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ABSTRACT

Hoanh Le: Geometric Invariance of Pointnet
Bachelor of Science Thesis
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PointNet has become one of the de facto deep learning architectures for 3D tasks, from object
classification to scene segmentation. One of its main components is two Joint Alignment Net-
works, which were designed to help PointNet to be invariant to geometric transformation such as
rigid transformation. They attempt to canonicalize the input set and feature space before feeding
them to the main network. However, their effects have not been studied extensively. In this work,
we will evaluate PointNet’s performance in the presence or absence of Joint Alignment Networks
under rotation transformation. We show that with a limited number of data, the use of Joint Align-
ment Networks does not increase Pointnet’s robustness against rotation transformation but can
actually decrease it.

Keywords: PointNet, 3D, Spatial Transformation Network, Joint Alignment Network, geometric
invariance, rotation invariance
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1. INTRODUCTION

Over recent years, deep learning has allowed the computer vision community to have
many remarkable advances and achieve state-of-the-art results on several 2D tasks: clas-
sification [1, 2, 3], object detection [4, 5], semantic segmentation [6, 7], and scene under-
standing [8], amongst others. Driven by that success, the application of deep learning in
3D tasks became one of primary targets in current computer vision research.

Unlike 2D data that has only one representation, a matrix of pixels, 3D data involves a
multitude of representations which lead to various approaches. PointNet [9] has been the
pioneering and backbone architecture that processes raw point cloud, and it has attracted
much attention from the research community by its promising results. One of the main
components in PointNet architecture is the Joint Alignment Network, which attempts to
canonicalize the data before the feature extractor processes it. However, its performance
against geometric transformation has not yet been studied in detail.

In this work, we will analyse the performance of PointNet with and without Joint Alignment
Network under geometric transformation in the object classification task. By using data
normalization, PointNet can be invariant to the effect of translating and scaling the point
set. Therefore, we chose to only test its performance under rotation. By using different
rotation ranges in different axes (x, y, z, and arbitrary), we saw that PointNet with Joint
Alignment Network is only invariant to a small degree of rotation. The model’s perfor-
mance will decrease rapidly if the rotation range widens.

The remainder of this thesis is arranged as follows. We started with related work in Chap-
ter 2. Chapter 3 explains how we test PointNet's geometric invariance ability and the
experiment’s results. Finally, chapter 4 presents the summary of this thesis and discus-
sion regarding possible future work.



2. RELATED WORK

2.1 PointNet

Since PointNet consumes raw point cloud directly, its architecture needs to satisfy the
following unique properties of point sets:

» Permutation invariance: since point sets are unstructured, the network that con-

sumes N point sets must have the same results with N/ permutations of the input
point sets.

» Transformation invariance: the network output should remain constant if geometric
transformation such as rotation or translation is applied to the input point sets.

» Neighboring points interaction: The network should be able to utilize useful infor-
mation derived from interconnection between local points in space.
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Figure 2.1. PointNet architecture [9]

PointNet is made up of three main components: a max pooling layer, a local and global
information combination structure, and a Joint Alignment Network. Each module is de-
signed to tackle each unique property of point cloud. However, the local and global infor-
mation combination structure module is only used in the segmentation task, thus, it will
be excluded from our analysis.

The following subsections will discuss the reasons for the max pooling layer and the joint
alignment network and how they are used.



2.1.1 Max pooling layer

For the network to be invariant to permutation, Qi et al[9] use symmetric function: a
function that takes n variables and outputs the same value regardless of the order of the
input points.[10]

Common examples of symmetric function:

o sum(zy, x) = sum(xsg, 1)

» max(zry, x2) = max(xy, 1)

s average(xi, o) = average(xs, 1)
Specifically, in PointNet architecture, it first maps the input data to a high-dimensional
space by a multi-layer perceptron network [11], and then use a max pooling layer (sym-

metric function) to aggregate the global point features, as described in the blue part in
Figure 2.1.

2.1.2 Joint Alignment Network

The classification of an input point set should be invariant to geometric transformation,
such as rigid transformation. Motivated by Spatial Transformation Network [12], the Joint
Alignment Network in PointNet (the input and feature transformation blocks in Figure 2.1)
were designed to transform the data to a space expected by the multi-layer perceptron
networks.

First, we take a closer look at Spatial Transformation Network to understand the adoption
of this module in PointNet.

Sampler

Spatial Transformer
Figure 2.2. Spatial Transformation Network[12]

The network comprises 3 modules:



» Alocalization network, which takes an input feature map U, with height H, and width
W, and output the transformation matrix 7}, to be applied to the original feature map
U. The shape of the transformation matrix T;, depends on the transformation type
that we want the network to learn. For example, it can be constrained to only allow
cropping, translation, and scaling as below

s 0 t,
Ay = 2.1)
0 s ty

« A grid generator, which is used to calculate the target coordinates z%, 3, after we
apply the transformation 7 to the source coordinates z;, ;. Below is an example
with a 2D affine transformation matrix.

t xt

x; ' 01 012 O3 '
=To(Gi)=Ag | ¢ | = Yt (2.2)
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« A sampler, which takes the target set of coordinates =%, 3!, along with the input
feature map U, to produce the output feature map V



Figure 2.3. Result of adding transformation network block in a fully-connected network
in distorted MNIST dataset, with a is the input of the transformation network, b is the
predicted transformation of the localization network, c is the output of the spatial transfor-
mation network, d is the prediction of the subsequent fully-connected network

[12]

PointNet utilizes a similar approach in a much simpler way. Since the input data is point
cloud, we can predict the transformation matrix by T-Net, which plays a similar role as
the localization network in Spatial Transformation Network, and apply the transformation
matrix directly to the point sets by matrix multiplication.

T-Net architecture (Table 2.1) bears a resemblance to the big network, and composes of
different basic blocks: feature extractor, max pooling, and fully connected layer



Layer (type) Output Shape Param #
Conv1id-1 [-1, 64, 1024] 256
BatchNorm1d-2 [-1, 64, 1024] 128
Conv1d-3 [-1,128,1024] 8,320
BatchNorm1d-4 [-1,128,1024] 256
Conv1d-5 [-1, 1024, 1024] 132,096
BatchNorm1d-6 [-1, 1024, 1024] 2,048
Linear-7 [-1,512] 524,800
BatchNorm1d-8 [-1, 512] 1,024
Linear-9 [-1, 256] 131,328
BatchNorm1d-10 [-1, 256] 512
Linear-11 [-1, 9] 2,313

Total params: 803,081
Trainable params: 803,081

Non-trainable params: 0

Table 2.1. Model summary of T-Net with k = 3 (used to align input point cloud), and
number of points N = 1024

T-Net can also be extended to align the feature space described in the feature transform
block in Figure 2.1, which will output a 64-by-64 transformation matrix. Due to the in-
crease in the number of trainable parameters and difficulty in optimization, a regulation
term is added to training loss. The transformation matrix is constrained to the proximity of
the orthogonal matrix:

Lyeg = ||I — AAT|, (2.3)

2.2 PointNet++

One major drawback in PointNet is that it fails to capture information from the local neigh-
boring points. To address this issue, Qi et al [13] introduced PointNet++, a hierarchical
neural network based on the concept of CNN, in which features are captured on a bigger
scale progressively through a multi-resolution hierarchy. PointNet++ first extracts local
features from the small neighborhoods, and these local features are then aggregated into
larger groups and processed to have higher-level features. This technique is repeated
until the features of the whole point set have been obtained.

The hierarchical architecture is composed of 3 main components: Sampling layer, Group-
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Figure 2.4. Single-scale PointNet++ architecture[13]

ing layer, and PointNet layer (Figure 2.4). First, the Sampling layer chooses a group of
points from the input points to define the local region centroids. After that, the Grouping
layer creates local region sets by locating neighboring points around the centroids. Finally,
the PointNet layer adopts a mini-PointNet to encode local region structures into feature
vectors. One thing to notice is that Qi et al [13] do not use the Joint Alignment Network
module (Subsection 2.1.2) to align the input set to a canonical space before feeding it to

the PointNet layer in PointNet++.

One more significant contribution in PointNet++ is density adaptive PointNet layers. With
2 different grouping methods (multi-scale grouping, multi-resolution grouping), PointNet
layers are able to capture local patterns at multiple scales instead of a single scale (as in
Figure 2.4), and combine them based on the point density in the local area.

» Multi-scale grouping (MSG): It applies the Grouping layers at multiple scales and
then uses PointNets to extract features from each scale. A multi-scale feature is
then formed by concatenating features at multiple scales.

» Multi-resolution grouping (MRG): Because the MSG technique performs local Point-
Net at large scale neighborhoods for every centroid point, it is computationally in-
tensive. In the MRG technique, features of a region are concatenated of 2 vectors
(Figure 2.5 b). One vector is produced by utilizing the selected abstraction to sum-
marize the characteristics at each subregion from the lower level. The other vector
is acquired by processing all raw points in the local region. By avoiding feature ex-
traction in large scale neighborhoods, this method is more computationally efficient.



concat

Figure 2.5. (a) Multi-scale grouping (MSG); (b) Multi-resolution grouping (MRG)[13]



3. EXPERIMENTS

The original implementation of PointNet was done using Tensorflow [14] library, but we
chose to use Pytorch [15] library in this thesis. Pytorch is a fast growing, flexible, and
easy to use machine learning framework with two high level features: tensor computation
with strong GPU acceleration and deep neural networks built on an autograd system.

The method we use to test PointNet’'s geometric invariance ability is described in Section
3.1. The experiments were done using the ModelNet40 dataset [16] described in Sec-
tion 3.2. The experiment results are described in Section 3.3. Finally, we discuss data
augmentation in Section 3.4.

3.1 Method

The approach to test PointNet’s geometric invariance in this thesis is described in 2 main
conceptual components:

¢ Rotation in 3D

+ Testing algorithm

3.1.1 Rotation in 3D

Rotation in 3D is more complicated than 2D. The axis of rotation in 2D is always perpen-
dicular to xy plane, while in 3D, the axis of rotation can be arbitrary. We will look at 4
different matrix representations of main axes of rotation: x, y, z, and arbitrary.
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A rotation matrix by angle # about x, y, z axes can be described as follow:

1 0 0
R.(0)=10 cosf —sinf

0 sinf cosf

cosf) 0 sinf
R,(0) = 0 1 0 (3.1)

—sinf 0 cos6

cos) —sinf O
R.(0)=| sinf cosh® 0O
0 0 1

Euler’s rotation theorem [17] states that any rotation in 3D can be represented as combi-
nation of rotation around 3 main axes: x, y, z. Therefore, a rotation matrix in arbitrary axis
can be obtained by matrix multiplication of 3 rotation matrices. For example:

R = R.(a)Ry(B)Ro(7) (3.2)
cosa —sina 0 cosf 0 sinpg 1 0 0
R=] sina cosa 0 0 1 0 0 cosy —sinvy (3.3)
0 0 1 —sinf 0 cosf 0 siny cosy

represents a rotation whose angles about x, y, z axes are «, 3,y respectively.

3.1.2 Testing algorithm

As previously mentioned, PointNet is invariant to scale and translation geometric transfor-
mation by normalizing the input point cloud. In order to test its rigid geometric invariance,
we use the rotation transformation. The pseudocode for the algorithm is described in
Listing 3.1
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Given rotation_range [a, b], model F, and axis a
number_of_correct_samples = 0
for i in range (number_of_test_objects):

test_object, label = take_next_object ()
original_predicted_label = model(test_object)

if axis == arbitrary:

rotation_angle = random.uniform(range = rotation_range,
size = 3)
else:

rotation_angle = random.uniform(range = rotation_range,
size = 1)
rotated_object = rotate(test_object, angle = rotation_angle)

rotated_predicted_label = model(rotated_object)

if rotated_predicted_label == label:

number_of_correct_samples += 1

rotated_accuracy = number_of_correct_samples /

number_of_test_objects

Listing 3.1. Algorithm to calculate the relative accuracy if we rotate the point cloud

(a) Original person (b) Rotated person

Figure 3.1. lllustration of rotating a 3D point cloud in y axis

If PointNet is invariant to rotation transformation, we should expect that the accuracy will
not drop too much going from small rotation range to wide rotation range.

3.2 ModelNet40 dataset

ModelNet40 [16] is a publicly available large scale 3D CAD dataset used for benchmark-
ing in 3D object classification and retrieval tasks developed by Princeton. It has 12,311
CAD models from 40 common object categories and is split into 9,843 objects for training
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and 2,468 objects for testing. Both the orientation and facing directions of the objects are
aligned in the dataset. All classes are presented in Table 3.1.

airplane  bottle cup flower_pot laptop piano sofa  toilet
bathtub bowl curtain glass_box mantel plant stairs tv_stand
bed car desk guitar monitor radio stool vase
bench chair  door keyboard  night_stand range_hood table wardrobe
bookshelf cone dresser lamp person sink tent  xbox

Table 3.1. ModelNet40 classes

Since PointNet processes point cloud directly, a pre-processing step is needed to use
ModelNet40 dataset. For each CAD object, we sample 2048 points on its surface area
and normalize it into a unit sphere.

ey

(a) A tent (b) A chair

(c) A person (d) A monitor

Figure 3.2. Examples of point cloud

3.3 Experiment results

We first train PointNet with and without the Joint Alignment Network, in the same en-
vironment and with the same hyperparameter. After that, we test each model with the
algorithm described in Listing 3.1 with 1000 test samples, and 6 different rotation ranges
and calculate its accuracy.

We can see that the performance of both models against rotation in x, z, and arbitrary
axes are similarly poor. It is because the data used for training was only augmented with
rotation in y-axis, so both models don’t see any data rotated in other axes. Regarding
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Classification accurac
Classification accurac

/8 . . 6 /8 .
Rotation range in x axis Rotation range in y axis

(a) Test data is rotated in x axis (b) Test data is rotated in y axis

,,,,

arbitrary axis

(c) Test data is rotated in z axis (d) Test data is rotated in arbitrary axis

Figure 3.3. Comparision between PointNet in the presence and absence of Joint Align-
ment Network’ robustness against rotation result (training data is augmented with y rota-
tion)

rotation in y-axis, PointNet without Joint Alignment Network’s performance doesn’t drop
in all rotation ranges, but actually increases. This might be because the distribution of the
original pose is much less compared to the distribution of the rotated poses in the training
data, which makes PointNet without Joint Alignment Network performs better when we
rotate the original test data before feeding it to the network. However, PointNet with
Joint Alignment Network’s performance drops rapidly as the rotation range widens. This
suggests that the Joint Alignment Network does not help PointNet to be rotation invariant,
but actually decreases its robustness against rotation transformation.

3.4 On data augmentation

Data augmentation has been known as one of the most effective way to increase deep
learning models’ robustness and decrease over-fitting [18]. Current data augmentation
methods used in Pointnet (rotation about y-axis and jitter) are not enough to make Point-
Net geometric invariant. The reason that Qi et al [9] chose to augment data by rotating
input point cloud around y-axis instead of arbitrary axis is because the test set shape is
upright. Adding data augmentation that is not representative to test set data distribution
can reduce the accuracy of the model. For better understanding of the relation between
robustness and accuracy from data augmentation approach in PointNet, we design an

experiment:

1. We replace the rotating about y-axis data augmentation option by rotating about
arbitrary axis with the probability of 0.5, and train both PointNet with and without
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the Joint Alignment Network.

2. We then carry out the same rotation test (Listing 3.1) to both PointNet with and
without the Joint Alignment Network.

The models’ accuracy on the original ModelNet40 test data comparison is shown on Table
3.2. There is a small difference between models’ accuracy, but that could be the result
of the non-determinism issue in Deep Learning [19]. The accuracy comparison between
two models can be improved by training two models several times and calculating the
average accuracy and variance. The comparision between PointNet in the presence and
absence of Joint Alignment Network’ robustness against rotation result (training data is
augmented with arbitrary rotation) is described on Figure 3.4. We can see that when
we augment training data with arbitrary rotation, PointNet with Joint Alignment Network
performs slightly better than PointNet without the Joint Alignment Network. This suggests
that with considerably more data, Joint Alignment Network can learn to transform the
input data effectively. We also compare PointNets (training data is augmented with y
rotation) and PointNets (training data is augmented with arbitrary rotation) as described
in Figure 3.5 and Figure 3.6. Evidently, when training with arbitrary rotation augmentation,
PointNets’ robustness against rotation increase significantly.

Data augmentation methods Model Accuracy
PointNet (with JAN) 89.7 %
PointNet (without JAN) 83 %
PointNet (with JAN) 87.9 %
PointNet (without JAN) 86.5 %

Rotating about y axis

Rotating about arbitrary axis (p = 0.5)

Table 3.2. Classification results on the original ModelNet40 test data (no rotation)
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1
PointNet with JAN PointNet with JAN
PointNet without JAN PointNet without JAN

ol
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Figure 3.4. Comparision between PointNet in the presence and absence of Joint Align-
ment Network’ robustness against rotation result (training data is augmented with arbitrary

rotation)

S tationange mx st R
(a) Test data is rotated in x axis (b) Test data is rotated in y axis
! PointNet without JAN (traif gmented with y-rotation) !
PointNet without JAN (trai mented with arbitrary-rotation)

Classification accuracy

32 +m16 +mB  +mA 42
Rotation range in arbitrary axis

(d) Test data is rotated in arbitrary axis

0
+32 +m16 B 4mA 42
Rotation range in z axis

(c) Test data is rotated in z axis
Figure 3.5. Comparision between PointNet without Joint Alignment Network (training
data is augmented with y rotation) and PointNet without Joint Alignment Network (training
data is augmented with arbitrary rotation)’ robustness against rotation result
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Figure 3.6. Comparision between PointNet with Joint Alignment Network (fraining data
is augmented with y rotation) and PointNet with Joint Alignment Network (training data is

augmented with arbitrary rotation)’ robustness against rotation result
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4. CONCLUSION

In this thesis, we studied and experimented if Joint Alignment Network helps PointNet be-
come geometric invariant. The proposed test was rotating the input point cloud randomly
before running it through the network to see if the performance drops. We carried out the
test on 3D object classfication task using Modelnet40 dataset.

The obtained results show that with the original data augmentation, Joint Alignment Net-
work can decrease PointNet’s robustness against rotation transformation. Using stronger
data augmentation of rotation about an arbitrary axis, both PointNet with Joint Align-
ment Network and PointNet without Joint Alignment Network’ robustness increase overall.
However, PointNet with Joint Alignment Networks performs better than PointNet without
Joint Alignment Network. This implies that the Joint Alignment Network might require
much more data to learn how to transform the data effectively. One possible solution
to further analyze the effect of the Joint Alignment Network is to calculate the distance
between the transformed object by the Joint Alignment Network and the original object
(before rotation). A detailed analysis will be left for future work.
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