code 8). 

 

 

6.4 Lipidome-genotype many-to-many relationchip analysis 

The PGMRA analysis was performed in PGMRA server by the group that originally de-

veloped it (13). I did the preselection of nominally associated SNPs (p< 5 x 10-4) for 

PGMRA analysis, and it was based on GWAS of 437 original lipids (see chapter 6.3). 

These analyses resulted a subset of 18 370 nominally associated SNPs that were then 

used in PGMRA analysis. This list of preselected SNPs (extract snps.txt) for PGMRA 

analysis was extracted among YFS study SNP data (bfile LASERI_20091110) using the 

(Code 9) below.  

Additionally, Manhattan plots were made from the GWAS data using Code 10, which 

was done using the package ‘manhattanly’(version 0.2.0) and  later ‘qqman’ (version 

0.1.8). 
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row.names=F,col.names=T,dec=".", sep="\t",file=phenolist, 
quote=FALSE) 

Code 7. In-loop file creating for GWAS run. 
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  covarName <- paste("sex, age, bmi07, diabet207, fhlaak07, sep = "") 
   
  command <- paste("plink --bfile LASERI_20091110 --linear hide-covar 
mperm=100 --pheno ", 
                   phenolist," --pheno-name ",  
                   name," --covar ", phenolist, 
                   " --covar-name ", covarName, " --pfilter 1e-4 --
out GWAS_Lipid_Loop/OutputB/", 
                   name,".txt --threads 7", sep = "") 
  system(command) 

Code 8. GWAS command creation, execution and loop end. 

 
2 
 

 

plink --bfile LASERI_20091110 --extract snps.txt --make-bed --out LA-
SERI09_subset 

Code 9. Subsetting the selected SNP data from GWAS .bed/.bim/.fam format into 
their own files. 
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6.5 Gene set enrichment analysis 

The group of 35 relations was subjected to a gene set enrichment analysis that enriched 

18 out of the 35, done using Code 11, this was done using packages 

‘EnsDb.Hsapines.v79’(2.99.0) and ‘clusterProfiler’ (3.16.1). The results where then 

formed into a bar plot by Code 12. 
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library('manhattanly') 
 
manhattanly(collectedOutput, snp = "SNP") 
manhattanly(groupOutput[!duplicated(groupOutput$SNP),], snp = "SNP", 
title = "Eigenlipid SNPs") 

manhattanly(groupOutput[groupOutput$LCLASS == 'Fatty_acyl',], snp = 
"SNP", gene = "LCLASS") 

Code 10. Doing Manhattan plots from the genome-wide SNP-data 
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dat<- read.csv("Relationdata_fromResults.txt",sep = " ",header = F) 
ens_id<-dat$V4 
 
 
#BiocManager::install("EnsDb.Hsapiens.v79") 
library(EnsDb.Hsapiens.v79) 
BiocManager::install("clusterProfiler") 
library(clusterProfiler) 
# see this if error with annotation db 'options(connectionObserver 
= NULL)' 
gene_symbol <- ensembldb::select(EnsDb.Hsapiens.v79, keys= ens_id, 
keytype = "GENEID", columns = c("GENEID","SYMBOL")) 
 
relations<-read.csv("Relation35snp_RelationTable.txt",sep = " 
",header = T) 
uniq <- unique(relations$Relation) 
 
relations_tbl <- list() 
 
for(i in 1:length(uniq)){ 
  relations_tbl[[i]] <- relations[grep(uniq[i],relations$Rela-
tion),]   
} 
 
############## attach gene symbol to SNPs #### 
library(clusterProfiler) 
enrich_list <- list() 
 
##### replace i with values from 1 to 35 below (you can use for loop 
but this requires some fixing in enrich_list as some relations don't 
have any pathways. I did it manually) 
res <- relations_tbl[[i]] 
tmp <- dat_relations[match(res$SNP,dat_relations$V1),] 
sum(res$SNP==tmp$V1)==nrow(res) 
res$ensID <- tmp$V4 
enrich_list[[i]] <- enrichGO(gene=res$ensID, Or-
gDb=org.Hs.eg.db,ont= "BP", pAdjustMethod = "BH", pvalueCutoff  = 
0.05, qvalueCutoff=0.05, keyType='ENSEMBL',readable=TRUE)@result 
             
save(enrich_list,file="enrich_list.RData") 

Code 11. Pathway analysis by using gene set enrichment method. 
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load("enrich_list.RData") ## this data was generated using codes from 
'manhattan_pathway.R' 
 
## isolate relations with significant GO terms. For example, 
R184 <- enrich_list[[34]][which(enrich_list[[34]]$p.adjust<0.05),] 
R184 <- R184[!duplicated(R184$geneID),] 
 
# combine all tables/relations 
dat <- 
rbind(R104,R112,R119,R125,R128,R136,R160,R162,R18,R184,R188,R30,R34
,R49,R56,R76,R77,R79,R94) 
 
dat$Genotype_lipidome_relations <-     
c(rep("R104",nrow(R104)),rep("R112",nrow(R112)),rep("R119",nrow(R11
9)),rep("R125",nrow(R125)),rep("R128",nrow(R128)),rep("R136",nrow(R
136)),rep("R160",nrow(R160)),rep("R162",nrow(R162)),rep("R18",nrow(
R18)),rep("R184",nrow(R184)),rep("R188",nrow(R188)),rep("R30",nrow(
R30)),rep("R34",nrow(R34)),rep("R49",nrow(R49)),rep("R56",nrow(R56)
),rep("R76",nrow(R76)),rep("R77",nrow(R77)),rep("R79",nrow(R79)),re
p("R94",nrow(R94))) 
 
# remove duplicates 
dat1 <- dat[!duplicated(dat$Description),] 
 
#  avoid ggplot ordering description 
dat1$Description <- factor(dat1$Description, levels = dat1$Descrip-
tion) 
dat1$p.adjust <- -log10(dat1$p.adjust) 
 
ggplot(dat1, aes(x=Description, y=p.adjust, fill=Genotype_lip-
idome_relations)) + 
  geom_bar(stat="identity") + xlab("Biological processes") + ylab("-
log10(P-values) adjusted with Benjamini & Hochberg method") + 
coord_flip()  
 
# or, 
 
legend_title <- "Genotype-lipidome relations" 
ggplot(dat1, aes(x=Description, y=p.adjust, fill=Genotype_lip-
idome_relations))  
 + geom_bar(stat="identity") + xlab("Biological processes")  
+ ylab("-log10(P-values) adjusted with Benjamini & Hochberg method") 
+theme(text = element_text(size=15), axis.text.x = element_text(an-
gle=90, hjust=1)) 

Code 12. Gene set enrichment analysis result plot drawing after gene set enrich-
ment analysis. 
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6.6 Lipidome associated SNPs, annotation to genes and gene 
functions 

The Ensembl Variant Effect Predictor (VEP) is an open-source tool for the analysis and 

annotation of genomic variants, for both coding and non-coding regions (90). It is a tool-

set with multiple interfaces and options for configuring your analysis and has access to 

a large collection of genomic annotation with many different options for specific require-

ments. The Ensembl Variant Effect Predictor is free to use and is available as a web 

interface and a command line tool (90)(Figure 21).  

Figure 21. A typical VEP Web results page. Section (1) gives summary pie 
charts and statistics. Section (2) contains a preview of the results table with navi-
gation, filtering and download options. The preview table contains hyperlinks to 
genes, transcripts, regulatory features, and variants in the Ensembl browser. The 
results can be downloaded in CF, text, or custom VEP file formats (90). 
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7. RESULTS 

7.1 Dimensionality reduction of lipidomic data with PCA and 
GWAS analysis of eigenlipids 

 

The GWAS of five PCA derived eigenlipids (in chapter 6.2) serving as a surrogate marker 

for all plasma lipids is given in Figure 22. showing combined Manhattan plot for these 

five eigenlipids. 

We performed GWAS for the five eigenlipid groups (named Fatty_acyl, Sterol_lipid, 

Sphingolipid, Glycerolipid and Glycerophospholipid groups) derived after principal com-

ponent analysis (see PCA analysis chapter 6.2) using age, sex, and BMI as covariates. 

In this analysis for the five eigenlipids (using p-value threshold < 5 x 10-4), we found a 

total of 751 separate SNP - eigenlipid associations (Figure 22). 

7.2 Lipidome-wide GWAS analysis  

 

Figure 22. Manhattan plot of SNPs from the five eigenlipid GWAS analysis. X-axis 
indicates the Chromosome numbers (1-22) and y-axis SNP related p-values, trans-
formed to -log10(p) scale. 
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Two different statistical regression models, i.e. GWAS studies (a and b) were performed 

for all 437 separate lipid species using PLINK a) using sex, age, BMI, type 2 diabetes, 

lipid medication as covariates and model b) adding also the first 10 genetic principal 

components (PC1-10) as covariates.  

The GWAS for individual 437 lipid species run without the PC’s (model a), resulted 

~48 000 nominally (p-level < 5 x 10-4) associated SNP’s (Figure 23), which increased to 

51 707 SNPs when also the genetic PCs1-10 were added as additional covariates to the 

otherwise similar analysis (model b).  Of these 51 707 total SNP-lipid-trait associations, 

only 18 370 were related to separate SNPs. From these SNPs, 634 and 266 were sig-

nificant at genome-wide level p-level < 5 x 10-7 and < 5 x 10-8, respectively. The total 

number of significant (p-level < 5 x 10-7) associations between all studied lipid traits 

(n=437) and these separate 634 significant SNPs was 4482. Similarly, the total number 

of significant (p-level < 5 x 10-8) associations between all studied lipid traits (n=437) and 

these separate 266 significant SNPs was 2340. 

 

 

Figure 23. Manhattan plot of the lipidome-wise GWAS results, in figure those above 
red line are nominally significant SNPs (p-value < 5 x 10-4). 

From these genome-widely significant 634 SNPs (at p-level < 5 x 10-7) only 32 was 

shared (5 %) with the ones found to be associated in the grouped eigenlipid analysis at 

the same p-level < 5 x 10-7 (Figure 22 in chapter 7.1). 
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7.3 PGMRA analysis and new genetic lipidome classification 

The PGMRA analysis identified a total of 209 both “phenotype X subject” and “genotype 

X subject” groups, or biclusters to be more exact. These were filtered using a SKAT test 

resulting in 71 of the 209 phenotype-subject biclusters surviving and 153 of the 209 gen-

otype-subject biclusters surviving. Relationship analysis between these two groups of 

biclusters gave a total 189 suitable relations of which 93 were found significant by a 

further hypergeometric testing. These significant relations comprise of a total 5977 dif-

ferent SNPs that were in 3164 different genes, the analysis flow is shown in Figure 24. 

7.3.1 Lipidome biclusters (lipids x subject sets) 
 

Lipid biclusters (lipid x subject) are subset of people who are similar based on subset of 

their plasma lipid concentrations. PGMRA identified 71 optimized phenotypic lipid biclus-

ters in our YFS lipidomic data. Supplementary Table 2S. shows the detailed lipid names 

of each of the lipid phenotypic biclusters. 

Figure 24. Represents the outline of PGMRA analysis. The PGMRA 
analysis resulted following data output and results called lipids x subject-
sets, SNPs x subjects sets and their relations. GWAS-PGMRA analysis flow 
image was made using PDFescape online software, with no code available 
in an open format. 
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7.3.2 Genotypic biclusters (SNPs x subjects  sets) 
 

Genotypic biclusters (SNPs x subject) are subset of people who are similar based on 

subset of their genome SNPs. PGMRA identified 153 optimized genotypic SNP biclus-

ters in our YFS genotypic data. Supplementary Table 3S. shows the detailed rsnumbers 

for each SNP of the identified SNP biclusters and the Table 4S statistical associations of 

each of these 153 SNP sets with subjects. 

7.3.3 Bicluster (lipids x subjects) to (SNPs x subjects) relations 
 

Supplementary Tables 2-5 show results from bicluster (lipids) to bicluster (SNPs) rela-

tions. There are 93 pairs of genotype-lipid biclusters with statistically significant relation. 

The significance between related groups was calculated with/using hypergeometric test 

(i.e. overlap of participants between these two biclusters i.e. between the two datasets).  

 

PGMRA analysis resulted in 209 biclusters for both (lipid x subject) and (SNP x subject), 

filtering of these groups by SKAT reduced them to 71 lipid (Supplemental Table 5S) and 

153 SNP biclusters (Supplemental Table 4S). The hypergeometric test found 93 signifi-

cant (p<0.01 see supplementary Table 6S) relations between them and 17 relations of 

them had a p-level < 5 x 10-4. These 93 statistically significant relations identified of 5977 

different SNPs that cover 3164 different genes (listed in Supplemental Table 7S). Thirty-

five of the relations contained distinct SNPs representing genetic lipidomic subgroups 

(Table 1). 

Table 1. The 35 significant and distinct lipid x gene SNP set bicluster relations after 
PGMRA and hypergeometric testing. 

Relation numPatients numFeatsAY(SNPs) numFeatsBY(Phenovars) Hypergeometric 
R0 23 59 82 0.007083508 
R103 5 193 28 0.000467118 
R104 5 10 36 0.00992867 
R107 7 232 30 4.24E-05 
R112 7 34 17 0.000284391 
R119 9 34 30 0.000461113 
R122 10 253 17 2.08E-08 
R125 5 58 22 0.001375996 
R128 7 105 16 0.005995584 
R136 5 67 50 0.005221617 
R143 5 108 17 0.001004533 
R153 7 13 82 0.001494418 
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R160 6 16 14 0.000280794 
R162 6 54 12 0.000162383 
R164 7 10 16 0.008086693 
R170 6 74 16 0.001615117 
R18 7 39 50 0.000756494 
R184 21 12 82 1.73E-05 
R186 6 53 22 0.000759614 
R188 14 19 22 0.000830085 
R30 8 466 17 0.008708178 
R34 6 10 20 0.008313783 
R45 11 114 16 0.003974201 
R48 10 108 17 6.04E-06 
R49 7 58 13 0.008219131 
R54 6 90 16 0.003897149 
R56 7 8 7 0.007580586 
R59 6 34 25 8.80E-05 
R72 7 32 19 0.001422033 
R76 5 22 17 0.00885272 
R77 5 274 17 0.006299747 
R79 10 42 22 0.002996717 
R81 6 71 25 5.00E-05 
R93 7 50 17 0.000725517 
R94 5 7 23 0.001703721 

 

7.4 Defining the role of common variation in the genomic and 
biological architecture of human lipidome 

7.4.1 The annotation of lipidome associated genetic variation 

Ensemble data base and Ensembl Variant Effect Predictor (VEP) was used as basis in 
the gene/SNP annotations (http://www.ensembl.org/index.html)  (90).  

The Supplemental Table 7S summarizes the genes and gene regions affected by lip-
idomic associated SNPs. There are a total 3614 different gene loci which we associated 
to lipidome regulation.  

We did an exhaustive annotation for all of these SNPs/genes using the most up to date 
release of ensemble assembly GRCh37, the version 102 (GRCh37; homo_sapi-
ens_core_102_37 on ensembldb.ensembl.org, November 2020 © EMBL-EBI). In the 
Supplementary tables 1-8 you will find information about all the discovered SNP sets, 
their consequences (all possible), the genes affected, their function, location, and many 
other features. Each discovered new SNP sets were annotated as Figure 25 shows an 
example below.  

The genetic variation is classified (annotated) according to their consequence types as 
follows:  

 Missense variant 
 Synonymous variant 
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 non-coding transcript exon variant 
 intron-variant 
 intergenic variant 

In general, the found SNP data (n=5977) indicates that there are a great number of pro-
tein-coding genes affected (n=1944), 312 pseudogenes, 58 miRNA genes, 393 lincRNA 
genes, 37 miscRNA genes, 19 snoRNA genes, 28 snRNA genes, 7 rRNA genes, and 
many up and downstream gene regions affected (protein gene regulatory regions).  

 

 

Figure 25. Annotation results of SNP sets, example (g.3.3 SNP set) including 1516 
SNPs. Screenshot from (90). 

The genes associated significantly with lipidome in PGMRA analysis were found to be in 
all autosomal chromosomes 1-22. Most of the genes i.e. 257 genes were in chromosome 
1 and 246 in chromosome 2 see Figure 26, the chromosomal distribution of lipidome 
regulating genes. 
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There are also some SNP sets where most SNPs fall into blind regions of the genome, 

this means a genomic location where very much nothing is currently known. The anno-
tation analysis of all discovered lipidomic SNPs resulted a huge amount of information, 
both SNP-set and SNP wise manner, which is given in Supplementary tables 7-8.  

7.4.2 The role of lipidome associated coding variants 
 
 
From all SNPs 375 variants were protein changing missense-variants (Table 7S). In SIFT 
and PolyPhen based functionality analysis 19 of these missense variants were sug-
gested to be deleterious/probably/possibly damaging. The gene location of these func-
tional variants is shown in Table 2.  
 

Table 2. Sift and PolyPhen,19 damaging missense variants. 

SNP Location Allele SYMBOL Codons SIFT PolyPhen 

rs10846018 
12:7832722-
7832722 A SLC2A14 cGg/cTg deleterious(0) probably_damaging(0.961) 

rs10888390 
1:150755063-
150755063 A CTSS Cgg/Tgg deleterious(0.04) possibly_damaging(0.521) 

rs11225089 
11:101961859-
101961859 A CEP126 tCc/tAc deleterious(0) probably_damaging(0.917) 

rs1135889 
17:75930040-
75930040 A FBF1 gGt/gTt deleterious(0) possibly_damaging(0.642) 

rs11568658 
13:95210754-
95210754 A ABCC4 Ggg/Tgg deleterious(0) probably_damaging(0.985) 

rs1609860 
12:103654676-
103654676 A STAB2 cCc/cAc deleterious(0) probably_damaging(0.999) 

Figure 26. X-axis indicates chromosome number and y-axis number of lipidome as-
sociated genes. 
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rs1806931 
19:15728555-
15728555 T OR10H2 tCc/tTc deleterious(0.01) possibly_damaging(0.595) 

rs1919127 
2:27578626-
27578626 C C2orf16 gTg/gCg deleterious(0.05) possibly_damaging(0.775) 

rs2235638 
16:1523889-
1523889 T IFT140 gCg/gAg deleterious(0) possibly_damaging(0.636) 

rs2240227 
19:15741432-
15741432 A OR10H3 Ctc/Atc deleterious(0.02) possibly_damaging(0.844) 

rs2302948 
19:48592808-
48592808 G SULT2B1 Ctg/Gtg deleterious(0) probably_damaging(0.922) 

rs272893 
5:132327369-
132327369 G SLC22A4 aTa/aGa deleterious(0) possibly_damaging(0.675) 

rs3739407 
8:17755366-
17755366 G MTUS1 Tgt/Cgt deleterious(0.03) possibly_damaging(0.667) 

rs3742303 
13:30646969-
30646969 T USPL1 Cct/Tct deleterious(0.04) possibly_damaging(0.68) 

rs3765623 
18:3086067-
3086067 T MYOM1 Gat/Aat deleterious(0.02) possibly_damaging(0.885) 

rs6413419 
10:133532171-
133532171 T CYP2E1 Gtc/Ttc deleterious(0) probably_damaging(1) 

rs6700677 
1:42757818-
42757818 T P3H1 Gga/Aga deleterious(0) probably_damaging(1) 

rs8181512 
11:5821126-
5821126 T OR52N2 cAt/cTt deleterious(0.02) probably_damaging(0.988) 

rs8480 
1:151760859-
151760859 G MRPL9 gAa/gCa deleterious(0.04) possibly_damaging(0.655) 

 
Annotation analysis of lipidomic related SNPs showed that there are a great number of 
protein-coding genes that are affected (n=1944) (Table 7S).  
 
From these synonymous variations which are defined as codon substitutions that do not 
change the encoded amino acid, were previously thought to have no effect on the prop-
erties of the synthesized protein(s) (91). However, now mounting evidence shows that 
these “silent” variations can have a significant impact on protein expression and function 
and should no longer be considered “silent” (91, 92). These synonymous codon substi-
tutions can perturb co-translational protein folding in vivo and impair cell fitness (92). 

7.4.3 The role of lipidome associated non-coding RNAs 

Table 3 below show the genes of the 58 miRNAs that were found in PGMRA, the full list 
of non-coding genes is included in the supplemental Table 7S. 

Table 3 Stable ID, chromosome and gene names of the lipidome associated 58 miR-
NAs found by PGMRA. 

Gene stable ID 
Chromosome/ scaffold 
name Karyotype band Gene name 

EntrezGene de-
scription 

ENSG00000199065 

9 p24.1 MIR101-2 microRNA 101-2 

ENSG00000199127 

8 p22 MIR383 microRNA 383 

ENSG00000207601 

11 q12.2 MIR611 microRNA 611 

ENSG00000207951 

2 q32.1 MIR561 microRNA 561 

ENSG00000212037 

14 q12 AL049831.1  
ENSG00000216058 

3 q28 MIR944 microRNA 944 

ENSG00000221401 

7 q32.1 AC025594.1  
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ENSG00000221531 

2 p23.3 AC074091.1  
ENSG00000221670 

13 q12.3 AL596092.1  
ENSG00000221703 

11 p15.4 MIR302E microRNA 302e 

ENSG00000221753 

8 q22.2 MIR1273A microRNA 1273a 

ENSG00000221762 

2 q22.1 AC092786.1  
ENSG00000222117 

9 q31.1 AL391867.1  
ENSG00000222326 

11 q12.2 MIR1908 microRNA 1908 

ENSG00000222331 

3 p22.1 AC104434.1  
ENSG00000222482 

7 q22.1 AC005071.1  
ENSG00000222602 

13 q13.3 AL136160.1  
ENSG00000222805 

19 p13.11 AC010319.1  
ENSG00000223148 

19 q12 AC011478.1  
ENSG00000223243 

10 q22.3 AC074323.1  
ENSG00000238728 

16 p13.11 MIR1972-1 microRNA 1972-2 

ENSG00000238957 

10 q11.21 AL512640.1  
ENSG00000251772 

20 q13.31 AL117380.2  
ENSG00000252748 

14 q32.11 AL096869.1  
ENSG00000253012 

10 q21.3 AC022538.1  
ENSG00000253037 

6 q21 AL109947.2  
ENSG00000254324 

8 q24.3 MIR151A microRNA 151a 

ENSG00000263649 

6 p21.32 MIR3135B microRNA 3135b 

ENSG00000264022 

1 q21.2 AL732363.1  
ENSG00000264094 

8 p11.1 AC022616.1  
ENSG00000264180 

HSCHR6_MHC_APD p21.32 MIR3135B microRNA 3135b 

ENSG00000264200 

11 q22.3 MIR4693 microRNA 4693 

ENSG00000264209 

3 p21.31 AC104448.1  
ENSG00000264244 

HSCHR6_MHC_DBB p21.32 CR753846.4  
ENSG00000264283 

11 p15.3 AC025300.1  
ENSG00000264382 

2 p13.3 AC007881.2  
ENSG00000264412 

HSCHR6_MHC_COX p21.32 MIR3135B microRNA 3135b 

ENSG00000264553 

1 q21.3 MIR4257 microRNA 4257 

ENSG00000264645 

16 q23.1 AC010528.1  
ENSG00000264749 

12 q23.3 AC011313.1  
ENSG00000264770 

HSCHR6_MHC_SSTO p21.32 MIR3135B microRNA 3135b 

ENSG00000265083 

6 p25.1 MIR3691 microRNA 3691 

ENSG00000265140 

11 q23.2 MIR4301 microRNA 4301 

ENSG00000265207 

HSCHR6_MHC_MANN p21.32 BX927160.1  
ENSG00000265224 

2 q22.2 AC012353.1  
ENSG00000265377 

HSCHR6_MHC_QBL  p21.32 AL773543.2  
ENSG00000265450 

13 q34 MIR4502 microRNA 4502 

ENSG00000265520 

8 p22 MIR548V microRNA 548v 

ENSG00000265974 

HG14_PATCH p11.2 MIR3147 microRNA 3147 

ENSG00000266072 

13 q14.3 MIR5693 microRNA 5693 

ENSG00000266168 

7 p11.2 MIR3147 microRNA 3147 

ENSG00000266189 

17 q25.3 MIR3186 microRNA 3186 

ENSG00000266303 

HG271_PATCH q25.3 MIR3186 microRNA 3186 

ENSG00000266320 

22 q12.3 MIR3909 microRNA 3909 

ENSG00000266429 

9 p21.2 AL442639.1  
ENSG00000266704 

12 q24.23 MIR4498 microRNA 4498 

ENSG00000266761 

20 q13.2 MIR3194 microRNA 3194 

ENSG00000266807 

6 q23.2 MIR548H5 microRNA 548h-5 

ENSG00000266851 

HSCHR6_MHC_MCF p21.32 CR759848.2  
ENSG00000270758 

HG1287_PATCH q21.1 AC239859.1  
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7.4.4 Gene set enrichment analysis of lipidome associated SNP-set  
 

We used gene set enrichment analysis to further elucidate the biological significance of 

lipidome associated SNP-sets. In the case of the significant 35 distinct genotype-lip-

idome relations, 18 SNP sets out of the 35 were enriched in 52 various biological pro-

cesses (FDR<0.05) shown in Figure 27. The bar plot (Figure 27) contains all these 52 

significant gene sets. The colours in the figure represents which relations they belong to. 

 

Figure 27. Biological processes (x-axis) from Gene Ontology database that are signifi-
cantly (adjusted p-value < 0.05, y-axis) enriched in SNPs sets from the 18 out of the 35 
genotype-lipidome relations. 
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8. DISCUSSION 

The novelty of this study was that we have applied the combined GWAS-PGMRA-GSEA-

pipeline for the first time in revealing the complex genetic background of human lipidome 

and its biological significance. This extended our understanding significantly beyond the 

current knowledge in the field, and we concluded that human plasma lipidome has at 

least 35 genetically distinct subgroups and are influenced by gene variations in 3164 

genes via several biological processes.  

The major idea to use the dimensionality reduction of lipidomic data by PCA was to test 

weather more computer intensive GWAS analysis of 437 separate lipids species could 

be replaced with this simpler reduced GWAS analysis of the five eigenlipids. However, 

the comparison of the results showed that only about 10 % of the lipidome associated 

SNPs are the same at p-value 5 x 10-7. Therefore, for the final PGMRA analysis, we 

preselected SNPs based on traditional lipid-wise GWAS analysis, resulting a total of 

18 370 different nominally associated lipidome SNPs. 

A previous GWAS study (11) performed on 141 lipid species found 518 variants for 42 

lipid species at statistical significance threshold of p-value= 1.5 x 10-9. They found a total 

of 3754 associations (at p-level 5.0 x 10-8) between SNPs and all studied lipid species in 

the study, with 821 different SNPs, associating with 35 different genes. In the present 

study, the SNPs involved in the PGMRA relations revealed 3164 different gene associ-

ations, a previous classical GWAS study (11) found 35 genes and this study found and 

replicated 13 of those 35 previous ones. The largest difference between this and the 

earlier study  (11) comes from using quantitative measurements for the lipids and a wider 

LC-MS/MS based analysis platform of 437 lipids as compared to their 141. For compar-

ison, while their GWAS found 3754 separate SNP associations located in 35 different 

genes with 141 lipids at p-level 5.0 x 10-8 and using ~9.3 million imputed genetic markers, 

the GWAS in this study found 266 different SNP-lipid association between 437 lipids (p-

level 5.0 x 10-8) and ~500 thousand genotyped (not imputed) genetic markers but located 

in 3164 different gene locus. Thus, the repeat of our GWAS-PGMRA analysis with im-

puted SNP data is warranted but requires the use of supercomputers.  

The largest published GWAS study so far (93) with ~600 000 participants and 32 million 

genetic markers but looking only the four clinical lipid traits (HDL-cholesterol, LDL-cho-

lesterol, total cholesterol and triglycerides) identified 826 independent lipid genome-wide 

significant variants. From these, 118 were novel (at p-level 5.0 x 10-8) loci and also 268 
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previously identified (93, 94) loci were replicated. Further gene annotation using the SNP 

data of these loci and finding the related genes with Ensmbl VEP, resulted in a total of 

535 different genes. From these novel findings, 18 of the 118 genes were replicated in 

the present study and of the previously identified 386 loci, 78 genes were replicated in a 

substantially lower number of subjects (~ N=2000 vs. ~600.000) using novel GWAS-

PGMRA approach and unimputed SNP data. 

The application of the novel person-centred methods proposed here will allow identi-

fication of distinct groups of genetic variants that contribute synergistically or additively 

to the risk of dyslipidaemias.  

Here we searched for the effects of specific combinations of many genetic variants 

occurring simultaneously in the same persons, rather than the averaged effects of indi-

vidual genes among many patients (“all cases”).  

Furthermore, our approach describes complex patterns of interaction ("lock and key" 

genome-phenome combinations (95) between such sets of genetic variations and 

equally complex sets of individual features (i.e. 437 different lipids) that each person 

exhibits  (96).  

Given the degree of complexity of the plasma lipidome regulation, it’s very long de-

velopmental trajectory and its ongoing ability to change its own structure and function to 

adapt to environmental challenges, a reductionist characterization of lipid disorders as 

binary categories (case vs control) is virtually assured to miss nuances in the genetic, 

biological and behavioural descriptors of normal and abnormal lipoprotein metabolism 

functions. We therefore started from the premise that a better segmentation (identifica-

tion of boundaries) between/among patients can be achieved by embracing complexity 

and incorporating as many features as possible simultaneously in an unbiased clustering 

process, without prejudging on what features, how many features or how many clusters 

are optimal.  

 This study, consequently, of this novel statistical approach, identified 93 statisti-

cally significant genotype-lipidome relations with 5977 SNPs located in 3164 different 

genes. Thirty-five of the significant relations contained distinct SNPs representing ge-

netic lipidomic subgroups. While the more classical GWAS results would have inde-

pendently only yielded 266 SNPs of statistical significance (p-value<5 x 10-8), the GWAS-

PGMRA yielded 5977 SNPs, greatly amplifying the existing GWAS based genetic re-

sults, i.e.  in the SNPs in grey zone and revealing thus the hidden genetic architecture of 

lipidome.  
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Our present work is a ground-breaking resolution of the missing heritability problem and 

suggested to be applied in many other physical disorders beyond the case-control strat-

ification. This is the first step in the direction of new genetic based classification of 

dyslipidemias but requires additional studies. 

Every study like this has strength and limitations. First, results from this study could not 

be replicated due to the lack of comparable cohort’s data. Thus, the major limitation in 

this study was that we have not replicated our results in another independent population-

based cohort. However, to solve this limitation, the search of suitable replication cohorts 

is ongoing, and comparativeness requires the use of same lipidomic and genotypic plat-

forms, thus for this reason not too many replication cohorts are available.  
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9. FURTHER DIRECTIONS 

Using otherwise similar bioinformatic GWAS-PGMRA-GSEA pipeline but replacing the 

genotyped SNP-data set with substantially larger a 1000G or TOPMed (Imputation 

Server (nih.gov)) imputed gene variant data with 10-400 million SNPs is the next step for 

our analysis. 

However, the use of imputed SNP-set will require significantly more computing time and 

use of supercomputers instead of home PC which was used for this MSc thesis.  

A wider challenge for our team is to develop an open access version of GWAS-PGMRA-

GSEA pipeline suitable for a wider scientific audience. This kind of new complementary 

biostatistical approaches is urgently needed. 

 In further studies, we also aim to link statistically found lipidomic SNP-set to the 

risk of various available phenotypes using additional SKAT-analysis. For example, con-

nections of the found genome-lipidome clusters on cardiometabolic diseases like pre-

diabetes, metabolic syndrome, type 2 diabetes, subclinical atherosclerosis, cognition, 

and different types of ICD-10 dyslipidaemia diagnosis is warranted. 

10. SUMMARY AND CONCLUSIONS 

Total of 442 (437 for lipids + 5 for PCA components) GWAS analyses were done in this 

project. We used non-imputed genotyped SNP data to avoid imputation related bias in 

genotyping. 

In traditional lipidome wide GWAS analysis over whole lipidome, we identified 266 sep-

arate SNPs significantly associated at statistical significance threshold of p-value <5 x 

10-8 and 337 SNPs at p-value < 5 x 10-7 and 18370 SNPs nominally significantly associ-

ated (p-value<5 x 10-4) with 437 studied molecular plasma lipids.  

In PGMRA biclustering analysis, we used these nominally significant, preselected SNPs 

and lipid-phenotypes and found 93 statistically significant genotype-subject vs. lipid-phe-

notype group relations among between 71 subject-phenotype and 153 subject-genotype 
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clusters. The significant relations involved 5977 separate SNPs that after their gene an-

notation to latest available genome reference (ensemble assembly GRCh37, the version 

102) were located into 3164 separate gene loci.  

Thirty-five of the significant 93 SNP sets did not share any SNP or subject, therefore they 

represent 35 genetically distinct lipidomic profiles i.e. genetic lipidomic subgroups.  

In GSEA SNP sets involved in 18 out of these 35 distinct genotype-lipidome relations 

were statistically significantly enriched in several biological processes throughout which 

the identified SNPs i.e. gene variations can influence to serum lipid profiles. Our results 

have also been published as a poster (97). 

In the alternative eigenlipid based GWAS analysis, the eigenlipid classes were formed 

using PCA-analysis, by classifying the 437 lipids into 5 PCA (eigenlipids) groups.  In their 

GWAS analysis we found 751 separate SNP-lipid associations at nominal p-value < 

5x10-4 and 40 at p-value < 5x10-7. From these 32 of 40 were found also among the larger 

lipidome-wide GWAS analysis of different 337 SNPs (p < 5x10-7), covering only 9,5 % 

(32/337) of the total SNPs found in wider lipid-wise GWAS.  

We conclude that eigenlipid based GWAS analysis significantly reduces the total number 

of significant SNPs as compared to traditional GWAS analysis and therefore cannot be 

used as surrogate of lipidome-wides GWAS analysis without losing essential genetic in-

formation.  

In this study, we have applied the combined GWAS-PGMRA-GSEA analysis pipeline for 

the first time in revealing the complex genetic background human lipidome and its bio-

logical significance. We conclude that human plasma lipidome has at least 35 genetically 

distinct subgroups and that the discovered genetic variants are influenced through 3164 

genes via several biological processes.  

In bioinformatic methodology perspective, the used of this novel bioinformatic approach 

reduces the missing heritability problem in lipidomic plasma patterns by uncovering the 

fraction of heritability distributed into independent networks of interacting genes that af-

fect heterogeneous subsets of subjects and is missed by global averaging subjects 

across binary categories (cases vs controls). 

 



53 
 

11. REFERENCES 

1. The top 10 causes of death. www.who.int/: 2018 May 24. 

2. Tilastokeskus -  Kuolemansyyt 2015 [Internet].: Helsinki: Tilastokeskus; 2015 
[updated Jan; cited Nov 25, 2020]. Available from: 
https://www.stat.fi/til/ksyyt/2015/ksyyt_2015_2016-12-30_kat_001_fi.html. 

3. Hilvo M, Meikle PJ, Pedersen ER, Tell GS, Dhar I, Brenner H, et al. Development 
and validation of a ceramide- and phospholipid-based cardiovascular risk estimation 
score for coronary artery disease patients. Eur Heart J. 2020 Jan 14;41(3):371-80. 

4. Tetko IV, Engkvist O, Koch U, Reymond J, Chen H. BIGCHEM: Challenges and Op-
portunities for Big Data Analysis in Chemistry. Molecular informatics. 2016 Dec;35(11-
12):615-21. 

5. Mundra PA, Shaw JE, Meikle PJ. Lipidomic analyses in epidemiology. Int J Epi-
demiol. 2016 Oct;45(5):1329-38. 

6. Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, et al. Dis-
covery and refinement of loci associated with lipid levels. Nat Genet. 2013 
Nov;45(11):1274-83. 

7. Surakka I, Horikoshi M, Mägi R, Sarin A, Mahajan A, Lagou V, et al. The impact of 
low-frequency and rare variants on lipid levels. Nat Genet. 2015 Jun;47(6):589-97. 

8. Bentley AR, Sung YJ, Brown MR, Winkler TW, Kraja AT, Ntalla I, et al. Multi-ances-
try genome-wide gene-smoking interaction study of 387,272 individuals identifies new 
loci associated with serum lipids. Nat Genet. 2019 Apr;51(4):636-48. 

9. Kettunen J, Demirkan A, Würtz P, Draisma HHM, Haller T, Rawal R, et al. Genome-
wide study for circulating metabolites identifies 62 loci and reveals novel systemic ef-
fects of LPA. Nat Commun. 2016 Mar 23;7:11122. 

10. Karjalainen J, Mononen N, Hutri-Kähönen N, Lehtimäki M, Juonala M, Ala-Korpela 
M, et al. The effect of apolipoprotein E polymorphism on serum metabolome - a popu-
lation-based 10-year follow-up study. Sci Rep. 2019 Jan 24;9(1):458. 

11. Tabassum R, Rämö JT, Ripatti P, Koskela JT, Kurki M, Karjalainen J, et al. Genetic 
architecture of human plasma lipidome and its link to cardiovascular disease. Nat Com-
mun. 2019 Sep 24;10(1):4329. 

12. Machine Learning for schizophrenia study [Internet]; 2015 [updated Feb; cited 8 
Jun 2021]. Available from: https://dasci.es/research/outstanding-cientific-re-
search/schizophrenia/. 

13. Arnedo J, del Val C, de Erausquin GA, Romero-Zaliz R, Svrakic D, Cloninger CR, 
et al. PGMRA: a web server for (phenotype × genotype) many-to-many relation analy-
sis in GWAS. Nucleic Acids Res. 2013 Jul;41(Web Server issue):W142-9. 



54 
 

14. Zwir I, Arnedo J, Del-Val C, Pulkki-Råback L, Konte B, Yang SS, et al. Uncovering 
the complex genetics of human character. Molecular psychiatry. 2018 Oct 
3;25(10):2295-312. 

15. Zwir I, Arnedo J, Del-Val C, Pulkki-Råback L, Konte B, Yang SS, et al. Uncovering 
the complex genetics of human temperament. Molecular psychiatry. 2018 Oct 
2;25(10):2275-94. 

16. Zwir I, Mishra P, Del-Val C, Gu CC, de Erausquin GA, Lehtimäki T, et al. Uncover-
ing the complex genetics of human personality: response from authors on the PGMRA 
Model. Molecular psychiatry. 2019 Mar 18;25(10):2210-3. 

17. Taliun D, Kessler MD, Carlson J, Taliun SAG, Kang HM, Tian X, et al. Sequencing 
of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature. 
2021;590(7845):290-9. 

18. Bergström A, McCarthy SA, Hui R, Almarri MA, Ayub Q, Danecek P, et al. Insights 
into human genetic variation and population history from 929 diverse genomes. Sci-
ence. 2020 Mar 20;367(6484). 

19. Ho SS, Urban AE, Mills RE. Structural Variation in the Sequencing Era: Compre-
hensive Discovery and Integration. Nat Rev Genet. 2020 Mar;21(3):171-89. 

20. Kosugi S, Momozawa Y, Liu X, Terao C, Kubo M, Kamatani Y. Comprehensive 
evaluation of structural variation detection algorithms for whole genome sequencing. 
Genome Biol. 2019 Jun 3;20(1):117. 

21. lipid | Definition, Structure, Examples, Functions, Types, & Facts [Internet]. [cited 
Jun 7, 2021]. Available from: https://www.britannica.com/science/lipid. 

22. O'Donnell VB, Ekroos K, Liebisch G, Wakelam M. Lipidomics: Current state of the 
art in a fast moving field. Wiley Interdiscip Rev Syst Biol Med. 2020 Jan;12(1):e1466. 

23. Fahy E, Cotter D, Sud M, Subramaniam S. Lipid classification, structures and tools. 
Biochim Biophys Acta. 2011 Nov;1811(11):637-47. 

24. Taylor R, Miller RH, Miller RD, Porter M, Dalgleish J, Prince JT. Automated struc-
tural classification of lipids by machine learning. Bioinformatics. 2015 Mar 1;31(5):621-
5. 

25. Li B, Tang J, Yang Q, Li S, Cui X, Li Y, et al. NOREVA: normalization and evalua-
tion of MS-based metabolomics data. Nucleic Acids Res. 2017 Jul 3;45(W1):W162-70. 

26. Hancock SE, Friedrich MG, Mitchell TW, Truscott RJW, Else PL. The phospholipid 
composition of the human entorhinal cortex remains relatively stable over 80 years of 
adult aging. Geroscience. 2017 Feb;39(1):73-82. 

27. Proitsi P, Kim M, Whiley L, Simmons A, Sattlecker M, Velayudhan L, et al. Associa-
tion of blood lipids with Alzheimer's disease: A comprehensive lipidomics analysis. Alz-
heimers Dement. 2017 Feb;13(2):140-51. 



55 
 

28. Yu Q, He Z, Zubkov D, Huang S, Kurochkin I, Yang X, et al. Lipidome alterations in 
human prefrontal cortex during development, aging, and cognitive disorders. Mol Psy-
chiatry. 2020 Nov;25(11):2952-69. 

29. Tkachev A, Stepanova V, Zhang L, Khrameeva E, Zubkov D, Giavalisco P, et al. 
Differences in lipidome and metabolome organization of prefrontal cortex among hu-
man populations. Sci Rep. 2019 Dec 4;9(1):18348. 

30. Hilvo M, Meikle PJ, Pedersen ER, Tell GS, Dhar I, Brenner H, et al. Development 
and validation of a ceramide- and phospholipid-based cardiovascular risk estimation 
score for coronary artery disease patients. Eur Heart J. 2020 Jan 14;41(3):371-80. 

31. Karjalainen J, Mononen N, Hutri-Kähönen N, Lehtimäki M, Hilvo M, Kauhanen D, et 
al. New evidence from plasma ceramides links apoE polymorphism to greater risk of 
coronary artery disease in Finnish adults. J Lipid Res. 2019 Sep;60(9):1622-9. 

32. Mishra BH, Mishra PP, Mononen N, Hilvo M, Sievänen H, Juonala M, et al. Lip-
idomic architecture shared by subclinical markers of osteoporosis and atherosclerosis: 
The Cardiovascular Risk in Young Finns Study. Bone. 2020 Feb;131:115160. 

33. Illumina Microarray Technology [Internet]. [cited Jun 7, 2021]. Available from: 
https://emea.illumina.com/science/technology/microarray.html. 

34. Zajac GJM, Fritsche LG, Weinstock JS, Dagenais SL, Lyons RH, Brummett CM, et 
al. Estimation of DNA contamination and its sources in genotyped samples. Genet Epi-
demiol. 2019 Dec;43(8):980-95. 

35. Tortajada-Genaro LA, Yamanaka ES, Maquieira Á. Consumer electronics devices 
for DNA genotyping based on loop-mediated isothermal amplification and array hybridi-
sation. Talanta. 2019 Jun 1;198:424-31. 

36. Rodríguez-Morató J, Pozo ÓJ, Marcos J. Targeting human urinary metabolome by 
LC-MS/MS: a review. Bioanalysis. 2018 Apr 1;10(7):489-516. 

37. Sok P, Lupo PJ, Richard MA, Rabin KR, Ehli EA, Kallsen NA, et al. Utilization of ar-
chived neonatal dried blood spots for genome-wide genotyping. PLoS One. 
2020;15(2):e0229352. 

38. Kumar D, Chhokar V, Sheoran S, Singh R, Sharma P, Jaiswal S, et al. Characteri-
zation of genetic diversity and population structure in wheat using array based SNP 
markers. Mol Biol Rep. 2020 Jan;47(1):293-306. 

39. Grewal S, Hubbart-Edwards S, Yang C, Devi U, Baker L, Heath J, et al. Rapid iden-
tification of homozygosity and site of wild relative introgressions in wheat through chro-
mosome-specific KASP genotyping assays. Plant Biotechnol J. 2020 Mar;18(3):743-55. 

40. LaBarre BA, Goncearenco A, Petrykowska HM, Jaratlerdsiri W, Bornman MSR, 
Hayes VM, et al. MethylToSNP: identifying SNPs in Illumina DNA methylation array 
data. Epigenetics Chromatin. 2019 Dec 20;12(1):79. 

41. Morton EA, Hall AN, Kwan E, Mok C, Queitsch K, Nandakumar V, et al. Challenges 
and Approaches to Genotyping Repetitive DNA. G3 (Bethesda). 2020 Jan 7;10(1):417-
30. 



56 
 

42. Rounge TB, Lauritzen M, Erlandsen SE, Langseth H, Holmen OL, Gislefoss RE. Ul-
tralow amounts of DNA from long-term archived serum samples produce quality geno-
types. Eur J Hum Genet. 2020 Apr;28(4):521-4. 

43. Lo Giudice C, Pesole G, Picardi E. High-Throughput Sequencing to Detect DNA-
RNA Changes. Methods Mol Biol. 2021;2181:193-212. 

44. Li X, Yin F, Xu X, Liu L, Xue Q, Tong L, et al. A facile DNA/RNA nanoflower for 
sensitive imaging of telomerase RNA in living cells based on "zipper lock-and-key" 
strategy. Biosens Bioelectron. 2020 Jan 1;147:111788. 

45. Kono N, Arakawa K. Nanopore sequencing: Review of potential applications in 
functional genomics. Dev Growth Differ. 2019 Jun;61(5):316-26. 

46. Jain M, Koren S, Miga KH, Quick J, Rand AC, Sasani TA, et al. Nanopore sequenc-
ing and assembly of a human genome with ultra-long reads. Nat Biotechnol. 2018 
Apr;36(4):338-45. 

47. Vogeser M, Parhofer KG. Liquid chromatography tandem-mass spectrometry (LC-
MS/MS)--technique and applications in endocrinology. Exp Clin Endocrinol Diabetes. 
2007 Oct;115(9):559-70. 

48. Keevil BG. LC-MS/MS analysis of steroids in the clinical laboratory. Clin Biochem. 
2016 Sep;49(13-14):989-97. 

49. Tyanova S, Temu T, Carlson A, Sinitcyn P, Mann M, Cox J. Visualization of LC-
MS/MS proteomics data in MaxQuant. Proteomics. 2015 Apr;15(8):1453-6. 

50. van den Broek I, Sobhani K, Van Eyk JE. Advances in quantifying apolipoproteins 
using LC-MS/MS technology: implications for the clinic. Expert Rev Proteomics. 2017 
Oct;14(10):869-80. 

51. Nelson CP, Goel A, Butterworth AS, Kanoni S, Webb TR, Marouli E, et al. Associa-
tion analyses based on false discovery rate implicate new loci for coronary artery dis-
ease. Nat Genet. 2017 Jul 17;49(9):1385-91. 

52. Evangelou E, Warren HR, Mosen-Ansorena D, Mifsud B, Pazoki R, Gao H, et al. 
Genetic analysis of over 1 million people identifies 535 new loci associated with blood 
pressure traits. Nat Genet. 2018 Sep 17;50(10):1412-25. 

53. Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G, et al. 
A map of human genome sequence variation containing 1.42 million single nucleotide 
polymorphisms. Nature. 2001 Feb 15;409(6822):928-33. 

54. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, et al. The 
structure of haplotype blocks in the human genome. Science. 2002 Jun 
21;296(5576):2225-9. 

55. A haplotype map of the human genome. Nature. 2005 Oct 27;437(7063):1299-320. 

56. Marchini J, Howie B. Genotype imputation for genome-wide association studies. 
Nat Rev Genet. 2010 Jul;11(7):499-511. 



57 
 

57. Klein RJ, Zeiss C, Chew EY, Tsai J, Sackler RS, Haynes C, et al. Complement fac-
tor H polymorphism in age-related macular degeneration. Science. 2005 Apr 
15;308(5720):385-9. 

58. Barreiro LB, Laval G, Quach H, Patin E, Quintana-Murci L. Natural selection has 
driven population differentiation in modern humans. Nat Genet. 2008 Mar;40(3):340-5. 

59. Ozaki K, Ohnishi Y, Iida A, Sekine A, Yamada R, Tsunoda T, et al. Functional 
SNPs in the lymphotoxin-[alpha] gene that are associated with susceptibility to myocar-
dial infarction. Nat Genet. 2002 Dec 1;32(4):650. 

60. Bär C, Chatterjee S, Thum T. Long Noncoding RNAs in Cardiovascular Pathology, 
Diagnosis, and Therapy. Circulation. 2016 Nov 08;134(19):1484-99. 

61. Ji Z, Song R, Regev A, Struhl K. Many lncRNAs, 5'UTRs, and pseudogenes are 
translated and some are likely to express functional proteins. Elife. 2015 Dec 
19;4:e08890. 

62. Ulitsky I. Evolution to the rescue: using comparative genomics to understand long 
non-coding RNAs. Nat Rev Genet. 2016 Oct;17(10):601-14. 

63. Fang Y, Fullwood MJ. Roles, Functions, and Mechanisms of Long Non-coding 
RNAs in Cancer. Genomics Proteomics Bioinformatics. 2016 Feb;14(1):42-54. 

64. Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and 
function. Nat Rev Genet. 2016 Jan;17(1):47-62. 

65. Chandrasekaran K, Setyowati K, Sepramaniam S, Armugam A, Wintour E, Bertram 
J, et al. Role of microRNAs in kidney homeostasis and disease. Kidney international. 
2012 January 11;81:617-27. 

66. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. 
PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage 
Analyses. American journal of human genetics. 2007 Sep;81(3):559-75. 

67. LINEAARISET REGRESSIOMALLIT [Internet]; 2010 [updated Jun 17; cited Nov 
30, 2020]. Available from: http://myy.haaga-helia.fi/~taaak/m/regressio.pdf. 

68. Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D. Benefits and limitations of 
genome-wide association studies. Nat Rev Genet. 2019 Aug;20(8):467-84. 

69. Andreopoulos B, An A, Wang X, Schroeder M. A roadmap of clustering algorithms: 
finding a match for a biomedical application. Briefings in bioinformatics. 2008 Dec 
6;10(3):297-314. 

70. Oghabian A, Kilpinen S, Hautaniemi S, Czeizler E. Biclustering Methods: Biological 
Relevance and Application in Gene Expression Analysis. PloS one. 2014 Mar 
20;9(3):e90801. 

71. Hu CW, Kornblau SM, Slater JH, Qutub AA. Progeny Clustering: A Method to Iden-
tify Biological Phenotypes. Scientific reports. 2015 Aug 12;5(1):12894. 



58 
 

72. Wallace T, Sekmen A, Wang X. Application of Subspace Clustering in DNA Se-
quence Analysis. Journal of computational biology. 2015 Oct 1;22(10):94-952. 

73. Ruspini EH, Bezdek JC, Keller JM. Fuzzy Clustering: A Historical Perspective. MCI. 
2019 Feb;14(1):45-55. 

74. A Toolbox for Bicluster Analysis in R [Internet]; 2008 [cited Jan 25, 2021]. Available 
from: https://docplayer.net/7182007-A-toolbox-for-bicluster-analysis-in-r.html. 

75. RcmdrPlugin.BiclustGUI: 'Rcmdr' Plug-in GUI for Biclustering [Internet].: Compre-
hensive R Archive Network (CRAN); 2020 [updated Jul; cited Jun 13, 2021]. Available 
from: https://CRAN.R-project.org/package=RcmdrPlugin.BiclustGUI. 

76. Analysis of Biological Networks: 
Network Modules – Clustering and Biclustering [Internet]; 2006 [updated Nov 23; cited 
Nov 30, 2020]. Available from: http://www.cs.tau.ac.il/~roded/courses/bnet-
a06/lec05.pdf. 

77. Gaujoux R, Seoighe C. A flexible R package for nonnegative matrix factorization. 
BMC bioinformatics. 2010 Jul 2;11(1):367. 

78. Generalized Nonnegative Matrix 
Approximations with Bregman Divergences  [Internet]; 2005 [cited Dec 3, 2020]. Availa-
ble from: https://papers.nips.cc/paper/2005/file/d58e2f077670f4de9cd7963c857f2534-
Paper.pdf. 

79. Nonnegative Matrix Factorization 
Clustering on Multiple Manifolds  [Internet]; 2010 [updated Sep 27; cited Dec 3, 2020]. 
Available from: https://www.cs.purdue.edu/homes/lsi/AAAI_2010_NMF_Cluster-
ing_MM.pdf. 

80. Mingyi He, Feng Wei, Xiuping Jia. Globally maximizing, locally minimizing: Regular-
ized Nonnegative Matrix Factorization for hyperspectral data feature extraction. IEEE; 
Jun 2012. 

81. Pan W. Relationship between Genomic Distance-Based Regression and Kernel 
Machine Regression for Multi-marker Association Testing. Genet Epidemiol. 2011 
May;35(4):211-6. 

82. Larson NB, Chen J, Schaid DJ. A Review of Kernel Methods for Genetic Associa-
tion Studies. Genet Epidemiol. 2019 Mar;43(2):122-36. 

83. Berkopec A. HyperQuick algorithm for discrete hypergeometric distribution. Journal 
of discrete algorithms (Amsterdam, Netherlands). 2007;5(2):341-7. 

84. Raitakari OT, Juonala M, Rönnemaa T, Keltikangas-Järvinen L, Räsänen L, 
Pietikäinen M, et al. Cohort profile: the cardiovascular risk in Young Finns Study. Int J 
Epidemiol. 2008 Dec;37(6):1220-6. 

85. Smith EN, Chen W, Kähönen M, Kettunen J, Lehtimäki T, Peltonen L, et al. Longi-
tudinal genome-wide association of cardiovascular disease risk factors in the Bogalusa 
heart study. PLoS Genet. 2010 Sep 9;6(9):e1001094. 



59 
 

86. Mamtani M, Kulkarni H, Wong G, Weir JM, Barlow CK, Dyer TD, et al. Lipidomic 
risk score independently and cost-effectively predicts risk of future type 2 diabetes: re-
sults from diverse cohorts. Lipids in health and disease. 2016 Apr 4;15(1):67. 

87. Braicu EI, Darb-Esfahani S, Schmitt WD, Koistinen KM, Heiskanen L, Pöhö P, et al. 
High-grade ovarian serous carcinoma patients exhibit profound alterations in lipid me-
tabolism. Oncotarget. 2017 Nov 28;8(61):102912-22. 

88. Mishra BH, Mishra PP, Mononen N, Hilvo M, Sievänen H, Juonala M, et al. Uncov-
ering the shared lipidomic markers of subclinical osteoporosis-atherosclerosis comor-
bidity: The young Finns study. Bone (New York, N.Y.). 2021 Jun:116030. 

89. bioNMF: a versatile tool for non-negative matrix factorization in biology [Internet].: 
BioMed Central; 2006 [cited Nov 30, 2020]. Available from: 
https://search.datacite.org/works/10.5167/uzh-24. 

90. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, et al. The En-
sembl Variant Effect Predictor. Genome Biol. 2016 Jun 6;17(1):122. 

91. Edwards NC, Hing ZA, Perry A, Blaisdell A, Kopelman DB, Fathke R, et al. Charac-
terization of Coding Synonymous and Non-Synonymous Variants in ADAMTS13 Using 
Ex Vivo and In Silico Approaches. PLOS ONE. 2012 Jun 29;7(6):e38864. 

92. Walsh IM, Bowman MA, Soto Santarriaga IF, Rodriguez A, Clark PL. Synonymous 
codon substitutions perturb cotranslational protein folding in vivo and impair cell fitness. 
Proc Natl Acad Sci U S A. 2020 Feb 18;117(7):3528-34. 

93. Klarin D, Damrauer SM, Cho K, Sun YV, Teslovich TM, Honerlaw J, et al. Genetics 
of blood lipids among ~300,000 multi-ethnic participants of the Million Veteran Pro-
gram. Nat Genet. 2018;50(11):1514-23. 

94. Liu DJ, Peloso GM, Yu H, Butterworth AS, Wang X, Mahajan A, et al. Exome-wide 
association study of plasma lipids in >300,000 individuals. Nat Genet. 2017 
Dec;49(12):1758-66. 

95. Houle D, Govindaraju DR, Omholt S. Phenomics: the next challenge. Nat Rev 
Genet. 2010 Dec;11(12):855-66. 

96. Arnedo J, Svrakic DM, Del Val C, Romero-Zaliz R, Hernández-Cuervo H, Fanous 
AH, et al. Uncovering the hidden risk architecture of the schizophrenias: confirmation in 
three independent genome-wide association studies. Am J Psychiatry. 2015 Feb 
1;172(2):139-53. 

97. Mishra BH, Lehtimäki M, Mishra PP, Arnedo J, del Val C, Zwir I, et al. Uncovering 
the complex genetic architecture of human lipidome. Session Epidemiology and 
dyslipidemias poster no 1202. 89th EAS Congress May 30- June 2, 2021, Helsinki, Fin-
land. 

98. Lusis AJ. Genetics of atherosclerosis. Trends in Genetics. 2012 June 1;28(6):267-
75. 



60 
 

99. Valentina Pallottini. Role of mevalonate pathway in the central nervous system. De-
velopment Biology. Université de Strasbourg, 2017. English. NNT : 2017STRAJ096. 
tel-01764119 

101. Chromacademy LCMS Intro [Internet]; 2014 [updated Feb 15; cited Jun 7, 2021]. 
Available from: http://www.ecs.umass.edu/eve/background/methods/chemical/Open-
lit/Chromacademy%20LCMS%20Intro.pdf. 

102. Sukhumsirichart W. Polymorphisms. In: Genetic Diversity and Disease Suscepti-
bility; 2018; doi: 10.5772 / intechopen.76728.  

103. Definition of transcription - NCI Dictionary of Genetics Terms - National Cancer In-
stitute [Internet]; 2012 [updated Jul 20 2020; cited Jun 7, 2021]. Available from: 
https://www.cancer.gov/publications/dictionaries/genetics-dictionary/def/transcription. 

104. Data Mining Algorithms In R/Clustering/Biclust - Wikibooks, open books for an 
open world [Internet]; 2020 [updated Apr 16; cited Jun 7, 2021]. Available from: 
https://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Clustering/Biclust. 

105. Pontes B, Giráldez R, Aguilar-Ruiz JS. Journal of biomedical informatics. 2016 
Aug 31;57:163-80. 

 


