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Wearable heart rate devices are becoming more accurate and widespread in daily life. These 
devices can measure the time between successive heart beats called RR intervals, which are 
used to study heart rate variability (HRV). The increased availability of HRV data from different 
activities has increased the interest in heart rate variability analysis. One worthwhile target for 
HRV analysis is driving, since it is a very common everyday task that is also both psychically and 
motorically multidimensional task, and all the physiological effects of driving are not known yet. 

The physiology of driving has been studied before, but this thesis focuses on using new 
technique, that aims to broaden previous knowledge. This technique is called Dynamic detrended 
fluctuation analysis (DDFA). It is utilized to detect real time changes in the HRV during driving in 
real world experiments in order to find HRV behavior that is specific to driving. Dynamic detrended 
fluctuation analysis improves conventional detrended fluctuation analysis by allowing calculation 
of scaling exponent as function of both the scale and time. 

In this thesis multiparameter data with RR intervals from several subjects is utilized. The data 
includes electrocardiogram from the subjects during both rest and drive sections. This data is 
used to calculate the HRV measures. Results from the DDFA calculations are compared to the 
conventional HRV measures and different analysis methods are applied to find differences 
between the rest and drive sections. Finally, the results are used in classification between the 
sections. The aim of the classification is to compare the performance of the DDFA measures 
against conventional HRV measures and examine how well the different sections can be identified 
from each other. 

This thesis showed that utilizing the DDFA method gives valuable additional information about 
the differences between the rest and drive sections. A reasonable next step would be analyzing 
larger data sets with clearly labeled sections of different activities in order to make statistically 
accurate conclusion about the physiology of driving. 
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Puettavat sykemittarit ovat entistä tarkempia ja yleisempiä jokapäiväisessä käytössä. Näillä 
laitteilla pystytään mittamaan peräkkäisten sydämenlyöntien aikavälejä eli RR intervalleja, joita 
käytetään sykevälivaihteluiden tutkimisessa. Lisääntynyt sykevälivaihteludata erilaisten 
aktiviteettien aikana on lisännyt kiinnostusta sykevälivaihteluanalyysille. Yksi kiinnostava kohde 
sykevälivaihtelu analyysille on autolla ajaminen, sillä se on erittäin yleinen ja toisaalta psyykkisesti 
ja motorisesti moniulotteinen arkielämän aktiviteetti, jonka fysiologisia vaikutuksia ei vielä tarkasti 
tunneta. 

Ajamisen vaikutuksia sykevälivaihteluun on tutkittu jonkin verran aikaisemmin, mutta tämä 
diplomityö keskittyy uuteen menetelmään, jonka avulla aiempaa tietämystä pyritään 
syventämään. Menetelmä on nimeltään dynaaminen trendit poistava fluktuaatioanalyysi 
(Dynamic Detrended Fluctuation Analysis, DDFA). Sitä hyödynnetään sykevälivaihtelun 
reaaliaikaisten muutosten havaitsemiseen todellisissa ajotilanteissa, tarkoituksena löytää 
ajamiselle ominaista sykevälivaihteluiden käytöstä. DDFA parantaa perinteistä trendit poistavaa 
fluktuaatioanalyysiä mahdollistamalla sykevälivaihtelun skaalautumisen tutkimisen sekä itse 
skaalan että ajan funktiona. 

 Tässä diplomityössä käytetään moniparametrista dataa, joka sisältää RR intervallit useilta eri 
henkilöiltä. Data sisältää koehenkilöiden sydänsähkökäyrän sekä levon, että ajon aikana. Tätä 
dataa hyödynnetään sykevälivaihteluparametrien laskemiseen. DDFA-tuloksia verrataan 
perinteisillä sykevälivaihtelumittareilla laskettuihin tuloksiin, ja erilaisia analyysimenetelmiä 
hyödynnetään lepo- ja ajojaksojen erottelemiseksi toisistaan. Lopuksi tuloksia käytetään myös 
lepo- ja ajojaksojen luokitteluun. Luokittelun tarkoituksena on vertailla DDFA-tuloksia perinteisiin 
sykevaihteluparametreihin sekä tarkastella kuinka hyvin eri jaksot voidaan erottaa toisistaan. 

Diplomityö osoittaa, DDFA-menetelmän hyödyntäminen sykevälivaihtelun tutkimisessa antaa 
arvokasta lisätietoa lepo- ja ajojaksojen eroavuuksista. Looginen seuraava askel olisi analyysi 
suuremmalla datajoukolla erilaisista ja selkeästi jaotelluista aktiviteeteista, jotta voitaisiin vetää 
tilastollisesti tarkkoja johtopäätöksiä autolla ajamisen fysiologisista vaikutuksista. 
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1. INTRODUCTION 

Wearable heart rate (HR) devices are becoming highly accurate and widespread in daily 

life. These devices can measure successive heart beats called RR intervals, which are 

used to study heart rate variability (HRV). The increased availability of HRV data from 

different activities has increased the interest in HRV analysis. It has been previously 

applied to detect cardiac autonomic neuropathy in cardiology, to study stress and 

recovery during physical activity and to detect stress [1-3]. These studies have 

established the possibilities of HRV analysis in understanding the physiology behind 

these complex physiological functions. 

Driving is a worthwhile target for HRV analysis since it is a complex and common task. 

In driving, different sensory, motor and cognitive functions are needed simultaneously 

[4]. Due to traffic collisions, driving is also a dangerous activity and about 90% of the 

collisions are related to driver errors  [5]. Finding and detecting physiological changes 

during driving could have relevant applications in road traffic safety. Therefore, studying 

and learning human behavior during driving is an important research topic. The 

physiology of driving has been studied before, but this thesis focuses on new dynamic 

methods of analyzing HRV during driving. These new methods and easy availability of 

HRV data make this approach to analysis sensible. 

Conventionally, HRV has been studied with time domain measures calculated from the 

RR intervals and frequency domain measures calculated from the power spectrum of the 

time series. HRV has also been studied with nonlinear methods quantifying the 

complexity and unpredictability of the RR intervals. Detrended fluctuation analysis (DFA) 

is a commonly used nonlinear method describing HRV behavior on different time scales 

[6]. This thesis focuses on using new method called dynamic DFA (DDFA). It can detect 

real time changes in the HRV during driving to find HRV behavior that is specific to driving 

[7]. DDFA improves conventional DFA by allowing the calculation of the scaling exponent 

as functions of both scale and time. DDFA has been previously used to study running 

and sleeping with promising results [7, 8]. 

In this thesis, multiparameter data with RR intervals from several subjects while they are 

resting in the car, and while they are driving, are used to calculate the HRV measures. 

The results from the DDFA calculations are compared to the conventional HRV 

measures. Furthermore, different analysis methods are applied to find differences 

between the rest and drive sections. Finally, the results are used to classify these 

sections. The aim of the classification is to compare the performance of the DDFA 

measures against conventional HRV measures and examine how well the different 

sections can be identified from each other. 
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This thesis begins with the basic theory of HRV and time series analysis in Ch. 2. This 

is followed by describing the dataset and explaining the preprocessing methods for the 

data in Ch. 3. Chapter 4 focuses on the theory and implementation of analysis methods. 

In Ch. 5 the calculated results are presented and described. Finally, Ch. 6 concludes the 

thesis by briefly discussing the results and giving a further outlook. 
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2. THEORY 

2.1 Heart rate variability 

A human heart is a complex system and there are many factors affecting the heartbeat. 

Even in homeostasis a healthy heart has many complex and constantly changing 

fluctuations in the RR intervals. This constantly changing behavior allows the heart to 

quickly adjust to environmental and psychological changes affecting homeostasis [6, 9]. 

The heart consists of two atria and two ventricles that are mainly controlled by the 

sinoatrial node (SA) and atrioventricular (AV) node. An electrocardiogram (ECG) records 

the electrical activation caused by SA and AV nodes and allows to study the electrical 

activity of the heart. Typical ECG recordings contain multiple peaks from different phases 

of the heartbeat. R-peaks of the QRS complex shown in Fig. 1 are generally the most 

prominent features in the ECG and determine the heartbeat [10]. The fluctuation in time 

between subsequent beats, called interbeat intervals (IBIs), is called HRV. 

Even when the average HR is relatively stable, there is variability in the IBIs. On beat-to-

beat basis the irregular behavior of the RR intervals (RRI) is clearly visible from the RR 

interval time series [9]. These fluctuations of the HR on different time scales are caused 

by heart-brain interactions and dynamic nonlinear autonomic nervous system (ANS) [6]. 

The changes in HRV can provide valuable information about changes in ANS through 

the parasympathetic nervous system (PNS) and sympathetic nervous system (SNS). 

The PNS is dominating at rest conditions, conserving and storing energy, while 

maintaining the basic body functions such as digestion. The sympathetic nervous system 

on the other hand is dominating in “fight-or-flight” reactions and during physical exercise. 

It is preparing the body for physical activity by increasing blood flow into skeletal muscles 

[11]. PNS lowers the HR and SNS increases it. Normally, there is a dynamic relative 

balance between the nervous systems causing homeostasis [10]. 

HRV measures can indicate health problems and changes in physiological states. A 

small HRV is associated with health problems and it is also observed in patients with 

autonomic dysfunction, for example in anxiety and stress [3, 10]. On the other hand, too 

much variability has negative effects on physiological functioning and energy utilization 

[10]. HRV can be utilized as a marker for diseases and adaptability to changing social 

and environmental demands [10]. 
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Figure 1: Example of interbeat interval calculated from the R-peaks of the successive 

heart beats. Figure depicted from Ref. [12]. 

2.2 Time series analysis 

A time series is an ordered list of values with time stamps. Different types of time series 

can represent information from stock market indices in finance to temperature charts in 

climatology and so forth, including various physiological signals [13]. Time series 𝑋 can 

formally be expressed as 

X = {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑇}, (2.1) 

where 𝑥𝑡 is the value at time point 𝑡, and 𝑇 is the number of time points [14]. There are 

many different types of time series and different ways to classify them. The time points 

can be regularly or irregularly spaced. Regularly spaced time series have a constant time 

interval between the points of observation, and they are easier to analyze than irregular 

time series. However, missing observations can cause irregularity into regular time 

series. Different techniques have been developed to solve problems with irregularity and 

missing data, and in this thesis these problems are solved with Lomb-Scargle 

periodogram [15]. The time can also be a continuous variable, but here the focus is on 

time series with discrete time values [13]. 

Stationarity is another way to classify time series. In stationary time series the statistical 

characteristics are preserved over time, and there is an autocovariance 

function

𝑦(ℎ) = Cov(𝑦𝑡 , 𝑦𝑡+ℎ) (2.2) 

  

between two observations 𝑦𝑡 and 𝑦𝑡+ℎ that does not depend on time. Stationary time 

series have a constant mean and variance in time. On the other hand, nonstationary time 

series exhibit features like trends and seasonality that change the mean and variance of 
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the time series over time. Some of the conventional methods developed for analyzing 

time series are only viable for stationary data, but most real-life time series exhibit 

nonstationarities. Therefore, nonstationary data needs to be transformed into stationary 

form [13]. This transformation into stationary time series can be achieved by removing 

the nonstationary trends with detrending methods [16]. 

Using the values measured at different time points 𝑡 is not the only way to create time 

series from data. Sometimes other values, such as differences between successive 

measured values calculated as 𝑥𝑡 − 𝑥𝑡−1 can provide more information than the 

measured values themselves [14]. 

The time series analysis methods can be split into linear and nonlinear methods. In linear 

methods, the relationship between variables can be represented as a straight line [6]. 

The methods and analyses used in this thesis are presented in Ch. 4. 
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3. DATA AND PREPROCESSING 

This chapter focuses on the measurement data obtained from Physionet database [17]. 

The first section describes the measurements behind the dataset. The second section 

focuses on the preprocessing methods of the data to get the desired time series for 

further analysis. 

3.1 Dataset 

Data used in this thesis are originally published in “Detecting Stress During Real-World 

Driving Tasks Using Physiological Sensors” [18] and they are stored in the public 

Physionet database “Stress Recognition in Automobile Drivers”  [17]. The database 

contains multiparameter recordings from healthy volunteers while they are driving a car 

on open roads [17]. 

The experimental protocol included 15 min resting periods before and after the driving 

activity as the baseline measurements. During the rest periods the subjects sat in the 

car with their eyes closed, while the car was idling in the garage. The actual drive was a 

32-kilometer loop on open roads in Boston. The drive included periods of both city and 

highway driving on a predefined route. To keep the drives consistent, a map of the route 

was shown to subjects beforehand, and instructions were given. There was also an 

instructor on the backseat of the car to respond to possible questions. All drives were 

completed during midmorning or midafternoon during light traffic, but since the 

experiment was on open roads the traffic conditions affected the total durations of the 

measurements. They ranged from 65 to 93 minutes [17, 18]. 

The physiological measurements included galvanic skin response (GSR), 

electrocardiogram (ECG), electromyogram (EMG) and chest cavity expansion with an 

elastic Hall effect sensor for respiration. The GSR was measured from the hand and leg 

with electrodes. In the ECG recording, a modified lead II configuration was used to 

maximize the R-peak detection. The EMG was measured from the trapezoid muscle. 

The sampling rates of the signals captured by the FlexComp analog-to-digital converter 

are shown in Table 1 [18]. The ECG signal was recorded with high sampling rate of 496 

Hz providing smooth and accurate results. 

Table 1 Sampling rates of the sensors used in the measurement. 

sensor sampling rate (Hz) 

GSR 31 

ECG 496 

EMG 15.5 

Respiration 31 
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Figure 2: Example of electrocardiography recording with detected R peaks. (a) ECG 
recording of the whole sample including all the detected R peaks and instantaneous 
heart rate calculated from RR intervals. (b) Nine-second period of the ECG signal 
showing the quality of the ECG and the peak finding algorithm. 

The dataset contains 16 complete records, and the 17th record is split into two halves 

[17]. Records 13 and 14 are identical, so only one of them is used. Also record 5 is 

missing some ECG data in the middle of the experiment. Therefore, records 5 and 17 

are not included in the HRV calculations that compare or classify different sections. In 

addition, some of the recordings are missing some of the sensor data or they have poor 

quality. 
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Figure 3: Example of removing incorrect peaks from the RR intervals. (a) All the RR 
intervals, where the red crosses mark the false peaks detected by the algorithm. (b) 
Fixed RR intervals, where the false peaks have been removed. 

3.2 Data preparation 

The data quality of the ECG recordings is very good for a large fraction of the samples, 

and the calculated heart rates look plausible as shown in Fig. 2. The R-peaks are marked 

with red crosses and the HR with a purple line. There are some marked peaks that are 

clearly incorrect as can be seen in their position on the y-axis, as well as in the abnormal 

behavior of the HR at the same time.  

The R-peaks were detected with “WFDB” software package for Python using the “GQRS” 

algorithm [19]. The detection was limited to finding peaks between the maximum and 

minimum beat rates to filter out the number of incorrect peaks detected by the algorithm. 

The maximum beat rate was chosen to be 230 BPM and minimum 20 BPM. These values 

are the default ones that are loose enough not to miss any real beats but still removing 

the unrealistic values for healthy subjects. The labeled beats were manually inspected 

to ensure that the algorithm worked well. The detection algorithm worked as expected 

and only occasional incorrect peaks were detected. These incorrect peaks usually 

occurred when the recording had significant noise during one of the peaks.  

Additional incorrect RR intervals were removed from the RR interval time series with an 

algorithm checking if the difference between the mean of the last five real RR intervals 

and the following RR interval exceeded a chosen threshold value. This algorithm was 

also manually inspected, and the parameters were corrected to ensure that only the 

incorrect RR intervals are removed from the time series. Based on manual inspections 

250 ms was chosen as the threshold value.  The incorrect RR intervals were removed 

without modifying the time stamps of the original time series to keep the correct peak 

occurrence times. The peak removing algorithm is only removing technical artifacts, e.g., 

missed beats, and not utilizing ECG to remove peaks based on physiological criteria. 

Technical artifacts, such as missed beats and unusually high HR values, can be detected 
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and removed from the time series with reasonable certainty without profound study of 

the physiological artifacts. The removal of the technical artifacts has also been utilized in 

previous DDFA calculations [7]. 

Figure 3 visualizes the peak removing algorithm. Most of the removed RR intervals are 

missed beats. Detecting these missed beats is straightforward, since they result into 

spikes that have the heart rate reduced to approximately half of the normal values. In 

Fig. 3 (a) the missed beats resulted into a beat rate of about 40 BPM, making them easily 

detectable from the overall trend of the HR. 

As can be seen in Fig. 3 (b) there are still some suspicious peaks in the fixed RR 

intervals. These peaks are not single unusual RR intervals, but they consist of several 

RR intervals in a row that differ greatly from the intervals close to them. These successive 

unusual RR intervals were not removed from the time series, since isolating them is not 

straightforward, and removing multiple successive beats would affect the 

continuousness of the time series. The last RR intervals in Fig. 3 exemplify these 

successive unusual RR intervals. In Fig. 3(a) the HR is over 250 BPM but even when 

this peak is removed there are still RR intervals increasing the HR to over 130 BPM in 

Fig. 3 (b) even though the difference between the successive RR intervals does not 

exceed 250 ms. 

Table 2: Number of removed incorrect RR intervals and their proportion of the sample. 

Subject Number of removed                                
RR intervals 

Total number of RR 
intervals 

Percentage of removed 
RR intervals 

01 326 5680 5.7 

02 208 5832 3.6 

03 127 6930 1.8 

04 129 6004 2.2 

05 53 5760 0.9 

05a 25 2262 1.1 

05b 28 3497 0.8 

06 74 7243 1.0 

07 61 6634 0.9 

08 65 5191 1.3 

09 51 4910 1.0 
10 107 6406 1.7 
11 138 5217 2.7 
12 42 5120 0.8 
13 69 7691 0.9 
14 69 7691 0.9 
15 44 4923 0.9 
16 248 6418 3.9 
17a 19 2097 0.9 
17b 20 1817 1.1 
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Table 2 shows the number of removed RR intervals and their percentages from the total 

number of intervals. Most of the subjects had only a few abnormal peaks in the RR data, 

and the percentage of removed intervals is small, around 1 %. But there were also a few 

subjects with substantial regimes of abnormal intervals leading to a significant 

percentage of removed intervals, especially subjects 01, 02 and 16. The missing RR 

intervals can have an impact to the results calculated from the time series, but in this 

thesis, as most of the samples have a reasonably small amount of RR intervals missing, 

the influence of this is not studied further. 
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4. METHODS 

This chapter introduces the time-series methods used to analyze the RR intervals. The 

first section focuses on the conventional methods used in the HRV analysis. This creates 

a basis for further analysis with nonlinear methods described in the second section. All 

the methods were implemented with Python. 

4.1 Conventional methods for heart rate variability analysis 

This section describes the conventional methods of HRV analysis that are used in this 

thesis and their implementations. The methods used are: time domain analysis, 

frequency domain analysis and conventional DFA. 

4.1.1 Time-domain analysis 

HRV time-domain measures quantify the amount of variability in the RR intervals time 

series. Table 1 introduces all the time-domain measures utilized in this thesis  [6]. 

Table 1 Time-domain measures for heart rate variability. 

Abbreviation Unit Description 

mRR ms mean value of the RR intervals 

stdRR ms standard deviation of the RR intervals 

cvRR ms coefficient of variation, defined as standard  
   deviation divided by the mean value 

rmssdRR ms root mean square of successive RR intervals  

  differences 

pRR20 % percentage of successive RR intervals that differ by 

  more than 20 ms 

pRR50 % 
on 

percentage of successive RR intervals that differ by 

  more than 50 ms 

 

The mean value of RR intervals (mRR) describes the average time between successive 

heart beats. It is inversely proportional to the average HR, which makes it a widely used 

measure. However, the HR varies a lot due to, e.g., mental stress and physical activity 

[20]. The mean value can be calculated from different lengths of recording based on the 

situation. For example, during alternating intensities of physical activity shorter segments 

are beneficial. On the other hand, the mean HR while sleeping can be monitored in longer 

periods of time. 

One of the simplest ways to measure variation in RR intervals is the standard deviation 

of RR intervals (stdRR) usually measured in long term 24h recordings or short term 

(5min) recordings. StdRR measured from normal-to-normal (NN) intervals, which are RR 

intervals with all the artificial peaks removed, is called the standard deviation of the IBI 
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of normal sinus beats (SDNN). It is the measurement standard for stratification of cardiac 

risk in long term recordings [6, 21]. Having a low SDNN value over 24h recording 

increases the risk of dying after having a heart attack. SDNN values under 50 ms are 

considered to be unhealthy and values over 100 ms are considered healthy.  The risk of 

mortality during a follow-up period of 31 months after heart attack is 5.3 times lower for 

people with healthy SDNN compared to those with unhealthy SDNN [21, 22]. 

Both sympathetic nervous system (SNS) and parasympathetic nervous system (PNS) 

affect SDNN, but this connection is dependable on the measurement conditions. In short 

term recordings the main source of variation is parasympathetically-mediated respiratory 

sinus arrhythmia (RSA), which is synchrony of HRV and respiration [6, 10, 23]. 

The coefficient of variation (CV) of RR intervals, defined as a quotient of stdRR and mRR 

is used together with mRR to detect fatigue in sports [24]. CvRR represents perturbations 

in HRV that can be caused by, for example, stress and recovery [25]. 

RmssdRR, pRR50 and pRR20 are measures that are calculated from the differences 

between successive heart beats. First, each successive time difference between RR 

intervals is calculated and then the measures are calculated from these new time series. 

pRR50 is defined as the percentage of successive heart beats that differ by more than 

50 ms. Respectively, pRR20 is the percentage of successive heart beats that differ by 

more than 20 ms. PRR50 has correlations with PNS activity [26]. RmssdRR is obtained 

by first calculating the squares of successive heart beats and then the mean of the 

squared values [6]. The square root of this mean is rmssdRR. These successive 

heartbeat measures estimate high-frequency correlations, and they are correlated with 

each other. RmssdRR is the most common of these measures, since it usually gives the 

best estimate of the RSA  [6, 10].  

4.1.2 Frequency-domain analysis 

HRV frequency-domain or power spectral density (PSD) analysis can be used to study 

the power distribution of the signal as function of frequency [10]. The frequency domain 

measures used in this study are presented in Table 2. 

 

Table 2 Frequency-domain measures for heart rate variability [6]. 

Abbreviation Unit Description 

HF power ms2 Absolute power of the high frequency band  

        (0.15-0.4 Hz) 

LF power ms2 Absolute power of the low frequency band  

        (0.04-0.15 Hz) 

LF/HF    %      Ratio of LF-to-HF power 
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Absolute powers in both LF and HF bands are calculated by first transforming the time 

series from time domain into frequency domain and then integrating the power spectral 

density (PSD) over the bands [21]. The LF power is normally recorded for periods longer 

than two minutes and it is produced by both the PNS and SNS activity, but in resting 

conditions it is mainly reflecting the baroreflex activity  [6, 21]. 

The HF power band, also known as respiration band, is normally recorded for periods 

longer than one minute and it reflects the PNS activity [6]. HF band power is also 

correlating with rmssdRR and pRR50 time domain measurements, and it corresponds to 

HRV caused by respiratory cycles [21]. The HR is normally slowing down during 

expiration and increasing during inspiration. The normal respiration rates at rest are 

between 12 and 15 times per minute so they fall into the HF band [6, 27]. 

The LF/HF ratio is a widely used but controversial measure. It was intended to estimate 

the PNS and SNS activity, assuming that PNS is generated by HF and SNS by LF bands. 

Based on this model, a high LF/HF ratio indicates sympathetic dominance, whereas a 

low LF/HF ratio indicates parasympathetic dominance. But since the LF and HF bands 

are not caused purely by the SNS and PNS activity, and their interactions are complex 

and nonlinear, the LF/HF ratio has gained some criticism. Also, the testing conditions 

and the length of the measurements can affect the LF/HF ratio [6]. 

4.1.3 Detrended fluctuation analysis 

Since HRV is irregular and nonstationary, nonlinear methods are useful tools to study it 

[6]. Detrended fluctuation analysis (DFA) was first developed by Peng et al.  [28] to study 

long range power-law correlations of DNA sequences, but it was then quickly extended 

to study long-range correlations in nonstationary physiological time series [29]. 

The problem in conventional fluctuation analysis is that they do not generally work well 

with nonstationarities and trends. The nonstationarities in the signal can also be caused 

by environmental conditions that have little to do with the actual system [29]. DFA gives 

a solution to this problem with a well understood method that takes into account the 

nonstationarities and trends. For different noisy and nonstationary signals, DFA is found 

to be working better than conventional fluctuation analysis methods for a wide range of 

scales and different nonstationarities  [30, 31] .  

The algorithm for calculating DFA for interbeat time series of length 𝑁 consist of the 

following steps [29, 32]. 
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Step 1: Integrate the time series 𝐵(𝑖) into series 

𝑦(𝑘) = ∑(𝐵(𝑖) − 〈𝐵〉)

𝑘

𝑖=1

, (4.1) 

where 〈𝐵〉 is the mean value of the original time series 𝐵(𝑖).  

Step 2: Split 𝑦(𝑘) into equally wide non-overlapping segments of length 𝑛. The trend in 

each of these boxes is then calculated by least-squares fitting a polynomial of first order 

into the segments. The y-coordinates of these lines are denoted as 𝑦𝑛(𝑘), and the 

integrated time series 𝑦(𝑘) is detrended by subtracting the linear trend from the time 

series. 

Step 3: Calculate the squared fluctuations 𝐹𝑤
2(𝑛) for each window 𝑤 as the variance from 

local trend with the equation 

𝐹𝑤
2(𝑛) =

1

𝑁
∑ (𝑦(𝑘) − 𝑦𝑛(𝑘))

2

𝑘∈𝑤
. (4.2) 

Step 4: Then the fluctuation function is calculated by averaging over the windows and 

taking the square root of this averaged value.  This fluctuation function is given by 

𝐹(𝑛) =  √〈𝐹𝑛
2(𝑛)〉. (4.3) 

The calculations of the fluctuation function 𝐹(𝑛) are repeated for different scales (lengths 

of the segment n), and the logarithm of the average fluctuation function  log (𝐹(𝑛)) is 

plotted as function of the logarithmic scale log (𝑛).  

Step 5: Determine the scaling exponent 𝛼 from the slope of the log-log graph as [29, 32, 

33] 

𝐹(𝑛) ~ 𝑛𝛼 . (4.4) 

Figure 4 presents an example of a time series and the determination of the short-scale 

scaling exponent 𝛼 from the log-log graph. 

The obtained scaling exponent describes the autocorrelation properties of the signal [34]. 

The interpretation of the exponent is a generalization of Hurst exponent (𝐻), where       

𝛼 = 𝐻  for values 0 < 𝛼 < 1, and 𝛼 = 1 + 𝐻 for larger values of 𝛼 > 1 [7, 29, 35]. These 

interpretations for 𝛼 are presented in Table 3. 

When studying HRV, the scaling exponent is conventionally calculated separately for 

short scales 4 ≤ 𝑛 ≤ 16  and long scales 16 ≤ 𝑛 ≤ 64. They are called 𝛼1  and 𝛼2, 

respectively [6, 29]. The reasons behind this separation of the scaling exponent arises 

from commonly observed differences between healthy and pathologic data. When 

calculating DFA the log-log graph shows crossover points between scales 10 and 20 for 
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Figure 4: Example of different steps in detrended fluctuation analysis. (a) Example of 
HRV time series from the start of Subject01 first rest section. (b) Integrated time series 
from (a) with least-squares fitted first order polynomial into non overlapping windows of 
length 50. (c) Determination of the short-scale scaling exponent with detrended 
fluctuation analysis. 

Table 3 Interpretation of the scaling exponent 𝜶 of detrended fluctuation analysis. 
[7]  

Scaling exponent Interpretation Stationarity 

0 < 𝛼 < 1/2 anti-correlated 

stationary 
𝛼 = 1/2 white noise 

1/2 < 𝛼 < 1 correlated 

𝛼 = 1 1/𝑓 (pink) noise 

1 < 𝛼 < 3/2 anti-correlated increments      nonstationary, 

𝛼 = 3/2 Brownian noise stationary 

3/2 < 𝛼 < 2 correlated increments increments 

 

both healthy and pathologic data. The scaling exponents in the regions above and below 

these crossover points are typically different [29]. 
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4.1.4 Implementation of conventional methods 

Algorithm 1 explains how the time domain measures are calculated in practice for the 

experimental protocol described in section 3.1. 

Algorithm 1  Time domain measures from the rest and drive sections 

1. Split RR intervalss into the rest and drive sections. 

2. Calculate the time domain measures in each section using rolling window 

segments with segment length of 300 and step of 10 RR intervals. 

3. Calculate the means of these rolling window segments to get a single value for 

each measure in each section. 

4. Calculate the percentage change of measures between different sections. 

5. Combine the percentage changes of all subjects into a group and present them 

as a box plot. 

The segment length of 300 RR intervals was chosen as it corresponds to the 5 min short 

term recording at HR of 60 BPM. A segment step of 10 RR intervals was used to have a 

significant overlap. 

The frequency domain measures were calculated with the same algorithm as the time 

domain measures. But since the RR intervals are not evenly spaced, the calculation of 

the frequency domain measures requires some extra steps. In particular, a Fourier 

transform can only be used for evenly spaced series or, in other words, we need a 

constant sampling rate. Since the RR intervals intervals are unevenly spaced, the time 

series needs to be modified to get an even sampling rate, or we need to use some other 

transformations.  

A Lomb-Scargle periodogram  [36] was used for calculating the PSD. It is the most often 

used algorithm for unevenly spaced data. The basic implementation of the algorithm for 

calculating PSD 𝑃𝑥(𝜔) for time series 𝑋 measured at times 𝑡𝑗 can be expressed as 

𝑃𝑥(𝜔) =
1

2
{
[∑ X𝑗 cos 𝜔(𝑡𝑗 − 𝜏)]

2

∑ cos2 𝜔(𝑡𝑗 − 𝜏)𝑗

+
[∑ X𝑗 sin 𝜔(𝑡𝑗 − 𝜏)]

2

∑ sin2 𝜔(𝑡𝑗 − 𝜏)𝑗

} (4.5) 

 and 

𝜏 = (
1

2𝜋
) tan−1 [

∑ sin 2𝜔𝑡𝑗𝑗

∑ cos 2𝜔𝑡𝑗𝑗
] , (4.6) 

where 𝜔 is the angular frequency [36]. Townsend [15, 37] has refactored these equations 

into a form that is faster to calculate. We use this faster algorithm in the thesis. 
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Figure 5: Detrending data from the first rest section of Subject09 with smoothness 
priors method using different smoothing parameters 𝜆. 

The Lomb-Scargle periodogram also requires the data to be at least weakly stationary. 

In this thesis the data was detrended with a method designed specifically for HRV 

analysis by Tarvainen et al. in Ref [16]. The method is called “smoothness priors method” 

and the stationary time series 𝐵(𝑖)stat can be written as 

𝐵(𝑖)𝑠tat = [𝐼 − (𝐼 + λ2𝐷2
𝑇𝐷2)−1]𝐵(𝑖), (4.7) 

where 𝐷2 is the second-order difference matrix 

𝐷2 = (

1 −2 1 0 ⋯ 0
0 1 −2 1 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ 0
0 ⋯ 0 1 −2 1

) , (4.8) 

 

𝐼 is the Identity matrix and λ is a smoothing parameter. Larger smoothing parameter 

values reduce the cut-off frequency of the filter. Figure 5 shows the detrended data with 

different smoothing parameters. In this thesis λ = 10 is used as the smoothing parameter 

based on the quality of the detrending with different parameters. In order to keep the low 

frequency components of the HRV the smoothing parameter is chosen to be small, but 

large enough to detrend the data smoothly [16].  

For the DFA measures, 𝛼1 and 𝛼2 scaling exponents were calculated for each rest and 

drive section of the experiment described in Ch. 3. The values of the scaling exponents 

were then compared to each other and presented in similar box plots as the other 

conventional methods. 
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4.2 Dynamic detrended fluctuation analysis methods 

This section introduces dynamic detrended fluctuation analysis (DDFA) and the different 

methods of analyzing the DDFA results calculated from the data. We focus on finding 

differences in the scaling exponents between the drive and rest sections of the 

measurement. 

Real-world HRV data has a lot of nonstationarity, and the ordinary short- and long-range 

DFA scaling exponents are generally not sufficient. DDFA was developed to overcome 

these shortcomings. DDFA determines the scaling exponent as function of time and 

scale with high temporal resolution [7]. 

The long- and short-range scaling exponents based on the different crossover patterns 

between healthy and pathologic HRV data discovered by Peng et al. [29] are generally 

not sufficient to characterize different physiological phenomena in detail [29]. In order 

the calculate the scaling exponent as function of scale, the local noise affecting local 

slope variability needs to be small enough for calculating accurate alpha values. In 

ordinary DFA, large intermittent bursts and strong long-range correlations cause noise 

affecting local slope variability [38]. Effects of the local noise can be reduced by utilizing 

overlapping segments in the DFA calculations. The overlapping DFA segments are 

moved point-by-point one RR intervals at a time. In contrast, in ordinary DFA each 

segment does not contain RR intervals from the previous segment. The overlapping 

windows method is more accurate but also has a drawback with increased computational 

cost [38].  

Performing the calculations in moving temporal segments allows dynamic examination 

of the time series. Furthermore, allowing different dynamic segment lengths for different 

scales results in better temporal resolution for smaller scales. The segment lengths 𝑙(𝑠) 

as a function of scale 𝑠 are calculated simply as [7] 

𝑙(𝑠) = 𝑎𝑠, (4.9) 

where 𝑎 is a constant that can be chosen separately for each scale. Small values of 𝑎 

increase the resolution but also the noise of the results. The value 𝑎 = 5 has been 

previously found to yield good results. It is also used in all the DDFA calculations in this 

thesis [7]. 

The dynamic scaling exponents 𝛼(𝑡, 𝑠) are calculated using the finite difference method 

as 

𝛼(𝑡, 𝑠) ≈
[ℎ−

2 𝐹𝑡̃(𝑠 + 1) + (ℎ+
2 − ℎ−

2 )𝐹̃𝑡(𝑠) − ℎ+
2 𝐹𝑡̃(𝑠 − 1)]

[ℎ−ℎ+(ℎ+ + ℎ−)]
, (4.10) 

where ℎ− = log(𝑠) − log (𝑠 − 1) and ℎ+ = log(𝑠 + 1) − log (𝑠) are the logarithmic 

backward and forward differences. 𝐹𝑡̃ is the logarithm of the fluctuation functions 
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computed for each segment at scales {𝑠 − 1, 𝑠, 𝑠 + 1} utilizing overlapping windows, 

called the logarithmic fluctuation function. Using maximally overlapping windows leads 

to sufficiently smooth results to enable direct utilization of the finite difference method 

[7]. 

The alpha values are usually visualized with a surface plot as function of both the time 

and scale. This allows us to study the changes in alpha over time on different scales. 

The surface plot visualizes the complex structure of the HRV into an easily interpretable 

form, where the possible correlations and anticorrelations can be detected. 

4.2.1 Alpha distribution 

To study and to better understand the differences between the rest and drive sections, 

the alpha distribution as a function of scale is analyzed. This does not show the time 

dependence inside the sections but allows us to examine the possible differences 

between the sections. The DDFA alpha distribution graphs are created with Algorithm 2 

described below. 

Algorithm 2  DDFA alpha distribution 

1. Split RR intervals into the rest and drive sections. 

2. Calculate DDFA for each section and for the whole data separately, using 

scales defined by the shortest section (across every subject). 

3. Split alpha into 50 equally wide bins. 

4. Calculate the number of alphas in each bin for each scale. 

5. Calculate the normalized density of alphas by comparing the number of alphas 

in each bin to the total number of alphas in each scale. 

6. Plot the density as functions of the scale and alpha. 

 

The distribution of the scaling exponent is calculated separately for each subject and 

also as an aggregate distribution of all the subjects. The objective of the subject specific 

plots is to study the variations in each subject and the differences between the subjects. 

The aggregation plot is created to find general correlations that could be utilized for 

detecting universal differences in HRV during driving and resting. 

4.2.2 Significance comparison of different scale ranges 

Dynamically calculated alpha values can be easily studied at all the different scales. This 

can be utilized to find the best possible scales for separating rest and drive sections. To 

find out which scales are the most significant, the alpha values are binned into different 

scale ranges. Both the mean and standard deviation of the alpha values in each section 
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are calculated in these bins and compared to each other. Algorithm 3 explains how these 

scale ranges are created and how the measures are compared between the rest and 

drive sections. The objective is to find the scales that give the largest separation between 

the rest and drive sections.   

Algorithm 3  Scale area segment separation 

1. Split RR intervals into rest and drive sections. 

2. Calculate the logarithmic fluctuation functions of DFA in sliding windows for 

each section separately. 

3. Define the values of alpha for different ranges of scales as a linear fit to the 

fluctuation function. 

4. Normalize all alphas by subtracting the DFA alpha-1 values from the first rest 

period from all the alphas. 

5. Calculate the mean and standard deviation of alphas in each section for each 

range of scales. 

6. Visualize the mean and standard deviation with line plots for separate subjects 

and box plots for the aggregation results. 

 

Since different subjects have different alpha values under similar conditions, some 

normalization is required to get valuable comparison between the subjects. The 

normalization is done with subtracting the alpha values by the DFA alpha-1 value 

calculated from the first rest section. This normalization is chosen, because the DFA 

alpha-1 value is widely utilized, and the first rest period is the logical baseline for the 

measurement. The implementation of normalization and its effects to the results are 

important topics that require further studies, but they are not discussed in this thesis. 

4.3 Classification 

This section describes the classification methods that are used to characterize the 

changes in different measures between the rest and drive section. All the calculations 

are performed with the Scikit-learn Python package [39]. 

Classification in machine learning is a subcategory of supervised learning. In supervised 

learning the machine learning algorithm learns a model for classifying data based on 

labeled training data. This model based on labeled training data can then be used to 

predict labels for unseen data [40, 41]. 
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Figure 6: Example of binary classification. This example has two distinct classes 
illustrated by black and red dots, representing small coordinates and big coordinates, 
respectively. Using these six examples from each class, a simple linear machine learning 
algorithm can find a decision boundary or class divider shown as a line. 

Figure 6 visualizes how a simple linear machine learning algorithm can find a decision 

boundary separating the data based on different labels. The decision boundary is chosen 

so that it maximizes the margin of error. In other words, the distance of the closest points  

of each class is maximized. This decision boundary line can then be used to label 

previously unseen data. If unseen data has coordinates below the line it is labeled as 

black, and if the unseen data has coordinates above the line it is labeled as red [40, 41]. 

Classification is not only limited to binary data with two labels. There can also be 

multilabel classifications, where the number of classes is greater than two. It is not 

always possible to separate the classes linearly. Kernel functions offer a possible 

solution to this problem. They are functions that map the training data into higher 

dimensional space to find linear separations between the classes [42].   

Features of the data are important in classification. They are the predictor variables, and 

in the example shown in Fig. 6 they are the x and y coordinates. It is not always beneficial 

to have a lot of different features, since it can cause overfitting. In overfitting the model 

fits well into the training dataset, but the fitting parameters are so complex and specific 

that they do not generalize well for unseen data. This problem can be reduced by either 

feature selection or dimensionality reduction. In feature selection, only the best features 

for classification are chosen, based on performance in chosen feature selection 

algorithms. In dimensionality reduction, the features are transformed into a new set of 

features with smaller dimensionality, while trying to maintain as much relevant 

information as possible [40]. 
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Figure 7: Visualization of two-dimensional principal component analysis calculation. 
Orange dots illustrate two-dimensional dataset and black vectors are illustrating the 
principal components. (a) Original two-dimensional dataset with the principal 
components. (b) Data projected to the principal axis. 

4.3.1 Feature preparation 

This subsection explains how the features are calculated and prepared for the 

classification in this thesis. The features are calculated from the data in maximally 

overlapping windows of length 200 RR intervals. First, the calculated features are 

normalized using quantile transform. Each feature is separately mapped into uniform 

distribution and then mapped into 10 quantiles. This transform is not linear and thus may 

distort linear correlations, but since the features used have very different scales, quantile 

transform makes them more easily comparable.  

To compare how well each of the features can separate different rest and drive sections, 

the quantile transformed data is utilized by calculating the area under curve (AUC) 

receiver operating characteristics (ROC) curve for each feature. In AUC ROC curve, 

ROC is a probability curve and AUC describes the degree of separability [43]. AUC – 

ROC curve is an important metric describing the performance of the classification. The 

values for the curve are between 0.5 and 1. If the AUC value is high the model is good 

in distinguishing different classes  [43]. 

The number of features utilized in the classification is reduced by principal component 

analysis (PCA). PCA increases the interpretability of the dataset by reducing the number 

of dimensions while minimizing the data loss. Figure 7 visualizes a simple two-

dimensional PCA calculation. In PCA the first principal axis is a linear combination of 

variables with the most variance. In Fig. 7 the first principal axis is illustrated with the 

longest arrow, where length describes the amount of variance in the direction of the axis. 
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The second principal axis is orthogonal to the first one and has the highest amount of 

variance. This sequence is continued until the dimension of the data is reached. Finally, 

the data is projected into new principal axis. The new axis can then be sorted out based 

on their percentages of the total variance accounted, and then the number of features 

can be reduced by removing the new features with the least amount of variance. In this 

thesis the number of features was chosen so that 90 % of the variance is kept. Usually, 

the calculation of PCA is done by solving an eigenvalue problem. The methods for this 

procedure can be found in literature [44-46]. 

4.3.2 Classification methods 

The classifications are done with support vector machines (SVMs) because they provide 

effectivity in high dimensions and also versatility with different kernel functions  [47], 

making them a widely used tool in classification. Support vectors are the points nearest 

to the separation boundary of the classes. SVMs try to find an optimal hyperplane for the 

separation boundary so that it maximizes the margin of error. In other words, the 

hyperplane is chosen so that the distance of the support vectors is maximized from the 

separation boundary [48]. 

Choosing optimal parameters and kernel function for the SVM is done separately for 

each subject and method, using grid search with 5-fold cross-validation. In grid search 

all the possible combinations of chosen parameters are used to teach the model. The 

best parameters are then chosen based on their performance in cross-validation. In the 

cross-validation the training data is split into subsets. Each subset is used as a test data 

one by one while the other subsets are used as training data [49].  

The parameters for the grid search are shown in Table 4, where parameter C is inversely 

proportional to regulation strength, adding penalty to too complex models. Different 

kernel functions map the data into different high-dimensional space in order to find better 

separation between the different classes  [42]. 

 

Table 4 Kernel functions and parameters used in grid search. 

Parameter Values 

C parameter 0.1, 1, 10, 100 

     Kernel functions Linear, Poly, Rbf, Sigmoid 

 

 Classification is done with two different methods. First the subjects are classified 

independently without information from another subjects, using 70 % of the data from 

both rest and drive sections as training set and the remaining 30 % as testing set. The 

data are shuffled so that the distribution of different sections is consistent between the 
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training and testing datasets. The second method is the leave-one-subject-out, where 

one of the subjects is used as a testing data and rest of the subjects are used as training 

data. The leave-one-subject-out method was repeated for all the subjects.  

Since the classes have different amounts of samples, balanced accuracy is used as the 

performance metrics in all the classification calculations. In balanced accuracy each 

sample is weighted based on the inverse prevalence of the samples class, giving better 

results for imbalanced datasets. 
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5. RESULTS 

5.1 Conventional methods 

The results obtained with the conventional HRV methods described in Ch. 4 are the 

baseline for analyzing the potential benefits of DDFA. Figures 8 and 9 compare the time-

domain HRV measures from different rest and drive sections to each other. Figure 8 

shows the differences between the rest and drive sections, whereas Fig. 9 presents the 

differences between the rest sections.  

The rest sections do not have clear overall trends in the measures when compared to 

each other. There are differences when looking at individuals, but overall the time domain 

measures are similar in the two rest sections. The pRR50 has one outlier value with over 

200 % change. It is caused by the low number of successive peaks varying more than 

50ms and thus making the proportional change very large. 

In the comparison between the rest and drive sections, mRR and all the measures 

calculated from successive RR intervals are lower in drive sections than in the rest 

sections. The decrease in mRR corresponds to a higher HR, and since it is at its lowest 

while resting, the result is plausible [50, 51]. All the measures from successive RR 

intervals are correlated with each other as expected.  Since the pRR50 is correlated with 

the PNS activity, the reduction in the PNS activity can be caused by increased stress 

level stimulation during driving  [52]. 

The standard deviation and coefficient of variation do not show significant changes in 

the median of the overall distribution, but there is significant variation between the 

subjects. For individual subjects there are noticeable variations in both measures. 

Therefore, these measures can be useful for studying certain individuals, but the results 

do not generalize into other subjects. 

The alpha-1 values calculated with conventional DFA show similar consistency. There 

are no clearly distinguishable differences between the rest sections when compared to 

the behavior of the time-domain measures. The differences in the median of alphas 

presented in Fig. 10 are almost 0.1 units smaller when comparing the rest and drive 

sections. In other words, the alpha values are larger during the drive section than during 

the rest sections. However, the differences between the subjects are again significant. 

Figure 10 also shows significant variety when comparing the rest sections. There is 0.4 

increase in alpha for some subjects and 0.4 decrease for another subject. These 

changes are prominent since the alpha values normally vary between zero and two and 

most of the measured alpha values are between 0.5 and 1.5. So even the difference 
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Figure 8: Relative change of HRV time-domain measures, where the change is (a) 
drive section compared to the first rest section and (b) drive section compared to the 
second rest section. The relative change was calculated for every subject. The boxes 
represent the quartiles of the data, and the whiskers show the rest of the distribution 
apart from the outliers that do not fit into 1.5 times the interquartile range, which is the 
maximum size of the whiskers [53]. pRR50 has one outlier that is not shown in the figure 
with values of 210 % for (a) and 110 % for (b). 
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Figure 9: Relative change of HRV time-domain measures between the second and 
first rest sections. The relative change was calculated for every subject. pRR50 has one 
outlier that is not shown in the figure with a value of 240 %. 

 
Figure 10: Difference in (a) alpha-1 and (b) alpha-2 between the different sections for 

all the subjects. There is a huge variation in the values between different subjects, but 
the overall trend shows slightly larger absolute values in alpha-1 for the rest-drive 
sections compared to the rest-rest sections. The alpha-2 values do not show significant 
changes between the sections. 
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Figure 11: Relative change of HRV frequency-domain measures. (a) Difference 
between the first rest and drive sections. (b) Difference between the second rest and 
drive sections. (c) Difference between the rest sections. The relative change was 
calculated for every subject.  

 

Figure 12: HRV frequency domain measures for each section and subject separately.  
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of 0.1 is easily noticeable. We also remind that alphas below and above 0.5 correspond 

to anticorrelated and correlated behavior, respectively. However, a detailed statistical 

analysis of the results is outside the scope of this thesis. 

DFA alpha-2 values show similar behavior to alpha-1 values when comparing the first 

rest section and drive section, but there are some differences in the other comparisons. 

The relation between the rest sections is similar to that between the first rest section and 

drive section. This difference in rest sections is also noticeable in the rest-drive 

comparison. However, the changes in drive-rest2 are not as distinguishable as the 

changes in drive-rest1. 

Figure 11 shows the frequency domain measures in a similar manner as the time-domain 

measures in Figs. 8 and 9. The frequency domain measures show consistent behavior 

between the two rest sections. However, there is prominent variability between the 

subjects in the HF and LF/HF measures.  

The rest and drive sections show also similar results when compared to each other. 

There is decrease in the high-frequency absolute power indicating reduced PNS activity 

during driving. The same physiological change can also be seen as an increase in the 

LF/HF measure. These changes indicate a shift into more dominant SNS while driving 

compared to resting. The LF band does not show as prominent differences between the 

sections, but there is noticeable decrease in the LF band when comparing the first rest 

and drive sections, 

The behavior of the frequency domain measures is rather consistent between the 

subjects as can be seen in Fig. 12. Especially the changes between rest and drive 

sections are very distinguishable in the HF and LF/HF measures for all the subjects, 

expect for subjects 01 and 16. The changes in the LF band are not considerable in 

general, but there are several subjects with noticeable changes. 

5.2 Dynamic detrended fluctuation analysis 

Here we present the DDFA alpha values as functions of both time and scale. This visual 

presentation of the HRV correlations shows interesting behavior. Certain subjects (08, 

09, 13, 15 and 17) show significant anticorrelations with alpha values below 0.5 in the 

rest periods. An example of these anticorrelations is presented in Fig. 13, which shows 

two subjects with very different DDFA behavior. For Subject01 the changes between the 

rest and drive sections are not noticeable neither in the beat rate nor in the alpha values, 

apart from small increases in beat rate at the end of the first rest section and the start of  
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Figure 13: DDFA alpha values as functions of time and scale presented as a surface 
plot. The beat rate is shown as a black line. Red vertical lines indicate the change of 
rest/drive sections. (a) Subject01 that does not show noticeable differences between the 
segments. (b) Subject08 that shows clear anticorrelations on scales 10-20 in the rest 
sections that are not present in the drive section. 

the second rest section. However, Subject08 shows noticeable change in the 10-20 scale 

range in the alpha values: the rest sections show clear anticorrelations that disappear 

instantly when the rest period ends and the drive section begins. At the start of the 

second rest period these anticorrelations appear again. 

Figures 14-16 show shorter segments taken from Fig. 13. Figure 14 exemplifies the first 

rest period of Subject08, and Fig. 15 is an excerpt from the first rest period of Subject12. 

Strong anticorrelations in the RR intervals can be seen in Subject08 on scales 10-20. In 

particular, the beat rate steadily increases for about 10 consecutive beats until it starts 

to decrease for another 10 beats. This pattern repeats through the whole rest period. On 

the other hand, Subject12 shows more complex behavior of the beat rate. The RR 

intervals change constantly without a clearly visible pattern. 

When inspecting the drive sections of these subjects shown in Fig. 16, the behavior for 

both of the subjects is similar to the behavior of Subject12 in rest sections. There are no  
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Figure 14: Zoomed plots of DDFA alpha values of Subject08 in the first rest section. 
(a) Whole rest section. (b) 250 seconds from the middle of the section. The RR intervals 
(beat rate) show clear anticorrelations. 

clear patterns, and the HRV seems random and complex, which is normal and expected 

for healthy humans. 
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Figure 15: Zoomed plots of DDFA alpha values of Subject12 in the first rest section. 
(a) Whole rest section. (b) 250 second segment of the section. 
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Figure 16: Zoomed DDFA alpha values in drive segments for (a) Subject08 and (b) 
Subject12. No clear anticorrelations are found in the data in contrast with the rest section 
of Subject08 (see Fig. 14). 

5.2.1 DDFA alpha distribution 

Figures 17 and 18 show examples of DDFA alpha distributions as defined in Sec. 4.2.1. 

Figure 17 shows the aggregated distribution over all the subjects. The scaling exponents 

are rather evenly distributed, and the only noticeable difference is the slightly more 

compact distribution during the rest sections in larger scales. This might be caused by 

the steady long-range behavior of the HRV during rest, that leads to consistent behavior 

of the dynamic segments calculated for larger scales. Subject13 shows anticorrelations 

similarly to Subject08 above. Figure 17 shows this anticorrelated behavior in the alpha 

distribution. The distribution of alpha values is more condensed in rest than during 

driving. The anticorrelations are most visible at scales 10-20, where the distribution is 

clearly concentrated on alpha values around 0.25. At smaller scales there are high 

nonstationary alpha values that quickly decrease into anticorrelated regime as the scale 

increases. These high nonstationary alpha values can be causally connected to the 

anticorrelated behavior: when the data is so highly anticorrelated at scales 10-20, it can  
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Figure 17: Aggregated distribution of DDFA scaling exponents as function of scale 
for the whole data (upper left) and each segment separately. The scales are identical in 
every section for easier interpretation. The distribution is visualized as a surface plot of 
density showing which proportion of the alpha values fall into each measurement bin. 
The scale of density is linear for densities 0–0.1 and exponential for values larger than 
0.1. 

have these upward and downward trends leading into nonstationary results when looking 

at shorter scales. These nonstationary periods do not also have any high frequency and 

low amplitude anticorrelations and the short scale correlations are evidently visible. 
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Figure 18: Distribution of DDFA scaling exponents for Subject13 as function of scale 
for the whole data (upper left) and each segment separately. The scales are identical in 
every section for easier interpretation. The distribution is visualized as a surface plot of 
density showing what proportion of the alpha values fall into each measurement bin. The 
scale of density is linear for densities 0-0.1 and exponential for values greater than 0.1. 

5.2.2 Significance comparison of different scales 

This section focuses on the comparison of the normalized alpha values calculated as 

described in Sec. 4.2.2. According to Figs. 19 and 20, there are no clearly distinguishable 

scales that would give better separation than others either for the mean or the standard 

deviation. But when studying the overall trend, the values in the drive section are larger 

than in the rest section across all the scales for both the mean and standard deviation. 

This is in accordance with the results from normal alpha-1 values presented in Sec. 5.1. 

The most distinctiveness results are the standard deviation of alphas within small scales. 

In these small scales, the distribution over all the subjects is narrow for the drive sections, 

with higher alpha values than in the rest sections. 
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Figure 19: Aggregation box plot of normalized alpha mean values at different scale 
ranges in rest and drive sections. Each box plot shows the mean values of the scaling 
exponent calculated over all the subjects. 

However, there are significant differences between individual subjects. In particular, 

there are some scale ranges that give a clear distinctiveness to certain subjects. For 

example, looking at Subject04 shown in Fig. 21, the standard deviation does not show 

clear changes between the sections and neither does the mean for small scales. 

However, the differences in the mean for scales over 50 are evident. The normalized 

alpha mean values change from -0.5 at scales 101-150 in the rest sections towards zero 

in the drive section. 
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Figure 20: Aggregation box plot of normalized alpha standard deviations at different 
scale ranges in rest and drive sections. Each box plot shows the standard deviation 
values of the scaling exponent calculated over all the subjects. 
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Figure 21: Mean (upper panel) and standard deviation (lower panel) of the normalized 
DFA scaling exponent 𝜶 for Subject04 at different scales. This plot shows very consistent 
behavior between the two rest sections, but the mean value in the drive section is 
significantly different in larger scales. 

5.3 Classification 

Classification as described in Sec. 4.3 is carried out with both the conventional features 

and DDFA features. For the DDFA the classification includes the following features: 

mean and standard deviations of all the 20 scales (5, 6, 7, 8, 9, 11, 13, 15, 18, 21, 24, 

28, 33, 39, 45, 53, 62, 73, 85 and 100). Conventional features used in the classification 

are mRR, rmssdRR, pRR20 and pRR50 from the time-domain measures and alpha-1 

and alpha-2 from the DFA. The time-domain measures are chosen since the results in 

Sec. 5.1 are fairly consistent. The DFA is chosen to give diversity into the features, while 

also making the comparison between the conventional and DDFA methods more 

relevant. The AUC calculations are used to compare the ability of different features in 

classifying the rest and the drive sections.  

The results show that the differences between the subjects are significant. As seen in 

Fig. 22, AUC calculated from the mean values of the DDFA scaling exponents for 

different scales range from 0.5 to 1 for almost all the scales. On the other hand, the AUC  
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Figure 22: Area under curve (AUC) values for different features. (a) Mean of the area 

under curve calculations for DDFA scaling exponent at different scales presented as box 
plot over all the subjects. (b) Standard deviation of the AUC calculations for DDFA 
scaling exponent at different scales. (c) AUC calculations for different conventional 
measures. (d) AUC of DDFA scaling exponent mean and standard deviations of 
Subject12 at different scales. Also including the best of the conventional methods used 
in classification, which was DFA alpha-1 for Subject12. 

values for the standard deviations range from 0.5 to 1 for small scales but the AUC values 

become lower when the scale increases. This makes the standard deviation of DDFA 

scaling exponent at high scales a poor classifier compared to its mean values. The 

conventional measures show similar results compared to the mean value of the DDFA 

scaling exponents, mRR is the best conventional measure with a high median of 85 % 

and the lowest values at 58%.  

Since the AUC values over all subjects include values from the whole scale from 0.5 to 

1 for both conventional measures and the mean values of the DDFA scaling exponent 

these results alone are not sufficient to show the performance of the DDFA results. 

However, the subject specific AUC curves like exemplified in Fig. 22 (d) show the 

possibilities of DDFA. Certain subjects have some scales, where the DDFA results are 

better at classifying than the conventional methods used in this classification. For 

example, the mean values of the DDFA alpha for scales 50 to 80 beats reach AUC values 

higher than the conventional methods. This shows that DDFA can perform better than 

ordinary DFA and some time-domain measures in classification. 
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Figure 23: Correct classification proportions of the support vector machine 
classification algorithm. For (a) rest sections, (b) drive section and (c) both combined, 
(total correct proportion shown). The leave-one-subject-out method results are shown in 
d) for all the subjects. 

The results from the classification calculations are presented in Fig. 23. Both the subject-

specific and the leave-one-subject-out classifications are done separately for 

conventional features, DDFA features and for both combined. The Subject-specific 

classification is also done separately for the different rest and drive sections. 

The subject-specific classification gives significant results with 12 out of the 14 subjects 

reaching over 95 % classification accuracy with some combination of features. However, 

the best combination of features changes between the subjects making the results less 

useful when comparing different subjects. For some subjects using both conventional 

and DDFA features results in worse classification than the features alone. This is 

probably caused by increased features that do not separate between the rest and drive 

sections. These features can conceal the good features and thus reduce the 

classification performance. This problem can probably be solved with more advanced 

machine learning algorithms and better feature selection. Also, Fig. 23, shows some 

mislabeled results (Subjects: 02, 04 and 08) in the rest percentages.  

The classification with DDFA performs better than with the conventional measures in six 

out of 14 subjects. In addition, the performance is similar for two subjects, both being 

close to 100% accuracy. In the rest sections, the DDFA performs better than the 

conventional methods in eight subjects and similarly in two. 
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When using the leave-one-subject-out method the results are more consistent between 

the subjects. A large training data with a lot of different subjects reduce the accuracy of 

the classification for some specific subjects that perform very well in classifications 

above. On the other hand, the subjects performing poorly in previous classifications do 

not significantly suffer from the different training data. This difference in the performance 

between different subjects is probably caused by the differences in the DDFA results in 

rest and drive sections. There are some subjects such as Subject08, where the 

difference in DDFA results is remarkable between the rest and drive sections, whereas 

certain subjects such as Subject01 does not show clearly distinguishable differences. 

This can also be seen in subject-specific classification results in Fig. 23, where DDFA 

has classification accuracy of 100% for Subject08 and 60% for Subject01. When these 

DDFA results are combined into the leave-one-out method, the poor classification data 

from certain subjects such as 01 is hindering the results for some subjects such as 08. 

On the other hand, the data with good classification does not really affect the 

performance of the already almost undistinguishable subjects.  

Adding the DDFA features into conventional features increases the classification 

accuracy for 10 out of 14 subjects. When comparing the DDFA features to conventional 

features, DDFA performs better in six of the subjects and similarly in two. The best 

features for the leave-one-out method are again subject-specific.  

The kernels and C parameters are also subject-specific in both classification methods. 

The best parameters show a lot of different combinations of different kernel functions 

and C parameters. The rbf kernel and C parameters 0.1 and 100 are the most prominent, 

especially in the subject-specific classifications. 

Based on both AUC and SVM results, DDFA performs well against the conventional 

methods used and, in some cases, even outperforming them. This backs up the use of 

scaling exponents calculated with DDFA  as a HRV measure and classification feature. 

5.4 Comparison to previous studies 

The dataset used in this thesis has been previously utilized in two studies on stress 

during driving [18, 54]. In the original publication of the data in “Detecting Stress During 

Real-World Driving Tasks Using Physiological Sensors” [18]  the HRV measures from 

frequency domain and the mRR and stdRR measures from the time domain performed 

well in detecting stress. GSR was the only measure that performed better than the HRV 

measures in the study. The significant differences between the subjects were also noted 

[18].  In “Driver Stress Level Detection Using HRV Analysis”  [54], different HRV 

measures were classified with various algorithms. SVM with RBF kernel function showed 
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the best results for both the time-domain measures and conventional DFA measures. 

This is in agreement with the use of SVM classification in this thesis. 

In general, the previous results [18, 54] are in accordance with the results presented in 

this thesis. On the other hand, the further improvements with the utilization of the DDFA 

methods are promising. The dynamic approach of DDFA enables us to notice the 

changes in HRV over time, while also bringing more useful features for classification. In 

particular, the sections can be classified better than with conventional methods and the 

visual presentation of DDFA alpha values shows the dynamical changes between 

different sections for some subjects. The performance of the DDFA is also compatible 

with previous studies that highlight the possibilities of DDFA in classification sleep stages 

and studying running [7, 8]. 
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6. CONCLUSION 

In this thesis we have studied heart rate variability (HRV) of 16 different subjects while 

driving and resting. The aim of the study was to find changes in the HRV during different 

tasks. The HRV was studied with several different methods. They included conventional 

methods from both time and frequency domains, but the main focus was on a new 

nonlinear method called dynamic detrended fluctuation analysis (DDFA). This method 

allowed us the study the scaling exponents as functions of both scale and time. 

The methods used in the thesis showed promising capability in getting insight into 

physiological effects of driving. DDFA showed a very clear difference between the rest 

and drive sections that the conventional methods were not able to distinct for certain 

subjects. The mean and standard deviation of the DDFA scaling exponents are generally 

higher during the drive than in the rest sections across all the scales. However, some 

subjects show clear differences at certain scales, while the others show similar values in 

the different sections across all the scales.  

The differences in the results between different subjects can be at least partly explained 

by the difference in how driving affects different people. Some people can be very 

relaxed and calm while driving. On the other hand, some people with less driving 

experience, for example may be stressed while driving. Due to these individual 

differences, universally applicable classifications are not straightforward. 

However, when looking at the differences in the individual level, the subjects that showed 

clear changes in their HRV during the rest and drive sections performed well in the 

classification. The changes in the scaling exponent are easily noticeable, and with other 

HRV data about the specific subject, classification of driving and resting with HRV is 

possible with high accuracy. The classification across subjects is also promising: it is 

more consistent than the subject-specific classification, but with lower classification 

accuracy. The correct classes can be found with accuracy between 62% and 82% for all 

the subjects. 

In summary, there are valid reasons to study the DDFA scaling exponents while driving 

to find the fundamental reasons behind the observed changes in the HRV. A reasonable 

next step would be to further improve the classification and then move into analyzing 

larger data sets with labeled sections of different activities to find out more information 

about the physiological effects of driving and other activities. 
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APPENDIX A: DDFA ALPHA SURFACE PLOTS 

 
Figure A.1 Subject01: DDFA alpha surface plot. 

 
Figure A.2 Subject02: DDFA alpha surface plot. 

 
Figure A.3 Subject03: DDFA alpha surface plot. 
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Figure A.3 Subject04: DDFA alpha surface plot. 

 
Figure A.5 Subject05: DDFA alpha surface plot. 

 
Figure A.6 Subject06: DDFA alpha surface plot. 
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Figure A.7 Subject07: DDFA alpha surface plot. 

 
Figure A.8 Subject08: DDFA alpha surface plot. 

 
Figure A.9 Subject09: DDFA alpha surface plot. 
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Figure A.10 Subject10: DDFA alpha surface plot. 

 
Figure A.11 Subject11: DDFA alpha surface plot. 

 
Figure A.12 Subject12: DDFA alpha surface plot. 
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Figure A.13 Subject13: DDFA alpha surface plot. 

 
Figure A.15 Subject15: DDFA alpha surface plot. 

 
Figure A.16 Subject16: DDFA alpha surface plot. 
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APPENDIX B: DDFA ALPHA DISTRIBUTION 

 
Figure B.1 Aggregation DDFA alpha distribution. 
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Figure B.2 Subject01: DDFA alpha distribution. 
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Figure B.3 Subject02: DDFA alpha distribution. 
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Figure B.4 Subject03: DDFA alpha distribution. 
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Figure B.5 Subject04: DDFA alpha distribution. 
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Figure B.6 Subject05a: DDFA alpha distribution. 
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Figure B.7 Subject05b: DDFA alpha distribution. 
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Figure B.8 Subject06: DDFA alpha distribution. 
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Figure B.9 Subject07: DDFA alpha distribution. 
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Figure B.10 Subject08: DDFA alpha distribution. 
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Figure B.11 Subject09: DDFA alpha distribution. 
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Figure B.12 Subject10: DDFA alpha distribution. 
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Figure B.13 Subject11: DDFA alpha distribution. 
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Figure B.14 Subject12: DDFA alpha distribution. 
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Figure B.15 Subject13: DDFA alpha distribution. 
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Figure B.16 Subject15: DDFA alpha distribution. 
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Figure B.17 Subject16: DDFA alpha distribution. 
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Figure B.18 Subject17a: DDFA alpha distribution. 
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Figure B.19 Subject17b: DDFA alpha distribution. 
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APPENDIX C: DDFA ALPHA MEAN AND 
STANDARD DEVIATION AS FUNCTION OF 
SCALE 

 
Figure C.1 Subject01: normalized DDFA alpha mean and standard deviation as 

function of scale. 
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Figure C.2 Subject02: normalized DDFA alpha mean and standard deviation as 

function of scale

  

Figure C.3 Subject03: normalized DDFA alpha mean and standard deviation as 
function of scale. 
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Figure C.4 Subject04: normalized DDFA alpha mean and standard deviation as 
function of scale. 

 
Figure C.5 Subject06: normalized DDFA alpha mean and standard deviation as 

function of scale. 
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Figure C.6 Subject07: normalized DDFA alpha mean and standard deviation as 

function of scale. 

 
Figure C.7 Subject08: normalized DDFA alpha mean and standard deviation as 

function of scale. 
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Figure C.8 Subject09: normalized DDFA alpha mean and standard deviation as 

function of scale. 

 
Figure C.9 Subject10: normalized DDFA alpha mean and standard deviation as 

function of scale. 
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Figure C.10 Subject11: normalized DDFA alpha mean and standard deviation as 

function of scale. 

 
Figure C.11 Subject12: normalized DDFA alpha mean and standard deviation as 

function of scale. 
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Figure C.12 Subject13: normalized DDFA alpha mean and standard deviation as 

function of scale. 

 
Figure C.13 Subject15: normalized DDFA alpha mean and standard deviation as 

function of scale. 
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Figure C.14 Subject16: normalized DDFA alpha mean and standard deviation as 

function of scale. 

 


