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ABSTRACT

Mina Shahmoradi: Planarity testing of a graph
Bachelor thesis
Tampere University
International bachelor programme of Science and Engineering
April 2021

Graphs provide a way to model connections between objects in different systems, e.g., roads,
power grids, and networks. Mathematically graphs are structures that present a set of elements
and their connections. Typically, graphs are illustrated graphically by denoting the elements by
dots and the connections between them by lines. Graph theory and the properties associated to
graphs will give a new approach so that it can be used as tool to reformulate different problems.

This thesis focuses on the results that can be used to test if a given graph is planar or not. A
graph is planar if we can give it a graphical illustration in a plane so that the lines connecting the
elements do not intersect. The thesis presents some fundamental properties of the planar graphs.
A particularly important result is the Kuratowski’s theorem, which gives a necessary and sufficient
condition for a graph to be planar in terms of certain minor graphs called Kuratowski’s minors.

A planarity testing algorithm is presented as a major result of this thesis. Its functionality is
illustrated by an example that explains in detail how the algorithm constructs a representation of
the graph in a plane with no intersecting lines or returns a Kuratowski’s minor if the graph is not
planar. then, some properties of planar graphs were reviewed, for example number of edges in a
planar graph which is bounded to the number of vertices. And finally, after defining coloring of a
graph, coloring property of planar graphs were review, such as them being 5 and 4-colorable.

Keywords: graph theory, planar graphs, graph coloring, planarity, colorability
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1. INTRODUCTION

The idea of graph theory was firstly presented when Euler tried to solve the problem of

7 bridges of Königsberg (Euler, 1735). He wanted to prove if it was possible so that all

bridges in the Königsberg city can be passed once and only once by going through the

network, which he ended up proving it was not possible. The formulated idea of this

problem as a graph is presented in Figure 1.1 where each vertex dot is representing a

city part and each line is a bridge connecting those parts.

Figure 1.1. Graph presentation of 7 bridges of Königsberg

Although graph theory was initially used to represent a simple network, nowadays it has

been used to represent more complicated technological networks such as power grids[1],

road networks,[2] and 3D data networks [3]. Apart from presenting different networks,

graph theory has been used as a new way of data representation. This will give the

opportunity to deal with the data using the new formulation. Using properties of graph

theory gives the opportunity to have a new perspective and approach to solve problems.

Using adjacency matrix to present graphs and solving problems by utilizing their relations

in vector space [4] and using graph representation in data structure [5] are a widely used

examples of this approach.

One of the specific properties of graphs that comes with their representation as nodes

(dots) and vertices (lines connecting the dots) is whether they are planar or not. A graph

is known to be planar if it can be presented on a plane where its vertices and edges are

distinctly drawn and the edges are not crossing each other. Many authors have developed

different algorithms to test planarity of a graph, these algorithms differ based on their time

complexity to run, methods of implementation, and their proves’ complexity [6].

Planar graphs have their own specific properties dealing with other concepts in graph

theory such as being colorable, having cubic duality, and having bridges of cycles [7,
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p. 243–286]. These features have been used in different areas such as optimization of

robotic algorithm [8], identification of coherent structures from sparse data [9], and even

finding genetic patterns[10].

This study gives an introduction so some preliminary definitions of graphs and uses these

properties to overview an algorithm for planarity testing of a graph. The reviewed algo-

rithm runs in polynomial time complexity and deals with a given graph as input. It shrinks

the graph to a reasonable size so that it has a planar embedding and by adding the re-

moved vertices back, a graph will be returned as an output. If the input graph is planar,

output will be planar embedding of it, although if the given graph is not planar, a minor of

it will be returned, showing that it was not a planar graph.

In addition to the planarity testing algorithm, some properties of planar graphs will be

explored. It will be shown that the maximum edges of a graph with specific number of

vertices is limited to a certain amount. Furthermore, it will be shown that planar graphs are

colorable with certain number of colors. These properties of planar graphs are supported

using proofs and examples.

The structure of the remaining text is as follows. First the fundamental concepts that

are required in latter parts are introduced in Chapter 2. The main results of this thesis

are given in Chapter 3. First, we introduce planar graphs. In Section 3.1 we explore

Kuratowski’s Theorem and then an algorithm to test planarity of a given graph graph. Then

in Section 3.1 we introduce some properties for planar graphs such as Euler’s Formula

and its direct result and how they can be used to check non planarity of a given graph.

Then in section 3.3 coloring of a graph is introduced and then coloring of planar graphs is

evaluated in more detail. Finally, the main results of the thesis are summarized in Chapter

4.
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2. FUNDAMENTAL CONCEPTS

One of the most convenient models to represent a graph is to use points and lines con-

necting those points, or as we call them here, vertices and edges. Vertices can be con-

nected to each other or to themselves by edges. Graph G is a structure made of vertices

and edges showing their relations. Graphs can be explicitly presented as an ordered set

of (V (G), E(G)) where V (G) is a set of its vertices and E(G) is a set of its edges.

Then different connection between vertices through edges can be define by the incidence

function. Although edges can be directional, in this study we consider them both ways,

meaning whenever two vertices of v1 and v2 are joined by an edge e, v1 is connected to v2

and v2 is connected to v1. More importantly graphs can be depicted graphically, leading

to a better understanding of their properties and their result.

Example 1. The given examples in Figure 2.1 are graph G1 and G2 representation.

Graph G1 is K4 and graph G2 is a tree.

Figure 2.1. Graph presentation of G1 and G2

In the following some properties of graphs and their relations are defined which we will

use them in later chapters.

In naming an edge of a graph usually start and end vertex’s name will be used, e.g. the

edge connecting v1 and v2 is denoted by e1,2. Then if an edge has identical ends, it is

called a loop, whereas if it has distinct ends it will be called a link. Two or more number

of links sharing same pairs of ends are called parallel edges.

Example 2. In the represented graph in Figure 2.2 e1 is a loop, e1,2 and e12,3 are links,

and e12,3 and e22,3 are parallel edges.
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Figure 2.2. A disconnected graph, having a loop and parallel edges

Definition 3 (Simple graph). A graph is called simple if it has no loops or parallel edges

[7, p. 3].

Definition 4 (Contraction). Edge contraction is an operation in which an edge will be

removed and simultaneously the two end vertices to that edge will be merged. The con-

nected edges to each of those vertices will remain connected to the resulting merged

vertex. If we contract the edge e from the graph G, then the result will be G/e.

Definition 5 (Minor). Whenever graph H can be formed by contracting edges or deleting

vertices in a given graph G, H is called minor of the graph G [7, p. 268].

Example 6. The given graph in Figure 2.3 is called Petersen graph. If we contract spoke

edges between the pentagon and the star in the center which are e1,6, e2,7, e3,8, e4,9, e5,10,

from Petersen graph, we will form resulting graph in Figure 2.4 showing a minor of it,

known as K5.

Figure 2.3. Petersen graph

Figure 2.4. K5 Graph
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Definition 7 (Path). Path is a sequence of distinct vertices of a graph so that consecutive

vertices are adjacent in the graph.

Definition 8 (Cycle). Cycle is a path of 3 or more vertices in which starting and end vertex

are the same [7, p. 4].

Length of a path or a cycle is the number of distinct vertices in them. Also, a 3-cycle is

called triangle. As a side note, if a graph does not contain a triangle, it is called triangle-

free.

Example 9. The sequence of v1, v2 and v3 is an example for a path in K5 in Figure 2.4.

While the sequence of v1, v2, v3, v1 is a triangle and v1, v2, v3, v5, v1 is a 4-cycle in K5.

Definition 10 (Connected graph). If for any division of vertices of graph G into two non-

empty subsets of X and Y so that they have no common elements and the union of

X and Y is V (G), there is an edge with one end in X and the other in Y then G is

connected. If a graph is not connected, it is disconnected [7, p. 5].

Example 11. Depicted graphs in Figures 2.3 is a connected graph, whereas the given

graph in Figure 2.2 is an example of a disconnected graph, in which v5 and v6 are discon-

nected from the rest of the graph.

Definition 12 (K-connected graph). Considering two distinct vertices x and y in graph

G and the paths connecting them P and Q, if these paths have no internal vertices in

common, meaning V (P ) ∩ V (Q) = {x, y}, then P and Q are locally disjoint. Now,

we define p(x, y) as local connectivity between x and y to be the maximum number of

pairwise internally disjoint xy-paths in G. The graph G is k-connected if p(x, y) ≥ k for

any two distinct vertices x and y.

Definition 13 (Vertex cut). A vertex cut is a subset of vertices of a graph which, if together

with any incident edges removed from the graph, it will disconnect it.

Definition 14 (Sub-graph). A graph H resulting from deleting an element from a given

graph G will be a sub-graph of G [7, p. 40]. Now, if G has more edges than H , then H is

a proper sub-graph of G.

Figure 2.5. Graph G, G/e1, G/v3
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Example 15. In the given graph in Figure 2.5 two different sub-graphs of Petersen graph

are shown. The sub-graph on the left is a result of deleting e1,6, which can be denoted

as G\e1,6. Then the sub-graph on the right is the result of vertex deletion of v6 from the

Petersen graph, which can be denoted as G− v6.

Definition 16 (Bridge). Consider connected graph G to have a proper sub-graph H , by

deleting E(H) from E(G) we will be resulted to these classes,

- for each component F of G − V (H), there is a class of edges of F together with

the edges linking F to H

- any remaining single edge which its both ends belong to V (H)

These resulting sub-graphs of G formed by these classes are the bridges of H in G.

If we define segment of a k-bridge B with k ≤ 2, to affect a partition of the cycle C into

k edge-disjoint paths, we can observe bridge relations to one another as follow. A bridge

with k attached vertices is a k-bridge. Also, two bridges with same attached vertices are

defined as equivalent bridges. If all vertices attached to a bridge lie in a single segment

of another bridge, these two bridges avoid each other. If two bridges do not avoid, they

overlap. Finally, as bridge B1 have u1 and v1 as its attached vertices while u2 and v2

are attached to B2; if these are distinct vertices occurring in a cyclic order in C such as

u1, u2, v1, v2, then B1 and B2 are skew [7, p. 263-264].

Example 17. In the Figure 2.6 a graph is shown, having cycle C while several bridges are

attached to it. Bridges B1 and B3 avoid each other, whereas B3 and B4 overlap. Also,

B3 and B4 are 2-equivalent and B2 and B1 are skew.

Figure 2.6. Bridges of a graph

Definition 18 (Isomorphism). An isomorphism of two graphs f : V (G)→ V (H) is a

bijection between the vertex sets of them such that any two vertices like u and v of G
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are adjacent if and only if f(u) and f(v) are adjacent in H .

By defining a plane simple closed curve such that it is a continuous non-self-intersecting

loop in the plane, known as a Jordan curve, we can review Jordan Curve Theorem.

Theorem 19 (Jordan Curve theorem). Every Jordan curve divides the plane into two

regions, an interior region bounded by the curve and an exterior region containing all the

exterior points. This theorem states that every continuous path connecting a point of one

region to a point of the other, eventually will intersect the curve somewhere [7, p. 245].
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3. PLANARITY OF A GRAPH

After defining some useful concepts, we can explore planarity of a graph and how to test

if a graph is planar or not. We can start by defining planar graphs mathematically.

Definition 20 (Planar Graphs). If a graph can be drawn on a plane, still having these two

conditions it will be considered a planar graph.

1. Vertices can be displayed as distinguishable points displayed on a plane.

2. Edges do not intersect with each other unless on their endpoints.

Example 21. Both graphs shown in Example 1 are planar graphs. Although there are

some crossing edges in the particular drawing of the graph G1 in Figure 2.1 which can be

represented in its planar drawing, known as planar embedding, in Figure 3.1.

Figure 3.1. Planar presentation of graph K4

On the other hand, there are some graphs that no matter how we draw them in a plane,

some of their edges will cross.

Example 22. The K5 graph shown in Figure 2.4 is not a planar graph. Considering K4

as shown in Figure 3.1, we need to add a vertex to it and connect the new vertex to all

existing vertices to make K5. We can place the new vertex in any region formed in a

planar embedding of K4. As it can be observed from the Figure 3.1 there are 4 distinct

regions in K4. According to Jordan Curve Theorem, resulting edges to connect the fifth

vertex will cross an edge, no matter in which region we put the fifth vertex, which shows

that K5 is not a planar graph.

Graph K3,3 is another example of non-planar graph, shown in Figure 3.2. Non planarity

of K3,3 will be shown later in Example 32. K5 and K3,3 are often referred as Kuratowski’s
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minors.

Figure 3.2. Graph K3,3

3.1 Planarity Testing Algorithm

Planarity testing is a method to check if a graph is planar or not. This subject has been

studied by many authors, while one of the earlier theorems were conducted by K. Kura-

towski [11].

Theorem 23 (Kuratowski’s theorem). A graph is planar if and only if it does not have a

minor of K5 or K3,3. [7, p. 268]

The proof to Kuratowski’s Theorem is out of the scope of this study, although it can be

formulated to some smaller pieces for a better understanding as follow. Firstly, a min-

imal non-planar graph can be defined as a non-planar graph in which every nontrivial

sub-graph is planar. Then, it can be proved that each minimal non-planar graph is 3-

connected. And finally Kuratowski’s theorem can be proved by showing that every 3-

connected graphs with no Kuratowski minor is a planar graph.[11, p. 246–248]

Many algorithms have been presented to check planarity of a graph. Mostly these al-

gorithms are based on Kuratowski’s theorem, although they have developed into other

forms and their implementation might differ hugely. Time complexity of these algorithm

differ massively, which will affect their practicality to implement and run.

First algorithms were based on Kuratowski’s characterization of planar graphs which re-

sulted to an algorithm with an exponential compilation time [6]. Since then, there has been

significant improvements developing algorithms to test planarity of a graph. Although the

other issues of planarity testing algorithms are their complexity to prove, develop, and

implement.

Even though the following algorithm presented here is based on the redult of Kuratowski’s

theorem, it is not complex to prove that the algorithm works as intended. In fact the

algorithm can be prove using Lemma 25. In the worst case scenario, its main parts

such as contraction and expansion phase would compile in polynomial time so the time

complexity of the algorithm is polynomial time.
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Lemma 24. If G1 and G2 are planar graphs with intersection isomorphic to K2, then the

union of G1 and G2 is planar.

Proof. Since the intersection of G1 and G2 is isomorphic to K2 it consists of one edge

e and its endpoints. Consider a planar embedding of G1. It has a region r that has the

edge e on its boundary. Since e is the only edge and its endpoints are the only vertices

that are common in G1 and G2, the planar embedding of G2 can be drawn in r resulting

into a planar embedding of the union.

Lemma 25. Let G be a graph with a 2-vertex cut of {x, y}. Then if and only if all of its

marked 2-vertex components of G are planar, G itself is planar [7, p. 270].

Proof. First, we assume that G is planar. Define H as a {x, y}-component with marker

edge e of graph G. Then in another {x, y}-component let Px,y be a path. Although union

of P and H is a sub-graph of G, it is isomorphic to a subdivision of G + e, so G + e

is isomorphic to a minor of graph G. This shows that all marked 2-vertex component of

graph G are isomorphic to a minor of graph G. As all minors of a planar graph are planar

themselves, we can conclude that all 2-vertex components of G are planar.

Now assuming that all k marked 2-vertex components of graph G are planar. Define e

as a common marker edge. Using Lemma 24 we conclude that union of the first two

components will be planar as well. By using induction on all k element of graph G, G+ e

will be planar. This means that graph G is planar itself.

Lemma 25 implies that a graph is planar if and only if all of its 3-connected subgraphs are

planar. This means that the planarity of a graph can be verified by considering each of

the 3-connected component of the graph individually. As a result, the algorithm to check

whether a graph is planar or not can be presented simply as follow; first the input graph

is reduced to a four vertices graph by contracting edges one by one while maintaining the

graph 3-connected. This phase, labelled as contraction phase will be done in polynomial

time. Then contracted edges are then expanded in reverse order one by one.

In expansion phase two outcomes are possible when expanding an edge: planarity of

the graph might preserve or not. If planarity of the graph is preserved then the algorithm

proceeds to the next contracted edge, if planarity is not preserved, expansion will result

to a Kuratowski’s minor where two overlapping bridges are found. If the first outcome

emerges for all edges in the graph G, then the output of the algorithm will be a planar

presentation of the graph G, whereas the second possibility yield to a non-planar minor,

resulting the whole graph to be non-planar by Theorem 23.

Algorithm 26 (Planarity recognition algorithm of a graph). The input to this algorithm is a

3-connected graph G with 4 or more vertices. The output of this algorithm will b either a
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planar representation of graph G or a Kuratowski’s minor with polynomial time complexity

[7, p. 270].

Initialization phase:

1 i = 0 and G0 = G

Contraction phase:

2 while i < n− 4 do

3 In Gi find the link ei := xiyi so that Gi/ei is a 3-connected graph

4 set Gi := Gi/ei

5 i←− i+ 1

6 end while

Expansion phase:

7 Find a planar representation G̃n−4 of the 4-vertex graph Gn−4

8 i←− n− 4

9 while i > 0 do

10 define zi to be the resulting vertex of G̃i from contraction of the edge ei−1 of

Gi−1, let Ci be the bounded cycle of G̃i − zi that include all neighbours of zi in G̃i

11 Let Bi and B′
i represent the bridges of Ci respectively containing the vertices

xi−1 and yi−1 in the obtained graph from deleting ei−1 of Gi−1 and all the other

edges connecting xi−1 and yi−1

12 if Bi and B′
i are skew then

13 Find a K3,3-minor K of Gi−1

14 Return K

15 end if

16 else if Bi and B′
i are a 3-bridges equivalent then

17 find K such as it is K5-minor of Gi−1

18 return K

19 end if

20 else

21 expand G̃i to G̃i−1

22 i←− i− 1

23 end else

24 end while

25 return G̃0
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Example 27. Using presented Algorithm 26, we will check planarity of the given graphs

in Figure 3.3 and we will either find the planar embedding of them or their Kuratowski’s

minor.

Figure 3.3. Planar presentation of graph G and H

First we will check the graph G in Figure 3.3. We initialize i = 0 and G0 = G. Then

while i is less than n − 4 = 4 we go through lines 2 − 5 of the algorithm and repeat

the contraction phase. Although we can choose any edges for this part of algorithm as

long as the resulted graph stays 3-connected, as an example here we start contraction

by eliminating e5,6 and combining v5 and v6 to a single vertex, naming it v5. We update

i = 1 and save G1 as the result of contraction, which can be seen in Figure 3.4.

Figure 3.4. G1, result of the first contraction phase on graph G

By repeating contraction phase till i = n− 4 = 4, we need to do the contraction phase 3

more time. First we contract e3,4, and name the combined vertices v3, resulting our graph

to be updated as G2 and i = 2. Then we contract e7,8 and let the combined vertices

named v7, having the resulted graph as G3 and update i to be 3.

Then as the last turn of contraction phase, we will contract e1,2 and let the combined

vertex to be v1, update our graph to G4 and let i = 4. At this point, as i has reached the

while limit, while loop ends. The resulting graph of G4 is shown in Figure 3.5.

Continuing the algorithm and starting the expansion phase, in line 7 for the given graph

G4 we will find a planar embedding of G̃4 as shown in Figure 3.6.
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Figure 3.5. G4, result of the last contraction phase on graph G

Figure 3.6. G̃4, the planar representation of graph G4

Now as i = n − 4 = 4 we go through the while loop in line 9 and repeat the expansion

phase till i = 0, going in the reverse order over contracted edges in previous phase. As

the last contracted edge is e1,2 and v2 was eliminated, we form z4 to be v1. Now, we

define bounded cycle of C4 in G̃4 such that it contains all vertices connected to z4 in

graph G4 − z4. This will result C4 to be v3, v5, v7, v3. Next, we define B4 in G4 − z4 such

that it is attached to all the vertices connecting v1 to C4; so here v3, v5 and v7 will be

attached to B4; whereas v3 and v5 are attached to B′
4. As B4 and B′

4 neither are skew,

nor 3-bridge equivalent to each other, we expand G̃4 to G̃3 which is shown in Figure 3.7.

Figure 3.7. G̃3, result of the first expansion phase on G̃4

Repeating the while loop in line 9 and expanding previously contracted edges, finally we

will have the planar embedding of the graph G as shown in Figure 3.8 at the end of the

algorithm.
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Figure 3.8. Planar embedding of graph G

Now we check graph H from Figure 3.3 and go through the Algorithm 26 to either find its

planar embedding or its Kuratowski’s minor.

Repeating the same process, we start by initializing H0 = H and i = 0. Then we go

through contraction phase, we will contract e5,6, letting the combined vertices be named

v5. Then similarly we will contract e3,4, e7,8 and e1,2. The 4-vertex graph result of the

contraction phase called H4 has been shown in Figure 3.9.

Figure 3.9. Graph H4, result of the contraction phase on graph H

Then in expansion phase we will find the planar representation of H4, named H̃4. After

that, we start to expand contracted edges and their attached vertices in reverse order,

one by one. After adding v2, the resulted graph will be H̃2 shown in Figure 3.10.

Then in next expansion phase we will try to add v7 to H̃3. In this stage z3 = v7 as C3

is going to be a bounded cycle in H̃3 − z3, containing the neighbouring vertices to z3 in

G3. So C3 will be v1, v2, v3, v5, v1. Here v1, v2, v3 and v5 are attached to B3, whereas v1

and v3 are attached to B′
3. As these vertices appear in cyclic order in C3, B3 and B′

3 are

skew. The resulting graph to add v7 to H̃3 will be H̃2 shown below in Figure 3.11.

Rearranging the vertices of H̃2 in Figure 3.11 we will find the resulting graph in Figure

3.12, in which by rearranging v2 and v7 we will find the K3,3 minor of H̃2. This result

clearly shows that graph H is not a planar graph.
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Figure 3.10. H̃3, result of the first expansion phase on H̃4

Figure 3.11. H̃2, result of the second expansion phase on H̃4

Figure 3.12. Rearranged drawing of H̃2
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3.2 Properties of planar graphs

Although Euler’s Formula was introduced as a property for planar graphs, using it can

yield to an efficient method for checking if a given graph is not planar. Though, Euler’s

Formula will not help to find the planar embedding for a given graph, also it can be incon-

clusive in case the inequality holds.

Theorem 28 (Euler’s Formula). [7, p. 259] If G is a planar embedding of a graph where

no edges cross each other, considering n as the number of vertices and m as the number

of edges in G, then the graph divides the plane into r regions where:

r = m− n+ 2

Proof. Euler’s Formula can be proved by induction on the number of edges.

Assuming that a connected planar graph has n vertices, the least number of edges that

it can have is m = n− 1. This case happens when G is a tree, which does not have any

cycle, resulting the plane to be just one region, so

r = m− n+ 2 = n− 1− n+ 2 = 1

The formula holds for n vertices graph with m = n− 1 edges. Now for the induction step,

we need to show that Euler’s Formula holds for graphs with more edges, so we have

m > n − 1. In this case G has to have a cycle. By removing an edge from the cycle of

G, we form the connected graph G′ with r − 1 regions, m− 1 edges, and n vertices. By

the induction hypothesis the number of regions in G′ is

r − 1 = (m− 1)− n+ 2

By adding adding the removed edge to the graph we will close the cycle, so the number

of regions and edges are increased by one. By adding one to both sides of the above

equality we will get the Euler’s formula. This completes the induction step and we have

shown that the claim holds for all planar connected planar graphs with n vertices.

Lemma 29. Assuming that G is a planar embedding of a simple connected graph where

no edges cross each other, considering n ≥ 3 as the number of vertices and m as the

number of edges in G, we will have:

m ≤ 3n− 6

Proof. Letting r to be the number of regions in the planar embedding of graph G, we

define fi to be the number of surrounding edges around the region i. If a region happens

to be on both sides of an edge, then the edge is counted twice, so:∑︁r
i=1 fi = 2m
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We know that graph G is a simple graph and has more than two vertices so each region

is bounded at least by 3 edges, so fi ≥ 3, resulting to 3r ≤ 2m. We already knew that

r = m− n+ 2, so by Euler’s formula 3r = 3m− 3n+ 6. Combining it with the previous

inequality we have 3m− 3n+ 6 ≤ 2m, so we conclude that m ≤ 3n− 6.

Example 30. Using Lemma 29 we can simply check if K5 is planar or not. As we know

K5 has 10 edges and 5 vertices, so by checking 3n − 6, we get 9 which is less than

number of edges in K5, from which we can conclude that K5 is not a planar graph.

Lemma 31. If the graph G described in Lemma 29 is triangle-free, then m ≤ 2n− 4

Proof. Again, we define r to be the number of regions in the planar embedding of graph

G, and fi to be the number of surrounding edges around the region i. As G is triangle-

free, then each region made on a plane by G is surrounded by at least four edges. In this

case we have 2m =
∑︁

fi ≥ 4r, so by the Euler’s formula we will have m ≤ 2n− 4.

Example 32. As it was shown in Figure 3.2, K3,3 has 6 vertices and 9 edges. If K3,3 is a

planar graph, by Euler formula 28 it should have r = 5 regions. As K3,3 is triangle-free,

then each region should be bounded to at least 4 edges, which means 4r ≤ 2m. But here

we have 20 ≤ 18 which is a contradiction, showing our first assumption was incorrect and

K3,3 is not a planar graph.

3.3 Coloring of a planar graph

Graph coloring name comes from its application in map coloring, where a problem of

whether a map is colorable with only 4 colors so that no region next to each other have

the same color or not was firstly mentioned by a student of A. De Morgan in 1852 [7,

p. 287]. This question drew attention of different mathematicians to the problem and led

to advancement of the idea. In coloring problems as label’s values are not important, we

may refer to them in any way we want. Here we choose to label the colors using numbers

for simplicity.

Even though coloring of a graph can be represented as coloring of its vertices or coloring

of its edges, here whenever we mention graph coloring, we are referring to coloring of

vertices of a graph.

Definition 33 (Coloring). Coloring of a graph is a function assigning different colors to its

vertices. Also, if adjacent vertices in a graph have different colors, then the coloring of the

graph is proper.

Definition 34 (K-Coloring). If a graph has a proper K-coloring, then it is considered K-

colorable [11, p. 191]. We use notation V (G) → S if the graph is k-colorable with colors

in the set S such that |S| = k.
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Note that in a proper coloring, every color class is an independent set, so that every two

adjacent vertices belong to a different color class. This means that G is k-colorable if and

only if V (G) is union of k independent sets.

Example 35. The following representation in Figure 3.13 of C5 and Petersen graphs are

4-coloring examples of them.

Figure 3.13. 4-coloring presentation of C5 and Petersen graphs

An important note is that graphs with loops are not colorable as a vertex cannot have

different colors than itself. So, all colorable graphs are without any loops. This means all

graphs we are mentioning in this chapter are considered to be loop-less. Multiple edges

between two specific vertices do not affect the graph coloring. Therefore, it is typical that

the graph is assumed to be simple when considering coloring of it. Also, most of the

statement made for a simple graph’s coloring will remain valid if it has multiple edges as

well.

Theorem 36 (K-Chromatic). The least possible value k such that a graph is K-colorable

is the chromatic number of the graph [11, p. 191].

On a side note, a bipartite graph is a graph which can be divided into two subsets of

vertices where each end of those edges connecting vertices belong to just one of the

sets. It follows that a graph is bipartite if and only if it is 2-colorable.

Example 37. As C5 and Petersen graphs are not bipartite, their chromatic number is at

least three. While they can be represented as 3-colorable graphs as follow in Figure 3.14,

their chromatic number is exactly 3.

Theorem 38 (Five Color Theorem). Every planar graph is 5-colorable [11, p. 257].

Proof. Using induction on n we can proof that a planar graph is 5-colorable.

Basic step is whenever n(G) ≤ 5, such graphs will be always 5-colorable.

In the induction step we assume that G is a planar graph with n(G) > 5 vertices as

any planar graphs with fewer vertices are 5-colorable. As the graph is planar, Lemma
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Figure 3.14. 3-coloring presentation of C5 and Petersen graphs

31 indicate that maximal degree of a vertex in G is 5. If the degree of v is less than 5,

there is a free color to be assigned to v, so that no neighbour of v has the same color.

Thus, G would be 5-colorable. So, we assume that the degree of v is five. The induction

hypothesis implies that G− v is 5-colorable.

Now let vi for i = 1, 2, ..., 5 be neighbouring vertices to v in clockwise order. Let’s define

function f such that it is a proper coloring for G − v, colors can be assigned using f to

G by f(vi) = i. Assuming that f cannot be extended to a proper 5-coloring of G, f will

assign each color to a neighbouring vertex of v, so that f(vi) = i.

Now define Gi,j to be the maximal connected sub-graph of G − v containing vertex vi

that is induced by vertices having i and j colors. Switching colors for any two vertices of

Gi,j will yield to another proper-coloring of Gi,j . Then Gi,j can either contain one of vi
and vj or both of them. If Gi,j only contains vi, then we can swap the colors i and j in

that component obtaining a new proper 5-coloring of G − v such that the neighbors of v

do not have color i. This means G is 5-colorable, unless for each i and j in Gi,j it include

both vi and vj .

Now we define Pi,j to be the path from vi to vj in Gi,j , demonstrated as an example below

as (i, j) = (1, 3) in Figure 3.15. Adding v to the path P1,3 will make the cycle C, which will

separate v2 from v4. According to Theorem 19, path P2,4 must cross C. Although as G is

planar, P2,4 and C can cross only at their shared vertices. Path P2,4 only include vertices

with color 2 and 4, as well path P1,3 include vertices of color 1 and 3, which means this

two paths do not cross each other, which is a contradiction. We can conclude that it is not

possible for Gi,j to include both vi and vj , so after all we can conclude that the graph G

is 5-colorable.

Although nowadays a graph being 5-colorable is an important feature which has many

applications in different fields, at the time it was questioned by mathematicians if being

5-colorable was enough to expect from a planar graph or not, which has yield to a new
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Figure 3.15. An example for cycle C, which will be completed by P1,3

theorem about coloring of planar graphs.

Theorem 39 (Four Color Theorem). Every planar graph is 4-colorable [11, p. 260].

Using same induction method to prove Theorem 39 will cause some difficulties, resulting

to a complicated algorithm with an unavoidable set of 633 non reducible configuration.

Although the induction method was firstly used to prove Theorem 39 by a computer pro-

gram, the complexity of the proof resulted the need to develop a new approach to prove

it which can be studied in [11].

As it was shown in Example 6, Petersen graph has a K5 minor, which based on Kura-

towski’s Theorem 23, it is not a planar graph. But it was shown in Example 35 that it is

a 4-colorable. This can serve as an example showing that although all planar graphs are

4-colorable, some non-planar graphs can be 4-colorable as well.
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4. CONCLUSION

The aim of this thesis was to give an introduction to planarity of graphs. In particular, the

results that can be used to test if a graph can be planar or not were introduced and a

planarity testing algorithm was given.

The Kuratowski’s theorem states that a given graph is planar if and only if it does not

contain K5 or K3,3. The algorithm was developed based on Kuratowski’s theorem to

determine planarity of a graph and to represent a planarity embedding of a given graph if

it has any, which showed that every graph without a K5 and K3,3 is a planar graph. Also

if a graph has K5 or K3,3 minor then it is not planar, as they are not planar themselves.

Later a simple method was introduced to approve if a given graph is not planar based on

Euler formula.

Using Euler’s Formula and its result we showed that K5 or K3,3 graphs are not planar.

Another result of Euler’s Formula was discussed, showing that in a planar graph, number

of edges is bounded to the number of vertices, which later was used in the proof of 5-

coloring properties of planar graphs.

Then, as graph coloring has a wide range of application as it can classifies vertices of a

graph into some subcategory, the coloring properties of planar graphs were defined. It

was proofed that planar graphs are 5-colorable. Also, it was mentioned that it is possible

to show that palanar graphs have a 4-coloring embedding. So, even though some non-

planar graphs are 4-colorable, all planar graphs are 4-colorable.

In this work we studied one algorithm that identified planarity of a given graph. There

exist several other planarity testing algorithms besides the one presented here. For ex-

ample, the algorithm presented in [12, p.135–158] by J. Hopcroft that works in linear time.

Although, we have observed that planarity of graphs is a well-studied topic the work on

planarity algorithms is still active [13].
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