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Abstract
An isometric operator V in a Pontryagin space H is called standard, if its domain
and the range are nondegenerate subspaces in H. A description of coresolvents for
standard isometric operators is known and basic underlying concepts that appear in
the literature are unitary colligations and characteristic functions. In the present paper
generalized coresolvents of non-standard Pontryagin space isometric operators are
described. The methods used in this paper rely on a new general notion of boundary
pairs introduced for isometric operators in a Pontryagin space setting. Even in the
Hilbert space case this notion generalizes the earlier concept of boundary triples for
isometric operators and offers an alternative approach to study operator valued Schur
functions without any additional invertibility requirements appearing in the ordinary
boundary triple approach.
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1 Introduction

Extension theory for standard symmetric and isometric operators in Pontryagin spaces
was first developed by Iokhvidov and Kreı̆n in [30], generalized resolvents of such
operators were described by Kreı̆n and Langer in [37–39]. Following [28] we will
use the notion standard for an isometric operator V in a Pontryagin space H, if its
domain dom V and the range ran V are nondegenerate subspaces in H. In this case
every unitary extension of V can be obtained in pretty much the same way as in the
case of Hilbert space isometric operator. Similarly, the extension theory and the theory
of generalized coresolvents of standard isometric operators in Kreı̆n spaces was built
by Dijksma et al. in [28]. For a nonstandard isometric operator in a Pontryagin space,
description of its regular (resp. nonregular) generalized coresolvents in Pontryagin
spaces without growth (resp. with growth) of negative index was given by Sorjonen
[46] (resp. by Nitz [43,44]). However, the proof in [44] is not so convincing, as it
becomes quite complicated and contains some gaps.

Another approach to the extension theory of symmetric operators in Hilbert spaces
is based on the concept of abstract boundary value introduced by Calkin [13] and
later formalized in the notion of boundary value space in [33,35] (or ordinary bound-
ary triple in [26]). In [25] with each boundary triple there was associated an analytic
object—abstract Weyl function which allows to carry out spectral analysis of exten-
sions of symmetric operators. In the case of a Hilbert space isometric operator (and
more generally for a dual pair of operators) the notions of a boundary triple and a
corresponding Weyl function were introduced in [41,42]. These notions, when gener-
alized to the indefinite case in [5], proved to be an adequate language in the extension
theory of nonstandard isometric operator V in a Pontryagin space, since they allowed
to give full description of generalized coresolvents of V . However, the method pro-
posed in [5] is restricted to the case of regular generalized coresolvents, which have
minimal realizations in Pontryagin spaces ˜H with the same negative index as H, and
does not work for generalized coresolvents of V which have minimal realizations in
Pontryagin spaces ˜H with bigger negative indices.

This difficulty can be prevented by using an appropriate notion of boundary pairs,
which extend the concept of ordinary boundary triples. In the case of symmetric
operators in Hilbert spaces an extension of ordinary boundary triples, a so-called
generalized boundary triple, was introduced and studied in [26]. This notion was
further generalized in [19] to the notion of a unitary boundary pair (called therein as a
boundary relation), which can be applied to study generalized resolvents of symmetric
operators [20,21] and various general classes of boundary value problems for ordinary
and partial differential operators, see [21–24]. In particular, in [19] it was shown that
every Nevanlinna pair (or Nevanlinna family of holomorphic relations) can be realized
as the Weyl family of some unitary boundary pair, and in [18,20] this notion was used
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to get a new proof of Kreı̆n formula for generalized resolvents of symmetric operators
via the coupling method developed therein. In [8] the notion of unitary boundary pair
was introduced for symmetric operators in Pontryagin spaces and it was shown that
every generalized Nevanlinna pair, allowing a finite negative index for the associated
Nevanlinna kernel, can be realized as theWeyl family of such a unitary boundary pair.

In this paper a new notion of a unitary boundary pair with an associated Weyl func-
tion is introduced and studied in the setting of isometric operators in Pontryagin spaces.
In particular, it is shown in Sect. 3 how a certain subclass of unitary boundary pairs is
connected to unitary colligations (see [1]) and, moreover, that theWeyl functions asso-
ciatedwith that subclass of unitary boundary pairs actually coincidewith characteristic
functions of the corresponding unitary colligations; see Theorems 3.10, 3.11. Further-
more, using some transformation results, being motivated by [1], it is also shown that
every operator valued generalized Schur function (not necessarily holomorphic at the
origin) can still be realized as the Weyl function of some unitary boundary pair for an
isometric operator V in a Pontryagin space; see Theorems 3.15, 3.17. These two the-
orems show that the present notion of a unitary boundary pair for isometric operators
in a Pontryagin (as well as in the classical Hilbert) space setting is a natural object to
realize and study generalized (or standard) Schur functions as their Weyl functions.
In particular, these new notions complement and extend the approach, which relies on
characteristic functions of unitary colligations being associated with the special case
stated in Theorem 3.11.

After these characteristic results on unitary boundary pairs and their Weyl func-
tion for isometric operators we study in Sect. 4 some spectral properties of proper
extensions of V and find a formula for their canonical coresolvents, see Theorem 4.2,
and then with these preparations prove an analog of Kreı̆n formula for the generalized
coresolvents of the isometric operator V . This latter problem is solved via the cou-
pling method, where we consider a coupled unitary boundary pair as a direct sum of
an ordinary boundary triple and a unitary boundary pair and then derive the formula
for generalized coresolvents from the formula for canonical coresolvents associated
with the coupled boundary pair.

2 Preliminaries

2.1 Indefinite Inner Product Spaces

A linear space H endowed with an inner product [·, ·]H is called an inner product
space, see [4,11]. A vector f ∈ H is called positive (resp. negative or neutral), if
[ f , f ]H > 0 (resp. [ f , f ]H < 0 or [ f , f ]H = 0). A subspace L ⊂ H is called
positive (resp. negative or neutral), if every vector f ∈ L \ {0} is positive (resp.
negative or neutral). The orthogonal complement of a subspace L is denoted by L[⊥].

An inner product spaceH is called aKreı̆n space, if it admits a fundamental decom-
position

H = H+[+]H− (2.1)
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as an orthogonal sum of a positive subspace H+ and a negative subspace H−. The
operator J = P+ − P−, where P± are orthogonal projections in H onto H±, is called
the fundamental symmetry ofH. We will use the notation (H, J ) for the Kreı̆n spaceH
with the fundamental symmetry J . A Kreı̆n space (H, J ) with a finite negative index
κ−(H) := dimH− is called a Pontryagin space.

Every closed subspaceD of a Pontryagin space (H, J ) admits the following decom-
position

D = D0+̇D++̇D−, (2.2)

whereD0 = D∩D[⊥] is a neutral subspace (the isotropic part ofD) andD+ andD−
are closed (uniformly) positive and negative subspaces of (H, J ); see e.g. [11, Theo-
rem IX.2.5]. We will need the following slightly modified version of this statement.

Lemma 2.1 Every linear subspaceTof aPontryagin space (H, J )admits the following
decomposition

T = T++̇T1, (2.3)

whereT+ is a positive subspace of (H, J ), such thatT+ is amaximal positive subspace
of T, and T1 is a k-dimensional subspace of (H, J ), where k = dimT/T+.

Proof Let D be the closure of T in H and decompose D as in (2.2),

D = D0+̇D−+̇D+,

where D0 = D ∩ D[⊥], D−, and D+ are closed neutral, negative, and positive sub-
spaces of (H, J ), respectively. Since T is a dense subset of D and the subspaces D0
and D− are finite dimensional, T has a dense intersection with D+,

T ∩ D+ = D+; (2.4)

see e.g. [32, Lemma 2.1]. Denote T+ := T ∩ D+ and let k = dim (D0+̇D−). Since
T = D one concludes that there exists a k-dimensional subspace T1 ⊂ T \ D+. The
closed subspace T1 ⊂ T decomposes T and (2.4) together with a dimension argument
leads to

T++̇T1 = T++̇T1 = D++̇T1 = D = T.

The equality T = T1+̇T+ combined with (2.4) yields the decomposition (2.3) for T.
��

2.2 Linear Relations in Kreı̆n Spaces

Let (H1, JH1) and (H2, JH2) be two Kreı̆n spaces. A linear relation T from H1 to H2
is a linear subspace of H1 × H2, see e.g. [2]. Often a linear operator T : H1 → H2
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will be identified with its graph

gr T := { { f , T f } : f ∈ dom T }.

For a linear relation T from H1 to H2 the symbols dom T , ker T , ran T , and mul T
stand for the domain, kernel, range, and multivalued part, respectively. The inverse
T−1 is a relation from H2 to H1 defined by { { f ′, f } : { f , f ′} ∈ T }. Denote by ρ(T )

the resolvent set of T , by σ(T ) the spectrum of T and by σp(T ) (resp. σc(T ), σr (T ))
the point (resp. continuous, residual) spectrum of T . The adjoint T [∗] is the closed
linear relation from H2 to H1 defined by (see [9])

T [∗] = { {h, k} ∈ H2 × H1 : [k, f ]H1 = [h, g]H2 , { f , g} ∈ T }. (2.5)

The following equalities are obvious from (2.5)

(dom T )[⊥] = mul T [∗], (ran T )[⊥] = ker T [∗]. (2.6)

A linear relation T from H1 to H2 is called isometric (resp. contractive or expand-
ing), if for every { f , g} ∈ T one has

[g, g]H2 = [ f , f ]H1

(

resp. [g, g]H2 ≤ [ f , f ]H1 or [g, g]H2 ≥ [ f , f ]H1

)

.

(2.7)

It follows from (2.5) and (2.7) that T is isometric, if T−1 ⊆ T [∗]. A linear relation
T from H1 to H2 is called unitary, if T−1 = T [∗], [45]. Moreover, T is said to be a
standard unitary operator if dom T = H1 and ran T = H2. For an isometric linear
relation T one obtains from T−1 ⊆ T [∗] and the identities (2.6) that

ker T ⊆ (dom T )[⊥], mul T ⊆ (ran T )[⊥]. (2.8)

For a unitary linear relation the following statements hold, see [45, Theorem 2].

Proposition 2.2 Let T be a unitary relation from the Kreı̆n space (H1, JH1) to the
Kreı̆n space (H2, JH2). Then:

(i) dom T is closed if and only if ran T is closed;
(ii) the following equalities hold:

ker T = (dom T )[⊥], mul T = (ran T )[⊥]. (2.9)

Denote

D = {λ ∈ C : |λ| < 1}, De = {λ ∈ C : |λ| > 1}, T = {λ ∈ C : |λ| = 1}.
(2.10)

If V is a single-valued closed isometric operator in a Pontryagin space H then the
subspaces ran (V − λI ) are closed for every λ ∈ D ∪ De, see e.g. [40, Section 1.3]
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or Lemma 2.4 below, and each of the sets σp(V ) ∩ D and σp(V ) ∩ De consist of at
most κ = κ−(H) eigenvalues, see e.g. [31, p. 49 Corollary 2]. Denote byNλ the defect
subspace of V :

Nλ := H[−]ran (I − λV ), λ ∈ D ∪ De.

Then

Nλ = ker (V−[∗] − λI ) = { fλ : ( fλ, λ fλ)
T ∈ V−[∗]}.

As is known, see [31, Theorem 6.1], the numbers dimNλ take a constant value n+(V )

for all λ ∈ D \ σp(V )
−1

, and n−(V ) for all λ ∈ De \ σp(V )
−1

. The numbers n±(V )

are called the defect numbers of V .

Definition 2.3 The isometric operator V in H is called simple, if σp(V ) \ T = ∅ and

span {Nλ : λ ∈ D ∪ De} = H.

In the case of Pontryagin spaces some further results on isometric and unitary
relations can be established. For any isometric relation T between two Kreı̆n spaces it
is clear that ker T and mul T are neutral subspaces. Therefore, in a Pontryagin space
ker T and mul T are necessarily finite dimensional. If T is closed then ker T and
mul T are also closed. In Pontryagin spaces the following stronger result is true.

Lemma 2.4 Let T be a closed isometric relation from the Pontryagin space (H1, JH1)

to the Pontryagin space (H2, JH2). Then the domain and the range of T are closed.

Proof The isometry of T means that T−1 ⊆ T [∗]. Taking inverses one gets T =
(T−1)−1 ⊆ T−[∗], i.e., T and T−1 are simultaneously isometric. Therefore, to prove
the statement it suffices to prove that the range of T is a closed subspace in H2, since
T is closed precisely when its inverse T−1 is closed and clearly dom T = ran T−1.

Now let dom T be decomposed as in Lemma 2.1,

dom T = T++̇T1, (2.11)

so that D+ := T+ is a maximal uniformly positive subspace of D := dom T . Next
introduce the restriction of (the graph of) T by setting

T+ := T ∩ (D+ × H2) .

Then T+ is closed and as a restriction of T it is also an isometric relation from (H1, JH1)

to (H2, JH2). Moreover, dom T+ = T+ ⊆ D+ is a uniformly positive subspace. This
implies that for all { f , f ′} ∈ T+ and some δ > 0,

[ f ′, f ′]2 = [ f , f ]1 ≥ δ‖ f ‖21,
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which shows that ker T+ = {0}, so that (T+)−1 is an isometric operator, and,moreover,

‖(T+)−1 f ′‖21 = ‖ f ‖21 ≤ δ−1[ f , f ]1 ≤ δ−1‖ f ‖21.

Therefore, the closed isometric operator (T+)−1 is also bounded. Consequently,
ran T+ = dom (T+)−1 is a closed subspace in H2. On the other hand, since dom T
admits the decomposition (2.11), where T1 is finite dimensional and mul T = mul T+
(also finite dimensional), one concludes that

ran T = T (T1) + ran T+

as a finite dimensional extension of the closed subspace ran T+ is a closed subspace
of H2. This completes the proof. ��

Lemma 2.4 can be seen as an extension of [11, Theorem IX.3.1]. It is known e.g.
from [11, Theorem IX.3.2] and [31, Theorems 6.2, 6.3]) that if T is an isometric
operator in a Pontryagin space such that ran T (resp. dom T ) is a nondegenerate sub-
space, then T (resp. T−1) is continuous. The next lemma contains main properties of
isometric relations acting between two Pontryagin spaces.

Lemma 2.5 For an isometric relation T from the Pontryagin space (H1, JH1) to the
Pontryagin space (H2, JH2) the following statements hold:

(i) If ran T (resp. dom T ) is a nondegenerate subspace of (H2, JH2), then T (resp.
T−1) is a continuous operator.

(ii) If T is densely defined then κ−(H1) ≤ κ−(H2) and if, in addition, κ−(H1) =
κ−(H2), then ran T is a closed nondegenerate subspace of H2 and, moreover, T
and T−1 are continuous operators.

(iii) If ran T is dense in H2 then κ−(H1) ≥ κ−(H2) and if, in addition, κ−(H1) =
κ−(H2), then dom T is a closed nondegenerate subspace of H1 and, moreover,
T and T−1 are continuous operators.

(iv) If the relation T is unitary and ker T = mul T = {0}, then κ−(H1) = κ−(H2)

and T is a standard unitary operator.
(v) If the relation T is unitary and κ−(H1) = κ−(H2), then

mul T = {0} ⇐⇒ ker T = {0}. (2.12)

In particular, if κ−(H1) = κ−(H2) then a unitary relation T is an operator if and
only if it is a standard unitary operator.

Proof (i) By assumption T ⊆ T−[∗] and T ⊆ T−[∗], i.e., T is also isometric. Hence,
if ran T is nondegenerate, (2.8) implies

mul T ⊂ ran T ∩ (ran T )[⊥] = {0}.

Thus T is a closable operator, which by Lemma 2.4 and the closed graph theorem
implies that T and, therefore, also T is continuous. Similarly it is seen that

ker T ⊆ dom T ∩ (dom T )[⊥] = {0},
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if dom T is nondegenerate, and then T
−1

and T−1 are continuous.
(ii) Since dom T = H1 is nondegenerate, T−1 is a continuous operator by item (i).

On the other hand dom T , as a dense subspace ofH1, contains a negative subspace
D− ⊂ dom T of dimension κ−(H1); see [11, Theorem IX.1.4]. Then also ran T
contains a negative subspace of the samedimension andhenceκ−(H2) ≥ κ−(H1).
Now assume that κ−(H1) = κ−(H2). Then ran T = ran T is necessarily
a nondegenerate subspace of the Pontryagin space (H2, JH2), see e.g. [11,
Lemma II.10.5], and (i) shows that T is a continuous operator.

(iii) This follows by applying (ii) to T−1, which is also an isometric relation.
(iv) If T is unitary then the conditions ker T = mul T = {0} are equivalent to

dom T = H1 and ran T = H2; see (2.9) in Proposition 2.2. Now the assertions
follow from (ii) and (iii).

(v) Let κ−(H1) = κ−(H2) and let T be unitary. By symmetry it suffices to prove
one implication in (2.12), say, “⇒”. The condition mul T = {0} is equivalent
to ran T = H2; see (2.9). Now item (iii) shows that T and T−1 are continuous
operators. Thus, in particular, ker T = {0} and (2.9) together with Lemma 2.4
shows that dom T = H1 and ran T = H2. ��

2.3 Operator Colligations

Let H be a Pontryagin space, L1 and L2 be Hilbert spaces. The set of bounded every-
where defined operators fromL1 toL2 is denoted byB(L1,L2),B(L1) := B(L1,L1).
Let U be a bounded operator from H ⊕ L1 to H ⊕ L2 represented in the block form

U =
(

T F
G H

)

:
(

H
L1

)

→
(

H
L2

)

.

The quadruple (H,L1,L2,U ) is called a colligation, H is the state space, L1 and L2
are the incoming and the outgoing spaces, T is the main operator and U is called the
connecting operator of the colligation. The colligation (H,L1,L2,U ) is called unitary,
if U is a unitary operator from H ⊕ L1 to H ⊕ L2. The colligation (H,L2,L1,U [∗])
is called adjoint to the colligation (H,L1,L2,U ); cf. [1,12].

Components of a unitary colligation satisfy the following identities

T [∗]T + G[∗]G = IH, F [∗]F + H∗H = IL1 , T [∗]F + G[∗]H = 0,

T T [∗] + FF [∗] = IH, GG[∗] + HH∗ = IL2 , TG[∗] + FH∗ = 0,
(2.13)

which are equivalent to the identities

U [∗]U = IH⊕L1 , UU [∗] = IH⊕L2 .

A colligation (H,L1,L2,U ) is said to be closely connected, if

H = span {ran (TmF), ran ((T [∗])nG[∗]) : m, n ≥ 0}. (2.14)
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Aunitary colligation is closely connected if and only if the operatorU has no nontrivial
reducing subspaces. The operator valued function

��(λ) := H + λG(I − λT )−1F, 1/λ ∈ ρ(T ),

is called the characteristic function of the unitary colligation (H,L1,L2,U ).
Recall, see e.g. [1], that a B(L1,L2)-valued function �(λ) is said to belong to the

generalized Schur class S0
κ (L1,L2) if it is holomorphic in a neighborhood 	 of 0 and

the kernel

K�
ω (λ) = I − �(λ)�(ω)∗

1 − λω
(2.15)

has κ negative squares in 	 × 	, i.e. for any finite set of points ω1, . . . , ωn in 	 and
vectors f1, . . . , fn in L2, the Hermitian matrix

(

(K�
ωi

(ω j ) f j , fi )L2

)n

i, j=1
(2.16)

has at most κ negative eigenvalues, and for some choice of ω1, . . . , ωn in 	 and
f1, . . . , fn in L2 the matrix (2.16) has exactly κ negative eigenvalues.
As is known, see [1], the characteristic function of a closely connected unitary

colligation belongs to the generalized Schur class S0
κ (L1,L2), where κ = κ−(H).

Moreover, the converse is also true; see e.g. [1, Theorem 2.3.1].

Theorem 2.6 Let L1 and L2 be Hilbert spaces and let S (λ) belong to the generalized
Schur class S0

κ (L1,L2). Then there exists a closely connected unitary colligation
(H,L1,L2,U ), such that the corresponding characteristic function ��(λ) coincides
with S (λ) in a neighborhood 	 of 0.

Inwhat follows aB(L1,L2)-valued function�(·) holomorphic in some open subset
	 ⊂ D is said to belong to the generalized Schur class Sκ(L1,L2), if the kernel (2.15)
has κ negative squares in 	 × 	. In particular, we do not require that 0 ∈ 	, which
implies that characteristic functions of unitary colligations used in Theorem 2.6 are
not sufficient to give a realization for all functions �(·) from the class Sκ(L1,L2) . In
the next section we introduce the notions of a unitary boundary pair for an isometric
operator and an associated Weyl function as a replacement for unitary colligations
and their characteristic functions. These new notions allow to realize an arbitrary
operator function from the class Sκ(L1,L2) as the Weyl function of a Pontryagin
space isometric operator, corresponding to some unitary boundary pair.

3 Unitary Boundary Pairs for Isometric Operators

3.1 Unitary Boundary Pairs and theMain Transform

Let H be a Pontryagin space with the negative index κ and the fundamental symmetry
JH and let L1 and L2 be Hilbert spaces. In this section we introduce the notion of a
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unitary boundary pair for an isometric operator V : here, and in what follows, V is
assumed to be closed.

For this purpose equip the Hilbert spaces H2 and L = L1 × L2 with the indefinite
inner products by the formulas

[̂f , ĝ]H2 = (JH2 ̂f , ĝ)H2 , [̂u, v̂]L = (JLû, v̂)L ,

where

JH2 =
(

JH 0
0 −JH

)

, JL =
(

IL1 0
0 −IL2

)

,

and ̂f = { f , f ′}, ĝ = {g, g′} ∈ H2, û = {u1, u2}, v̂ = {v1, v2} ∈ L. Then (H2, JH2)

and (L, JL) are Kreı̆n spaces. In particular, for V ⊂ H2 the linear set V[⊥] in the
Kreı̆n space (H2, JH2) can be characterized as follows

ĝ ∈ V[⊥] ⇐⇒ [̂f , ĝ]H2 = 0 for all ̂f ∈ V ⇐⇒ ĝ ∈ V−[∗]. (3.1)

Definition 3.1 Let L1 and L2 be Hilbert spaces, let V be a closed isometric operator
(or isometric relation) inH and let� be a linear relationH2 → L, whereL := L1×L2.

The pair (L, �) will be called a unitary boundary pair for V if:

(1) V = ker � and for all {̂f , û}, {ĝ, v̂} ∈ � the following identity holds

[ f , g]H − [ f ′, g′]H = (u1, v1)L1 − (u2, v2)L2; (3.2)

(2) � is maximal in the sense that if {ĝ, v̂} ∈ H2 ×L satisfies (3.2) for all {̂f , û} ∈ �,
then {ĝ, v̂} ∈ �. Here

{̂f , û} =
{(

f
f ′
)

,

(

u1
u2

)}

, {ĝ, v̂} =
{(

g
g′
)

,

(

v1
v2

)}

∈ H2 × L.

Item (1) of Definition 3.1 means that� is an isometric linear relation from the Kreı̆n
space (H2, JH2) to the Kreı̆n space (L, JL), while items (1) and (2) together mean that
� is unitary.

Application of Proposition 2.2 to a unitary boundary pair leads to the following
statement.

Proposition 3.2 Let (L, �) be a unitary boundary pair for V . Then:

(i) V∗ := dom � is dense in V−[∗];
(ii) ran� is dense in L if and only if mul� = {0};
(iii) ran� = L if and only if dom � = V−[∗] and mul� = {0}.



Unitary Boundary Pairs for Isometric Operators. . . Page 11 of 52 32

Define the components �1 and �2 of � by

�1 :=
{

{̂f , u1} :
{

̂f ,

(

u1
u2

)}

∈ � for some u2 ∈ L2

}

; (3.3)

�2 :=
{

{̂f , u2} :
{

̂f ,

(

u1
u2

)}

∈ � for some u1 ∈ L1

}

. (3.4)

In the case that �1 and �2 are single-valued, i.e. mul�1 = mul�2 = 0 and dom � =
V−[∗] and ran� = L1 × L2 the collection {L1 × L2, �1, �2} is called an ordinary
boundary triple for the isometric operator V . For a Hilbert space isometric operator
the corresponding notion was introduced and studied in [41,42] as a boundary triple
for the dual pair (V , V−1).

For ordinary boundary triples an application of the closed graph theorem shows
that the component mappings �1 and �2 are bounded. However, for a general unitary
boundary pair (L, �) the mappings �1 and �2 need not be bounded or single-valued.
With �1 and �2 one associates the extensions V1 and V2 of V by the equalities

V1 := ker �1, V2 := ker �2. (3.5)

It follows from the identity (3.2) that V1 is an expanding linear relation and V2 is a
contractive linear relation in the Pontryagin space H. Moreover, it is clear from (3.2)
that the sets ker V1 \ker V and mul V2 (= mul V2 \mul V ) consist of negative vectors
in H while the sets ker V2 \ ker V and mul V1 (= mul V1 \mul V ) consist of positive
vectors of H.

Let H j := H × L j ( j = 1, 2) be a Pontryagin space with the inner product

[(

f
u

)

,

(

f
u

)]

H j

= [ f , f ]H + ‖u‖2L j
, f ∈ H, u ∈ L j , j = 1, 2.

In establishing some properties of unitary boundary pairs it is useful to connect the
unitary relation� which acts between twoKreı̆n spaces to another unitary relation that
acts between twoPontryagin spaces, since unitary relations between Pontryagin spaces
have simpler structure. For this purpose we introduce the following transform from the
Kreı̆n space

(

H2 ⊕ L, JH2 ⊕ (−JL)
)

to the Kreı̆n space
(

H2 ⊕ H1, (JH2) ⊕ (−JH1)
)

by

J :
{(

f
f ′
)

,

(

u1
u2

)}

�→
{(

f
u2

)

,

(

f ′
u1

)}

, f , f ′ ∈ H and u1 ∈ L1, u2 ∈ L2

It establishes a one-to-one correspondence between (closed) linear relations � from
(H2, JH2) to (L, JL) and (closed) linear relations U from H2 to H1 via

� �→ U := J (�) =
{{(

f
u2

)

,

(

f ′
u1

)}

:
{(

f
f ′
)

,

(

u1
u2

)}

∈ �

}

. (3.6)
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The linear relation U will be called the main transform of �; cf. [19] for the case
of symmetric operators. In the following lemma, which is an analog of [19, Proposi-
tion 2.10], some basic properties of the transform J are given.

Lemma 3.3 Let the linear relation � from (H2, JH2) to (L, JL) and the linear relation
U from H × L2 to H × L1 be connected by U = J (�). Then

U−[∗] = J (�−[∗]). (3.7)

Moreover, the transform J establishes a one-to-one correspondence between iso-
metric (unitary, contractive, expanding) relations � from (H2, JH2) to (L, JL) and
isometric (unitary, contractive, expanding) relations U from H × L2 to H × L1.

Proof It is straightforward to check that for all elements of the form

{(

f
f ′
)

,

(

u1
u2

)}

,

{(

g
g′
)

,

(

v1
v2

)}

∈
(

H
H

)

×
(

L1
L2

)

,

the following identity is satisfied:

[(

f
u2

)

,

(

g
v2

)]

H2

−
[(

f ′
u1

)

,

(

g′
v1

)]

H1

=
[(

f
f ′
)

,

(

g
g′
)]

H2
−
[(

u1
u2

)

,

(

v1
v2

)]

L

.

(3.8)

In view of (3.1) this identity implies the equivalence

{(

f
u2

)

,

(

f ′
u1

)}

∈ U−[∗] ⇐⇒
{(

f
f ′
)

,

(

u1
u2

)}

∈ �−[∗]

which leads to identity (3.7). It follows from (3.7) that

U−1 ⊆ U [∗] ⇐⇒ �−1 ⊆ �[∗], U−1 = U [∗] ⇐⇒ �−1 = �[∗],

i.e., U is isometric (unitary) precisely when � is isometric (resp. unitary). The con-
nection between contractive (expanding) relations � and U is clear from (3.8). ��

The next proposition contains the basic properties of�1,�2 and V1, V2 for a unitary
boundary pair (L, �).

Proposition 3.4 Let (L, �) be a unitary boundary pair for V , let �1, �2 and V1, V2
be defined by (3.3), (3.4) and (3.5), and let U be the main transform of �. Then:

(i) �1 and �2 are closed;
(ii) ran�1 = L1 and ran�2 = L2;
(iii) mul� j = PL j (mul�), j = 1, 2, and the following equivalences hold:

mul�1 = {0} ⇐⇒ mul�2 = {0} ⇐⇒ mul� = {0};
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(iv) the extensions V1 and V2 of V are closed, V1 ⊆ V−[∗]
2 and V2 ⊆ V−[∗]

1 ;
(v) the following equivalences hold:

mul V2 = {0} ⇐⇒ mulU = {0};
ker V1 = {0} ⇐⇒ ker U = {0};
mul V2 = {0} ⇐⇒ ker V1 = {0}.

If one of the sets appearing in the above equivalences is trivial, then the main
transform U from H × L2 to H × L1 of � is a standard unitary operator.

Proof (i) Toprove that�1 is closed assume that {̂fn, ûn} ∈ � such that ̂fn → ̂f ∈ H2

and u1,n → u1 ∈ L1. Then (3.2) gives

[ fn − fm, fn − fm]H − [ f ′
n − f ′

m, f ′
n − f ′

m]H
= ‖u1,n − u1,m‖2L1

− ‖u2,n − u2,m‖2L2

and letting n,m → ∞ one concludes that ‖u2,n − u2,m‖L2 → 0. As a Cauchy
sequence (u2,n) converges to some element u2 inL2. This means that {̂fn, ûn} →
{̂f , û} and, since � is closed as a unitary relation, {̂f , û} ∈ � and thus {̂f , u1} ∈
�1. This proves that �1 is closed. Similarly one proves that �2 is closed.

(ii) First it is shown that ran�1 is a closed subspace of L1. For this consider the
main transform U = J (�). By Lemma 3.3 U is a unitary relation between the
Pontryagin spaces H×L2 and H×L1. Moreover, by Lemma 2.4 ranU is closed
and Proposition 2.2 shows that mulU is the isotropic part of ranU . Therefore
mulU is a closed finite dimensional subspace of H × L1 and thus also the co-
dimension k of ranU is finite (k ≤ κ−(H)). LetM be any k-dimensional subspace
such that ranU+̇M = H×L1 and let P1 be the orthogonal projection fromH×L1
onto L1. Then

L1 = P1(ranU+̇M) = P1ranU + P1M,

and here dim P1M ≤ k, which implies that P1ranU = ran�1 is closed.
To see that ran�1 = L1 it suffices to prove that ran�1 is dense in L1. For this
assume that v1 ⊥ ran�1. Let ĝ = {0, 0} ∈ H2 and v̂ = {v1, 0} ∈ L. Then
{ĝ, v̂} satisfies the identity (3.2) for all {̂f , û} ∈ �, and hence assumption (2) in
Definition 3.1 implies that {ĝ, v̂} ∈ �. This means that v̂ ∈ mul� and then, in
particular, v1 ∈ mul�1 ⊆ ran�1. Thus, v1 = 0 and this proves that ran�1 = L1.
The equality ran�2 = L2 is then clear by symmetry.

(iii) The identities mul� j = PL j (mul�), j = 1, 2, are clear from the definition of�.
Hence, mul� = {0} implies that mul�1 = mul�2 = {0}. Conversely, assume
that e.g. mul�1 = {0} and that v̂ ∈ mul�. Then v̂ = {0, v2} and hence for all
{̂f , û} ∈ � the identity (3.2) implies that

0 = (u1, 0)L1 − (u2, v2)L2 = −(u2, v2)L2 .
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In item (ii) it was shows that ran�2 = L2 and, thus, one concludes that v2 = 0.
Hence, mul� = {0}. Similarly, mul�2 = {0} implies mul� = {0}.

(iv) Since Vj = ker � j and � j is closed by item (i) also Vj is closed j = 1, 2. If
̂f ∈ V1 and ĝ ∈ V2 then it follows from (3.2) that [̂f , ĝ]H2 = 0 and in view
of (3.1) this means that the inclusions V1 ⊆ V−[∗]

2 and V2 ⊆ V−[∗]
1 hold; these

inclusions are clearly equivalent to each other.
(v) The definition in (3.6) shows that

mul V2 = PH(mulU).

Hence, mulU = {0} implies mul V2 = {0}. Conversely, if { f ′, u1} ∈ mulU
then f ′ ∈ mul V2 and if mul V2 = {0} then f ′ = 0. Now (3.2) implies that
(u1, u1)L1 = 0 and thus also u1 = 0, i.e., mulU = {0}. The equivalence of
ker U = {0} and ker V1 = {0} can be seen in the same way. As to the last
equivalence notice that κ−(H × L1) = κ−(H) = κ−(H × L2). Now, according
to item (v) in Lemma 2.5 ker U = {0} is equivalent to mulU = {0} and in this
case U is a standard unitary operator. ��

Later it is shown that the inclusions in (iv) of Proposition 3.4 actually hold as
equalities; see Theorem 3.15. In the special case that H is a Hilbert space and V is an
isometry in H Proposition 3.4 can be specialized as follow.

Corollary 3.5 Let (L, �) be a unitary boundary pair for an isometric operator V in the
Hilbert spaceH. Then the properties (i)–(iv) in Proposition 3.4 hold and, moreover, V2
and V−1

1 are contractive operators. Furthermore, the main transform U from H×L2
to H × L1 of � is a standard Hilbert space unitary operator.

Proof The fact that in the Hilbert space case V2 and V−1
1 are contractive operators

follows from (3.2) which with the choice ̂f = ĝ and û = v̂ can be rewritten as

‖ f ‖2H − ‖ f ′‖2H = ‖u1‖2L1
− ‖u2‖2L2

.

In particular, with u1 = 0 the condition f ′ = 0 implies f = 0 and hence ker V1 = {0}.
Similarly with u2 = 0 the condition f = 0 implies f ′ = 0 and thus mul V2 = {0}.
According to item (v) in Proposition 3.4 one has mulU = {0} and thus U ∈ B(H) is
a standard unitary operator. ��

3.2 TheWeyl Function and the �-fields of a Unitary Boundary Pair

Define the set Nλ(V∗) as the intersection of Nλ and V∗:

Nλ(V∗) :=
{

fλ :
(

fλ
λ fλ

)

∈ V∗
} (

⊆ Nλ =
{

fλ :
(

fλ
λ fλ

)

∈ V−[∗]
})

and the corresponding subset of V∗:

̂Nλ(V∗) =
{

̂fλ =
(

fλ
λ fλ

)

: ̂fλ ∈ V∗
}

.
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If ̂fλ ∈ ̂Nλ(V∗) and ̂fμ ∈ ̂Nμ(V∗) then for some û, v̂ ∈ L one has

{

̂fλ,

(

u1
u2

)}

∈ �,

{

̂fμ,

(

v1
v2

)}

∈ �

and an application of (3.2) shows that

(1 − λμ)[ fλ, fμ]H = (u1, v1)L1 − (u2, v2)L2 . (3.9)

Lemma 3.6 (cf. [16, Lemma 3.2]) Let u j belong to a Hilbert space H, let λ j ∈ C,
and define the vector valued function f j by

f j (λ) := u j

1 − λ jλ
, j = 1, . . . , n.

Then the Gram matrix of the functions f j (λ) ( j = 1, . . . , n) in the space L2(H) over
the unit circle

(i) is equal to G =
(

(u j ,uk )H
1−λ jλk

)n

j,k=1
, if λ j ∈ D ( j, k = 1, . . . , n);

(ii) is equal to −G =
(

− (u j ,uk )H
1−λ jλk

)n

j,k=1
, if λ j ∈ De ( j, k = 1, . . . , n).

Proof To determine the Gram matrix consider the inner product of the H-valued
functions f j (λ) and fk(λ) with λ = eit , t ∈ [0, 2π ], for j, k = 1, . . . , n.

(i) If λ j ∈ D then in view of the equalities

(

f j , fk
)

L2(H)
= 1

2π

2π
∫

0

dt

(1 − λ j ei t )(1 − λke−i t )
(u j , uk)H

= 1

2π i

∮

dλ

(1 − λ jλ)(λ − λk)
(u j , uk)H = (u j , uk)H

1 − λ jλk

thematrixG coincideswith theGrammatrix of the functions f j (λ) ( j = 1, . . . , n)

in the space L2(H) on the unit circle.
(ii) Analogously, if λ j ∈ De ( j = 1, . . . , n) then it follows from

1

2π i

∮

dλ

(1 − λ jλ)(λ − λk)
= 1

2π i

∮

dλ

−λ j (λ − 1/λ j )(λ − λk)
= − 1

1 − λ jλk

that the matrix G=
(

(u j ,uk )H
1−λ jλk

)n

j,k=1
differs in sign from the Gram matrix for func-

tions f j (λ), j = 1, . . . , n. ��
Proposition 3.7 Let V be an isometric operator in a Pontryagin spaceH and let (L, �)

be a unitary boundary pair for V . Then:
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(i) the set (σp(V2) \ σp(V )) ∩ De consists of at most κ points and the corresponding
eigenspaces are negative;

(ii) the set (σp(V1) \ σp(V )) ∩ D consists of at most κ points and the corresponding
eigenspaces are negative.

Proof (i) A point λ ∈ De belongs to the set σp(V2) if and only if there exists ̂fλ ∈
̂Nλ(V∗), fλ �= 0, such that

{

̂fλ,

(

u1
0

)}

∈ � for some u1 ∈ L1. The assumption

λ /∈ σp(V ) means that u1 �= 0.
Now assume that λ1, . . . , λκ+1 ∈ De and for some linearly independent vectors
̂fλ j ∈ ̂Nλ j (V∗) \ {0} and some u1, j ∈ L1 \ {0},

{

̂fλ j ,

(

u1, j
0

)}

∈ �, j = 1, . . . , κ + 1.

Then from (3.9) one gets

[ fλ j , fλk ]H = (u1, j , u1,k)L1

1 − λ jλk
, j, k = 1, . . . , κ + 1.

If λ j = λk for some j �= k then the vectors u j and uk are linearly independent
by the assumptions λ j /∈ σp(V ). On the other hand, if λ j �= λk , then the vector
functions f j (λ) and fk(λ) defined in Lemma 3.6 are also linearly independent.
Hence the matrix G in Lemma 3.6 is invertible. One concludes that the form

κ+1
∑

j,k=1

[ fλ j , fλk ]Hξ jξ k =
⎡

⎣

κ+1
∑

j=1

ξ j fλ j ,

κ+1
∑

k=1

ξk fλk

⎤

⎦

H

is negative for linearly independent vectors ̂fλ j when λ j ∈ De. This contradicts
the assumption that the Pontryagin space H has negative index κ .

(ii) The second statement is proved analogously. ��
In the sequel the following two subsets of D and De (cf. (2.10)) will often appear:

D := D\σp(V1), De := De\σp(V2). (3.10)

It should be noted that for various realization results and for the study of proper
extensions of the isometry V it is typically sufficient to assume that σp(V ) = ∅;
this is the case in particular when V is a simple isometric operator in H. In this case
Proposition 3.7 shows that both of the sets σp(V2) ∩ De and σp(V1) ∩ D contain at
most κ points.

Now consider the restrictions of (the graphs of) �1 and �2 to ̂Nλ(V∗),

�1 � ̂Nλ(V∗) :=
{{

̂f ,

(

u1
0

)}

∈ �1 : ̂f ∈ ̂Nλ(V∗), u1 ∈ L1

}
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and

�2 � ̂Nλ(V∗) :=
{{

̂f ,

(

0
u2

)}

∈ �2 : ̂f ∈ ̂Nλ(V∗), u2 ∈ L2

}

.

It follows from (3.10) that

ker
(

�1 � ̂Nλ(V∗)
) = {0} (λ ∈ D); ker

(

�2 � ̂Nλ(V∗)
) = {0} (λ ∈ De)

and the assumption σp(V ) = ∅ guarantees in particular that the inverses

γ̂1(λ) = (�1 � ̂Nλ(V∗)
)−1

(λ ∈ D); γ̂2(λ) = (�2 � ̂Nλ(V∗)
)−1

(λ ∈ De)

(3.11)

determine single-valued operator functions, which will be denoted by the same sym-
bols

γ̂1(λ) : L1 → ̂Nλ(V∗) (λ ∈ D); γ̂2(λ) : L2 → ̂Nλ(V∗) (λ ∈ De).

Let π1 and π2 be projections onto L1 and L2 in L, respectively.

Definition 3.8 The operator functions

γ1(λ) = π1γ̂1(λ) (λ ∈ D) and γ2(λ) = π1γ̂2(λ) (λ ∈ De) (3.12)

will be called the γ -fields of the unitary boundary pair (L, �).

Thedefinitionof theγ -fields of the unitary boundarypair (L, �)yields the following
explicit formulas:

{(

fλ
λ fλ

)

,

(

u1
u2

)}

∈ �, ̂fλ ∈ ̂Nλ(V∗), λ ∈ D �⇒ γ1(λ)u1 = fλ

(3.13)
{(

fλ
λ fλ

)

,

(

u1
u2

)}

∈ �, ̂fλ ∈ ̂Nλ(V∗), λ ∈ De �⇒ γ2(λ)u2 = fλ.

(3.14)

Later it is shown that γ1(λ) and γ2(λ) are bounded everywhere defined operators
and holomorphic in λ; see Theorem 3.15.

Definition 3.9 The family of linear relations defined by

�(λ) =
{(

u1
u2

)

:
{

̂fλ,

(

u1
u2

)}

∈ �, ̂fλ ∈ ̂Nλ(V∗)
}

, λ ∈ D, (3.15)

will be called theWeyl family of V corresponding to the unitary boundary pair (L, �),
or, briefly, the Weyl family of the unitary boundary pair (L, �).
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In Theorem 3.15 it will be shown that the formula (3.15) determines a single-
valued operator function, which is called the Weyl function of V corresponding to
the boundary triple (L, �). If the mapping � is single-valued, then the Weyl function
�(λ) can be defined by using the γ -fields

�(λ) = �2γ̂1(λ), λ ∈ D. (3.16)

3.3 Unitary Boundary Pairs and Unitary Colligations

In the present section we consider a unitary boundary pair whose main transform is a
unitary colligation

� = (H,L1,L2,U ), U =
(

T F
G H

)

:
(

H
L1

)

→
(

H
L2

)

(3.17)

and write explicit formulas for all the objects connected with this unitary boundary
pair in terms of the blocks of U .

Theorem 3.10 Let � = (H,L1,L2,U ) be a unitary colligation of the form (3.17), let
U = gr U [∗], let � = J −1(U) be a unitary relation from (H2, JH2) to (L, JL), i.e.
U = J (�) as in Lemma 3.3, and let

V := ker �, V∗ := dom �, V1 := ker �1, V2 := ker �2.

Then the following statements hold:

(i) The pair (L, �) is a unitary boundary pair for V .
(ii) The unitary relation � admits the representations

� =
{{(

Th + Fu1
h

)

,

(

u1
Gh + Hu1

)}

: h ∈ H
u1 ∈ L1

}

=
{{(

g
T [∗]g + G[∗]u2

)

,

(

F [∗]g + H∗u2
u2

)}

: g ∈ H
u2 ∈ L2

}

.

(3.18)

(iii) The isometry V in (H, JH) admits the representations

V−1 = T � ker G, V = T [∗] � ker F [∗] (3.19)

and the linear relation V∗ takes the form

V∗ =
{(

Th + Fu1
h

)

: h ∈ H
u1 ∈ L1

}

=
{(

g
T [∗]g + G[∗]u2

)

: g ∈ H
u2 ∈ L2

}

.

(3.20)
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(iv) The multivalued part of � has the representations

mul� =
{(

u1
Hu1

)

: u1 ∈ ker F

}

=
{(

H∗u2
u2

)

: v ∈ ker G[∗]
}

. (3.21)

(v) The linear relations V1 and V2 are given by

V1 =
{(

Th
h

)

: h ∈ H

}

, V2 =
{(

g
T [∗]g

)

: g ∈ H

}

, (3.22)

and hence the sets D := ρ(V1) ∩ D and De := ρ(V2) ∩ De are nonempty, they
coincide with the sets in (3.10) and are connected by

De = D◦ := {λ ∈ De : 1/λ ∈ D}, (3.23)

moreover, card (D \ D) = card (De \ De) ≤ κ .

Proof (i) By Lemma 3.3 � = J −1U is a unitary relation from (H2, JH2) to
(L, JL). This means that the assumptions (1), (2) of Definition 3.1 are satisfied
and, therefore, (L, �) is a unitary boundary pair for the isometry V = ker �

(which is an operator in view of (3) below).

(ii) Since the operator U :
(

H
L1

)

→
(

H
L2

)

is unitary then U = grU [∗] is also the

graph of the operatorU−1 in (3.17), and henceU has the following representations

U = grU−1 =
{{(

Th + Fu1
Gh + Hu1

)

,

(

h
u1

)}

: h ∈ H
u1 ∈ L1

}

.

In view of (3.6) this yields the first formula in (3.18). The equality

U = gr U [∗] =
{{(

g
u2

)

,

(

T [∗]g + G[∗]u2
F [∗]g + H [∗]u2

)}

: g ∈ H
u2 ∈ L2

}

.

leads to the second representation of � in (3.18).
(iii) and (iv) The formulas (3.19), (3.20), and (3.21) are all implied by (3.18).
(v) The formulas (3.22) for V1 = ker �1 and V2 = ker �2 are again obtained from
(3.18). In particular, V2 is the graph of the bounded operator T [∗]. It is closed and
De = ρ(V2) = ρ(T [∗]) �= ∅. Since T [∗] is a contractive operator in the Pontryagin
space (H, JH), its spectrum in De consists of at most κ eigenvalues, so

card (De\De) = card (De\ρ(T [∗])) ≤ κ,

see e.g. [31, p.91 Lemma 11.8]. Similarly, V−1
1 is the graph of the contractive

operator T in the Pontryagin space (H, JH). Therefore,

D = ρ(V1) ∩ D = ρ(T−1) ∩ D = (ρ(T [∗]) ∩ De)
◦ = D◦

e .
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This completes the proof. ��
By Proposition 3.2 the closure of V∗ is V−[∗]. Hence, by taking closures in (3.20)

one arrives at the following representations for V−[∗]:

V−[∗] =
{(

Th + f
h

)

: h ∈ H

f ∈ H[−]ker F [∗]
}

, (3.24)

and

V−[∗] =
{(

g
T [∗]g + f

)

: g ∈ H
f ∈ H[−]ker G

}

. (3.25)

Theorem 3.11 Let � = (H,L1,L2,U ) be a unitary colligation of the form (3.17), let
U = gr U [∗], let � = J −1U and let the corresponding Weyl function �(λ) of V and
the γ -fields γ1(λ) and γ2(λ) be given by (3.15) and (3.13), (3.14). Then the following
statements hold:

(i) The defect subspace Nλ(V∗) takes the form

Nλ(V∗) = {(I − λT )−1Fu1 : u1 ∈ L1}, λ ∈ D; (3.26)

Nλ(V∗) = {(λI − T [∗])−1G[∗]u2 : u2 ∈ L2}, λ ∈ De. (3.27)

(ii) �1(̂Nλ(V∗)) = L1, λ ∈ D, and �2(̂Nλ(V∗)) = L2, λ ∈ De, and the γ -fields
γ1(λ) and γ2(λ) take the form

γ1(λ) = (I − λT )−1F, λ ∈ D;
γ2(λ) = (λI − T [∗])−1G[∗], λ ∈ De.

(iii) The Weyl function �(λ) of V corresponding to the unitary boundary pair (L, �)

coincides with the characteristic function of the colligation �, i.e.,

�(λ) = ��(λ) = H + λG(I − λT )−1F, λ ∈ D.

(iv) The unitary colligation � is closely connected if and only if the operator V is
simple.

Proof (i) Recall that ̂Nλ(V∗) consists of vectors
(

fλ
λ fλ

)

∈ V∗. Therefore, the vector
(

Thλ + Fu1
hλ

)

(hλ ∈ H, u1 ∈ L1) belongs to ̂Nλ(V∗) precisely when

hλ = λ(Thλ + Fu1).

Hence, for λ ∈ D = ρ(T−1) ∩ D one obtains

hλ = λ(I − λT )−1Fu1, λ ∈ D.
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Similarly, the vector

(

gλ

T [∗]gλ + G[∗]u2

)

gλ ∈ H, u2 ∈ L2 belongs to ̂Nλ(V∗) if
and only if

T [∗]gλ + G[∗]u2 = λgλ.

Hence, for λ ∈ De = ρ(T [∗]) ∩ De one obtains

gλ = (λI − T [∗])−1G[∗]u2, λ ∈ De.

(ii) By the first formula in (3.18) one gets

{(

fλ
λ fλ

)

,

(

u1
Hu1 + λG(I − λT )−1Fu1

)}

∈ �, λ ∈ D, (3.28)

and in view of (3.11) and (3.12) the γ -field γ1(λ) takes the form

γ1(λ)u1 = fλ = (I − λT )−1Fu1, λ ∈ D.

Similarly, by the second formula in (3.18)

{(

gλ

λgλ

)

,

(

H∗u2 + F [∗](λI − T [∗])−1G[∗]u2
u2

)}

∈ �, λ ∈ De, (3.29)

and hence

γ2(λ)u2 = gλ = (λI − T [∗])−1G[∗]u2, λ ∈ De.

(iii) It follows also from (3.28) that

�(λ)u1 =
(

H + λG(I − λT )−1F
)

u1 = ��(λ)u1, λ ∈ D, u1 ∈ L1.

(iv) Notice that in view of (3.24) and (3.25) the defect subspaces Nλ take the form

Nλ = {(I − λT )−1 f : f ∈ H[−]ker F [∗]}, λ ∈ D; (3.30)

Nλ = {(λI − T [∗])−1g : g ∈ H[−]ker G}, λ ∈ De. (3.31)

Comparison of (3.26), (3.27) with (3.30), (3.31) shows that the subspacesNλ(V∗)
are dense in Nλ for all λ ∈ D ∪ De. Therefore, the set

span {Nλ : λ ∈ D} (resp. span {Nλ : λ ∈ De})

coincides with the set

span {Nλ(V∗) : λ ∈ D} (resp. span {Nλ(V∗) : λ ∈ De}).
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In view of the formulas (3.26), (3.27) one obtains the equalities

span {Nλ : λ ∈ D} = span {ran (TmF) : m ≥ 0}, (3.32)

span {Nλ : λ ∈ De} = span {ran (T [∗])nG[∗]) : n ≥ 0}. (3.33)

By Definition 2.3 and the definition in (2.14) this proves the statement (iv). ��
Remark 3.12 With the assumptions of Theorem 3.11 there exist uniform limits

(γ2(∞) :=) lim
λ→∞ γ2(λ) = 0, lim

λ→∞ λγ2(λ) = G[∗]. (3.34)

3.4 General Case

To prove the desired statements for a general unitary boundary pair some preparatory
lemmas will be used.

Let α ∈ C such that |α| �= 1 and define the transform M (α) ∈ B(H2) in the space
(H2, JH2) by

M (α) = 1

β

(

I −α I
−ᾱ I I

)

, β :=
√

1 − |α|2. (3.35)

It is easy to check thatM (α) is a standard unitary operator in theKreı̆n space (H2, JH2).
Clearly, M (0) = I and

(M (α))−1 = M (−α), |α| �= 1. (3.36)

Associated with M (α) define a transform of the extended complex plane C ∪ {∞} by
the formula

μ(α)(λ) := λ − ᾱ

1 − αλ
.

Lemma 3.13 The transform M (α) in (3.35) maps closed subspaces of the Kreı̆n space
(H2, JH2) back to closed subspaces and it satisfies

(

M (α)(S−1)
)

=
(

M (ᾱ) (S)
)−1

(3.37)

and

M (α)
(

S−[∗]) =
(

M (α)(S)
)−[∗]

. (3.38)

In particular, M (α) maps isometric (unitary, contractive, expanding) relations S in
H back to isometric (unitary, contractive, expanding) relations M(α)(S) in H and,
moreover, for any closed linear relation S in H the following statements hold with
1 − αλ �= 0:
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(i) ker (S − λ) = ker (M (α)(S) − μ(α)(λ)I ), mulS = ker (αM (α)(S) + I );
(ii) ran (S − λ) = ran (M (α)(S) − μ(α)(λ)I ), dom S = ran (αM (α)(S) + I );
(iii) λ ∈ σ j (S) ⇐⇒ μ(α)(λ) ∈ σ j (M (α)(S)) for j = p, c, r;
(iv) λ ∈ ρ(S) ⇐⇒ μ(α)(λ) ∈ ρ(M (α)(S)).

Proof The mapping M (α) is unitary in the Kreı̆n space (H2, JH2) and, in fact, also
unitary and selfadjoint as a linear operator on the Hilbert space H2. Therefore, it
maps closed subsets to closed subsets in H2. The formula (3.37) is checked with a
straightforward calculation. Moreover, for all ̂f = { f , f ′}, ĝ = {g, g′}

(

JH2 ̂f , ĝ
) =

(

JH2M (α)
̂f , M (α)ĝ

)

, (3.39)

which shows that if S is isometric (contractive, expanding) relation inH so is its image
M (α)(S), since the expression in (3.39) with ̂f = ĝ ∈ S takes the value = 0 (resp.
≥ 0 and ≤ 0). Moreover, (3.39) implies the property (3.38).

The relation S in the Pontryagin space H is unitary precisely when S = S−[∗]
and hence (3.39) implies that then also M (α)(S) = (M (α)(S))−[∗], i.e., M (α)(S) is a
unitary relation in H.

To prove the remaining assertions let { f , f ′} ∈ S. Then { f , f ′ − λ f } ∈ (S − λI )
and this is equivalent to

( 1
β
( f − α f ′)

β
1−αλ

( f ′ − λ f )

)

∈ Mα(S) − μ(α)(λ)I ,

where α ∈ D, 1−αλ �= 0. This formula with λ ∈ C gives the equalities for ker (S−λ)

and ran (S − λ). Analogously the choice λ = ∞ corresponds to μ(α)(∞) = −1/α
and this yields the formulas for mulS and dom S in (i) and (ii).

The statements (iii) and (iv) follow from (i) and (ii) when applying the definitions
of the resolvent set ρ(S) and the spectral components σ j (S), j = s, c, r . ��

In the next lemma the transformM (α) ∈ B(H2) is composedwith a unitary boundary
pair.

Lemma 3.14 Let V be a closed isometric operator in a Pontryagin spaceH, let (L, �)

be a unitary boundary pair for V , and let α ∈ C, |α| �= 1. Then

V (α) := M (α)(V )

is also a closed isometric relation in H. Moreover, mul V (α) = {0} precisely when
α−1 /∈ σp(V ), and in this case:

(i) The composition

�(α) := � ◦ M (−α) (3.40)

defines a unitary boundary pair (L, �(α)) for the isometric operator V (α).
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(ii) The Weyl function �(α) and the γ -fields γ
(α)
1 , γ (α)

2 of the unitary boundary pair
(L, �(α)) are connected to theWeyl function and the γ -fields of the unitary bound-
ary pair (L, �) by

�(α) (μ(α)) = �(λ), λ ∈ D, (3.41)

γ
(α)
1 (μ(α)) = 1 − λα

β
γ1(λ), λ ∈ D, (3.42)

γ
(α)
2 (μ(α)) = 1 − λα

β
γ2(λ), λ ∈ De. (3.43)

Proof The statements concerning the linear relation V (α) are implied by Lemma 3.13.

(i) By definition M (−α) is a standard unitary operator in the Kreı̆n space (H2, JH2).
Therefore, the composition �(α) = � ◦ M (−α) is a unitary relation from the Kreı̆n
space (H2, JH2) to the Kreı̆n space (L, JL). It follows from the equivalence

{̂f , û} ∈ � ⇐⇒ {M (α)
̂f , û} ∈ �(α) (3.44)

that ker �(α) = M (α)(V ) and dom �(α) = M (α)(V∗); see (3.36).
(ii) By Lemma 3.13

λ ∈ σp(V∗) ⇔ μ(α)(λ) ∈ σp(V
(α)∗ )

and hence the defect subspacesNω(V (α)∗ ) := ker (V (α)∗ −ωI ) are connected with
the defect subspaces Nλ(V∗) by

Nλ(V∗) = Nμ(α)(λ)(V
(α)∗ ). (3.45)

Rewriting the equivalence (3.44) for vectors f ∈ Nλ(V∗) we obtain
{(

f

λ f

)

,

(

u1
u2

)}

∈ � ⇐⇒
{

1 − λα

β

(

f

μ(α)(λ) f

)

,

(

u1
u2

)}

∈ �(α). (3.46)

In view of Definition 3.8 this implies

γ
(α)
1 (μ(α)(λ))u1 = 1 − λα

β
γ1(λ)u1, λ ∈ D;

γ
(α)
2 (μ(α)(λ))u2 = 1 − λα

β
γ2(λ)u2, λ ∈ De.

By virtue of (3.50) this proves (ii). ��
The next two theorems contain a full characterization of the class ofWeyl functions

�(λ) of boundary pairs. In the first theorem it is shown that �(λ) belongs to the
generalized Schur class Sκ(L1,L2).
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Theorem 3.15 Let (L, �) be a unitary boundary pair for an isometric operator V in
a Pontryagin space H and let V1 = ker �1, V2 = ker �2. Then:

(i) V1 and V2 are closed linear relations which are connected by V1 = V−[∗]
2 and,

moreover, the sets

D := ρ(V1) ∩ D and De := ρ(V2) ∩ De (3.47)

coincide with the sets in (3.10) and they are connected by (3.23). In particular,
they are nonempty and the sets D \ D and De \ De contain at most κ points.

(ii) The γ -field γ1(λ) is holomorphic on D with values in B(L1,H).
(iii) The γ -field γ2(λ) is holomorphic on De with values in B(L2,H). If 0 ∈ D and

γ #
2 is defined by

γ #
2 (λ) := γ2(λ̄

−1)∗, λ ∈ D, (3.48)

then the following uniform limits exist

(γ #
2 (0) :=) lim

λ→0
γ #
2 (λ) = 0, ((γ #

2 )′(0) :=) lim
λ→0

1

λ
γ #
2 (λ)(∈ B(H,L2)).

(3.49)

(iv) The Weyl function �(λ) is holomorphic on D, takes values in B(L1,L2) for
λ ∈ D and belongs to the class Sκ(L1,L2).

(v) For all λ ∈ D the following relation holds

{(

γ1(λ)u1
λγ1(λ)u1

)

,

(

u1
�(λ)u1

)}

∈ �, u1 ∈ L1, λ ∈ D, (3.50)

and for all λ ∈ De the following relation holds

{(

γ2(λ)u2
λγ2(λ)u2

)

,

(

�#(λ)u2
u2

)}

∈ �, u2 ∈ L2, λ ∈ De, (3.51)

where

�#(λ) := �(1/λ)∗ (λ ∈ De).

(vi) Moreover, the following equalities are satisfied

γ1(λ) = γ1(μ) + (λ − μ)(V1 − λI )−1γ1(μ), λ, μ ∈ D; (3.52)

γ2(λ) = γ2(μ) + (λ − μ)(V2 − λI )−1γ2(μ), λ, μ ∈ De. (3.53)

Proof (i) By Proposition 3.7 there is α ∈ D, such that

ker (I − αV2) = {0}. (3.54)
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Then the linear relation V (α) = M (α)V is isometric and single-valued. By
Lemma 3.14 the pair (L, �(α)) with �(α) = � ◦ M (−α) is a unitary boundary
pair for the isometric operator V (α).
The linear relations V (α)

1 := ker �
(α)
1 , V (α)

2 := ker �
(α)
2 are related with the linear

relations V1 and V2 by the equalities

V (α)
1 = M (α)(V1) =

{(

f − α f ′
−α f + f ′

)

: { f , f ′} ∈ V1

}

, (3.55)

V (α)
2 = M (α)(V2) =

{(

f − α f ′
−α f + f ′

)

: { f , f ′} ∈ V2

}

. (3.56)

By the choice of α we havemul V (α)
2 = {0}. LetU (α) = J�(α). By Proposition 3.4

mulU (α) = {0}, which by Lemma 2.5 (v) implies that U (α) is (the graph of)
a unitary colligation U (α). Now an application of Theorem 3.10 shows that V (α)

2

and (V (α)
1 )−1 are graphs of closed bounded operators defined everywhere onH and

V (α)
1 = (V (α)

2 )−[∗]; see (3.22). In view of (3.55) and (3.56) the linear relations V1
and V2 are closed and (3.38) implies that V1 = V−[∗]

2 ; cf. Lemma 3.13. Moreover,
it follows from Lemma 3.13 that with j = 1, 2,

λ ∈ ρ(Vj ) ⇔ μ(α)(λ) ∈ ρ(V (α)
j ). (3.57)

Hence the set D := ρ(V1) ∩ D is nonempty and card (D\D) ≤ κ since the same
properties hold for the set D(α) := ρ(V (α)

1 ) ∩ D; see Theorem 3.10 (v).

Similarly, by Theorem 3.10 (v) the set D(α)
e := ρ(V (α)

2 ) ∩ De is nonempty,

card (De\D(α)
e ) ≤ κ and by (3.57) this implies the corresponding statement for

De\De.
(ii) and (iii) By Theorem 3.11 the γ -field γ

(α)
1 (λ) is holomorphic on D(α) with

values in B(L1,H) and the γ -field γ
(α)
2 (λ) is holomorphic on D(α)

e with val-
ues in B(L2,H). The desired statement for the γ -fields γ1(λ) and γ2(λ) follows
from (3.42) and (3.43).
The existence of the limits in (3.49) is obtained from (3.42) and Remark 3.12.
(iv) This statement is implied by Theorem 3.11 (iii) and (3.41).
(v) The relation (3.50) is implied by (3.14), (3.15) and items (ii), (iv).
To prove (3.51), let us choose for λ ∈ De, u2 ∈ L2, and a unique vector v ∈ L1,
such that

{(

γ2(λ)u2
λγ2(λ)u2

)

,

(

v

u2

)}

∈ �. (3.58)
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By applying (3.2) or (3.9) to the elements (3.58) with λ ∈ De and (3.50) with λ

replaced by λ̄−1 ∈ D it is seen that for all u1 ∈ L1

0 = [γ2(λ)u2, γ1(λ̄
−1)u1]H − [λγ2(λ)u2, λ̄

−1γ1(λ̄
−1)u1]H

= (v, u1)L1 − (u2,�(λ̄−1)u1)L2

and hence v = �(λ̄−1)∗u2 = �#(λ)u2.
(vi) To prove the identity (3.52) consider the vector fμ = γ1(μ)u1 ∈ Nμ(V∗),
where u1 ∈ L1, μ ∈ D. Then there exists u2 ∈ L2 such that

{(

fμ
μ fμ

)

,

(

u1
u2

)}

∈ �, μ ∈ D. (3.59)

For λ ∈ D consider the vector

̂fλ =
(

fμ
μ fμ

)

+ ĝ, where ĝ = (λ − μ)

(

(V1 − λI )−1 fμ
I + λ(V1 − λI )−1 fμ

)

∈ V1 ⊂ V∗.

Direct calculations show that ̂fλ ∈ ̂Nλ(V∗). Since ĝ =
(

g
g′
)

∈ V1 there exists

v2 ∈ L2 such that

{(

g
g′
)

,

(

0
v2

)}

∈ �. (3.60)

It follows from (3.59) and (3.60) that

{(

fλ
λ fλ

)

,

(

u1
u2 + v2

)}

=
{(

fμ + g
μ fμ + g′

)

,

(

u1
u2 + v2

)}

∈ �

and hence γ1(λ)u1 = fλ. This proves (3.52).
The equality (3.53) is proved similarly. ��
There is an analog for the notion of transposed boundary triple (see [19]) for bound-

ary pairs of isometric operators. In the present case this notion contains the second
boundary triple associated with a dual pair {V , V−1} as defined in [41] in the case of
ordinary boundary triples for Hilbert space isometries. For this purpose the notion of
transposed boundary pair (L2⊕L1, �

�) is introduced for boundary pairs of isometric
operators and its basic properties are established in the next proposition.

Proposition 3.16 Let (L, �) be a unitary boundary pair for an isometric operator V
in a Pontryagin space H, let V1 = ker �1, V2 = ker �2, let γ1(λ) and γ2(λ) be the
γ -fields of (L, �), let �(λ) be the Weyl function of (L, �), and define

�� =
{{(

f ′

f

)

,

(

u2
u1

)}

:
{(

f

f ′

)

,

(

u1
u2

)}

∈ �

}

. (3.61)
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Then:

(i) (L2 ⊕ L1, �
�) is a unitary boundary pair for V−1.

(ii) V�
1 := ker ��

1 = V−1
2 and V�

2 := ker ��
2 = V−1

1 .
(iii) The Weyl function ��(λ) and the γ -fields γ �

1 (λ) and γ �
2 (λ), corresponding to

the pair (L2 ⊕ L1, �
�) are connected with �(λ), γ1(λ) and γ2(λ) by

��(λ) = �(λ̄)∗, λ ∈ D := {μ : μ ∈ D}, (3.62)

γ �
1 (λ) = 1

λ
γ2

(

1

λ

)

, λ ∈ D; γ �
2 (λ) = 1

λ
γ1

(

1

λ

)

, λ ∈ De. (3.63)

Proof (i) This statement is implied by the equality V = ker � and the following
identity

[ f ′, g′]H − [ f , g]H = (u2, v2)L2 − (u1, v1)L1 , (3.64)

which is valid for all {̂f , û}, {ĝ, v̂} ∈ �; see Definition 3.1.
(ii) The statement is clear from the definition of (L2 ⊕ L1, �

�).
(iii) If λ ∈ D then 1/λ ∈ De and one obtains from (3.51)

{(

γ2(1/λ)u2
1/λγ2(1/λ)u2

)

,

(

�#(1/λ)u2
u2

)}

∈ �, u2 ∈ L2, λ ∈ D.

In view of (3.61) this implies

{(

1/λγ2(1/λ)u2
γ2(1/λ)u2

)

,

(

u2
�#(1/λ)u2

)}

∈ ��, u2 ∈ L2, λ ∈ D,

and hence

γ �
1 (λ) = 1

λ
γ2

(

1

λ

)

and ��(λ) = �#(1/λ) = �(λ̄)∗, λ ∈ D.

The second equality in (3.63) is proved similarly. ��

3.5 Realization Theorem

The converse statement to Theorem 3.15 contains the main realization result for the
generalized Schur class Sκ(L1,L2): every function �(λ) from the class Sκ(L1,L2)

can be realized as the Weyl function of a boundary pair for some isometric operator
V in a Pontryagin space.

Theorem 3.17 Let s(·) ∈ Sκ(L1,L2) with the domain of holomorphy hs(⊂ D). Then
there exists a simple isometric operator V in a Pontryagin space H and a unitary
boundary pair (L1×L2, �) such that the correspondingWeyl function�(λ) coincides
with s(λ) on hs .



Unitary Boundary Pairs for Isometric Operators. . . Page 29 of 52 32

Proof (1) First assume that s(·) is holomorphic at 0. Then by [1, Theorem 2.3.1]

there exists a closely connected unitary colligation U =
(

T F
G H

)

such that its

characteristic function coincides with s(λ) for all λ ∈ hs .
Let V be defined by the formula V = T [∗] � ker F [∗] and let the linear relation �

be defined by (3.18). Then by Theorem 3.10 the pair (L, �) is a unitary boundary
pair for V∗ and the corresponding Weyl function �(λ) coincides with s(λ) on hs .

(2) Assume that s(λ) is holomorphic at α ∈ hs . Consider a new operator function

s(α)(ζ ) = s

(

ζ + α

1 + αζ

)

. (3.65)

Since s(α)(·) ∈ Sκ(L1,L2) and also is holomorphic at 0 there exist a Pontrya-
gin space H, a simple isometric operator V (α) in H, and a unitary boundary
pair (L, �(α)) such that the corresponding Weyl function �(α)(ζ ) coincides with
s(α)(ζ ).
By Lemma 3.14 the pair (L, �) with � := �(α) ◦ M (α) is a unitary boundary pair
for the simple isometric operator

V = ker � = M (−α)V (α) =
{(

f + α f ′
α f + f ′

)

: { f , f ′} ∈ V (α)

}

.

The domains V∗ := dom � and V (α)∗ := dom �(α) of � and �(α) are connected
by

V∗ := dom � = M (−α)V (α)∗ =
{(

f + α f ′
α f + f ′

)

: { f , f ′} ∈ V (α)∗
}

,

The defect subspaceNλ(V∗) := ker (V∗−λI ) andNω(V (α)∗ ) := ker (V (α)∗ −ωI )
are connected by (3.45) and the equivalence (3.46) holds. It follows from (3.46)
and Definition 3.9 that the Weyl functions of the unitary boundary pairs (L, �)

and (L, �(α)) are connected by

�(λ) = �(α)

(

λ − α

1 − αλ

)

, λ ∈ hs . (3.66)

Setting ζ = λ−α
1−αλ

one obtains λ = ζ+α
1+αζ

and hence by (3.66) and (3.65)

�(λ) = �(α)(ζ ) = s(α)(ζ ) = s

(

ζ + α

1 + αζ

)

= s(λ), λ ∈ hs .

This completes the proof. ��
Remark 3.18 Notice that a simple isometric operator V in Theorem 3.17 and a unitary
boundary pair (L1×L2, �) are determined by theWeyl function s(·) uniquely, up to a
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unitary equivalence. The latter means that if there is another simple isometric operator
V ′ in a Pontryagin space H′ and a unitary boundary pair (L1 × L2, �

′), such that its
Weyl function coincides with s(·), then there exists a unitary operator W from H′ to
H′, such that

V ′ = WVW−1, �′ = �W−1.

Next Theorem 3.15 is specialized to the case where H is a Hilbert space and (L, �)

is a unitary boundary pair for an isometric operator V in H. When combined with
Theorem 3.17 we get a general realization result for operator valued Schur functions
s(·) ∈ S(L1,L2) as a Weyl function of a unitary boundary pairs for an isometric
operator in a Hilbert space.

Theorem 3.19 Let H and L = L1 × L2 be Hilbert spaces, let V be an isometric
operator in H, let (L, �) be a unitary boundary pair for V and let V1, V2 be defined
by (3.5). Then:

(i) V−1
1 and V2 are contractive operators in B(H) and they are connected by

V2 = V−∗
1 . (3.67)

(ii) The γ -field γ1(λ) is holomorphic on D with values in B(L1,H) and satisfies the
identity (3.52) for all λ,μ ∈ D.

(iii) The γ -field γ2(λ) is holomorphic on De with values in B(L2,H) and satisfies the
identity (3.53) for all λ,μ ∈ De.

(iv) The Weyl function �(λ) of V corresponding to the boundary pair (L, �) belongs
to the Schur class S(L1,L2).

Conversely, for every function s(·) from the Schur classS(L1,L2) there exists a simple
isometric operator V in a Hilbert space H and a unitary boundary pair (L, �) for V
such that the corresponding Weyl function �(·) coincides with s(·).
Proof (i) According to Corollary 3.5 V−1

1 and V2 are contractive operators. From item
(i) in Theorem 3.15 one concludes that

D ⊆ ρ(V−1
2 ) and De ⊆ ρ(V−1

1 ).

In particular, 0 ∈ ρ(V−1
2 ) so that V2 ∈ B(H). On the other hand, by Proposition 3.4

one has the inclusion V2 ⊆ V−∗
1 . SinceDe ⊆ ρ(V−∗

1 ), the equality (3.67) must prevail
and, hence, V−∗

1 ∈ B(H) ⇔ V−1
1 ∈ B(H).

The assertions (ii)–(iv) are now obtained directly from Theorem 3.15.
The last statement follows from Theorem 3.17 by taking κ = 0. ��

3.6 Classification of Unitary Boundary Pairs

We start by collecting some main properties of unitary boundary pairs in the next
proposition.
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Proposition 3.20 Let V be an isometric operator in the Pontryagin space H and let
(L, �) be a unitary boundary pair for V . Then� and its components�1 and�2 defined
by (3.3), (3.4) admit the following properties:

(i) �1 and �2 are closed linear relations with ran�1 = L1, ran�2 = L2 and,
moreover, mul�1 = {0} ⇔ mul�2 = {0} ⇔ mul� = {0};

(ii) V1 = ker �1 and V2 = ker �2 have nonempty resolvent sets and V1 = V−[∗]
2 ;

(iii) V∗ = dom � admits the decompositions

V∗ = V1 ̂+ ̂Nλ(V∗), λ ∈ D = ρ(V1) ∩ D,

V∗ = V2 ̂+ ̂Nλ(V∗), λ ∈ De = ρ(V2) ∩ De.

Proof (i) These properties were proven in Proposition 3.4.
(ii) The fact that ρ(V1) and ρ(V2) are nonempty and the equality V2 = V−∗

1 were
proven in Theorem 3.15.

(iii) This is a direct consequence of (ii); see e.g. [29, Lemma 4.1]. ��
Remark 3.21 Proposition 3.20 shows that in a Pontryagin spaceH every unitary bound-
ary pair (L, �) (as well as its transposed boundary pair) of an isometric operator V
can be seen as an analog of so-called (B-)generalized boundary triple, since the com-
ponent mappings �1 and �2 are surjective and the corresponding kernels V1 = ker �1
and V2 = ker �2 are closed extensions of V with nonempty resolvent sets; see [19,26]
and [22–24] for some further developments.

Proposition 3.22 The following relations hold:

S�
μ(λ) := I − �(μ)∗�(λ)

1 − λμ
= γ1(μ)[∗]γ1(λ), λ, μ ∈ D; (3.68)

S�
μ(λ) := I − �#(μ)∗�#(λ)

1 − λμ
= −γ2(μ)[∗]γ2(λ), λ, μ ∈ De; (3.69)

S�
μ(λ) := �(λ) − �#(μ)∗

1 − λμ
= −γ2(μ)[∗]γ1(λ), λ ∈ D, μ ∈ De; (3.70)

S�
μ(λ) := �#(λ) − �(μ)∗

1 − λμ
= γ1(μ)[∗]γ2(λ), λ ∈ De, μ ∈ D. (3.71)

Proof Let λ,μ ∈ D and u1, v1 ∈ L1. Then by (3.50)

{(

γ1(λ)u1
λγ1(λ)u1

)

,

(

u1
�(λ)u1

)}

∈ �,

{(

γ1(μ)v1
μγ1(μ)v1

)

,

(

v1
�(μ)v1

)}

∈ �

and the identity (3.9) applied to these vectors yields

(1 − λμ)[γ1(λ)u1, γ1(μ)v1]H = [u1, v1]L1 − [�(λ)u1,�(μ)v1]L2 .

This proves the equality (3.68).
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Let now λ ∈ D, μ ∈ De and let u1 ∈ L1 and v2 ∈ L2. Then by (3.50)

{(

γ1(λ)u1
λγ1(λ)u1

)

,

(

u1
�(λ)u1

)}

∈ �,

{(

γ2(μ)v2
μγ2(μ)v2

)

,

(

�#(μ)v2
v2

)}

∈ �.

By applying (3.9) to these vectors one arrives at

(1 − λμ)[γ1(λ)u1, γ2(μ)v2]H = [u1,�#(μ)v2]L1 − [�(λ)u1, v2]L2 .

This yields (3.70). The proof of (3.69) and (3.71) is analogous. ��
Proposition 3.23 Let (L, �) be a unitary boundary pair for an isometric operator V
in the Pontryagin space H. Then

mul�1 = ker γ1(λ) (λ ∈ D) and mul�2 = ker γ2(λ) (λ ∈ De).

Moreover, the following statements are equivalent:

(i) � is single valued (i.e. mul� = {0});
(ii) ran� is dense in L1 × L2;
(iii) ker γ1(λ) = {0} for some (equivalently for all) λ ∈ D;
(iv) ker γ2(λ) = {0} for some (equivalently for all) λ ∈ De.

If, in addition, the operator V is simple then the conditions (i)–(iv) areequivalent to

(v)
⋂

μ∈D∪De

ker S�
μ(λ) = {0} for some (equivalently for all) λ ∈ D ∪ De.

Proof (i) ⇔ (ii) This is item (ii) in Proposition 3.2.
(i) ⇔ (iii), (iv) The formula (3.11) and Definition 3.8 of the γ -fields shows that

ker γ1(λ) = mul�1 forλ ∈ D and ker γ2(λ) = mul�2 forλ ∈ De. Now the statement
follows from item (i) in Proposition 3.20.

To prove the statement in (v) first observe that with λ ∈ D the inclusions

ker γ1(λ) ⊆ ker S�
μ(λ) for all μ ∈ D ∪ De

are clear from (3.68) and (3.70) in Proposition 3.22. Thus

ker γ1(λ) ⊆
⋂

μ∈D∪De

ker S�
μ(λ), λ ∈ D. (3.72)

As to the reverse inclusion apply Proposition 3.22 again to see that for all λ,μ ∈ D
and u1, v1 ∈ L1,

(

S�
μ(λ)u1, v1

)

L1
= [γ1(λ)u1, γ1(μ)v1]H (3.73)

and for all λ ∈ D, ν ∈ De and u1 ∈ L1, v2 ∈ L2,

(

S�
μ(λ)u1, v2

)

L2
= [γ1(λ)u1, γ2(μ)v2]H. (3.74)
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Now assume that the operator V is simple. Then

span {γ1(μ)L1, γ2(ν)L2 : μ ∈ D, ν ∈ De} = H

and by virtue of (3.73) and (3.74) the reverse inclusion in (3.72) follows. This proves
the equivalence (iv) ⇔ (v) for λ ∈ D when V is simple. Similarly one proves the
equivalence (iii) ⇔ (v) for λ ∈ De. ��
Proposition 3.24 Let (L, �) be a unitary boundary pair for an isometric operator V
in the Pontryagin space H. Then the following statements are equivalent:

(i) ran� = L1 × L2;
(ii) dom � = V−[∗] and mul� = {0};
(iii) ker γ1(λ) = {0} and ran γ1(λ) is closed for some (equivalently for all) λ ∈ D;
(iv) ker γ2(λ) = {0} and ran γ2(λ) is closed for some (equivalently for all) λ ∈ De.

If 0 ∈ ρ(S�
λ (λ)) for some λ ∈ D ∪ De, then the conditions (i)–(iv) hold.

If one of the condition (i)–(iv) is satisfied then (L, �) is an ordinary boundary pair
for V .

Proof (i) ⇔ (ii) This is item (iii) in Proposition 3.2.
(ii) ⇔ (iii), (iv) Definition 3.8 of the γ -fields shows that ran γ1(λ) = Nλ(V∗) for

λ ∈ D and ran γ2(λ) = Nλ(V∗) for λ ∈ De. Now the decompositions of V∗ = dom �

in item (iii) of Proposition 3.20 imply that Nλ(V∗) is closed for some λ ∈ D ∪ De

if and only if V∗ = V−[∗]. This combined with Proposition 3.23 gives the stated
equivalences.

The last implication follows from Proposition 3.22. Indeed, if 0 ∈ ρ(S�
λ (λ)) for

some λ ∈ D, then by Proposition 3.23 ker γ1(λ) = {0} and by (3.68) ran γ1(λ) is
closed. Similarly, if 0 ∈ ρ(S�

λ (λ)) for some λ ∈ De, then again by Proposition 3.23
ker γ2(λ) = {0} and by (3.69) ran γ2(λ) is closed.

Finally, the fact that (L, �) is an ordinary boundary pair for V is clear from the
properties in (ii). ��

The next example shows that the condition (v) in Proposition 3.23 cannot be
replaced by a single condition ker S�

λ (λ) = {0}.
Example 3.25 Let H = C

4 with the skew-diagonal fundamental symmetry J =
(δ j,5−k)

4
j,k=1, where δ j,k is the Kronecker delta and let us set e j = (δ j,k)

4
k=1,

( j = 1, 2, 3, 4). Let V be an isometry in H which maps e1 into e2. Then the defect
subspaces of V

Nλ =
{

( f1, f2, f3, λ f3)
� : f1, f2, f3 ∈ C

}

(3.75)

are degenerate for all λ ∈ C and thus, the operator V is not standard.
The linear relation V−[∗] consists of vectors

̂f =
(

f
f ′
)

, where f =
4
∑

j=1

f j e j , f ′ =
4
∑

j=1

f ′
j e j , f ′

3 = f4.
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Therefore, the left part of the identity (3.2) for ̂f = ĝ takes the form

( f1 − f ′
2) f4 + f2 f3 + f3 f2 + f4( f1 − f ′

2) − f ′
1 f

′
4 − f ′

4 f
′
1

and can be rewritten in the diagonal form

1

2

{

| f ′
1 − f ′

4|2−| f ′
1 + f ′

4|2+ | f1 − f ′
2 + f4|2 −| f1 − f ′

2 − f4|2

+| f2 + f3|2−| f2 − f3|2
}

.

Hence a single-valued boundary triple (L1 ⊕ L2, �1, �2) can be chosen as follows

L1 = L2 = C
3, �1 ̂f = 1√

2

⎛

⎝

f ′
1 − f ′

4
f1 − f ′

2 + f4
f2 + f3

⎞

⎠ , �2 ̂f = 1√
2

⎛

⎝

f ′
1 + f ′

4
f1 − f ′

2 − f4
f2 − f3

⎞

⎠ .

(3.76)

Then for |λ| < 1 one obtains from (3.75) and (3.76)

�(λ) = 1

3λ2

⎛

⎝

λ2 2λ3 2λ4

2λ λ2 −2λ3

2 −2λ λ2

⎞

⎠

and hence

S�
ω (λ) = −2

9λ2ω2	∗
⎛

⎝

2(1 + 2λω) −(2 + λω) 1 − λω

−(2 + λω) 2(1 − λω) −(1 + 2λω)

1 − λω −(1 + 2λω) −2(2 + λω)

⎞

⎠�,

where � = diag (1, λ, λ2), 	 = diag (1, ω, ω2). Notice that in this example
det S�

ω (λ) ≡ 0 for all λ, ω ∈ D\{0}, while ⋂

ω∈D\{0}
ker S�

ω (λ) = {0}. In fact, for

every pair ω1, ω2 ∈ D\{0}, ω1 �= ω2, one gets ker S�
ω1

(λ) ∩ ker S�
ω2

(λ) = {0}.
Remark 3.26 Let A be a closed symmetric operator in a Pontryagin spaceHwith equal
defect numbers, and let ±i /∈ σp(A). Then its Cayley transform V = (A − i I )(A +
i I )−1 is an isometric operator in H.

Let (L1 ⊕L2, �) be a boundary pair for V with V∗ = dom � such that L1 = L2 =:
H. Define the Kreı̆n spaces (H2, [[·, ·]]H2) and (H2, [[·, ·]]H2) with the inner products

[[̂f , ̂f ]]H2 = −i
([ f ′, f ]H − [ f , f ′]H

)

, ̂f =
(

f
f ′
)

∈ H2,

[[̂u, û]]H2 = −i
(

(u′, u)H − (u, u′)H
)

, û =
(

u
u′
)

∈ H2.
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Then the Cayley transform determines the unitary operator from the Kreı̆n space
(H2, [[·, ·]]H2) to the Kreı̆n space (H2, JH2) defined in Sect. 3.1,

C = 1√
2

(

i 1
−i 1

)

: (H2, [[·, ·]]H2) → (H2, JH2)

and similarly with L = L1 ×L2 it determines a unitary mapping from the Kreı̆n space
(H2, [[·, ·]]H2) to the Kreı̆n space (L, JL),

C = 1√
2

(

i 1
−i 1

)

: (H2, [[·, ·]]H2) → (L, JL).

It follows that the linear relation

˜� = C−1 ◦ � ◦ C =
{

{

̂f , û
} :=

{(

ig′ − ig
g′ + g

)

,

(

iv′ − iv
v′ + v

)}

:
{(

g
g′
)

,

(

v

v′
)}

∈ �

}

is unitary from (H2, [[·, ·]]H2) to (H2, [[·, ·]]H2) with the kernel ker ˜� = A and the
domain

dom˜� = C−1V∗ =
{

̂f =
(

ig′ − ig
g′ + g

)

:
(

g
g′
)

∈ V∗
}

.

Since the mapping ˜� is isometric from (H2, [[·, ·]]H2) to (H2, [[·, ·]]H2) the following
(Green’s) identity

[ f ′, f ]H − [ f , f ′]H = [u′, u]H − [u, u′]H
holds for all {̂f , û} ∈ ˜� and due to [19,22] the unitarity of ˜� means that (H2,˜�) is
a unitary boundary pair for the symmetric operator A. This boundary pair becomes
ordinarywhen themapping˜� is surjective or, equivalently,when (H2, �) is an ordinary
boundary pair for V .

Finally the main results in this subsection are specialized to unitary boundary pairs
of Hilbert space isometries. In a Hilbert space setting the properties of the γ -fields
can be connected more directly to the properties of the Weyl function.

Proposition 3.27 Let (L, �) be a unitary boundary pair for an isometric operator V
in the Pontryagin space H. Then

mul�1 = ker γ1(λ), λ ∈ D, and mul�2 = ker γ2(λ), λ ∈ De,

and (L, �) admits the following further properties.

(a) The following statements are equivalent:

(i) � is single valued (i.e. mul� = {0});
(ii) ran� is dense in L1 × L2;
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(iii) ker γ1(λ) = {0} for some (equivalently for all) λ ∈ D;
(iv) ker γ2(λ) = {0} for some (equivalently for all) λ ∈ De;
(v) ker S�

λ (λ) = {0} for some (equivalently for all) λ ∈ D ∪ De.

(b) Moreover, the following statements are equivalent:

(i) (L, �) reduces to an ordinary boundary triple (L, �1, �2) for V ;
(ii) dom � = V−[∗] and mul� = {0};
(iii) ran� = L1 × L2;
(iv) ker γ1(λ) = {0} and ran γ1(λ) is closed for some (equivalently for all) λ ∈ D;
(v) ker γ2(λ) = {0} and ran γ2(λ) is closed for some (equivalently for all) λ ∈

De;
(vi) 0 ∈ ρ(S�

λ (λ)), i.e., ‖�(λ)‖ < 1 for some (equivalently for all) λ ∈ D ∪ De.

Proof (a) The equivalences (i)–(iv) follow from Proposition 3.23; see also Theo-
rem 3.19. To see the equivalence with item (v) apply Proposition 3.22 with λ = μ:

S�
λ (λ) = I − �(λ)∗�(λ)

1 − |λ|2 = γ1(λ)∗γ1(λ) ≥ 0, λ ∈ D; (3.77)

S�
λ (λ) = I − �#(λ)∗�#(λ)

1 − |λ|2 = −γ2(λ)∗γ2(λ) ≤ 0, λ ∈ De. (3.78)

In the present Hilbert space case these identities lead to

ker S�
λ (λ) = ker γ1(λ), λ ∈ D; ker S�

λ (λ) = ker γ2(λ), λ ∈ De.

This implies the equivalence of (iii), (iv) and (v) in part (a).
(b) Here the equivalence of (i) and (ii) holds just by the definition of an ordinary

boundary triple (see [41]). The equivalences (ii)–(v) are obtained fromProposition 3.24
(cf. also Theorem 3.19). To see the equivalence with item (vi) apply the identities
(3.77), (3.78):

0 ∈ ρ(I − �(λ)∗�(λ)) ⇐⇒ 0 ∈ ρ(γ1(λ)∗γ1(λ)), λ ∈ D;
0 ∈ ρ(I − �#(λ)∗�#(λ)) ⇐⇒ 0 ∈ ρ(γ2(λ)∗γ2(λ)), λ ∈ De.

Thus I − �(λ)∗�(λ) and I − �#(λ)∗�#(λ) are uniformly positive or, equivalently,
‖�(λ)‖ < 1 and ‖�#(λ))‖ < 1. This completes the proof. ��

Notice that part (b) of Proposition 3.27 contains the properties and generality that
can be attained when applying (ordinary) boundary triples for isometric operators
which have been introduced and studied in [41,42].

Remark 3.28 An analog of boundary triple in scattering form (3.2) is encountered in
[17],where extension theoryofmultiplicationoperators in indefinite deBranges spaces
was developed. The role of the Weyl function in that work is played by de Branges
matrix.
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4 Extension Theory and Generalized Coresolvents

An extension ˜V of the isometric operator V is called proper, if V � ˜V � V−[∗]. The
set of proper extensions of V was parametrized in [5] via an ordinary boundary triple.
In the present section we consider extensions ˜V of the isometric operator V , which
are proper with respect to a given unitary boundary pair (L, �), i.e.

V � ˜V � V∗ = dom �. (4.1)

For such extensions we prove sufficient conditions for regularity of a point λ, find
formulas for their coresolvents and then apply them for a description of generalized
coresolvents of the isometric operator V .

4.1 A Preparatory Lemma

Lemma 4.1 Let V : H → H be an isometric operator and let� = (L, �) be a unitary
boundary pair for V . Then:

(i) For every

(

f1
f ′
1

)

∈ V1 and λ ∈ D, as defined in (3.48) one has

{(

f1
f ′
1

)

,
1

λ
γ #
2 (λ)( f ′

1 − λ f1)

}

∈ �2. (4.2)

If 0 ∈ D then the formula (4.2) for λ = 0 takes the form

{(

f1
f ′
1

)

, (γ #
2 )′(0) f1

}

∈ �2. (4.3)

(ii) For every

(

f2
f ′
2

)

∈ V2 and λ ∈ De one has

{(

f2
f ′
2

)

,−1

λ
γ #
1 (λ)( f ′

1 − λ f1)

}

∈ �1. (4.4)

Proof (i) Using Definitions 3.8, 3.9 it is seen that

⎧

⎨

⎩

⎛

⎝

γ2

(

1
λ

)

u2
1
λ
γ2

(

1
λ

)

u2

⎞

⎠ ,

(

�
(

1
λ

)∗
u2

u2

)

⎫

⎬

⎭

,

{(

f1
f ′
1

)

,

(

0
v2

)}

∈ �, (4.5)

for all u2 ∈ L2, and some v2 ∈ L2, λ ∈ D\{0}. By applying the identity (3.2) to these
elements one obtains

[

γ2

(

1

λ

)

u2, f1

]

H

− 1

λ

[

γ2

(

1

λ

)

u2, f ′
1

]

H

= −(u2, v2)L2 ,
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or, equivalently,

(

u2, γ2

(

1

λ

)∗
(
1

λ
f ′
1 − f1)

)

L2

= (u2, v2)L2 .

Since u2 ∈ L2 is arbitrary this implies the equality

v2 = 1

λ
γ #
2 (λ)

(

f ′
1 − λ f1

)

which in combination with (4.5) yields (4.2).
The equality (4.3) is implied by (4.2) and (3.49).
(ii) Similarly, applying (3.2) to the vectors

⎧

⎨

⎩

⎛

⎝

γ1

(

1
λ

)

u1
1
λ
γ1

(

1
λ

)

u1

⎞

⎠ ,

(

u1
�
(

1
λ

)

u1

)

⎫

⎬

⎭

,

{(

f2
f ′
2

)

,

(

v1
0

)}

∈ �, (4.6)

where u1, v1 ∈ L1, f2, f ′
2 ∈ H, λ ∈ De, one obtains

[

γ1

(

1

λ

)

u1, f2

]

H

− 1

λ

[

γ1

(

1

λ

)

u1, f ′
2

]

H

= (u1, v1)L1

and

(

u1, γ
#
1 (λ)

(

f2 − 1

λ
f ′
2

))

L1

= (u1, v1)L1 .

This implies

v1 = −1

λ
γ #
1 (λ)

(

f ′
2 − λ f2

)

,

which together with (4.6) yields (4.4). ��

4.2 Weyl Function and Spectrum of Proper Extensions of V

A unitary boundary pair (L, �) is a tool which allows to determine those extensions
˜V of V that satisfy V � ˜V � V∗ in the following way. Let � be a linear relation from
L1 to L2 represented in the form

� =
{(

�1h

�2h

)

: h ∈ H
}

, (4.7)
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whereH is an auxiliary Hilbert space and� j are bounded linear operators� j : H →
L j ( j = 1, 2), such that

ker (�∗
1�1 + �∗

2�2) = {0}. (4.8)

Then � is closed if and only if

0 ∈ ρ(�∗
1�1 + �∗

2�2). (4.9)

Associate with � an extension V� of V by

V� =
{(

f
f ′
)

∈ V∗ :
{(

f
f ′
)

,

(

�1h
�2h

)}

∈ � for some h ∈ H
}

. (4.10)

The following theorem gives a description of the spectrum of V� and contains a Kreı̆n
type resolvent formula.

Theorem 4.2 Let V be a closed isometric operator in H, let � = (L, �) be a unitary
boundary pair for V , let � ∈ B(H,L) and let (4.8) hold. If λ ∈ D then:

(i) λ ∈ σp(V�) �⇒ ker (�2 − �(λ)�1) �= {0};
(ii) �2 − �(λ)�1 : H → L2 has a bounded inverse �⇒ λ ∈ ρ(V�).

When (ii) is satisfied the resolvent of V� takes the form

(V� − λIH)−1 = (V1 − λIH)−1 + 1

λ
γ1(λ)�1(�2 − �(λ)�1)

−1γ #
2 (λ) (λ ∈ D).

(4.11)

If λ ∈ De then:

(iii) λ ∈ σp(V�) �⇒ ker (�1 − �#(λ)�2) �= {0};
(iv) �1 − �#(λ)�2 : H → L1 has a bounded inverse �⇒ λ ∈ ρ(V�);

When (iv) is satisfied the resolvent of V� takes the form

(V� − λIH)−1 = (V2 − λIH)−1 − 1

λ
γ2(λ)�2(�1 − �#(λ)�2)

−1γ #
1 (λ) (λ ∈ De).

(4.12)

If, in addition, � = (L, �) is an ordinary boundary triple for V then the implications
(i)–(iv) become equivalences.

Proof The proof is divided into steps.
1. Verification of (i). If λ ∈ D ∩ σp(V�),D = ρ(V1), then there is f ∈ H \ {0} and

h ∈ H such that
{(

f
λ f

)

,

(

�1h
�2h

)}

∈ �. (4.13)
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Since λ ∈ D, one has λ /∈ σp(V ) and hence h �= 0. By Definition 3.9 this means that

�(λ)�1h = �2h, λ ∈ D. (4.14)

Hence, h ∈ ker (�2 − �(λ)�1).
2. Verification of (ii). First assume that (�2 −�(λ)�1) has a bounded inverse with

λ ∈ D \ {0}. Let us find a solution ̂f =
(

f
f ′
)

∈ V� of the equation

f ′ − λ f = g (4.15)

for arbitrary g ∈ H. Since λ ∈ D = ρ(V1), there are f1, f ′
1 ∈ H, such that

f ′
1 − λ f1 = g and

(

f1
f ′
1

)

∈ V1.

Hence

f1 = (V1 − λIH)−1g. (4.16)

By Lemma 4.1

{(

f1
f ′
1

)

,

(

0
u2

)}

∈ �, where u2 = 1

λ
γ #
2 (λ)g = 1

λ
γ #
2 (λ)( f ′

1 − λ f1). (4.17)

Now choose h = (�2 − �(λ)�1)
−1u2 and apply (3.50) to get

{(

γ2(λ)�1h
λγ2(λ)�1h

)

,

(

�1h
�(λ)�1h

)}

∈ �. (4.18)

Combining (4.17) and (4.18) one obtains

{(

f1
f ′
1

)

+
(

γ1(λ)�1h
λγ1(λ)�1h

)

,

(

�1h
u2 + �(λ)�1h

)}

∈ �. (4.19)

Setting

(

f
f ′
)

=
(

f1
f ′
1

)

+
(

γ1(λ))�1h
λγ1(λ))�1h

)

(4.20)

and using the equality

u2 + �(λ)�1h = (I + �(λ)�1(�2 − �(λ)�1)
−1)u2 = �2h
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one obtains from (4.19)

{(

f
f ′
)

,

(

�1h
�2h

)}

∈ �. (4.21)

Therefore, the equation (4.15) has a solution ̂f =
(

f
f ′
)

∈ V� and

f = f1 + γ1(λ)�1h

= (V1 − λIH)−1g + 1

λ
γ1(λ)�1(�2 − �(λ)�1)

−1γ #
2 (λ)g.

Next assume that 0 ∈ D and 0 ∈ ρ(�2 − �(0)�1). Then by Lemma 4.1 the
equality (4.17) holds with u2 = (γ #

2 )′(0) f1 and now combining this analog of (4.17)
with (4.18) yields (4.21). The formula (4.11) for λ = 0 takes the form

V−1
� = V−1

1 + γ1(0)�1(�2 − �(0)�1)
−1(γ #

2 )′(0).

This completes the proof of the implication in (ii) and the formula (4.11).
3. Verification of (iii). If λ ∈ σp(V�) ∩ De then there is f ∈ H\{0} and h ∈ H

such that (4.13) holds. Again, since λ ∈ D, one has λ /∈ σp(V ) and hence h �= 0. By
Definition 3.9 one gets

�1h − �#(λ)�2h = 0.

Hence h ∈ ker (�1 − �#(λ)�2).
4. Verification of (iv). Assume that �1 − �#(λ)�2 has a bounded inverse and

λ ∈ De. Since λ ∈ De = ρ(V2), there are f2, f ′
2 ∈ H, such that

f ′
2 − λ f2 = g and

(

f2
f ′
2

)

∈ V2.

Hence f2 = (V2 − λIH)−1g. By Lemma 4.1

{(

f2
f ′
2

)

,

(

u1
0

)}

∈ � with u1 = −1

λ
γ #
1 (λ)g. (4.22)

Now choose h = (�1 − �#(λ)�2)
−1u1 and apply (3.51) to get

{(

γ2(λ)�2h
λγ2(λ)�2h

)

,

(

�#(λ)�2h
�2h

)}

∈ �. (4.23)

Combining (4.22) and (4.23) one obtains

{(

f
f ′
)

,

(

�1h
�2h

)}

∈ �, where

(

f
f ′
)

=
(

f2
f ′
2

)

+
(

γ2(λ)�2h
λγ2(λ)�2h

)

. (4.24)
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Making use of (4.24), (4.22), and the above formulas for h and f2 one obtains

f = f2 + γ2(λ)�2h

= (V2 − λIH)−1g − 1

λ
γ2(λ)�2(�1 − �#(λ)�2)

−1γ #
1 (λ)g.

This proves (4.12) and the implication in (iv).
5. Verification of the reverse implication in (i) for the case of an ordinary boundary

triple (L, �). Let (�2 − �(λ)�1)h = 0 for some h ∈ H\{0}. Then it follows from

{(

γ1(λ)�1h
λγ1(λ)�1h

)

,

(

�1h
�(λ)�1h

)}

∈ � (4.25)

and (4.14) that (4.13) holds with f = γ1(λ)�1h. Notice that�1h �= 0 since otherwise
�2h = 0 by (4.14),which contradicts to (4.8). Therefore, f �= 0 since ker γ1(λ) = {0}
for the ordinary boundary triple � = (L, �); see Proposition 3.24. Thus λ ∈ σp(V�).

6. Verification of the reverse implication in (ii) for the case of an ordinary boundary
triple (L, �). Let λ ∈ ρ(V�). By virtue of item 5 to prove the boundedness of the
inverse (�2 − �(λ)�1)

−1 : L2 → H it is enough to show that

ran (�2 − �(λ)�1) = L2. (4.26)

By assumption λ ∈ ρ(V�) ∪ D and hence for arbitrary g ∈ H one can find vectors
(

f
f ′
)

∈ V� and

(

f1
f ′
1

)

∈ V1 such that

f ′
1 − λ f1 = f − λ f ′ = g (λ ∈ ρ(V�) ∪ D).

Then (4.17)–(4.19) hold for some h ∈ H and, in particular,

(�2 − �(λ)�1)h = u2 = 1

λ
γ #
2 (λ)g.

Since g ∈ H is arbitrary and for an ordinary boundary triple ran γ #
2 (λ) = L2, the

claim (4.26) is proved. By OpenMapping Theorem the operator T := �2−�(λ)�1 :
H → L2 has a bounded inverse, since T ∈ B(H,L2), ker T = {0} and ran T = L2.

��
The operator function (IH−zV�)−1 is called the coresolvent ofV�. Settingλ = 1/z

in Theorem 4.2 one obtains the following statement for coresolvents of V�.

Corollary 4.3 Let V be a closed isometric operator in H, let � = (L, �) be a unitary
boundary pair for V , let � ∈ B(H,L) and let (4.8) hold. If z ∈ D then:

(i) z ∈ σp(V
−1
� ) �⇒ ker

(

�1 − �(z̄)∗ �2
) �= {0};

(ii) �1 − �(z̄)∗�2 : H → L1 has a bounded inverse �⇒ z ∈ ρ(V−1
� ).
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When (ii) is satisfied then the coresolvent of V� takes the form

(IH − zV�)−1 = (IH − zV2)
−1 + γ2

(

1

z

)

�2
(

�1 − �(z̄)∗�2
)−1

γ1(z̄)
∗.

(4.27)

If z ∈ De then:

(iii) z ∈ σp(V
−1
� ) �⇒ ker (�2 − �(1/z) �1) �= {0};

(iv) �2 − �(1/z) �1 : H → L2 has a bounded inverse �⇒ z ∈ ρ(V−1
� ).

When (iv) is satisfied then the coresolvent of V� takes the form

(IH − zV�)−1 = (IH − zV1)
−1 − γ1 (1/z) �1 (�2 − �(1/z)�1)

−1 γ2(z̄)
∗.
(4.28)

If, in addition, � = (L, �) is an ordinary boundary triple for V then the implications
(i)–(iv) become equivalences.

Remark 4.4 If (L1⊕L2, �1, �2) is an ordinary boundary triple for V then every closed
proper extension of V can be represented in the form (4.10) with � j ∈ B(H,L j )

( j = 1, 2) such that (4.9) holds due to [5, Theorem 2.1], [27, Proposition 6.12].
Moreover, if � is defined by (4.7), then the following equivalences hold:

(1) V� is an isometric relation inH ⇐⇒ � is the graph of an isometric operator;
(2) V� is a unitary relation inH ⇐⇒ � is the graph of a unitary operator;
(3) V� is a contractive relation inH ⇐⇒ � is the graph of a contraction.

The fact that the implications (i)–(iv) of Theorem 4.2 become equivalences for an
ordinary boundary triple � = (L, �) = (L, �1, �2) was proved in [41] in the case
when κ = 0, and in [5] in the case κ �= 0.

4.3 Description of Generalized Coresolvents

Definition 4.5 (see [38,39]) An operator-valued functionKλ holomorphic in a domain
O ⊆ Dwith values inB(H) is called a generalized coresolvent of an isometric operator
V : H → H, if there exist a Pontryagin space ˜H ⊃ H with negative index κ̃ = κ−(˜H)

and a unitary extension ˜V : ˜H → ˜H of the operator V such that O ⊆ ρ(˜V−1), and

Kz = PH
(

I
˜H − z˜V

)−1 � H, z ∈ O, (4.29)

where PH is the orthogonal projection from˜H onto H. Notice that in [38] the operator
function Kz in (4.29) is called a generalized resolvent of V .
The representation (4.29) of the generalized coresolvent of V is called minimal, if

˜H = span
{

H + (I
˜H − z˜V )−1H : λ ∈ O

}

.
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The generalized coresolvent Kz is said to be k-regular, if k = κ−(˜H[−]H) for a
minimal representation (4.29).

Every generalized coresolventKz of the isometric operator V admits a minimal repre-
sentation (4.29) and every two minimal representations ofKz are unitarily equivalent,
see [14, Proposition 4.1] for the case of a symmetric operator.

Lemma 4.6 Let Kz be a (̃κ − κ)-regular generalized coresolvent. Then the kernel

Rw(z) := Kz + K[∗]
w − I

1 − zw
− K[∗]

w Kz (4.30)

has κ̃ − κ negative squares on ρ(˜V−1) ∩ D.

Proof Let {z j }nj=1 be a set of points in ρ(˜V−1) ∩ D and let g j ∈ H, j = 1, 2, . . . , n.
Denote

˜f j := (I
˜H − z j˜V )−1g j , f j := PH ˜f j = Kz j g j , ( j = 1, 2, . . . , n). (4.31)

Then it follows form the first equality in (4.31) that

(

˜f j
g j

)

∈ I
˜H − z j˜V ⇐⇒

(

z j ˜f j
˜f j − g j

)

∈ ˜V .

Since ˜V is a unitary relation in ˜H one obtains z j zk[˜f j , ˜fk]˜H = [˜f j − g j , ˜fk − gk]˜H
or, equivalently,

(1 − z j zk)[˜f j , ˜fk]˜H = [˜f j , gk]˜H + [g j , ˜fk]˜H − [g j , gk]H. (4.32)

It follows from (4.30), (4.31), and (4.32) that

n
∑

j,k=1

[Rzk (z j )g j , gk]Hξ jξ k = −
n
∑

j,k=1

[Kz j g j ,Kzk gk]Hξ jξ k

+
n
∑

j,k=1

[Kz j g j , gk]H + [g j ,Kzk gk]H − [g j , gk]H
1 − z j zk

ξ jξ k

(4.31)=
n
∑

j,k=1

{

[˜f j , gk]˜H + [g j , ˜fk]˜H − [g j , gk]H
1 − z j zk

− [ f j , fk]H
}

ξ jξ k

(4.32)=
n
∑

j,k=1

{[˜f j , ˜fk]˜H − [ f j , fk]H
}

ξ jξ k

=
n
∑

j,k=1

[

(I − PH)˜f j , (I − PH)˜fk
]

˜H
ξ jξ k .

(4.33)
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This form has at most κ̃ − κ negative squares, since ind (˜H[−]H) = κ̃ − κ . Because
the representation (4.29) is (̃κ − κ)-regular the set

{

(I
˜H − PH)(I

˜H − z˜V )−1H : z ∈ ρ(˜V−1)
}

is dense in ˜H[−]H and hence it contains a (̃κ − κ)-dimensional negative subspace.
Therefore, the form (4.33) has exactly κ̃−κ negative squares for an appropriate choice
of z j , g j ( j = 1, 2, . . . , n). ��

Remark 4.7 In the case of a standard isometric operator the statement of Lemma 4.6
was proved in [28].

Theorem 4.8 Let V : H → H be an isometric operator, let (L1 ⊕ L2, �1, �2) be an
ordinary boundary triple for V , and let �(·), γ1(·), γ2(·) be the corresponding Weyl
function and the γ -fields.

Then for z ∈ D ∩ ρ(˜V−1) the formula

Kz = (I
˜H − zV2)

−1 + γ2(1/z)ε(z)
(

IL1 − �(z̄)∗ε(z)
)−1

γ1(z̄)
∗, (4.34)

establishes a one-to-one correspondence between the set of κ̃ −κ-regular generalized
coresolvents of V and the set of all operator-valued functions ε(·) ∈ Sκ̃−κ(L1,L2),
such that

0 ∈ ρ(IL1 − �(z̄)∗ε(z)). (4.35)

For z ∈ De ∩ ρ(˜V−1) the formula (4.34) takes the form

Kz = (I
˜H − zV1)

−1 − γ1(1/z)ε
T (1/z)

(

IL2 − �(1/z)εT (1/z)
)−1

γ2(z̄)
∗.
(4.36)

Proof The proof is divided into steps.
1. Verification that for every ε(·) ∈ Sκ̃−κ(L1,L2) satisfying (4.35) the for-

mula (4.34) determines a (̃κ − κ)-regular generalized coresolvent of V .
By Theorem 3.17 there exists a simple isometric operator V− in a Pontryagin

spaceH− with negative index κ̃ −κ and a unitary boundary pair (L, �−) such that the
corresponding Weyl function �−(z) coincides with ε(z) for z ∈ hε = ρ(V−

1 ), where
V−
1 = ker �−

1 .
Next we construct a new unitary boundary pair (˜L,˜�) as the direct sum of the

ordinary boundary triple (L, �+) := (L, �) and the unitary boundary pair (L, �−) by
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the formulas

˜L = ˜L1 ⊕˜L2, where˜L1 = ˜L2 =
(

L1
L2

)

,

˜� =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎛

⎜

⎜

⎝

f+
f−
f ′+
f ′−

⎞

⎟

⎟

⎠

,

⎛

⎜

⎜

⎝

u+
1

u−
2

u−
1

u+
2

⎞

⎟

⎟

⎠

⎫

⎪

⎪

⎬

⎪

⎪

⎭

:
{(

f±
f ′±

)

,

(

u±
1

u±
2

)}

∈ �±

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (4.37)

Let ε(z), γ −
1 (z), γ −

2 (z) be the Weyl function and the γ -fields of the unitary boundary

pair (L, �−), let εT (z), γ −,T
1 (z), γ −,T

2 (z) be the Weyl function and the γ -fields of the
transposed boundary pair (L, (�−)T ) and let ˜V1 = ker ˜�1, ˜V2 = ker ˜�2. Then the
Weyl function ˜�(z) and the γ -fields γ̃1(z), γ̃2(z) of the unitary boundary pair (˜L,˜�)

are given by

˜�(z) =
(

0 εT (z)
�(z) 0

)

:
(

L1
L2

)

→
(

L1
L2

)

, z ∈ ˜D := ρ(˜V1) ∩ D, (4.38)

γ̃2(z) :=
(

0 γ +
2 (z)

γ
−,T
2 (z) 0

)

:
(

L1
L2

)

→
(

H
H−
)

, z ∈ ˜D = ρ(˜V1) ∩ D, (4.39)

γ̃1(z) =
(

γ +
1 (z) 0
0 γ

−,T
1 (z)

)

:
(

L1
L2

)

→
(

H
H−
)

, z ∈ ˜De := ρ(˜V2) ∩ De.

(4.40)

Consider the extension ˜V� of the operator ˜V =
(

V 0
0 V−

)

in the space ˜H :=
H+ ⊕ H−, H+ := H, corresponding to the linear relation � of the form (4.7), where

�1 = �2 = IL1⊕L2 .

In view of (4.37) the extension ˜V� takes the form

˜V� =
{{(

f+
f−

)

,

(

f ′+
f ′−

)}

:
{(

f−
f ′−

)

,

(

�2 ̂f+
�1 ̂f+

)}

∈ �−, ̂f+ ∈ V−[∗]
}

.

Then I
˜L1

− ˜�(z̄)∗ =
(

IL1 −�(z̄)∗
−ε(z) IL2

)

and the assumption (4.35) yields

0 ∈ ρ(I
˜L1

− ˜�(z̄)∗) (4.41)

for z̄ ∈ ˜D. By (4.41) and Corollary 4.3 one obtains z ∈ ρ(˜V−1
� ) and

(I
˜H − z˜V�)−1 = (I

˜H − z˜V2)
−1 + γ̃2(1/z)(I˜L1

− ˜�(z̄)∗)−1γ̃1(z̄)
∗. (4.42)
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By using (4.40), (4.39), (4.42) and the formula (see [10][Prop. 2.8.7, p.108])

(I
˜L1

− ˜�(z̄)∗)−1 =
(

IL1 −�(z̄)∗
−ε(z) IL2

)−1

=
( ∗ ∗

ε(z)(IL1 − �(z̄)∗ε(z))−1 ∗
)

(4.43)

one obtains the equality

(I
˜H − z˜V�)−1 = (I

˜H − z˜V2)
−1

+
(

0 γ2(z)
γ

−,T
2 (z) 0

)( ∗ ∗
ε(z)(IL1 − �(z̄)∗ε(z))−1 ∗

)(

γ1(z̄)∗ 0
0 γ

−,T
1 (z̄)∗

)

,

(4.44)

where ∗ denotes blocks which are not used in further calculations. Considering the
compression of the formula (4.44) to the subspace H+ = H one arrives at (4.34).

Similarly, for z̄ ∈ ˜De one obtains by (4.41) and Corollary 4.3 that z ∈ ρ(˜V−1
� ) and

(I
˜H − z˜V�)−1 = (I

˜H − z˜V1)
−1 − γ̃1(1/z)(I˜L1

− ˜�(1/z))−1γ̃2(z̄)
∗.

By (4.43)

(

I
˜L1

− ˜�
(

1

z

))−1

=
(∗ ω12(z)

∗ ∗
)

, (4.45)

where ω12(z) = εT (1/z)(IL2 − �(1/z)εT (1/z))−1. Using (4.40), (4.39) and (4.45)
one gets

(I
˜H−z˜V�)−1 = (I

˜H − z˜V1)
−1

−
(

γ1(1/z) 0
0 γ

−,T
1 (1/z)

)(∗ ω12(z)
∗ ∗

)(

0 γ
−,T
2 (z̄)∗

γ2(z̄)∗ 0

)

.
(4.46)

The compression of the formula (4.46) to the subspace H+ gives the equality (4.36).
2. Verification that every (̃κ − κ)- regular generalized coresolvent of V admits the

representation (4.34), where ε(·) ∈ Sκ̃−κ(L1,L2) and (4.35) holds.
First observe that for z ∈ ρ(˜V−1) and g ∈ H the following relations hold:

(

z(I
˜H − z˜V )−1g

(I
˜H − z˜V )−1g − g

)

∈ ˜V , ̂Kzg :=
(

zKzg
Kzg − g

)

∈ V−[∗]. (4.47)

Indeed, the first relation in (4.47) is self-evident and hence for every h ∈ dom V one
also has the equality

[z(I
˜H − z˜V )−1g, h]H = [−g + (I

˜H − z˜V )−1g, Vh]H. (4.48)
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On the other hand,

[zKzg, h]H + [(IH − Kz)g, Vh]H = [Kzg, (z IH − V )h]H + [g, Vh]H
=
[

(I
˜H − z˜V )−1g, (z IH − V )h

]

H
+ [g, Vh]H

= [z(I
˜H − z˜V )−1g, h]H − [(I

˜H − z˜V )−1g, Vh]H + [g, Vh]H = 0,

and here the last equality follows from (4.48). This proves the second relation in (4.47).
Next consider the linear relation

Vz := {̂Kzg : g ∈ H
}

, z ∈ ρ(˜V−1) (4.49)

in H. The linear relation Vz is closed, since the assumptions

zKzgn → f , Kzgn − gn → f ′ (n → ∞)

imply gn → g := 1
z ( f − z f ′) (z �= 0) and hence

(

f
f ′
)

=
(

zKzg
Kzg − g

)

∈ Vz .

In order to construct a parametric representation of the proper extension Vz let us
introduce a closed subspace N of V2 such that

V2 = V � N .

Since V−[∗] = V1 + V2, this implies

V−[∗] = V1 � N . (4.50)

Let P1 and P2 be projections onto the 1-st and the 2-nd components in H2 and let
� j (z) be operator functions with values in B(N ,L j ) defined by

� j (z)h = � ĵKz(P1h − zP2h), h ∈ N , z ∈ ρ(˜V−1), j = 1, 2.

The values of � j (z) belong to B(N ,L j ) due to formula (4.47). Moreover, �1(z) and
�2(z) satisfy (4.8), since the assumption�1(z)h = �2(z)h = 0 implies h ∈ V ∩N =
{0}.

Now introduce the linear relation

ε(z) :=
{(

�1(z)h

�2(z)h

)

: h ∈ N
}

z ∈ ρ(˜V−1). (4.51)

Since ran (IH − zV2) = H for all z ∈ D it follows from (4.49) and (4.51) that the
linear relations Vz and ε(z) are connected via (4.10) and hence

Vz = Vε(z), z ∈ ρ(˜V−1). (4.52)
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Since (L, �) is an ordinary boundary triple one concludes that ε(z) is closed inL1⊕L2,
and hence by Remark 4.4 �1(z) and �2(z) satisfy (4.9); cf. [5, Theorem 2.1]. Using
(4.47) and (4.52) one obtains

Kzg = (IH − zVε(z))
−1g, g ∈ H. (4.53)

Therefore z ∈ ρ(V−1
ε(z)) for all z ∈ ρ(˜V−1) and since (L, �) is an ordinary boundary

triple Corollary 4.3 shows that 0 ∈ ρ(IL1 −�(z)ε(z)) and that the following formula
holds for z ∈ ρ(˜V−1) ∩ D:

(IH − zVε(z))
−1 = (IH − zV2)

−1 + γ2(1/z)�2(z)(�1(z) − �(z̄)∗�2(z))
−1γ1(z̄)

∗.
(4.54)

It remains to show that ε(·) ∈ Sκ̃−κ(L1,L2). For a choice of z j ∈ ρ(˜V−1)∩D and
g j ∈ H denote

̂f j =
(

f j
f ′
j

)

:= ̂Kz j g j , j = 1, . . . , n, (4.55)

and let

�̂f j =
(

�1(z j )h j

�2(z j )h j

)

, h j ∈ N , j = 1, . . . , n. (4.56)

Then it follows from (4.55), (4.56) and (3.2) that with ξ j ∈ C,

n
∑

j,k=1

a j,kξ jξk :=
n
∑

j,k=1

(�1(z j )h j ,�1(zk)hk)L1 − (�2(z j )h j ,�2(zk)hk)L2

1 − z j zk
ξ jξk

=
n
∑

j,k=1

(�1 ̂f j , �1 ̂fk)L1 − (�2 ̂f j , �2 ̂fk)L2

1 − z j zk
ξ jξk

=
n
∑

j,k=1

{

[ f j , fk]H − [ f ′
j , f ′

k]H
} ξ jξk

1 − z j zk
. (4.57)

Since

[ f j , fk]H − [ f ′
j , f ′

k]H = z j zk[Kz j g j ,Kzk gk]H − [Kz j g j − g j ,Kzk gk − gk]H
= (z j zk − 1)[Kz j g j ,Kzk gk]H + [Kz j g j , gk]H + [g j ,Kzk gk]H − [g j , gk]H
= (1 − z j zk)[Rzk (z j )g j , gk]H

the form in (4.57) is reduced to

n
∑

j,k=1

a j,kξ jξk =
n
∑

j,k=1

[Rzk (z j )g j , gk]Hξ jξk .
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By Lemma 4.6 the form (4.57) has at most κ̃ − κ and for some choice of z j , g j ,
j = 1, . . . , n, exactly κ̃ − κ negative squares.
In view of Lemma 3.2 in [16] this implies that the operator �1(z) is invertible for

all z ∈ ρ(˜V−1) ∩ D except κ̃ − κ points and

ε(z) = �2(z)�1(z)
−1 ∈ Sκ̃−κ(L1,L2). (4.58)

In view of (4.58) the formula (4.54) can be rewritten as (4.34). ��
Remark 4.9 (1) For a standard isometric operator in a Pontryagin (resp. Kreı̆n) space

similar formulas for generalized coresolvents were found in [38–40] (resp. [28]).
For the case of a nonstandard isometric operator in a Pontryagin space see [44].
An elegant proof of the formula for generalized resolvents of a nonstandard Pon-
tryagin space symmetric operator with deficiency index (1,1) given by H. de Snoo
was presented in [34]. In [5] a description of regular generalized resolvents of
a nonstandard Pontryagin space isometric operator was given by the method of
boundary triples. For a Hilbert space isometric operator this method was devel-
oped earlier in [41] and applied to the proof of Kreı̆n type resolvent formulas
(4.34), (4.36).

(2) The extension Vε(z) appearing in (4.52) is an analog of Shtraus extension, which
was introduced in [47] for the case of a symmetric operator. In view of (4.53) the
vector function fz = Kzg can be treated as a solution of the following ”abstract
boundary value problem” with z-dependent boundary conditions

̂fz :=
(

z fz
fz − g

)

∈ V−[∗], �2 ̂fz = ε(z)�1 ̂fz .

(3) In abstract interpolation problem considered in [36] the crucial role was played by
the Arov-Grossman formula for scattering matrices of unitary extensions of iso-
metric operators, [3]. In [6] the formula for generalized coresolvents was applied
to the description of scattering matrices of unitary extensions of Pontryagin space
isometric operators which, in turn, was used in [7] for parametrization of solu-
tions of an indefinite abstract interpolation problem, see also [15]. The present
version of formula (4.34) will allow to consider k-regular indefinite interpolation
problems with the growth of index κ .
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