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ABSTRACT: Manipulation of cells, droplets, and particles via
ultrasound within microfluidic chips is a rapidly growing field, with
applications in cell and particle sorting, blood fractionation, droplet
transport, and enrichment of rare or cancerous cells, among others.
However, current methods with a single ultrasonic transducer offer
limited control of the position of single particles. In this paper, we
demonstrate closed-loop two-dimensional manipulation of particles
inside closed-channel microfluidic chips, by controlling the frequency
of a single ultrasound transducer, based on machine-vision-measured
positions of the particles. For the control task, we propose using
algorithms derived from the family of multi-armed bandit algorithms.
We show that these algorithms can achieve controlled manipulation
with no prior information on the acoustic field shapes. The method
learns as it goes: there is no need to restart the experiment at any point. Starting with no knowledge of the field shapes, the
algorithms can (eventually) move a particle from one position inside the chamber to another. This makes the method very robust to
changes in chip and particle properties. We demonstrate that the method can be used to manipulate a single particle, three particles
simultaneously, and also a single particle in the presence of a bubble in the chip. Finally, we demonstrate the practical applications of
this method in active sorting of particles, by guiding each particle to exit the chip through one of three different outlets at will.
Because the method requires no model or calibration, the work paves the way toward the acoustic manipulation of microparticles
inside unstructured environments.

■ INTRODUCTION
Manipulation of cells, droplets, and particles via ultrasound
within microfluidic chips, acoustofluidics, is a rapidly growing
field, with applications in cell and particle sorting,1 cell
patterning,2 blood fractionation,3,4 droplet transport,5 and
enrichment of rare or cancerous cells.6,7 The nature of this
manipulation is contactless, which is why it is suitable for so
many biological applications.8 Furthermore, being contactless
also simplifies the chip fabrication, because the transducers do
not need to be in direct contact with the manipulated object.
Integrating acoustic functionalities into microfluidic chips is a
promising approach toward the realization of entire
laboratories on chips.
Typically, such chips consist of structured chambers, ports,

and closed channels, with dimensions ranging from a few
micrometers to a few millimeters. The devices can be actuated
via vibrations through the bulk (the whole chip or the chamber
vibrated by a piezoelectric transducer) or by exciting surface
acoustic waves along the surface of a piezoelectric substrate.9

Bulk acoustic wave devices usually use a single-frequency or
a narrow-frequency band, and the channel widths are half of
the acoustic wavelength. At half wavelength resonance, a
standing wave develops between the walls of the channel,
forcing the particles to migrate toward the walls (pressure

antinode) or toward the middle (pressure node), depending
upon their acoustic contrast factor relative to the medium.10

A potential application of such devices is in passive cell and
particle separation, where continuous flow and an acoustic field
transport particles or cells toward a particular outlet.4,6,7 The
outlet through which a particle exits depends upon its acoustic
contrast factor and its size/shape. For example, red blood cells
can be separated from a contaminated solution,6 or
mononuclear cells can be separated from whole blood.11

Particle manipulation,12,13 pattern formation,14 microassem-
bly,15 and particle trapping16 based on acoustophoresis have
also been reported.
As an example of a more controlled acoustofluidic

manipulation, alternating between two frequencies, which
correspond to two different resonances of a channel, has been
used to deterministically drive a single droplet to either of two
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different outlets.1 Thus far, similar methods have been mostly
limited to binary control actions (field on/off), frequency
modulations,17 multi-frequency switching to create unique cell
aggregation patterns, or at most a few frequencies.18−21 A
higher degree of control is usually achieved using multiple
transducers to carefully construct the desired field shape:
holographic traps22 or perpendicular surface acoustic wave
(SAW) actuators.20,23 Deep learning has been used to relate
the geometry of the manipulation area to the observed acoustic
fields.24 This method was able to predict and produce accurate
acoustic field models for a variety of channel shapes.
Recently, our co-authors demonstrated a method for the

controlled manipulation of particles on a flexurally vibrating
thin plate (so-called Chladni plate).13 The method is based on
the extensive modeling of the particle motion in response to
different frequencies. The manipulation is performed by
choosing which frequency to play next based on the current
position of the particles and where one wants them to go in a
closed-loop manner. The method has since then been
extended to Chladni plates submerged in a liquid medium25

and different control algorithms.26,27 Because the plates were
50 × 50 mm and the waves were flexural, the frequencies used
were well in the audible range.
In this paper, we demonstrate the closed-loop two-

dimensional (2D) manipulation of particles (Figure 1) inside
closed-channel microfluidic chips, by controlling the frequency
of a single ultrasound transducer, based on machine-vision-
measured positions of the particles. Closed-channel micro-
fluidics poses a new problem for such an acoustic
manipulation: it is difficult to perform controlled calibration
or learning experiments because one cannot manually place a
particle at any given location inside the chamber. To overcome
this problem, in this paper, we show that algorithms derived
from the well-known family of multi-armed bandit algorithms
can achieve controlled manipulation with minimal learning,
voltage adjustments, or reinforcement learning. The method
“learns as it goes”: there is no need to restart the experiment at
any point. Starting with no knowledge of the acoustic field

shapes, the algorithm can (eventually) move a particle from
one position inside the chamber to another. The multi-armed
bandit algorithms determine how to move the particles solely
based on the information that they have accumulated about the
device starting from the beginning of each particular
experiment. This method is highly agnostic to the actual
acoustic manipulation system: it knows nothing about the
acoustic field shapes or actual frequencies, just that there are N
frequencies that could be used. Thus, it should be relatively
straightforward to adapt it to other acoustic manipulation
systems, including, e.g., the Chladni plate setup from the
previous work of our co-authors. We also demonstrate that the
method can be adapted to the manipulation of multiple
particles, and we demonstrate the practical applications of this
method in the active sorting of particles into one of the three
outlets of the chip.
In short, we present a method for manipulating micro-

particles inside microfluidic chips by controlling the frequency
of a single ultrasound transducer based on machine-vision-
measured positions of the particles and machine learning. This
method is robust to changes in chip/sample and object
properties, such as changes in the particle size, with the
potential trade-off of longer manipulation times. Because the
method requires no model or calibration, the work paves the
way toward the acoustic manipulation of microparticles inside
unstructured environments.

■ EXPERIMENTAL SECTION
Two different glass chips were designed, one with a single outlet and
another one with three outlets (panels a and b of Figure S1 of the
Supporting Information). The single-outlet chip was designed for
simple manipulation tests, while the multi-outlet chip was designed
for demonstrating sorting of particles into one of the outlets. Both
chips have a single inlet. The chips include a rectangular manipulation
chamber (length, 7 mm; width, 6 mm; and height, 0.15 mm). The
dimensions of the rectangular chambers were kept the same in both
chips, so that the manipulation is performed roughly in the same
frequency range. The dimensions of the chamber were chosen to be
asymmetric on purpose, to separate width and length modes. After

Figure 1. Controlled acoustofluidic manipulation using bulk acoustic waves inside a microfluidic chip. (a) Schematic of the experimental setup. (b)
Acoustic patterns for various frequencies. (c) Single-particle manipulation, with the line following a single particle manipulated using bulk acoustic
waves. (d) Multiparticle manipulation. All scale bars = 1 mm.
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deciding the dimensions of the chamber, we calculate the overall
lateral dimensions of the chip to facilitate a quarter wavelength
acoustic wave in the glass edges and a half wavelength wave in the
chamber.28 The chip dimensions were calculated using the values in
Table 1.

This method has been reported to enhance the strength of acoustic
resonances inside the chamber.28 Note that this chamber size not only
supports half-wavelength resonances but also higher harmonics.
The chips were fabricated by wet etching of fused silica glass. All

inlet and outlet channels were 1.1 mm wide and 0.15 mm deep.
Nanoport (IDEX Health & Science, LLC) fluidic connectors were
glued to drilled inlets and outlets. The microfluidic chips were
fabricated by Klearia, France. A 15 × 15 × 2 mm (NCE45, Noliac,
Denmark) piezoelectric transducer was glued (Figure 1a) on the
bottom of the chip, approximately in the center, using epoxy glue
(Loctite Power Epoxy). Panels c and d of Figure S1 of the Supporting
Information show the fabricated chips.
As a starting point for selecting the frequency range for

manipulation, we calculated the expected resonance frequencies by
assuming infinite hard walls on the water−glass interface, given the
following equation:28
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where c is the speed of sound in water, lx,y are the length and width of
the chamber, respectively, and nx,y are the mode numbers.28 This gives
f1,0 = 106.2 kHz as the first resonance in the length direction and f 0,1 =
123.9 kHz as the first resonance in the width direction.
Experimental Setup. The experimental setup includes a radio

frequency (RF) amplifier to drive the piezoelectric transducer, a
camera to image the manipulation chamber, a light source, a

computer to implement the closed-loop control, and a syringe pump
to deliver the particle solution into and out of the chamber. A
schematic of the experimental setup is shown in Figure 1a.

In the particle manipulation experiments, ≈70 μm polystyrene
particles (Lab261, Palo Alto, CA, U.S.A.; density, 1.05 g/cm3; and
color, blue) were used. To prevent the particles from agglomerating as
a result of their hydrophobic behavior, we used 1 vol % Triton X-100
in deionized (DI) water as the medium.

The fluid−particle suspension was delivered to the chip by a
syringe pump (Aladdin, World Precision Instruments) at a rate of
0.01 mL/min. The particles exiting from the outlet of the chamber
were captured into an output reservoir. Silicone tubing was used for
all fluidic connections.

The piezoelectric transducer was excited by an electrical signal
from a computer with an embedded waveform generator (PCI-5412,
National Instruments). The signal was amplified by a 400 W class AB
RF amplifier (1400L, Electronics & Innovation).

The particles were imaged with a camera (Basler acA2040-120uc,
Germany), and their x/y position was tracked by a custom machine
vision algorithm, written in MATLAB. To enhance the visibility of the
particles within the chamber, a 100 W rectangular light-emitting diode
(LED) was used to illuminate the chamber.

Closed-Loop Control Algorithms. The control algorithms
tested in this work are UCB129 and ε-greedy30 from the multi-
armed bandit family of algorithms. As a control experiment, the linear
programming control algorithm from the previous work of our co-
authors was also used.13 The pseudocode for the control algorithms is
given in Supplementary Note 1 of the Supporting Information, and
our implementation can be downloaded from Zenodo.31

Briefly, the task of the control algorithm is to choose which
frequency to play next. In both control algorithms, the frequencies are
discrete: the algorithms choose one of the N = 100 frequencies,
linearly spaced in the frequency range from 65 to 700 kHz. The
chosen frequency is played for half a second, and the algorithms then
assign a reward for the action, with the reward being simply how
many pixels or micrometers the particle moved toward its current
target point. In subsequent rounds, the multi-armed bandit algorithms
balance between exploration and exploitation: playing the frequencies
that gave the largest (average) rewards in the past versus trying out
new frequencies that could be even better.

Table 1. Material Parameters

material speed of sound (m s−1) density (g cm−3)

fused silica glass 5968 2.2
water 1487 1

Figure 2. Comparison of different controllers for acoustofluidic manipulation. (a) Driving voltages for different frequencies, after adjusting them, so
that they result in a motion of 25 pixels for a 0.5 s signal. (b) Comparison between Chladni figures and the data-driven models that predict how the
particles move at 136 kHz. (c) Comparison of different controllers for the manipulation. Flat voltage means that a voltage of 18.745 V was used for
all frequencies, and adjusted voltage means that the voltage was chosen according to panel a. Model means that the algorithm needs the calibration
models from the experiments, exemplified in panel b (model “no” means that no data-driven models of the acoustic field shapes were used). Steps is
the number of control steps taken in three different experiments; each step ≈ 1 s (the frequency is played for 0.5 s; machine vision and control
computations take another ≈0.5 s). All scale bars = 1 mm.
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Exactly how exploration and exploitation is balanced differs in the
UCB1 and ε-greedy algorithms. In ε-greedy, at each step, any random
frequency is chosen with a probability of ε (exploration). Otherwise
(with a probability of 1 − ε), the frequency with the highest average
past reward is chosen (exploitation). In UCB1, a confidence interval
around the mean is computed, where the magnitude of the confidence

interval is ∼ n
n

ln

j
, where n is the total number of actions taken and nj

is the number of times action (frequency) j has been chosen. The
frequency with the highest upper confidence bound (mean +
confidence) is chosen. The effect of this confidence bound is that
the algorithm is “optimistic”: a poor performance of a frequency with
only a few trials might be due to bad luck (exploration). As evidence
accumulates (a frequency is played many times), the confidence
interval decreases and the algorithm will start to choose solely based
on average past rewards (exploitation).
The rewards vary with the current position and the target position

of a particle: a frequency that is good for moving toward a node is not
good for moving out of that node. For this reason, the average
rewards were computed using exponentially decaying weights; i.e., the
weights were proportional to γ−t, where γ is the weight factor and t is
the number of control steps since that reward. This exponentially
decaying weight is also taken into account when calculating the
confidence bound for the UCB1 algorithm: the algorithm slowly
forgets having chosen a particular frequency, and the confidence
bound slowly increases again. This exponentially decaying memory
ensures that old rewards, not anymore relevant to the current position
and target of the particle, are forgotten.
Adjusting the Excitation Amplitude for Different Frequen-

cies. In the previous work on Chladni plates, the driving amplitude of
the transducer was adjusted for each frequency, so that the median
motion of particles was approximately the same for all frequencies.13

The purpose of this process was to avoid excessive motion of the
particles when driving the system near resonances and also to detect
the locations of the resonances of the system.13 We conducted similar
experiments with our system. For these experiments, approximately
600−1000 particles were pumped into the chamber. Starting with a
voltage of 30 V for each frequency, several rounds of experiments
were conducted, and in each round, every frequency was excited once.
After each experiment, the displacement of all particles was recorded
by the camera and analyzed using MATLAB and the median
displacement was computed. Dependent upon the median displace-
ment, the voltage for that frequency was increased or decreased,
depending upon whether the displacement was larger or smaller than
a defined threshold.
In our case, the threshold was set to 25 pixels ≈ 173 μm. This

process generated data that relate particle motion with the resonances
of the acoustic device. When the acoustofluidic chip is driven at or
near resonances, lower voltages were needed to achieve the desired
median displacement. We study the resonances by plotting the inverse
of the voltage against the applied frequency (Figure 2a).
Modeling of the Displacement Fields. To compare our work

to the earlier work from the literature, we also tested using the linear
programming controller from the previous work of our co-authors.
This linear programming controller required the knowledge of the
field shapes for each frequency. To record these field shapes, we
followed their approach.13 Briefly, >500 particles were pumped to the
chamber, and then all of the discrete frequencies were excited 5 times,
in random order. Between every frequency played, the particles were
withdrawn from and pumped back to the chamber to distribute the
particles evenly inside the chamber and to break particle clusters.
The particle positions p and particle displacements Δp were

captured by machine vision after exciting one frequency. This resulted
in a data set of (p, Δp) for each frequency. From the captured data
points, the displacement values |Δp| > 350 μm were discarded,
because they represent false detections or wrong matching of particles
by the machine vision. For each frequency, we estimate the two-
dimensional displacement field by performing robust LOESS
regression.13,32 An example of the resulting model for a frequency
of 136 kHz is shown in Figure 2b.

■ RESULTS AND DISCUSSION

Single-Particle Manipulation. To show that we can
actively guide a particle inside the single-outlet chip using the
multi-armed bandit-based controllers (ε-greedy and UCB-1),
we defined a U-shaped reference path for a particle to follow.
During the manipulation, a point along the reference path
(waypoint) serves as a temporary target point. As the particle
approaches the waypoint within 300 μm, a new waypoint along
the path is chosen as the target point. The results for such
manipulation experiments are shown in Figures 1c and 2c.
Both multi-armed bandit controllers were able to successfully
guide the particle to follow the given reference trajectory,
showing that a controlled acoustofluidic manipulation is
possible without any prior learning events or acoustic field
models.
The accuracy of the multi-armed bandit controllers was

limited by the chosen waypoint tolerance (300 μm in our
experiments). This is a trade-off with the manipulation time: a
smaller tolerance value increases the accuracy but also
increases the manipulation time. Besides tuning the tolerance
value, one could also reduce the voltage, so that the particles
move less and avoid large jumps around the reference
trajectory. Furthermore, the manipulation time varies
randomly between each run (Figure 2c). This is not surprising
given the chaotic nature of the manipulation: small differences
in the initial position of a particle and the experimental
conditions can lead to a very different path taken. Also, in the
case of the ε-greedy algorithm, the algorithm itself is stochastic.
We did not observe any obvious heat-induced effects in any

of the experiments. Even the longest experiment, which lasted
approximately 3 h (∼14 000 steps), we did not see any
evidence of the chamber heating (boiling and particle melting).
We conclude that our method can be used to perform long-
term manipulations without being limited by thermal effects.
As a result of the long duration of the experiments, the

polystyrene particles are expected to sediment to the bottom of
the chamber. The terminal velocity of our particles, calculated
by balancing Stokes’ drag to gravitational effects (taking
buoyancy into account), is ∼0.1 mm/s. Our experiments last
up to tens of minutes; therefore, within the time frame of a
single experiment, the particles are expected to sediment to the
bottom. Because the frequency range in this work was kept
well below the resonance frequencies of the vertical modes, the
vertical modes are unlikely to create enough force to counter
the sedimentation.
To show that our method is not limited to manipulating

particles of a certain size, we repeated the same single-particle
manipulation experiments as in Figure 2c with a 100 μm
diameter particle. The results are shown in Figure S4 of the
Supporting Information. The controller was successful in
guiding the particle along the refence path. The experiment
lasted ∼40 min with a total of 2593 control steps. These results
show that our manipulation method is not limited to particles
of a specific size. In our setup, a hard upper limit for the
particle size comes from the dimensions of the chip: the height
of the chamber is 150 μm. A hard lower limit comes from the
resolution of our imaging system: each pixel is 6.9 μm.
To show that our method is robust to the variations between

one chip and another, we redid the single-particle manipulation
experiment with our multi-outlet chip, using the same
frequency values and a constant voltage of 20.64 V. The
particle was successfully guided within the chip (Movie S1 of
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the Supporting Information), despite the exact shape of the
chamber being different from our single-outlet chip. This
further confirms that our method is not limited to the specific
chip design and is robust to changes in chip geometry.
Bubbles are a common issue in microfluidic systems, and

their presence could significantly distort the acoustic field
shapes, potentially impairing acoustofluidic manipulation
systems. To show that our method is robust to the presence
of air bubbles, we performed a simple path following the
experiment with a large bubble in the chamber. Despite the
bubble, the controller was able to successfully guide the
particle through the path (Movie S4 of the Supporting
Information). We attribute this to the short memory of the
algorithm: it can quickly adapt to the disturbances from the
bubbles, whereas in future steps, the algorithm equally quickly
forgets the existence of the bubbles.
Whereas the multi-armed bandit controllers were able to

complete the manipulation tasks, the previously reported linear
programming controller13 failed to complete the manipulation
tasks. We attribute these failures to errors in the displacement
field models used by the linear programming controller.
Because the controller is non-stochastic and non-adaptive, the
controller got stuck in an infinite loop when it thought that the
particle should move in response to a frequency, but it did not.
We suggest that these errors are from the difficulty of
distributing the particles evenly inside the chamber: if very few
or no particles were near position p during calibration
experiments, the model cannot be used to predict Δp. Figure
S2 of the Supporting Information shows an example of how
the particles were distributed during the calibration experi-
ments.
As a concrete example of the resulting modeling errors, see

Figure 2b. In the bottom left corner, there is a bright red spot
in the magnitude plot, indicating displacements of over 80 μm.
This is most certainly an error, as we observed almost no
particles near the corners during modeling experiments,
because there are no nodes in the corner of the chip.
More displacement field models can be found in Figure S3

of the Supporting Information. Some of the patterns are
symmetric, but most are not, even though a simplistic model of
a symmetric chamber with a piezo mounted in the center says
that they should be. This is a well-known problem in acoustic
manipulation: even slight misalignments could cause the
antisymmetric modes to be excited. We take this as an
evidence that it would also be difficult to derive these
displacement fields from first principles. In summary, the major

problem in the linear programming controller is that it needs
accurate models of the displacement fields, and in closed-
channel microfluidics, it is difficult to obtain these models
either using data-driven techniques or from first principles.
To further compare the discrepancies between theoretical

and experimentally obtained mode shapes, one can try to
correlate the resonance frequencies predicted by eq 1 to the
practically observed field shapes in Figure S3 of the Supporting
Information. For example, in Figure S3 of the Supporting
Information, we find a shape resembling a half wavelength
mode f1,0 at 129 kHz, while the simplistic model of eq 1
predicts f1,0 = 106.2 kHz, ∼23 kHz lower than the
experimentally observed value. Plausible reasons for the
discrepancy include inlets, uncertainties in the physical
parameters (for example, the effect of Triton X-100 on the
speed of sound or the actual speed of sound in the glass or
water), and manufacturing tolerances in the chip. To conclude,
the unpredictability of the experimentally obtained acoustic
field shapes highlights why our proposed adaptive, machine-
learning-based control techniques are useful for acoustofluidic
manipulation.

Multiparticle Manipulation. To show that our method
can be extended to multiparticle manipulation, we tested
manipulating three particles simultaneously in the single-outlet
chip using the ε-greedy control algorithm. This manipulation
task is complicated and challenging because the particle
motion in the manipulation space is coupled.22 However, our
method is trivial to extend to multiparticle manipulation: when
calculating the rewards, we simply sum the rewards from each
of the three particles. The controller manages to uncouple the
particle motion and individually move the particles to their
target points. Figure 1d presents the multiparticle manipulation
steps, where initially the particles from different parts of the
chamber were driven to the targeted locations. Once the
particles reached the initially assigned targets, a new set of
targets was then assigned. This process was continued until the
particles reached the final target locations. The algorithm
managed to uncouple the motion of the three particles within
the chamber and individually guide them toward the selected
target points (Movie S2 of the Supporting Information).
In multiparticle manipulation, the control of individual

particles may become difficult if they come too close to each
other. There are three reasons for these difficulties: (1) The
primary acoustic forces of the two particles become highly
correlated: the wavelength of the highest frequencies is longer
than the distance between the particles; therefore, the motions

Figure 3. Particle-sorting experiments. (a) Photograph of the particle-sorting chip. The chip consists of a single inlet and three outlets. Inset shows
the schematic of the chip. (b) Confusion matrix of particle-sorting experiments, with multiple waypoints leading to each outlet. (c) Confusion
matrix of particle-sorting experiments, with a single way point, placed right at each outlet. (d) Snapshots of actual particle-sorting experiments.
Scale bar = 1 mm.
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of the particles are highly correlated for all manipulation
frequencies. This has been observed for other acoustic
manipulation systems also.13 (2) The secondary acoustic
force tends to drive two particles toward each other: in
acoustofluidic manipulation systems, the particles themselves
affect the acoustic field surrounding them, and the interaction
between multiple particles in the vicinity of each other tends to
agglomerate the particles.33 (3) Finally, our machine vision
system can lose the tracking of individual particles, if they
come too close to each other, especially if they touch each
other.
In our multiparticle manipulation experiments, we avoided

all of the aforementioned difficulties by keeping all particles far
away from each other, by keeping the target points of particles
far enough from each other. Typically, the distance between
two target points was at least 2.5 mm.
Active Sorting of Particles. To demonstrate a practical

application of our manipulation method, we performed active
particle sorting using the multi-outlet chip (Figure 3a). For
each incoming particle, we assigned it to one of the three
outlets, performed the manipulation experiment, and finally
calculated the confusion matrix (assigned versus actual outlet)
to characterize the reliability of the method. In the first sorting
experiment, we sorted 30 particles, and the results are
presented in Figure 3b. The controller was set to guide
incoming particles through a conservative route. The
conservative route was composed by several “guiding”
waypoints, starting from a point close to the center of the
chamber and ending at the selected outlet. The guiding
waypoints used in these experiments are presented in Figure
3d. As seen from Figure 3b, no particle was missorted. In these
experiments, the average sorting time per particle was 20 min.
We also tested faster particle sorting by not having any

guiding waypoints but only having a single target point at the
outlet of choice. The results are summarized in Figure 3c (see
also Movie S3 of the Supporting Information). The average
sorting time per particle decreased to 13 min, which is on
average 7 min faster than the conservative sorting approach.
However, this comes with a trade-off in sorting accuracy
(Figure 3c): some of the particles are now missorted. These
missortings are due to the controller: without guiding
waypoints, the controller might accidentally drive the particle
close to a wrong outlet, and as a result of the presence of a
slight negative pressure at a wrong outlet, the particles
accidentally exited through the wrong outlet. We conclude
that the guiding waypoints maximize the sorting accuracy while
only slightly increasing the sorting time per particle, whereas
the single target approach suffers from particle missortings but
is slightly faster.

■ CONCLUSION
In this study, we showed that particles can be controllably
manipulated and sorted within closed microfluidic chambers
using bulk acoustic waves. The control algorithms were derived
from the family of multi-armed bandit algorithms, a class of
well-known machine learning algorithms. The manipulation
was achieved by controlling the frequency of a single
piezoelectric transducer. Even using a single transducer, the
method could be used to manipulate three individual particles
simultaneously.
While, in this study, the acoustic manipulation was

demonstrated in 2D, adapting the algorithm itself to perform
a three-dimensional (3D) manipulation would be very easy:

when calculating the rewards (how many micrometers a
particle moved toward its target), one would just calculate the
distance of a particle to its target in three dimensions instead of
two. The multi-armed bandit algorithm itself knows nothing of
coordinates nor dimensions. 3D manipulation would neces-
sitate tracking the particles in 3D; optical systems for tracking
particles in Z direction in acoustofluidic context have been
reported by Barnkob et al.34,35

One obvious potential future application of our method is in
the manipulation of biological cells. Our particle sizes (70−100
μm) start to be in the upper range of mammalian cells: for
example, adipocytes (fat cells) are approximately 100 μm.
However, typical mammalian cells are in the range of 10−100
μm; thus, there is still ∼1 order of magnitude of scaling ahead
of us. Cells are well-known to possess sufficient acoustic
contrast to respond to bulk acoustic fields; thus, there are no
fundamental obstacles why our method could not be used with
biological cells. However, practical challenges include improv-
ing the imaging and particle tracking system and scaling down
the chamber dimensions while increasing the manipulation
frequencies.
There are a few hyperparameters for the algorithm, but these

are limited in number: N (the number of frequencies), γ (the
forgetting factor), and ε/c (the balance between exploration
and exploitation, for ε-greedy or UCB1 algorithms, respec-
tively). For the practical manipulation system, the minimum
frequency, maximum frequency, and voltage are also
parameters that can be adjusted. We have merely reported a
combination of parameters that work; however, in the future, a
more exhaustive mapping of the effects of various parameters
on the manipulation speed and accuracy should be performed.
For specific applications, the number of parameters in our
control method is so low that optimizing them for a particular
application should be feasible.
The advantages of our approach are as follows: (a) Model-

free nature of our controllers: Our method requires absolutely
no prior knowledge of the system acoustic fields, which can be
expensive/tedious to measure accurately. (b) Easy to imple-
ment with a very few parameters: one problem that plagues
machine learning is that the algorithms can be so complex and
opaque that analyzing what they are actually doing is very
difficult. For example, it is often difficult to know exactly what
each layer of a deep-learning neural network is actually doing,
whereas simple algorithms, like the multi-armed bandit
algorithms here, can be written in 10 lines of code and are
easy to monitor. (c) It is highly adaptable to variations in chips,
fluid properties, and particle sizes: The amnesiac nature of our
algorithms helps that it can quickly adapt to new conditions.
We have demonstrated that they work in different chip designs
(single-outlet versus multi-outlet chip) and can work in the
presence of disturbances to the system (bubbles). This paves
the way toward acoustofluidic microrobots, navigating particles
through complex, unstructured environments.
The disadvantages of our method are the long manipulation

times, which are a consequence of the memory of the
algorithm being very short: it gains no speed from prior
experiments. In its current incarnation, the long sorting times
would limit the practical applications of our method to
methods where only a few particles/cells are being
manipulated, e.g., manipulation of oocytes, where one could
expect to manipulate even single cells. In the future, we aim to
develop the algorithms to balance the long and short memory:
the algorithm could use prior information (long memory, e.g.,
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using acoustic field shape models to predict how the particles
move in response to a particular frequency) when it seems to
give accurate results but can also switch to a more adaptive
strategy (short memory) if the prior information proves
misleading. Even with the current algorithms, the long sorting
times could be improved in the future by switching between
frequencies more rapidly and running the control/machine
vision loop at a higher frequency.36
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