
Joel Alanko

DYNAMIC BENCHMARK FOR GRAPHICS

RENDERING

Master’s Thesis

Faculty of Information Technology and Communication Sciences

Examiners: Dr. Markku Mäkitalo

Prof. Pekka Jääskeläinen

April 2021

i

ABSTRACT

Joel Alanko: Dynamic benchmark for graphics rendering
Master’s Thesis
Tampere University
Degree Programme in Information Technology, MSc (Tech)
April 2021

Most graphics rendering algorithms used in both animated feature films and real time games
can enjoy the performance and quality boost that comes with temporally reusing previous compu-
tation. However, there is a lack of proper rendering benchmarks that would allow people to have
detailed and objective comparisons between different temporal methods. Currently, very slowly
moving cameras, improper scenes, and animations are used, which results in an unequaled play-
ground for comparisons, having an obvious bias towards the proposed novel methods.

In this thesis, we describe a framework that can be used to capture 3D animations out of in-
teractive scenarios and compile them to a dataset that is compatible as a dynamic benchmark.
The capturing framework is used in the creation of two datasets: EternalValleyVR and EternalVal-
leyFPS. We verify the quality and the dynamic challenge these datasets put on the algorithms. By
surveying the input features used in the state of the art temporal reuse algorithms, we form metrics
of change in features that happen throughout the animation. The proposed dynamic benchmarks
are shown to surpass the previously released animations in temporal complexity.

Keywords: Graphics, Rendering, Temporal Reuse, Path Tracing, Ray Tracing, Dataset, Benchmark

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

TIIVISTELMÄ

Joel Alanko: Dynaaminen suorituskykytesti grafiikan renderöintiin
Tampereen yliopisto
Tietotekniikan DI-tutkinto-ohjelma
Huhtikuu 2021

Useimpia renderöintialgoritmeja, joita käytetään elokuvissa ja peleissä, voidaan nopeuttaa ja
parantaa laadullisesti uudelleenkäyttämällä aiemmin laskettua informaatiota. Mutta näille tempo-
raalisille algoritmeille ei ole olemassa kunnollisia vertailutestejä. Tällä hetkellä renderöintialgorti-
meja testataan hitailla kameroilla, kertakäyttöanimaatioilla sekä testiskeneillä. Tämä johtaa sel-
västi epäreiluun asetelmaan verrattavien algoritmien kanssa, koska skenet voivat olla suunniteltu
näyttämään omat algoritmit hyvässä valossa.

Tässä diplomityössä luodaan tallennusjärjestelmä, jolla voi taltioida temporaalisiin vertailutes-
teihin sopivia dynaamisia 3D-animaatioita. Järjestelmää demonstroidaan luomalla kaksi vertailu-
testitiedostoa EternalValleyVR ja EternalValleyFPS. Luotujen animaatioiden temporaalinen laatu
halutaan varmistaa. Käytännössä tämä tehdään perehtymällä moderneihin temporaalisiin algorit-
meihin, sekä luomalla niiden käyttämien parametrien perusteella sopivat vertailumetriikat. Metrii-
koita käytetään kahden luodun testitiedoston vertaamiseen yleisesti käytössä oleviin animaatioi-
hin. Vertailun perusteella EternalValleyVR ja EternalValleyFPS ovat huomattavasti hankalampia
renderöitäviä aikaisemmin julkaistuihin animaatioihin verrattuna.

Avainsanat: Grafiikka renderöinti, Temporaalinen uusiokäyttö, Polunseuranta, Säteenseuranta,
Datasetti, Suorituskykytesti

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.

iii

PREFACE

This project has received funding from the ECSEL Joint Undertaking (JU) under grant

agreement No 783162 (FitOptiVis). The JU receives support from the European Union’s

Horizon 2020 research and innovation programme and Netherlands, Czech Republic,

Finland, Spain, Italy.

Work was done at Tampere University while working as a research assistant in the uni-

versity’s Virtual Reality and Graphics group. First and foremost, I would like to thank

Prof. Pekka Jääskeläinen for the opportunity to finish my thesis and trust to work on this

subject, and my supervisor Dr. Markku Mäkitalo, for the guidance and feedback.

I would like to thank Julius for suggesting the initial idea and inspiration for this thesis.

Thanks to the rest of the graphics group for the fruitful and informative brainstorming.

Indeed, the work would be of less if not for those conversations.

In addition, I’d like to thank my family and friends, who have, throughout my years of

study, given me tireless love and support. Especially I’d like to thank my grandfather Risto

for the compassionate encouragements in my studies. Finally, I want to thank Riina for

relentlessly cheering me up while writing the thesis.

Tampere, 26th April 2021

Joel Alanko

iv

CONTENTS

1 Introduction . 1

2 Graphics Rendering . 4

2.1 Light Transport . 4

2.2 Animations . 9

3 Temporal Rendering . 16

3.1 Reuse Algorithms . 16

3.2 Benchmarking Temporal Rendering . 22

3.2.1 Benchmark Requirements . 22

3.2.2 Dataset Comparison Metrics . 22

3.2.3 Animation Capturing Methods 26

4 Related Work . 27

4.1 Rendering Performance Benchmarks . 27

4.2 Rendering Benchmarks . 28

4.2.1 The Utah 3D Animation Repository 29

4.2.2 NVidia ORCA . 30

5 Capturing dataset from Cube 2: Sauerbraten 32

5.1 High Level Dataset Description in glTF 2.0 32

5.1.1 Comparison with Other 3D Animation Formats 32

5.1.2 Used glTF 2.0 Features and Extensions 33

5.2 Sauerbraten Rendering Loop . 35

5.3 Capture Workflow . 38

5.3.1 Offline Start Up Captures . 38

5.3.2 Runtime Captures . 41

5.4 Conversion Workflow . 43

5.5 Capturing Virtual Reality . 45

6 Results . 46

6.1 Dataset Properties . 46

6.2 Camera Movement . 48

6.3 Discard Percentage . 51

7 Conclusion . 53

References . 54

Appendix A Appendix . 64

A.1 Pseudocode of linear blend skinning of vertices in Vulkan vertex shader . 64

v

A.2 Datasets’ camera rotation animation in Euler angles 66

A.3 Datasets’ camera rotation animation distance 67

vi

LIST OF SYMBOLS AND ABBREVIATIONS

B Local bone transformation matrix

Le Power of radiance emitted from ray hit surface

Lin Incoming radiance to a point

Lout Radiance leaving a point to a direction

M Bind pose matrix

R Rotation matrix used in transformations

S Scale matrix used in transformation

T Translation vector used in transformations

Ω Hemisphere over a ray hit point

αdiscard Threshold value for the discard function

α Temporal accumulation blending factor

δ Angle of pitch, yaw or roll rotation

ϕ Angle of rotation around a vector

π(·) Reprojection operator

θ Angle between surface normal and incoming light direction

c Camera position vector

dp Change in translation

dr Change in rotation angle

d Dual quaternion

fn Function to accumulate pixel’s color history

fr Bidirectional reflectance distribution function

fdiscard Discard function for invalid pixels

fpercentage Function to retrieve the percentage of image pixels discarded

p, n, u, v, c Vector-valued variables

q Unit quaternion

t Time parameter

x, y, z, w, h Single value variables

vii

3D Three dimensional

AI Artificial intelligent

API Application programming interface

APSNR Average of peak to signal noise ratio in animation

ASCII American standard code for information interchange is a character

encoding

BART A benchmark for animated ray tracing

BRDF Bidirectional reflectance distribution function

CAD Computer aided design

CBR Checkerboxing rendering method

CC-0 licence Creative commons no rights reserved licence

CPU Graphics processing unit

DAE Collada is 3D file format by Khronos Group

DLSS Deep learning supersampling

FBX Filmbox is a proprietary file format by Autodesk

GGX A microfacet distribution

glTF 2.0 Graphics language transform format version 2.0 specification

GPU Graphics programming unit

HMD Head mounted display

HUD Heads up display

IP Intellectual property

KAIST 3D Model benchmark

MD5 3D file format by id Software

MPI Max Planck Institute

MSAA Multisample anti-aliasing

MTL File format for material definition

NVidia RTX NVidia ray tracing hardware

OBJ Fileformat for geometry definition by Wavefront Technologies

ORCA NVidia open research content archive

PBR Physically based rendering, a modern material model

PBRT Physically based research renderer

PC Personal computer

viii

PSNR Peak to signal noise ratio

RGB Additive color model with red, green and blue lights

spp Samples per pixel

TAA Temporal anti-aliasing

TRS Affine transformation matrix

UNC University of North Carolina

USD Universal scene description is 3D file format from Pixar

UT AnimRep The utah 3D animation repository

VR Virtual reality

1

1 INTRODUCTION

Graphics rendering refers to methods for synthesizing from a virtual three-dimensional

mathematical model to a display. Graphics rendering is commonplace in entertainment

industries like animated feature films and games. It is often utilized in design phases

with computer aided design (CAD) across almost all other industries, including industrial,

product, and architecture industries.

A pleasant and interactive experience requires the display to update a new image in high

frequency. However, rendering a realistic image takes time. It has been noticed that

the next frame is often very coherent with the previous one in dynamic rendering. This

coherency can be utilized so that the computational efforts are not wasted. These are

called temporal reuse methods, which means that the previously rendered image is used

in some way to help to render the following image.

Often when the performance of methods and processes is compared, benchmarks are

created and used. Benchmarks contain reproducible test scenarios that are used as an

input for algorithms. The results can then be compared with the confidence that the test

was performed in an appropriate setting.

For temporal reuse algorithms, a benchmarking setting would be a dataset that contains

3D data and animations required in the image rendering. With benchmarks, it would be

easier to compare the advancements in algorithm development, having access to previ-

ously understood and used dynamic datasets. Moreover, a benchmark would clarify the

field of temporal rendering, showing how and where the state of the art algorithms suc-

ceed and fail in rendering good quality animations. It would also serve as a challenge to

motivate pushing forward rendering development.

Dynamic datasets could also be helpful in the machine learning and deep learning neural

network research that has recently gained much interest. The data-driven area of deep

learning must have a large amount of data available so that the networks can learn as

much as possible from the different inputs. In graphics rendering, this could be utilizing the

quickly moving camera’s transformation information in predictions of what the rendering

should focus on. Also, the scenery deformations could determine what parts contribute

to the final image. With such information, sophisticated occlusion culling or acceleration

structure updates could be automated.

2

However, there are very few such animations released in public, and graphics research

rarely uses them. There are a few obvious reasons for this. First, gathering and creat-

ing these datasets takes time and effort, and polishing them to a release quality would

increase it even more [1]. Second, there is no single clear animation format to select from

because there are plenty of standard file formats used across the industry. The papers

use animations to produce convincing results, but rarely are publicly available datasets,

or the used animations are released to the public. And three, the datasets are either cre-

ated by the authors themselves, they own an IP they can use, or they buy an animation,

which cannot be released to the public. The fact that animations are only present in the

research papers’ results serves as a bias towards the apparent novelties researchers are

proposing, as it is impossible to reproduce the exact same case.

For comparison, there are standardized benchmarking datasets like these for static single

image rendering algorithms. For example, the Sponza scene, with its simple geometry

and reasonably complicated material models, is commonly used in real-time rendering

algorithms, and the San Miguel scene is used with offline path tracing rendering algo-

rithms [2]. Few datasets have animations, but they lack the most complicated scenarios

that are commonplace in practice. Temporal rendering complexity comes with a quickly

moving camera and fast-paced animations. Currently, these datasets only have slowly

flying cameras interpolating from point to point, which does not often map with the actual

use case [3]. The cameras shake and move irregularly when used in interactive scenar-

ios.

In virtual reality (VR), the screen may shake even more than with PC or mobile appli-

cations, and it is also more sensitive to issues regarding bad quality rendering [4]. The

VR research community is also lacking such dataset, and so do the other head mounted

display (HMD), and screen rendering research areas of light-field and augmented reality

(AR).

The signal processing research community uses a similar subset of temporal feature

buffers in the motion flow algorithms [5, 6, 7]. Motion estimation can be used, for exam-

ple, in automated car driving tasks. These datasets lack the required 3D world information

for temporal reuse algorithms, but better datasets would help them too to generate new

datasets for motion flow.

This thesis focuses on the following research questions:

• What are the fundamental features currently used in temporal reuse algorithms?

• What makes a temporally challenging dataset to be used in benchmarking?

• How can the temporal challenge be measured and compared between different

animations?

• What are the existing dynamic benchmarks?

3

• How can the dataset be captured from an interactive scenario, like a game, and

what is stored in the dataset?

This thesis’s primary goal is to produce a framework that can be utilized to create dynamic

datasets. We recognize that games already have complex animations accompanied by

varying lighting settings that are hard to render in real-time, making an excellent dataset

capture platform. To understand what makes an animation temporally challenging to ren-

der, we review graphics and 3D animation background for both real-time rasterization and

path tracing and then familiarize ourselves with the modern temporal reuse algorithms.

We analyze the inputs they often use and present metrics that can be used to compare

datasets between each other. Finally, we use the proposed framework in the creation of

two datasets and verify that the produced datasets have similar complexity in materials

and geometry but show an increase in the challenge for the temporal algorithms.

The structure of the thesis is as follows. In the Chapter 2, we start by establishing the

necessary 3D graphics rendering theory. Then, in the Chapter 3, we introduce the state

of the art advancements in temporal reuse algorithms. We also present the benchmark-

ing metrics that can be used to compare datasets’ feature buffers we recognize utilized

in temporal rendering algorithms. After that, in Chapter 4, we review previously released

rendering benchmarks and dynamic datasets. Next, we present the capturing framework

in the Chapter 5 and use it to capture and create two benchmarking datasets from an

open-source game called Cube 2: Sauerbraten. Summarized results are presented in

Chapter 6. Finally, in the conclusion Chapter 7, we discuss the work done and the out-

come of the thesis.

4

2 GRAPHICS RENDERING

This Chapter describes necessary theory and methods standardized in computer graph-

ics in creating and displaying virtual worlds to a computer screen. We start with declaring

the rendering equation: simple concept, yet effective in practice giving realism to the 3D

scenes by tying together computer graphics and actual physical lighting phenomena. The

equation itself is approachable, but evaluating it has been the centermost issue in graph-

ics rendering since it was introduced. Then we declare how surfaces react to the lighting

using surface material definitions and their underlying microfacet structures. After that,

we continue to show how geometry is produced out of simple mathematical concepts and

primitives. Then, we show the standard practice on how virtual cameras and lights are

described in computer graphics. Finally, we introduce rigidbody and armature animations

and describe practical representations for moving and rotating objects in virtual worlds.

2.1 Light Transport

To synthesize an image to a screen, a standard way is to have a virtual camera that looks

at 3D scene [8]. There are two popular approaches to this. First, the rasterization uses

graphics processing units (GPU) to preprocess 3D world geometry primitives and finally

calculate colors for each pixel in a vastly parallel manner. Rasterization is the standard

for games, utilizing GPU application programming interfaces (API), like OpenGL, Vulkan

and Direct3D12, to access function pointers and memory of the GPU [9, 10, 11]. The

second common approach is Monte Carlo path tracing, which we will describe shortly. In

both methods, conceptually, each pixel is colored according to a ray shot from a virtual

camera hitting a point in the scene, using the underlying material of the hit surface. Like

in real life, the lighting condition matters. The apparent color of, for example, a red apple

is different when looked outdoors and when observed in a dark cellar.

The rendering equation is an integral equation for all the radiance leaving a point to a

direction. Radiance is the energy of a light source. The equation was introduced simul-

taneously by Kajiya and Immel et.al. [12, 13]. Simply, the equation is a sum of reflected

radiance and emission:

Lout = Le +

∫︂
Ω

Linfrcosθdω, (2.1)

5

Figure 2.1. Physically based materials applied on top of Blender Suzanne model. Vertex
encoded texture coordinates are used to sample the four PBR textures. From the left, the
textures are base color, normal map, metallic, and roughness.

where, Lout is radiance to a view direction, Le is the amount of emission, that is the power

emitted of the hit surface, Ω means that the integration is performed over the hemisphere

around the point through all the negative incoming angles ω, Lin is the incoming radiance,

fr denotes the bidirectional reflectance distribution function (BRDF) and cosθ the angle

between surface normal and incoming light direction.

3D image synthesis is primarily solving this equation for each pixel. Commonly in modern

rasterization, the equation’s integral is simplified to a sum of the radiance contribution.

The contribution is formed from all of the light sources in the scene shading the surface

multiplied by underlying color [8, 14]. In Monte Carlo path tracing, hundreds and thou-

sands of paths are shot from the camera through the imagined screen’s pixel to the scene,

and when the ray touches a surface, it reflects other random directions. Each reflected

part of the camera path contributes slightly to the final pixel’s color, and when performed

thousand times with randomly selecting the directions, the result has more realistic light-

ing than simple rasterization. The reason for the apparent realism comes from lighting

effect called indirect lighting, or sometimes called global illumination. It is a subtle effect

that comes from light bouncing and reflecting all surfaces. Trying to solve or approximate

it has been a research interest for a long time.

Incoming radiance Lin for a camera c and a given view ray v can be noted with

6

Lin(c,−v) = Lout(p, v),

where the Lout is the outgoing radiance from a surface intersection point p, where the

view ray has hit. We assume there are no participating media, like smoke, and we are

also interested only in solid surfaces that do not let light pass through it or refract it. Here,

radiance can be emitted straight by the surface itself, which is shown in the Eq. (2.1).

More commonly, the surfaces do not emit radiance by themselves but reflect some light

emitted elsewhere. A given point reflects incoming radiance in the opposite direction.

Locally, these surface reflectance phenomena and their subsurface scattering is denoted

by BRDF fr(l, v), where l is the incoming light direction and v the outgoing view direc-

tion [15].

When any surface is examined at the micro and atom level, different types of irregulari-

ties can be observed. The realistic simulation of light scattering distributions of surface

materials have received decades of research attention [16, 17], However, more recently,

a physically based rendering (PBR) microfacet material model has been re-found and

widely adopted, called Trowbridge-Reitz / GGX [18, 19]. The GGX model includes a ge-

ometry term, a Fresnel term, and a normal distribution term, which combines different

physical microfacet phenomena approximations. The geometry term approximates shad-

owing and masking that happens on a micro surface level. The normal distribution term

approximates the distribution of the surfaces normals, and the Fresnel term approximates

how reflected light depends on the viewing angle. In addition to viewing directions and

light directions, these BRDF terms require only three parameters: how metallic the object

is, how rough the surface is and what is the index of refraction (IOR) for the object [19].

With these, almost every solid object can be synthesized in the virtual worlds.

Materials are the basic format to pass around the surface specifications in different 3D

softwares. They often consist of textures, which are images that contain pixel-wise pa-

rameters for each of the reflectance terms, and other parameters, like whether the surface

should be transparent or emit some light. Textures map pixel-specific roughness and met-

alness values, but Fresnel is usually a constant for the whole material [19]. The popular

metallic roughness has a less physically accurate model than the earlier Phong shading

model [20], but it is easier to work with. This workflow allows a convenient mental model

for artists to approach authoring GGX materials, selecting whether the material has metal-

lic parts in the metallic texture and how rough or smooth the surface is to the roughness

texture. An example of how the GGX workflow textures are mapped on a model is de-

picted in Figure 2.1. Using texture coordinates, we can sample parts of surface triangles

and retrieve the used GGX settings with coordinates. Texture coordinates are simply 2D

image coordinates.

Virtual 3D scene’s geometry can be represented by connecting three vertices, 3D points

7

Figure 2.2. A vertex, a triangle, and a normal perpendicular to surface annotated on
Blender Suzanne model.

in space, together, forming a triangle as shown in Figure 2.2. A ray can be imagined shot

out of the camera towards the triangle and intersecting it. Color can then be fetched from

the intersection point. Moreover, by taking the encoded color of each vertex, a blended

color can be formed. Forming is done by weighting with their location differing from the

intersection point. If such methods are followed further, any complex scene can be formed

by combining thousands and millions of triangles. This is the basis of all 3D graphics [8,

21]. In addition to simple triangles, there are quads, often used in facial expressions and

other surface curvatures expressed in mathematical forms. They are commonly described

as faces, a primitive patch of the surface. In this work, we focus mainly on the triangles.

The next most important primitive after vertex is a normal, a vector pointing outwards of a

surface. For a smooth surface, it is perpendicular to the surface tangent on a point. In 3D

graphics, they are commonly encoded for each of the vertices or faces in the scene [8].

They allow shading the geometry; by comparing its direction to the camera’s view di-

rection and the incoming light’s direction, we can determine how much of the incoming

radiance should be shaded to the point. The shading normal of a surface is sampled

during the BRDF shading. Sampling is used to determine how much light reflects on a

surface from light to the camera. If the normal points to the almost opposite direction of

all incoming light directions, the point should be not be shaded at all. This would be the

case of enclosed surfaces like if a camera is inside a cube and all the emission sources

outside, the rendering would be completely black. A commonplace trick in 3D tools is to

8

smooth the normals, slightly altering its direction [8, 21, 22]. This technique lowers the

number of faces required to produce smoothly lit surfaces.

There are a couple of standard ways to describe lights in virtual scenes. In rasterization, it

is common to have lights described in a singular point, and with path tracing, lights often

have some area they sample from [8]. The most straightforward lights are directional

lights, which do not have a location in the world, and light direction l stays constant. Then

there are punctual lights, which are our main interest in this thesis. Punctual lights have

a singular position and no surface area. The two most popular types of punctual lights

are point lights and spotlights. Point light’s contribution to a surface point depends on the

shaded point’s location and the location of the lights, as we saw with the Eq. (2.1). Point

lights emit light uniformly in all directions. It is common practice to apply a radius with

point lights [22]. Point lights with radius can be sampled in the Monte Carlo path tracing.

The lights area is sampled, and the probability of sampling that point is used to weigh

its contribution to the final radiance amount. This method is called multiple importance

sampling [23]. In addition to the punctual and area lights, emissive triangles and textures

can emit light.

To convert a 3D world to a 2D screen, a common practice is to use different coordinate

systems. During the creation of 3D models, one coordinate system, second when the

models are moved around the scene, and third when the models are finally rendered. A

typical workflow is for a single object to be transformed from local space to world space,

then to camera’s view space, then to camera’s clip space, and finally to screen space [8,

24, 25].

Conceptually, there are five different spaces from which we can transform to and from.

In local coordinates, we have vertices of an object relative to its local origin. When a 3D

object is created, its vertex positions are relative to the origin of that system. World space

means that the observed scene now has multiple objects, and they are now relative to

the world origin and have some offset from it [24]. Translating an object to its desired

position in the world is done with model matrix, which we also call model to transform in

this work [8]. Model transform is most actively updated during the run-time of animations

and interactive applications, like in games when characters move around the world. If

a virtual camera is placed in the world and we want to see what the camera sees, the

easiest and common practice is to create a transform matrix that transforms each vertex

in the scene so that the camera becomes the center of the world. Such matrix can be

formed with cameras extrinsic parameters, like the position and orientation of the camera.

This matrix brings the world into the view space. From view space, the 3D perspective

can be achieved with a projection matrix that can be created with the camera’s intrinsic

parameters, which are often in computer graphics described with aspect ratio, near plane,

and far plane [8].

9

The final space conversion is from the view space to the screen. This can be done with

a clip space matrix [8, 24]. Mathematically speaking, when we have a clip space matrix

Mclip, we can transform a world space coordinate pi by

⎛⎜⎜⎜⎜⎜⎜⎝
xclip

yclip

zclip

wclip

⎞⎟⎟⎟⎟⎟⎟⎠ = piMclip, (2.2)

where xclip, yclip, zclip, wclip are the new coordinates in the camera’s homogeneous clip

space [24]. These coordinates can be brought to a normalised device coordinates with

perspective division:

⎛⎜⎜⎜⎝
xndc

yndc

zndc

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
xclip/wclip

yclip/wclip

zclip/wclip

⎞⎟⎟⎟⎠ ,

where xndc, yndc, zndc are the coordinates now in normalised device space. Finally, we

yield the screen space x, y coordinates by converting the coordinates from range [-1, 1]

to [0, 1], and then multiplying them to the resolution of the rendered screen width w and

height h:

⎛⎝x

y

⎞⎠ =

⎛⎜⎝(w − 1)
xndc + 1

2

(h− 1)
yndc − 1

−2

⎞⎟⎠ . (2.3)

Retrieved screen space coordinates x, y now represent where the vertices end up in a

screen [24].

2.2 Animations

Dynamic and interactive virtual world simulation requires transformations. The position of

a vertex can be changed with an affine translation with a homogeneous transformation

matrix. The standard convention in computer graphics is to multiply translation, rotation,

and scale matrices to a single matrix TRS, which can be compactly be sent to GPU in

vertex shader the final position calculation [8, 25]. In three dimensional, OpenGL like right

hand coordinate system, given p as a position vector of a single vertex can be transformed

with TRS matrix by:

10

Figure 2.3. Graphics applications using Euler angle representation apply rotations
around three axes one after another. In the middle figure, a yellow curve displays the
path from A to B Euler angle representation may take if the rotation is done by rotating
the red and green circles 90 degrees. The image on the right shows the shortest path
from A to B achieved by rotating with a unit quaternion.

p′ =

⎡⎢⎢⎢⎢⎢⎢⎣
SxR00 R01 R02 Tx

R10 SyR11 R12 Ty

R20 R21 SzR22 Tz

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎝
px

py

pz

1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where S is the scaling multiplier for each axis, R is the three-by-three Euler angle ro-

tation matrix, T is the added translation, and p′ is the newly transformed position [24].

Transforming all the vertices of an object with a TRS matrix is often called rigidbody

transformation.

There are two sizable issues with the three-by-three rotation matrices: a gimbal lock

and interpolating from one rotation to another. Euler angle representation describes the

rotation around three axes. These rotations are pitch rotation, wherein the right-hand

coordinate system rotates around the x-axis, yaw rotation, where it rotates around the

y-axis, and roll, where it rotates around the z-axis. In Euler angle representation, these

three rotation matrices are multiplied one after another. Given that the matrix multipli-

cation is commutative, the order of the multiplication matters, resulting in the lock. The

gimbal lock occurs when the last axis in the rotation multiplication chain aligns with the

second rotation [26]. One degree of freedom is then lost, as both the second and the third

matrices try to rotate around the same axis. The gimbal lock is often solved, for example,

in game cameras, by placing the pitch as the last of the three rotations and limiting its

angle between (-90, 90) degrees, where it can never align with the second rotation [27].

The range (-90, 90) is acceptable, as it restricts the looking to down on the ground and

up to the sky.

The other complication is the interpolation between two rotations. With Euler angle rep-

11

resentation, it is non-trivial to rotate along the desired geodesic curve. Even though the

start and the endpoints of the animated rotation key frames shown in the example Figure

2.3 are correct, the rotation from point A to point B with pitch, yaw, and roll, does not follow

the intended shortest path. Correct curve seen in the rightmost image in Figure 2.3 can

be achieved by representing the rotations as unit quaternions [28] and applying spherical

linear interpolation, shorthand slerp, between two of them [29]. Unit quaternions are a

subset of quaternions that represents rotation and can be defined as follows:

q = iqx + jqy + kqz + qw,

where q is the unit quaternion, qw is the real part, and qx, qy, qz the imaginary part where

i, j, k are the imaginary units [8]. Imaginary vector part qx, qy, qz of the unit quaternion

supports all the usual vector operations, such as scaling, addition, cross product and dot

product. Unit quaternions may also be written

q = sinϕu+ cosϕ,

where u is a three-dimensional vector such that ∥u∥= 1 and ϕ is the amount of rota-

tion around that vector. With unit quaternion q that when multiplied with its multiplicative

inverse q−1, the equation

q−1q = qq−1 = 1,

holds true [8]. The desired shortest arc between the points A and B of the Figure 2.3

can be achieved with slerping from unit quaternion qa to unit quaternion qb with software

implementation friendly format

slerp(qa, qb, t) =
sin(ϕ(1− t))sinϕ

qa
+

sin(ϕt)

sinϕ
qb,

where t ∈ [0, 1] is a parameter between the two quaternions [8]. The intrinsic geodesic

distance between two unit quaternions that is, the angular change in rotation dr can be

calculated with:

dr(qi, qi−1) = ∥ln(qi−1
−1qi)∥ (2.4)

where qi and qi−1 are the compared rotation unit quaternions [30].

Unit quaternions are handy: it can be shown that a point represented in a vector format

p = (pxpypzpw)
T is rotated by unit quaternion q

12

Figure 2.4. The top image displays skin, and the bottom the skeletal bones and the
influence the forearm bone has on vertices. In the bottom image, the red color indicates
the joint’s total influence, yellow and green that there is some influence, and blue that the
forearm joint does not influence the vertex skinning. The character model is Michelle from
Mixamo animation library [31].

qpq−1,

around axis u for angle 2ϕ [8]. When only rotation is required, this four component repre-

sentation of a rotation is a preferred way compared to the nine component rotation matrix,

and it is used in memory-constrained systems, like graphics rendering on GPU [25].

Rotating and translating rigidbodies allows animations to have only rigid motions. In 1988,

Magnenat-Thalmann et al. proposed a new technique called vertex skinning in the ani-

mation world [32], and it has since become standard in all rigging software, 3D games,

and animations [33, 34]. This technique has been converted to a practical method. In the

method, a skeleton is applied in addition to the mesh to help modify and animate vertices.

This procedure simplifies animating characters with human-like motion [35].

Skeletal representation requires two things: a mesh, which is often also called a skin, and

a hierarchy of bones. A popular name for the combination of the skin and the bone hier-

archy is armature [22]. When the bones are animated, they control the movement of the

corresponding vertices in the skin. In addition to the armature, predetermined animation

poses are declared, especially in an interactive context like games. For example, when

13

a game character runs and then jumps, the animations are interpolated between key

frames of the running animation and also blended between running and the next jumping

animation [33].

A bone hierarchy is represented with a transformation from a bind pose [35]. A bind pose,

and sometimes called rest pose, is the starting point for the animations, and all transforms

are described as offsets from this pose. The skin’s vertices must have the information on

which joint influence them and with what weight. in Figure 2.4, on the top image, skin is

shown, and on the bottom image, a forearm bone and its weights are presented. Vertices

under the influence of red-colored areas are transformed fully by the forearm bone, blue-

colored areas are not influencing at all, and yellow to green gets some influence from this

joint [35]. Bones are in a relational hierarchy to each other. Transforming, for example, a

knee of a character will also transform the rest of the foot recursively along with it. The

skinning procedure simplifies the animation procedure: only a single rotation matrix is

changed, and the whole leg and all of its vertices are moved.

Vertex skinning is more formally called linear blend skinning. The vertices are linearly

blended near the joints. The world space position for each joint can be computed as the

weighted average:

p′ =
N∑︂
i=0

wiBiM
−1
i p,

where p′ is the new blended vertex world space position, N is the number of bones

affecting the given vertex, wi the weight the indexed bone influence this vertex, Bi is

the local animation transformation for the indexed bone, Mi is a bind pose matrix that

transforms bone’s coordinate system to world coordinates and p is the original vertex

position [8]. Often with human characters, N is four, as it allows most poses and does

not require too much data to compute on the GPU [27].

For shading, we also need to update normals. We compute the normals naively with a

similar weighted average:

n′ =
N∑︂
i=0

wi(BiM
−1
i)−Tni,

where n′ is the new blended shading normal, N the amount of bones influencing the

normal, (BiM
−1
i)−T the inverse transpose of each blending matrix, in which the Mi is

the bind pose matrix and Bi is the animation matrix [35]. However, taking a transpose

is inefficient, and the computed normal is considerably inaccurate. A proposed method

tackles the issues and achieves better quality normals and more precise results [36].

An example implementation of simple skinning in the vertex shader is presented in the

14

Figure 2.5. Linear blending (left) and dual quaternion blending (right). Dual quaternions
have a lot fewer skinning artifacts compared to linear blending. In linear blending, with
extreme angles, the mesh collapses, whereas in the dual quaternion blending, the volume
is preserved, resulting in a bulging effect.

appendix A.1 that is applicable in modern graphics API Vulkan [10].

Linear blending has an issue with extreme blending angles where the geometry collapses.

The issue can be observed on the left cylinder in Figure 2.5. The issue can be fixed with

dual quaternions [37]. They extend the basic unit quaternion with a concept of dual

numbers. Dual numbers are expressions in the form of

d = a+ bϵ,

where d is the dual number, a and b are real numbers and ϵ is the complex symbol to

satisfy ϵ2 = 0 [37]. Quaternions are already basically dual numbers, with their real and

imaginary parts. Translation can also be converted to dual number:

dtranslation = (1, 0, 0, 0) +
(0, x, y, z)

2
ϵ,

where dtranslation is the translation in dual number, and x, y, z are the coordinate change

in the vertex position. This dual number representation of a translation can be combined

with a rotation to a single, dual quaternion:

dtransform = dtranslationdrotation = qrotation +
(0, x, y, z)

2
qrotationϵ,

15

where dtransform is the dual quaternion that can perform both the rotation and the trans-

lation, dtranslation is the translation in dual number form and drotation is the rotation in dual

number form [37]. Dual quaternions can be decomposed back to the rotation in quater-

nion format and the translation in vector format [37]. When blending is performed with

dual quaternions, the volume of the skin is preserved, as seen on the right cylinder in

Figure 2.5. Dual quaternions are also quicker to blend, with generally over 20% improved

performance, and they take only eight components, compared to 16 that TRS matrices

take, making them perfect for skeletal animations [37].

In addition to rigidbody and skeletal animations, the final animation method is to animate

each vertex explicitly. This method is called vertex morphing, and sometimes the name

shape keys animation is used [8]. Morphing is most commonly used in facial anima-

tion, where each key frame of the animation has new positions to all vertices, which are

interpolated between [38].

16

3 TEMPORAL RENDERING

Rendering workload can be lowered by taking advantage of the fact that subsequent

frames are very similar. In this Chapter, we look at temporal reuse algorithms utilizing

the frame-to-frame image coherence to speed up the rendering. Then we define require-

ments for an excellent benchmarking dataset for this domain. In the following section,

we present metrics for comparing how temporally challenging different datasets are for

rendering. Finally, we review the previous methods used for capturing animations.

3.1 Reuse Algorithms

There is a body of research done both path tracing and by the real-time constrained ras-

terization and ray tracing to reuse temporal data to have better performance [39]. Given

the time complexity of rendering an image, shortcuts are often taken to lower the count

of sampled paths and the length of the path in the Monte Carlo integration or by lowering

the sample count of spatial anti-aliasing methods like Multisample Anti-aliasing (MSAA).

The continuous image function must be sampled in high frequency so that the final pixel

receives anti-aliased color. Recent survey identified the two components of Temporal

Anti-aliasing (TAA): sample accumulation and history validation [40].

The figure 3.1 shows a generalized execution flow of the TAA algorithms. Each frame,

the renderer first streams necessary image features to few clever steps. Motion vectors

are the pixel’s velocity during the animation, which can be used to reproject where the

pixel was in the previous frame. A color sample, a returned color value of a single camera

ray, is validated against the reprojected history by utilizing other features. With the knowl-

edge of whether the history is valid or not, it can be rectified. Finally, the new sample

is accumulated on top of the history. Then, it can be sent for the next frame to use and

post-processing and display.

In TAA, different sample positions are selected for each frame that aligns temporally to a

supersampled result, which amortizes the cost of supersampling [41]. Sample positions

are jittered with a sampling strategy, state of the art being low discrepancy patterns like

Halton or Sobol sequence, which evenly distributes samples and mitigates problems if the

temporal integral should be restarted [42, 43]. Amortized pixel’s history buffer is shown

in Figure 3.2, where new sample positions are accumulated in each frame. The exact

17

Figure 3.1. The diagram shows a typical flow of execution and used procedures in tem-
poral reuse algorithms, like TAA. First, the feature buffers are rendered. Then, using the
history buffer of the previous frame, the history of the current pixel can be validated, and
with a new sample, the history might be rectified. After that, the new sample is blended
with the history colors. The final color can be sent to the screen and for the next frame to
use.

process works on other methods requiring sample integration. These effects include

diffuse global illumination, ambient occlusion, shadows and reflection [40].

After a pixel has been reprojected and history retrieved, new samples are then constantly

accumulated and blended together:

fn(p) = α · sn(p) + (1− α) · fn−1(π(p)),

where fn(p) is current frame n’s color at given pixel p, α is the blending factor, sn(p) is

frame n’s new sampled color at pixel p and fn−1(π(p)) accumulated pixel history from

previous frame, that has been reprojected with reprojection operator π(·). The blending

factor can vary the rate the oldest samples are forgotten from the color history.

Reprojecting a pixel is simple if not the scene nor the camera have changed from the

previous frame, but with the dynamically changing scene, it is not as easy. Common

practice is to use reverse projection displayed in Figure 3.2 [41]. Similar but the opposite

approach is to forward reproject, where the previous frame’s pixels are projected on the

current frame, but it is less efficient on graphics hardware [44]. The known motion of

the pixels movement, motion vectors, are used to sample where the current pixel was

located in the previous frame and accumulated accordingly. It is common practice to

use hardware-accelerated bilinear texture fetch when retrieving the previous color from

the history color texture in a real-time context. The fetch mitigates issues compared to

naive reprojection, as it might result in in-between pixels and camera sub-pixel offset that,

18

Figure 3.2. Sampling the history of a target pixel. The history buffer (left) has been
formed from previous sampling positions. Often, these sampling positions are not saved
separately but accumulated as the final color of the previous frame. On the current frame
(right), a new input sample is taken from the image blended with a bilinearly sampled
history of the previous frame’s pixel position. The disoccluded red area appearing behind
the blue triangle would require more samples to affect the final pixel value.

due to the jittering, results in non 1:1 mapping between the previous and the current

frame. Jittering means that the sample position is offset from the center of the pixel. In

the bilinear texture fetch, the wanted color is interpolated from four nearby samples and

weighted accordingly as seen in Figure 3.2. In motion, this has a downside of introducing

resampling blur, as it softens the resampled image. Resampling happens in each frame

so that the high-frequency detail can be quickly lost.

High-quality motion vectors are not trivial to come by with [45]. Often game engines create

a motion vector texture that has the offset between current and previous pixel’s location by

transforming the geometry twice with current and previous camera matrices [46]. Prob-

lems arise when shading is not geometry related, which is the case with transparent and

highly reflective materials, lights, and shadows [45].

Another issue with sample accumulation is the reintroduction of aliasing artifacts for al-

ready smooth edges on moving objects. There are few methods proposed to solve this,

for example, using a 4-tap dilation window or some other adaptive filtering schemes [47].

With too small blending factor α the color may start to have resampling error or tempo-

ral lag. To avoid such issues, history is ensured to be refreshed by clamping the α to

lower value. Motion can also be used to adapt the α so that the bilinear resampling error

is prevented. In rasterization, there is also an issue with sampling and integrating over

pixel area in both geometry and texture, and because textures are usually filtered with

mipmap methods, the result might be overtly blurred. Typically a mipmap bias is applied,

19

which also helps to solve issues introduced with temporal upsampling methods, that we

will describe shortly [46].

As the camera and the world move, the lighting conditions change, or there might appear

disocclusion like in Figure 3.2. The validity of the history data should be rejected if an

error is detected. This history’s confidence can be mainly detected from two sources,

either from geometry data, like depth, normal, motion vector, or object ID, or from the

color or radiance data. Disocclusion can be recognized with geometry data by comparing,

for example, the current pixel’s depth value with the pixel history’s depth value, and if they

are further away from each other than a small scene dependant error tolerance, the pixel

can be marked incorrect [44]. Even more robust matching can be achieved with additional

geometry data, like surface normal or object identifier. The whole history may not need

to be discarded, though, as we will discuss history rectification strategies later.

With shading changes, like shadows, lighting, and reflections, geometry data is not suffi-

cient. Checking the validity of the shading can be done efficiently with color and radiance

data [48]. Directly comparing color indicates whether the data is invalid because of visi-

ble light or shading change and indirect motion vectors. However, comparing aliased the

current frame’s samples to anti-aliased history might result in bias of our error estimation,

so there have been few methods proposed to help in the comparison [41].

Rejecting invalid history resets the temporal integration process, which may lead to arti-

facts [41]. Rejected data can be made more consistent by taking more samples. This is

called history rectification [49, 50, 51]. The idea is to pull the color information from the

neighborhood to our sparse and aliased samples. With the neighborhood colors, a color

bounding box is created, and if the current sample falls inside it, history can be connected

and rectified. Otherwise, it should be discarded. When the rectified history is blended

with these artifacts are removed. More sophisticated color neighborhoods and gradients

have been proposed to have better quality rectification [14].

Rectifying the history of a pixel also comes with downsides. Temporal artifacts, like ghost-

ing, might appear when the history is not invalidated correctly and forgot [14]. Rectification

techniques assume that the neighbourhood of the pixels surface point contain similar val-

ues. Since there are only a few samples for the pixel, highly detailed content with a thin

geometry or shading feature is easily missed, which results in dropping the pixel’s his-

tory. Without temporal supersampling history, the quality suffers from aliasing or temporal

instability issues, like flickering.

Temporal upsampling is another technique to achieve a higher frame rate or resolu-

tion [41, 52, 53]. The technique’s benefit is that the sampling rate is reduced from one

sample per pixel to some portion of a sample per pixel. Upsampling results in higher

resolution images by just accumulating lower resolution shading results. In practice, the

input samples are upscaled to desired output resolution and then normalized to it. Nor-

20

malization can be done with the sum of the weights with a neighborhood averaging filter,

like a Gaussian kernel.

Like with all of the reviewed temporal algorithms, there are few issues with the upsam-

pling methods. When upscaling is applied to the sample accumulation function, the high-

frequency detail is lost [14]. With the temporal jittering strategy, each upscaled pixel

receives now and then high-quality samples that have not been interpolated from the

nearby upscaling neighborhood, resulting in temporally suitable quality pixel. Also, a con-

fidence quality factor for each output pixel has been proposed [46]. With it, the history

is retained when the quality of the accumulated input sample has low confidence. The

upscaled sample accumulation also suffers from the same problems that we mentioned

before, and now there are even fewer input samples to help solve the issues. History

cannot be easily rectified, which leads to carefully selecting between ghosting, temporal

instability issues, like flickering, and blurriness.

The three-by-three neighborhood used in rectification for the color bounding box com-

putation is now larger than the three-by-three multiplied by the upscaling multiplier, for

example, nine-by-nine. A few different approaches have been used to help in the rec-

tification process. In a proposed method, they compute a smaller neighborhood that is

based on the used sub-pixel offset for the color bounding box calculation [46]. The tempo-

ral ghosting artifact is reduced, as the sampled points further away from the pixel are not

blended. Similarly, a fixed two by two neighborhood has been proposed, with complimen-

tary results [52]. One other method used in the game Quantum Break trades the quality

of dynamic lights, shadows, and animated textures to have sharper and more stable static

shots [54]. Their method uses motion vectors’ speed to relax the color bounding box and

uses a tighter bounding box with smaller vectors to increase the sample accumulation.

An interesting recent finding with temporal upsampling is the noticeable differences when

the order of the sampling interacts with dynamic geometry [52]. They recognize two

modes for the sampling, bow tie, and hourglass, which work better when sampling mo-

tion is horizontal or vertical. In addition to these, they show how increasing the rendering

frequency lowers the required temporal sample count, as it uses the human visual aid

system to integrate the samples into a perceptually sharper image with fewer visible arti-

facts.

A similar thing to upsampling is checkerboxing (CBR). In CBR, instead of applying jitter

offset on the sampling locations, a diagonal checkerboard pattern is used. The method

integrates temporally higher resolution images. These CBR methods often utilize a hard-

ware dependant and accelerated sampling strategies. It was widely used in previous

generation game consoles to achieve a unified upsampling strategy to reach 4k resolu-

tion [55]. Given that only portion of the pixels are shaded, the history must be used to

fill in the gaps. The CBR method suffers from the same problems that the upsampling

21

method does.

In the virtual reality rendering motion sickness [56, 57] is still a common problem, but

temporal methods have been utilized in aid for it [4, 58]. In motion sickness, the user

faces physical discomfort caused by perceiving visually conflicting information to what

they experience. Practical solutions to this include lowering the latency, increasing the

frame rate, and using high-quality motion tracking [59, 60].

The temporal data can approximate the result when the rendering does not finish in

time [58]. Reprojecting the previous image to a new position when a user turns their

head is called asynchronous reprojection, or time warp. Practically, each frame is re-

projected asynchronously along with the actual rendering, and when the rendering time

exceeds, the prepared reprojection can be used instead [61]. VR rendering also has

temporal complications that are present when the scene changes a lot. Color fringing is

an issue where colors smear to each other in some VR headsets as each of the colored

lights, red, green, and blue, are temporally displayed one after another [4]. Then there

is judder, that appears with quick head movements. In judder, high persistence and low

refresh rate introduce a motion blur-like effect, where pixel colors are both smearing and

strobing [62]. The quick head movements are the problem with the VR: even with a rapid

refresh frequency of 60 frames per second, a human can turn their head several hun-

dred degrees per second, and the same time gaze in the opposite direction, doubling the

effect [4]. Furthermore, there is a complicated problem that comes from natural human

motion: when the head is turned, but the gaze is fixed on a point, humans are used to

seeing crystally clear the point they are focusing on with their eyes. However, this may

not be the case, as the temporal methods may introduce some motion blur.

Deep learning in rasterization has also recently become of interest in temporal reuse

cases. Deep Learning Supersampling (DLSS) 2.0 by NVidia builds up from the TAA ideas

of upsampling and temporal reuse by applying deep learning with it [63]. The network is

taught with high quality ground truth images to learn the fundamentals of reconstruction.

The algorithm has not been released to the public yet, but in the presentation slides, Liu

et al. claim DLSS 2.0 to be using as input features the sampling jitter offsets, geometric

motion vectors, depth buffers, low-resolution pixel samples, and exposure. Many of these

are familiar feature buffers to TAA. There are no research comparisons yet with the quality

of this rendering method compared to the previous state of the art, but the public reception

about the perceived improvement in image quality and rendering performance has been

overall positive [64].

There are not too many temporal reuse methods in the world of path tracing, as there is

infinite time to produce the image. The recent development of trying to render the image

with path tracing in real-time has introduced some solutions and problems. These include

using small sample counts and spatio-temporal features to denoise the image [65, 66].

22

Even though these methods converge to clear images with global illumination with static

scenes, when temporal motion is introduced with the camera, with the scenery motion, or

the lighting conditions change, they start to blur, and the global illumination begins to lag

behind [66].

3.2 Benchmarking Temporal Rendering

Benchmarking helps to better understand the underlying problem and identify parts that

still require improvements. In this chapter, we first discuss some of the requirements for

a satisfactory dynamic benchmark. Then, we describe comparison metrics that can be

used to compare temporal features of dynamic datasets, and finally, we review methods

that have been previously used in the capturing of 3D animations.

3.2.1 Benchmark Requirements

We are planning to publish the benchmark to be openly used in future graphics research.

The publication plan gives us some explicit constraints for the file format selection and the

content to be included in the dataset. We recognize that the dataset should have

• focuses on the temporal content,

• dataset is delivered in a simple and easy to use format,

• dataset is released with a permissive licence,

• it contains quickly moving camera, 3D scenery and lights,

• its material model and the geometry complexity are modern,

• it uses skeletal animations.

Having a clear focus and using a single file to provide the dataset attracts users by having

low overhead to try it. We aim to improve upon the previous work in the temporal qualities,

but it should also have similar complexity in geometry and materials to previously released

sets, like modern ORCA datasets [67]. ORCA datasets have relatively high resolution in

their PBR textures. Therefore, the dataset format should also support and use PBR

textures it. We also plan to capture the animation from a game, so the file format should

also support skeletal animations. Next, we will review some of the previously used 3D

capturing methods.

3.2.2 Dataset Comparison Metrics

We recognize the following errors and downsides in the currently used temporal reuse

algorithms. These issues are blurriness, ghosting and temporal lag, temporal instability,

and under-sampling artifacts. We aim to create a benchmark dataset that introduces situ-

23

ations where these problems are brought forward and where they can be easily examined.

In a typical interactive scenario, like in games, the temporal coherence can be noticed in

the majority of the screen [68]. Temporal coherence means that the pixels are precisely

the same as in the previous frame. To compare the challenge our proposed dataset has

temporally compared to previously released benchmarks, we measure the opposite of

the temporal coherence: the percentage that should be discarded as invalid. We focus

on the same features many of the temporal methods use as their inputs and compare how

they change frame-to-frame. Namely, these features are the distance a pixel changes its

position in the world, the shading normal used in lighting calculations, and the direct and

indirect radiance the pixel emits towards the camera. Next, we will go through how these

metrics are formed.

The first metric we look at is the movement of the camera through the scene. The camera

moves in XYZ coordinates and rotates around its center point. We calculate the distance

dp the camera travels each frame:

dp(pi, pi−1) =∥ −−−→pi−1pi ∥, (3.1)

where pi is the position on this frame, and pi−1 the cameras position last frame. To

compare camera orientation, we can calculate the difference between the current frame’s

and previous frame’s unit quaternions with the Eq. (2.4). In addition, we determine per

axis rotation using

dr(δi, δi−1) =∥ δi − δi−1 ∥, (3.2)

where δi is the angle in pitch, yaw, or roll rotation for the current frame, and δi−1 the angle

for the previous frame.

To receive the previous frame’s history buffers, we have to reproject the current pixel

to the previous frame. We can do this simply by projecting the current frame’s world

space position with the previous frame’s camera’s clip matrix, and convert to the previous

frame’s screen coordinates using the camera transforms shown earlier in the Eq. (2.3).

Given the screen space coordinates x, y, we can discard those pixels that reside outside

of the image’s edges. We determine whether the pixels are outside of the frustum with a

discard function ffrustum(x, y, w, h):

ffrustum(x, y, w, h) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if (x < 0) ∥ (w − 1 < x),

1, if (y < 0) ∥ (h− 1 < y),

0, else,

(3.3)

where x, y are the reprojected screen space coordinates and h,w are the height and

width of the screen. We apply it to get the discarded percentage fpercentage(w, h) per

24

image by:

fpercentage(w, h) =

∑︁w
i=0

∑︁h
j=0 fdiscard(xi, yj, w, h)

wh
, (3.4)

where xi, yj are the reprojected coordinates retrieved with indices i, j running through the

size of the image’s w width and h height. Finally, we calculate the mean of the discarded

pixels through the length of the animation with:

1

N

N∑︂
i=1

fpercentagei(w, h), (3.5)

where n is the number of frames in the animation.

Next, we introduce a discard function for each of the feature buffers, where the current

frame’s values are compared to reprojected values. For each reprojected feature buffers

we also use bilinear sampling for the retrieved reprojected pixels [69].

First, we discard by the appearing disocclusions and occlusions using the reprojected

pixel’s world positions. These pixels have invalid history, as they appear behind moving

object, as was seen in Figure 3.2, or moving object occludes previously static pixels. We

form a metric, similar to the depth-based edge-detection estimator by [48]. Using current

frame’s world position vector pi and previous pi−1, we compare the distance of the two

and discard those that are too far apart:

fworldPosition(pi, pi−1, aworldPosition) =

⎧⎨⎩1, if ∥ −−−→pi−1pi ∥ > aworldPosition,

0, else,

where aworldPosition is a discard threshold value. This value is similar to the threshold

used by [48] in their transfer function, where we want to create a discard mask over all the

pixels whose distance is too far apart from each other. We have tuned this threshold for

each scene to mitigate the effect that each of the scenes is a different size. For example,

a small room should have tighter thresholds compared to a small city. Scenes can also

have been arbitrarily scaled to non-reasonable units.

Threshold selection affects a lot of the number of pixels being discarded. With world

position and normal feature buffers, we use similar values for each of the scenes, and

with direct and indirect lighting, we tuned the value so that the effect of the noise in Monte

Carlo path tracing would be minimized. Tuning the threshold due to direct and indirect

light is similar to the exposure control in cameras, where scenery with direct sunlight and

indoor lighting requires different settings when capturing photos. Each of the discard

functions can also be used with the Eq. (3.4) to get the screens to discard percentage

25

and taking the mean of that with the Eq. (3.5) to have an idea of the average discard

throughout the whole animation.

We know from the rendering equation Eq. (2.1) that the final color is linearly affected by

the pixels’ shading normal. Too big of a change in the normal may result in a different

color, and we should discard it as a low confidence pixel. The discard procedure with

normals is similar to that with disocclusions: we use the current and the previous frames’

shading normals ni and ni−1 and their vector distance to construct a discard function

fshadingNormal:

fshadingNormal(ni, ni−1, ashadingNormal) =

⎧⎨⎩1, if ∥ −−−→ni−1ni ∥ > ashadingNormal,

0, else,

where ashadingNormal is again a scene dependent threshold value.

Observing the incoming light of a pixel in the rendering equation (2.1) for the first light

bounce can be thought of as direct light. The emissive surfaces Le of the first bounce

often contribute most to the lighting, and if a powerful light, for example, the sun, is visible

by the pixel, its power has the most significant effect on the final color. We are interested,

for example, if the lights are no longer visible by the pixel, the area should be shadowed.

To compare these direct light changes, we form a direct light discard function fdir:

fdir(Ldiri , Ldiri−1
, adir) =

⎧⎨⎩1, if ∥
−−−−−−−→
Ldiri−1

Ldiri ∥ > adir,

0, else,

where Ldiri is the pixel’s direct radiance this frame and Ldiri−1
is from the previous frame,

and the adir is a scene dependant threshold value.

Finally, we observe the indirect radiance the pixel receives, which results from light re-

flected multiple times in the scenery before hitting a pixel. When the lights or the scenery

change, the light may bounce differently around the scene. To compare this indirect radi-

ance change, we create a discard function findir for the current frame’s pixel:

findir(Lindiri , Lindiri−1
, aindir) =

⎧⎨⎩1, if ∥
−−−−−−−−−→
Lindiri−1

Lindiri ∥ > aindir,

0, else,

where Lindiri and Lindiri−1
are the indirect values current and previous frame and aindir

is a discard threshold value tuned for that scene.

26

3.2.3 Animation Capturing Methods

Interactive virtual applications, like games, have many animations that provide temporal

movement. Capturing this movement would provide an accessible way to create bench-

marking datasets. However, to the best of our knowledge, there have not been any cap-

turing methods published that captures the animation as it happens in a 3D world and

records it to a general animation file. Still, similar methods, tools, and techniques exist

that could be utilized in the animation capture.

Standard capturing tools are the frame debuggers, which idea is to add tracing and

recording layer in between the application and the graphics API [70]. GPU manufacturers

and API providers each have their tools for this: NVidia NSight, Windows PIX DirectX12,

Intel GPA framework and Apple Frame Capture Debugging Tools [71, 72, 73, 74]. In addi-

tion to these, there are open source tools Renderdoc [70] and Apitrace [75]. These tools

record every call and their parameter values from the rendering application to the API in

practice. With such information, the debugger can examine how the frame was created

step by step, displaying every event that happened.

In order to capture longer animation, however, these tools are not very practical. They

support only capturing a small number of frames, and each capture halts the program for

a short moment. Moreover, applications often apply occlusion culling and level of detail

techniques before sending geometry to the GPU. Occlusion culling means getting rid of

rendering that is not seen by the current camera [76]. In the level of detail, the closer

the object is to the camera, the more defined geometry is required [77]. So the resulting

capture would have varying levels of geometry details, whereas the highest level would

be desired. These methods are examples of how only optimized geometry is rendered,

making it impossible to render the whole captured animation.

Capturing only the model transforms to animation has been supported by game en-

gines like Unity and Unreal Engine [78, 79]. In Unity, the feature is called GameOb-

jectRecorder. It allows users to record frame-by-frame properties of game objects during

the runtime [78]. In Unreal Engine 4 this feature is called Take recorder [79]. These can

be used, for example, in motion capture or pre-recording physics simulations, to be later

used in cinematics [79].

Some deep learning research is done on similar data to 3D rendering, mostly in motion

flow research datasets. Motion flow datasets "Play for benchmarks" and "Play for data"

modified games GPU shaders and captured required buffers [5, 6]. In the same manner,

a similar approach was made with MineCraft, where camera and feature buffers were

captured [80].

27

4 RELATED WORK

In this Chapter, we review previous work done for rendering benchmark datasets. First,

we look at processors’ rendering performance benchmarks and then publicly available

datasets with animations that could be used in benchmarking temporal methods’ quality.

Finally, we introduce Toasters and ORCA datasets that we use to compare our proposed

benchmarks.

4.1 Rendering Performance Benchmarks

Benchmarking the performance of microprocessors has standarized it’s place in ever on-

going continuum of achievements in semiconductor industry [81]. CPU and GPU bench-

marks test how quickly different processors solve predetermined tasks. We survey next

both commercial and open source benchmarks that has been created to benchmark ren-

dering capabilities.

Commercial benchmarks are designed to test different workloads to help consumers

and industries in their processor purchase choices. There are rendering benchmarks by

SPEC, UL benchmarks, Unigine game engine benchmark and Cinebench by Maxon [82,

83, 84, 85]. Rendering benchmarks takes in scene descriptions with camera settings,

geometry, material, and animation descriptions and outputs a performance score. Some

benchmarks also output how long rendering each step took and images or a video of the

rendering. For example, in UL benchmarks, they have an extensive test suite, with stress

tests and feature tests for mobile, PC, and VR. The VR tests, for example, tests whether

the computer is capable of supporting VR. They consist of different scenes and settings

and make standard game settings available for testing out. They measure frames per

second performance, processor bottlenecks, and use a scoring system. In some tests,

they test out command queues and run on Compute and Graphics pipelines. Different

sets have different graphics enabled like ray traced reflections, tessellation, transparent

materials, or particle simulations.

There are a few open-source benchmarks processor benchmarks released that test ren-

dering performance. PARSEC has benchmarks for graphics-related workload, like the

FACESIM which tests rendering with skeletal animation-like bone weights and the RAY-

TRACE testing ray tracing workload [86]. Splash-3 is designed to similar benchmark work-

28

loads with PARSEC, and GraalBench was released to test the performance of mobile

processors, both also having graphics workloads [87, 88]. These differ from commercial

benchmarks in that they have the source code and necessary assets available.

4.2 Rendering Benchmarks

The camera and the scenery should change so that the renderer would have reuse op-

portunities and challenges. In research, instead of using standard graphics benchmarks,

they create a small, simple animation for the given problem and do not release it to the

public. We review the previous work with temporal elements that could fulfill this research

rendering use case.

A Benchmark for Animated Ray Tracing (BART) was released in 2001 [89]. The bench-

mark has three scenes, Kitchen, Robots and Museum, that are described with Animated

File Format, which extends Neutral File Format by adding animation properties [90]. The

test suite has been released with benchmarking purposes to measure ray tracing perfor-

mance and has been used in dynamic ray tracing research [91]. Each scene is designed

with a specific stress goal in mind. The Kitchen scene has considerable differences in the

details’ density, memory cache performance with the inclusion of hierarchical and rigid-

body animations, and varying frame-to-frame coherency in the animations. The Robots

scene focuses on the hierarchical animation, distribution of objects in the scene, and

bounding volume overlapping. The final stress test is the Museum scene that focuses on

the efficiency of ray tracing acceleration structure rebuilding. They also propose meth-

ods to measure and compare error when datasets are used with ray tracing algorithms.

They propose a frame quality comparison with APSNR, the average of PSNR through

the animation, and a rendering performance comparison scheme, where the computer’s

computational efficiency is minimized.

Moana Island Scene is a complete animation description dataset to an island featured in

the 2016 Disney film Moana [92]. Disney provides a production-ready package to render

the shot in their proprietary renderer Hypherion, and an additional PBRT research ren-

derer version of the scene [21, 93]. It highlights some of the typical challenges in current

path tracing animation production. In the dataset, they mention a challenging amount of

geometry and complex volumetric light transport. The dataset is massive compared to

other released datasets: the unpacked animation file size is over 131 GB, and there are

over 15 billion primitives in Moana’s Motunui island. The release of the scene from a

highly treasured IP’s had its complications [1]. Nevertheless, it has seen some apprecia-

tion, as there has already been researched on how to manage and render the scene with

interactive ray tracing [94]. There are animations described only for the procedural ocean

and few slowly moving camera runs.

MPI Sintel Flow Dataset is a motion flow research dataset created from open source 3D

29

animation short film, Sintel [7, 95]. Sintel is a short fantasy animation. Blender Founda-

tion produced the animation as an open movie. The benchmark dataset contains similar

feature buffers to those used by temporal rendering algorithms. These rendered buffers

and described camera intrinsic and extrinsic parameters are shared open source, but ac-

tual animation and geometry data files are behind Blender Cloud paywall [96]. These

datasets do not come with 3D animation files, just the rendered frame images, so they

are not compatible with our dataset.

In addition to the Sintel, the Blender Foundation provide many openly available datasets

in their demo files [97]. The purpose of the demo files is to display different Blender

rendering features. Few datasets could be utilized in animation rendering benchmarks,

like the few animations designed for Blender’s rasterizer Eevee Wanderer, Temple, and

Ember Forest. There are also demos for physics simulations with animation, like the

Lava animation. All of the demo files are distributed in blend file format and have varying

licenses. However, none of these scenes have vastly moving geometry or cameras, so

these sets were not taken to the comparison.

KAIST Model Benchmarks have animated fracturing objects, cloth simulations, and walk-

ing animated characters [98]. Similarly, the UNC Dynamic Scene Benchmarks have an-

imations of breaking objects and non-rigid object deformations [99]. The downside of

these datasets is the lack of temporally challenging scenarios. They either have slowly

moving cameras, aged material models or do not contain moving lights and objects.

4.2.1 The Utah 3D Animation Repository

The Utah repository collection was created in 2001 by Ingo Wald [100]. Wald has previ-

ously done a body of research on ray tracing dynamic scenes. He has worked on Intel’s

Embree ray tracer and currently working at NVidia on RTX, which is a GPU with ray

tracing and acceleration hardware [101]. The datasets were released along with two re-

search articles focusing on dynamic ray tracing [91, 102]. His motivation behind setting

up a repository for the animations was to encourage more research on ray tracing for

interactive applications. He mentions the famous Stanford 3D scanning repository as an

inspiration [103]. We selected the Toasters dataset shown in Figure 4.1 to compare with

our animation.

Toasters dataset represents well how most of the released benchmark datasets are like,

like the UNC Dynamic Scene Benchmarks [99] and KAIST Model Benchmarks [98], with

no camera setup and vertices morphing around the scene. The datasets consist of key

frames as OBJ files, and their materials described with MTLs. We added a camera that

is pointing to the scene as is in the images in the repository. For the comparison ren-

ders, we convert the OBJ key frames to a deforming mesh animation with blender shape

keys [104].

30

Figure 4.1. Rendering of the Toasters scene from the Utah Animation Repository [100].
.

Figure 4.2. Renderings of the three compared ORCA scenes. From left the scenes are:
BISTROINTERIOR, BISTROEXTERIOR and EMERALDSQUARE [3, 67].

4.2.2 NVidia ORCA

Nvidia Open research Content Archive (ORCA) is a professionally-created 3D assets

library donated to research community. The donated sets include Amazon BISTROIN-

TERIOR and BISTROEXTERIOR for Lumberyard game engine, NVidia EMERALDSQUARE

released along with Falcor, and ZERODAY by digital creator ’Beeple’ [3, 67, 105, 106, 107].

BISTRO datasets and the EMERALDSQUARE can be observed in Figure 4.2. BISTROIN-

TERIOR and BISTROEXTERIOR were created to demonstrate new anti-aliasing and trans-

parency features of the Amazon Lumberyard engine. EMERALDSQUARE was similarly

published along with the release of the Falcor research rendering framework. All the files

are in FBX file format [108], and they contain camera animations, modern textures, and

modern geometry complexity. The datasets run for 60–100 seconds, and their animated

cameras have 11–17 key frames described. These datasets are the current state of the

31

art animations to be used as rendering benchmarks for temporal rendering. The only

problem with the datasets is that the camera flies through the scenery very slowly and

does not represent the typical use context for the algorithms. None of these datasets are

released for benchmarking purposes in mind, but they are great examples of what kind of

datasets are often used by the temporal research community.

To compare ORCA datasets in the same rendering context, we convert the files from the

original FBX format to glTF 2.0 format using Blender. The camera animation is flipped

compared to how the Falcor renderer displays it, so we apply a flip for each of the key

frames, so that the camera looks in the same direction as it does with the Falcor. We also

had to apply some scaling to the scenery so that one meter would represent around one

unit in Blender. We applied the suggested Falcor material models in the BISTROINTERIOR

dataset, namely the specific index of refraction values for glasses and liquids.

32

5 CAPTURING DATASET FROM CUBE 2:

SAUERBRATEN

In this chapter, we describe the steps to create the dynamic benchmarking datasets.

We start by describing why the glTF 2.0 was selected as the file format by comparing

it to other 3D formats, and then we present a high-level view of how we utilize the glTF

to define the dynamic benchmark. After that, we go in length to describe in detail the

capturing workflow from Cube 2: Sauerbraten. We first start by introducing the context

by taking a quick overview of the high-level game loop. We then describe offline and

online capturing, then show conversion from captured intermediate format to final glTF

file. Finally, we introduce the Unity VR setup for the TauEternalValleyVR dataset and how

the animation is played, and how the recording is done there, followed by intermediate

representation and conversion.

5.1 High Level Dataset Description in glTF 2.0

5.1.1 Comparison with Other 3D Animation Formats

The glTF 2.0 file format was released in 2015 by the Khronos Group [109]. glTF is a file

format specifically created to be easily used with graphics applications. Applications can

use it right away because glTF allows describing 3D primitives in OpenGL-ready binary

format. glTF specification consists of all information required to represent a graphical 3D

scene. There are similar formats to the selected glTF, with different tradeoffs. File formats

have been used a long time, and few have placed themselves as standard. Per format,

we will check its main focus and idea, what it is for, and why it has been created. There

are as many file formats as 3D rendering engines, so we will review only ones that would

be the appropriate alternative to glTF 2.0. These include FilmBox (FBX), Collada (DAE),

and Universal Scene Description (USD).

FilmBox (FBX) file format is an industry-standard for 3D asset exchange between editors

and game engines [108]. To be able to use FBX file format, a proprietary SDK must be

used to handle the import and export for the binary or ASCII FBX files [110]. It supports

all the essential 3D-defining elements: skins and meshes, textures, animation both rigid

and skeletal, material definitions, and embedding texture images to the file, lights, and

33

camera. However, the FBX does not support modern PBR material conventions, as it

uses Blinn-Phong to describe materials’ light reflectance. Its light description also lacks

the current PBR standards, as it does not use physically sensible units but arbitrary light

intensity values. The final and biggest downside is the fact that it does not have an official

file specification. Few reverse engineering efforts have been fruitful for one of the most

commonly used file formats, but overall being closed source makes it non-feasible for our

use case [111].

A file format called Collada is also from the Khronos group [112]. glTF 2.0 is an upgrade

and improvement over the Collada file format, so we prefer the newer one. Collada sup-

ports all the 3D defining elements, but due to ambiguous specifications, it has not been

widely adopted in 3D tools [112].

Universal Scene Description (USD) is a 3D file format from Pixar [113]. In addition to

the basic description of 3D properties, like meshes, lights, cameras, and textures, the

USD format supports multiuser scenarios and has layers that can be stacked on top of

each other. USD has been created for mainly two reasons. First, it provides a universal

language for assembling, packing, and editing 3D data across different 3D authoring tools.

Second, USD focuses on maximizing the collaboration on the same assets and scenes.

For our use case, one unavoidable downside is the lack of rigging supports, which is

left out of specification to keep the file format reasonably straightforward in the previously

mentioned targets. That, and the focus on being great for artistic iteration giving additional

complexity, we will not be using this file format.

There are two research renderers: Mitsuba 2 and PBRT [21, 114]. They both have their

formats for scene graphs and defining materials. Their formats, however, are not sup-

ported anywhere. Even though the renderers are used a ton in graphics research and

have been created mainly for it. Moreover, they lack rigging support that is a critical

feature for our use case.

The open-source and new glTF 2.0 is the best selection for us. It provides all the required

features, it does not have big overhead and is in an open standard format, that easily

supported by any graphics program and it is already widely supported [22, 109]. Next, we

will take a look at what features we need to represent the dataset.

5.1.2 Used glTF 2.0 Features and Extensions

A diagram of the hierarchy used to save the captured dataset is shown in Figure 5.1.

Starting from the top, we have a glTF SCENE at root. We make the SCENE node point

to the first node that we call WORLDORIGO. Like its name suggests, it is located at the

origo of the scene, at coordinates (0, 0, 0), and all the other nodes are placed as its child

in the hierarchy. Having everything under only one nodes allows the user’s of the dataset

34

Figure 5.1. High level figure how the GLTF 2.0 file format is used to compose the dataset.
Static and dynamic objects are divided in their own branches in the tree hierarchy.

easily to rotate and translate the scene if such need appears, and when, for example, the

dataset is imported to a renderer for further inspection or editing, all of its structures are

under one node.

We place two nodes under the WORLDORIGO node: STATICOBJECTS and DYNAMICOB-

JECTS. Straightforward naming convention tells us the purpose of these two nodes, the

STATICOBJECTS node should hold all the static geometry from the scene, and the DY-

NAMICOBJECTS all the objects that have animation channels described for them. With

this division, the clients of this dataset can quickly start without any animations if they

so desire and then continue to try with rigid and skeletal animations. This division also

helps with simulating an interactive ray tracing scenario, where acceleration structures

must be updated due to animations [115, 116]. For example, all of the scenery under

STATICOBJECTS node can be placed into a static ray tracing acceleration structure by

default and dynamic to rapidly updated one. We place static models, the map, and the

lights under the static branch, and dynamic camera, skeletal models, animated rigidbody

models under the DYNAMICOBJECTS branch.

We use two glTF 2.0 extensions in the dataset: punctual lights and image-based lighting.

Extensions are added with "extensions used" and "extension required" listings on the

top level of the glTF. The punctual lights are extensions for the glTF nodes [109, 117].

Each node can point to light to animate the underlying node like we would with any other

entities in the dataset. Node with the light extension must also point to corresponding

light specification in lights listing in the glTF [117]. Lights can be one of three types:

35

Figure 5.2. Cube 2: Sauerbraten is an open source fast paced multiplayer arena shooter
game. The screenshots captured from the game display different geometry and lighting
conditions in the game.

directional, point, or spot, from which only point lights are used with the dataset. The

extension requires to specify the color of the light and the intensity of it.

The other extension we use is the image-based lighting [118]. In the extension, we rep-

resent an environment map that contains environmental lighting for the scene. The en-

vironment map is an approximation of the sky for a virtual world defined in a texture,

and it contributes to lighting the scene [8]. Environment maps often are displayed as

high dynamic range images, which encodes, also, the directional light coming from the

sun [8]. We use an environment map with a permissive CC-0 license called "Kloofendal

48d Partly Cloudy" [119, 120]. The environment has outdoor scenery with a clear sky and

bright sun.

5.2 Sauerbraten Rendering Loop

The temporal challenge is an intrinsic aspect of games, so to produce an animation

dataset, we searched for a game that would have rapid movement for the camera and

the virtual world. In addition to these, the game must be open source to make edits and

apply our capturing methods. Therefore, we selected Cube 2: Sauerbraten [121]. It is

a fast-paced arena first-person shooter game. Other valid games we considered were

racing game SuperTuxKart, real-time strategy game 0 A.D., first-person sandbox game

MineTest and slow-paced stealth game The Dark Mod [122, 123, 124, 125]. We selected

the Sauerbraten, given that it would have the most significant potential of having quickly

moving 3D objects and cameras.

Cube 2: Sauerbraten, depicted in Figure 5.2, is a multiplayer arena shooter game, ini-

tially developed by Wouter van Oortmerssen and Lee Salzman [126]. It diverged from

the original Cube engine’s source code in 2002, with a focus on developing Cube’s main

ideas further, namely geometrical representation and simplifying Cube’s internal struc-

tures [127]. The work continues with open source contributions, and the latest version

36

Figure 5.3. Screen capture of the map Eternal Valley by ’Z3Ronic’, created with the help
of ’Hewho’, ’Cooper’ and ’Eihrul’ to the game Cube 2: Sauerbraten [132].

was released December 2020 [121]. The engine follows the steps of the early 2000 Id

Software’s game engines Quake and Doom, with a particular focus on its rendering and

world creation [128, 129]. As for its mesh and material formats, it uses Doom 3’s MD5 file

format [130, 131].

We selected a Sauerbraten map called Eternal Valley made by user named ’Z3Ronic’

for the dataset [132]. The map is a sizable outdoor scene, with the sky directly casting

sunlight to the valley illuminating half of it, which can be seen in Figure 5.3. The scene

has been released with Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Unported License (CC BY-NC-SA 3.0) [120]. This license allows us to edit the map and

update its textures and also permits us to publish the created dataset if we credit the

creator and share it with a similar license. Other licenses in the game for models and

textures are each licensed per item. Most of them have very similar licenses, varying

between Creative Commons Deed / Attribution Non-commercial Share-Alike (AT-NC-SA

2.5) to Creative Commons Attribution Non-Commercial (CC-BY-NC). Unfortunately, few

items in the game did not specify any license, and few had forbidding licenses, like no

derivatives (CC-BY-ND) [120]. We removed items with such licenses, as they would not

allow us to release this dataset as a graphics rendering benchmark.

To understand how and where to capture, we first present a simplified high-level game

loop diagram of Sauerbraten in Figure 5.4. A game match in Sauerbraten starts by loading

necessary resources for the selected game mode and the map. During loading, all the

map entities and the player characters will be unpacked and loaded to the memory. In

this loading step, the 3D models and animations will be unpacked from OBJ, MD3, and

37

Figure 5.4. High level diagram of the Sauerbraten’s game loop.

Figure 5.5. Flow diagram of how a frame is rendered in the Cube 2: Sauerbraten.

MD5 files to Sauerbraten’s internal representation of models and animations.

When all of the necessary data is in the memory, the game loop can start. It is looped

through many times per second to render a frame of the game to a screen, which we will

describe shortly with the rendering loop. Each game loop iteration follows the structure

game engines commonly have: first, the inputs are handled, then physics are updated

and simulated, then game artificial intelligence (AI) decides the following input for them

and executes it, and finally, a frame is rendered [25]. The loop stops when the game is

shut down or exited.

Physics and AI updates contain essential parts for the capturing process. They update the

state of all the entities in the world for the frame, and if required, their model transforms

so that the rendering step can render them in the correct location [27]. These two steps

may introduce new entities or remove existing ones during the gameplay.

Sauerbraten’s rendering is pretty sophisticated, so in this thesis, we focus only on the

parts related to capturing process [27]. We present a simplified high-level diagram of

the execution flow that Sauerbraten uses to render a frame and display it on a screen

in Figure 5.5. The process in Sauerbraten is executed in a single thread, making the

38

capturing process sequential.

Next, we will advance through the Figure 5.5 step by step and present some changes

to the rendering to enable successful capturing. First, the rendering starts by updating

the internal time to receive the delta from the previous timestamp. Here, a correctly

timestamped key frame capture is added, which will later form animations.

Next in the rendering loop, the dynamic lights are updated, and additional ones may be

added. Then the player’s new camera projection and all other necessary matrices view

matrices are calculated. The projection is updated to the camera’s new pitch and yaw

values and the player’s location in the scene. Then, at step 4. in Figure 5.5, the camera’s

frustum is used in occlusion culling and scissoring the objects not seen by the camera [76,

133]. We are interested in all of the geometry and animations happening in the scene, so

we disable the geometry culling.

We disable skybox rendering that occurs on step 4 in Figure 5.5, and then, during the ren-

dering of static objects, skeletal characters, entities, and first-person models, we capture

the required model transforms. These are the key to our capturing process that we will

describe in the next chapter. In addition to these steps in the diagram, there are numer-

ous steps, like grass and water generation and rendering the Heads Up Display [HUD],

that we skip, as they are not of interest in our capturing procedure. Most of these effects

we disable, but they do not modify the captured outcome, only lowers the time spent in

rendering.

5.3 Capture Workflow

In Cube 2: Sauerbraten, there are entirely static data, like the map and its objects, and

dynamic data, like the player characters. The game loads the necessary data to random

access memory at the start of the game to not disrupt the player experience during the

gameplay. To create a single file for the animation, we divide the work into two steps:

offline start-up and runtime captures. The workflow for capturing is depicted in Figure 5.6.

5.3.1 Offline Start Up Captures

In Cube 2: Sauerbraten, there are entirely static data, like the map and its objects, and

dynamic data, like the player characters. The game loads the necessary data to random

access memory at the start of the game to not disrupt the player experience during the

gameplay. We perform the offline capture just before the interactive game loop starts.

Capturing is performed during the loading resources step shown in Figure 5.4. At this

point, Sauerbraten models and Sauerbraten animations are formed and unpacked from

MD5Mesh and MD5Anim files. We capture this Sauerbratens internal model, as pre-

sented in Figure 5.6. Inspired by standard human-readable file formats, like OBJ [134],

39

Figure 5.6. Diagram shows how MD5Mesh and MD5Anim files together are parsed to the
Cube 2: Sauerbraten’s internal representation. We do the offline capture here for each
used model. Instances of the models move around during runtime, and their pose change
accordingly. Final vertex skinning happens in the vertex shaders. We capture the pose
and the model dual quaternion just before that, after all the game related changes have
been applied to the animations.

we record the offline resources to an intermediate format described in Table 5.1.

For each of the captured properties, we define a parsing header and the format for the

data. The headers start with a unique property identifier, like p in Table 5.1, which iden-

tifies that the following data in the string line holds a vertex position. The other header

keys are the mesh identifier, meshID, which describes which of the meshes this model

belongs. Character models commonly have multiple meshes in the Sauerbraten [131].

However, the armatures expressed with bind and inverse bind poses are shared with all

the meshes in the model.

Model properties’ data formats contain the data in the described format in Table 5.1. All of

the properties follow the standard practice used in rasterization that the data is connected

to a single vertex so that it can be efficiently processed with a vertex shader [8]. So

the normal is the surfaces normal at the point of the vertex, and joints show which joints

influence this vertex.

In Sauerbraten’s internal models, each vertex will have at least one joint influencing it and

a maximum of four joints. Therefore, there may not be all of the elements present for each

joint and weight. In such case, we show the data as symbol ? in Table 5.1.

Model’s armature is described with a resting bind pose b, and an inverse bind pose x. We

retrieve the bone hierarchy, as we add an identifier of the parent bone with jointID. In

addition, there is a parent index for each of the joints, which can be used to link the joints

40

Table 5.1. Captured properties of a single model to ModelMesh.txt files during the offline
capturing procedure.

model property parsing
header

data format

vertex position p x : y : z

mesh ID

normal n x : y : z

mesh ID

triangle index i i : j : k

mesh ID

texture coordinates t u : v

mesh ID

joint j x : y? : z? : w?

mesh ID

weight w x : y? : z? : w?

mesh ID

texture map a texture name

mesh ID

texture mask map g texture name

mesh ID

map u x : y : z

map name

camera settings c aspect ratio : yFov : zNear : zFar

bind pose b joint ID

joint name

parent index

rx : ry : rz : rw ; dx : dy : dz : dw

per joint

inverse bind pose b joint ID

joint name

parent index

rx : ry : rz : rw ; dx : dy : dz : dw

per joint

41

Table 5.2. Captured properties saved to Capture.txt of the game state during runtime.

captured property parsing header data format

frame time f frame number

frame time

static map model p rx : ry : rz : rw

capturable ID dx : dy : dz : dw

model path

camera transform t x : y : z

capturable ID pitch : yaw : roll

light l x : y : z

capturable ID R : G : B

light type

is dynamic?

model type

model transform m rx : ry : rz : rw

capturable ID dx : dy : dz : dw

model path

animated joints j rx : ry : rz : rw

capturable ID dx : dy : dz : dw

model path per joint

in a hierarchy. With bind pose, each dual quaternion of each joint holds the resting pose

in local space format. Inverse bind pose is the opposite joint transform, moving joints from

animation space pose to local joint space.

The selected map is recorded only by its name and the position offset its origin has from

Sauerbraten world’s origin coordinates. The name can be later used to retrieve the model

for the map.

The final captured properties are the textures. Each model has corresponding texture

maps and texture mask maps. The map has the base color, and the mask map has the

normal map and specular glossiness information. Data that is captured is only the name

of the used image file, then retrieved later.

5.3.2 Runtime Captures

Physics update and AI update depicted in the game loop Figure 5.4 updates each frame’s

state. This state holds transforms, blended skeletal animations, and other entity prop-

erties. We present a similar capturing strategy shown with the offline capturing in Table

5.2.

42

Each property is identified with a parsing header in the final Capture.txt. We call the

recorded entity instances Capturables, and add a unique identifier capturableID for them

with. Instances will appear and disappear during the rendering process, so we generate

a new running identifier for them on the fly. We bind the info declared with data format as

an animation key frame for the given Capturable instance.

At the start of a new frame, at step 1. in Figure 5.5, we capture a new moment in time with

a frame time. The captured moment is the time that will be applied as a key frame time to

all of the new animation transitions that happen during rendering this frame. Transitions

will end up in the intermediate file in chronological order simplifying the parsing process.

However, recording key frame times means that the capturing will be dependant on the

game rendering frequency. To ensure the recorded animations stay stable, we set a fixed

rendering rate to 60 frames per second.

Cube 2: Sauerbraten entities are specified to 5 different properties: static models, cam-

era, lights, dynamic models, and skeletal models. Mesh-related properties have model

paths declared in their header. The path can be later used to point to the correct offline

recorded ModelMesh.txt when converting to the final animation format.

Before capturing most of the properties, Figure 5.6 shows how Sauerbraten must first

update their model transform, or with skeletal armatures interpolate and blend between

animations. The transforms are represented as translations and rotations or as a dual

quaternion.

Moving player characters are described with both a model transform and a joint hierarchy,

and they share capturableID. The model transform places the model origin to the world

coordinates, and the armature transforms the joints in model space. Sauerbraten uses

a standard skinning procedure with the vertex shader like shown in Appendix A.1, so it

must prepare the animation joint matrix stack for each of the skeletons in the scene [27].

We capture the joints’ dual quaternions after being computed to their animated pose in

the model space, but just before they are converted to a local joint space with their parent

joint’s inverse bind pose [8, 25]. With such capturing strategy, we reduce the steps in the

conversion workflow described later.

Final Sauerbraten specific Capturables are the lights in the scene. They have a color, a

light type, a model type, and they can be either static or dynamic. We record the color with

RGB values the lights have internally in Sauerbraten. The light type declares whether

the light is a point light, a directional light, or a spotlight. However, we only use point lights

and other types we filter out during the capture parsing process. The dynamic or static

flag tells us whether or not the light will have model transforms. The final item in the light’s

parsing header is the model type. The type is a Sauerbraten specific identifier that tells us

whether the light entity is a flash, a bouncer, or a rocket [131]. We use different conversion

methods for each of these types to make them look very similar to how it appears in the

43

Figure 5.7. High-level class diagram of parsing the capture data to Capturables and
ModelMeshes.

game, even when the dataset is path traced.

5.4 Conversion Workflow

Next in the pipeline is to start building the glTF file. With the help of the parsing headers

shown in Tables 5.1 and 5.2, we parse the intermediate capture files to classes depicted

in Figure 5.7. These classes are Capturable, Frame, ModelMesh, and CompiledMesh.

Capturables contain the recorded entity instance information for each recorded models.

Captures may have Frames, which describe animation properties per key frame basis. If

Capturable does not have Frame, the Capturable is marked as static. Capturables will

always have ModelMesh connected to it. ModelMeshes are similar to the models in Cube

2: Sauerbraten, describing singular skeletal or rigidbody model [131]. Each ModelMesh

will have one or more of CompiledMeshes that describe the models’ 3D primitives.

Each compiled mesh can be put to the glTF file. They are placed in Meshes in the glTF

specification, with all the primitives described as corresponding buffers. For example, the

vertices from the compiled mesh can be placed under glTF Mesh components’ Position

attribute, which points to OpenGL buffer [109]. All the other primitives have a similar kind

of place in the glTF’s mesh. The meshes need to be only defined once, and then multiple

Capturables may point to the same mesh and its primitives.

The model transforms used to define the placements of these Capturables in the scene.

We use captured Frames to create animation channels for the translation, the rotation,

and the scaling that happens during the animation [109]. Recorded key frames are ap-

plied as-is for the animation. When the object is static, only the known placement is used

as the node’s transform matrix.

44

Figure 5.8. Diagram shows how the ModelMesh, CompiledMesh and Capturable are
contributing to different parts of the final glTF dataset. glTF has the skeletal data in
slightly different format than that of the MD5Mesh and MD5Anim or the Sauerbraten’s
internal model, so they must be rotated and converted correctly.

Because there are appearing and disappearing objects in the captured animations, we

use scaling to determine when the Capturable should be shown in the animation and

when not. We set the scale of the object to 0 for those key frames that the Capturable

should be invisible, and when it reappears, we return their correct scaling values to nor-

mal.

We convert dual quaternions to translations and rotations with the recorded skeletal ar-

matures and decompose the skeletal parent-child hierarchy. In the glTF specification, the

bind pose must be created with glTF’s nodes, placing them in a similar child-parent hierar-

chy. We place the joint orientations as the resting bind pose from ModelMesh like depicted

in Figure 5.8. Animations are simply applying the same kind of animations that was done

with the model matrices, but now we rotate and translate these individual bones [109].

The camera is simple to declare with glTF: we only need to place the parameters required

for a pinhole projection matrix. These are the information we have successfully captured

with aspect ratio, yFov, and xFov. Its animation follows the same procedure as any other

animation in glTF, in which the underlying node is animated.

The final things are the lights and like previously mentioned in Chapter 5.1.2, they are

simple extensions on top of glTF nodes. We utilize the earlier techniques to place the

node’s wrong spot in the world, and if the lights are dynamic, we add corresponding

translation and rotation animation channels for them. Furthermore, if the light appears

and disappears during the animation, we set their scale to zero, indicating that the light

should not be used in rendering on this frame. We recorded three types of lights during

45

the gameplay: bouncers, flashes, and rockets. For bouncers, we add and offset six lights

from its recorded position to around the bouncer and use the recorded color and values

weighted so that the rendered image looks approximately the same as it does in the

game. Rockets do not need any edits, and flashes stay only for a short amount of time.

We amplify the intensity values of the flashes and stay few frames longer to more closely

representing the effect that happens in the game.

5.5 Capturing Virtual Reality

The first-person camera does not have roll rotation, as we showed in the camera captures

process, where we capture only pitch and yaw. For this reason, we also want to produce

a dataset that would have a realistic VR setting in terms of temporal rendering. We load

a recorded glTF to Unity, then we setup simple VR movement with the Oculus 2 Unity

integration sample set, then use the Oculus Quest 2 VR set to view a previously recorded

gameplay match and finally capture a camera recording [135, 136].

Unity is a 3D game engine by Unity Technologies [135]. Unity has been used a lot re-

cently, for example, in games Fall Guys, Valorant, and also in different industries, like in

automotive by Audi and Toyota [137]. It also has excellent support for AR and VR. For

example, games BeatSaber and PokemonGo have been created with it [137]. We setup

a simple new Unity scene and add the animation file to it with glTF Unity tool package

UnityGLTF by the Khronos Group [138].

Oculus Quest 2 is a VR headset [136]. The headset runs Android application packages

without high-end host PC GPU, and it tracks the user headset motion with its cameras. A

VR SDK provided by Oculus comes with an example program that perfectly suits our use

case. The scene is configured to use both VR movement styles: walking and teleport-

ing [136]. We load our animation to the scene, add collisions to the static meshes, scale

the world correctly and configure the walking speed. We also add looping to the animator.

With this setup, we can walk around and see the game match as an animation running

like it was recorded from the game.

Finally, we add a script to the created Unity that records each animation run to a Cap-

ture.txt file, with only camera matrices for each of the frames. With the recordings, we

use the conversion workflow described earlier to convert all the animations to camera

runs and combine that with the previous recording we loaded to Unity. Now we have

captured and created ETERNALVALLEYVR glTF file that represents well how the camera

moves when used with VR applications.

46

6 RESULTS

In this chapter, we compare the produced datasets against the previously published work

discussed in Chapter 4.2. First, we present the details and properties of the animation

datasets. Then, we perform measurements on the camera’s spatial movement during the

animation. Finally, we reproject each frame’s pixels to the previous frame and compare

how much the frame should be discarded as invalid history. We discard the pixel if there

are significant enough changes in the expected feature buffers. The buffers we focus on

for these comparisons, are often used to guide in temporal shading reuse algorithms and

post processing effects, like the temporal anti-aliasing. Namely, we compare the changes

in the virtual camera’s view frustum, pixel’s world position, shading normal, direct and

indirect radiance.

6.1 Dataset Properties

Properties of each dataset are presented in Table 6.1. Proposed datasets are the first to

use the file format glTF 2.0, while others use the file formats FBX and Wavefront OBJ,

like discussed in Chapter 4.2. The face count gives some idea how complex each of the

scenes are ORCA scenes BISTROINTERIOR and BISTROEXTERIOR being the most com-

plex and Utah TOASTERS the least. Utah Animation repository is the only one compared

here that does not have an animated camera, and its geometry is animated with morph

targets.

Next, the texture details for each dataset can be seen in Table 6.2. On the other hand,

Table 6.1. Datasets’ properties.

file format file(s) size faces animated
camera

morph
targets

Eternal Valley FPS gLTF 1429 MiB 240 584 Yes No

Eternal Valley VR gLTF 1564 MiB 292 475 Yes No

Toasters wavefront obj 163 MiB 11 141 No Yes

Bistro Interior fbx 559 MiB 1 248 093 Yes No

Bistro Exterior fbx 1098 MiB 2 829 226 Yes No

Emerald Square fbx 2459 MiB 2 691 019 Yes No

47

Figure 6.1. Rendered image of the ETERNALVALLEYVR dataset. The roll rotation is
apparent throughout the animation.

Table 6.2. Datasets’ texture details.

material count texture count texture size material workflow

Eternal Valley FPS 89 314 1406 MiB PBR roughness metallic

Eternal Valley VR 89 314 1406 MiB PBR roughness metallic

Toasters 7 6 0,62 MiB Phong

Bistro Interior 74 212 512 MiB PBR roughness metallic

Bistro Exterior 132 417 984 MiB PBR roughness metallic

Emerald Square 220 701 2293 MiB PBR roughness metallic

material definitions reveal how densely the geometry reacts to the lighting condition and

how realistic the objects look when rendered. We note that Utah Animation has the least

complexity in its textures and uses Blinn-Phong shading with just simple diffuse materials,

whereas the rest of the datasets are using more modern physically-based materials. The

outdoor scenes BISTROEXTERIOR and EMERALDSQUARE have considerably higher count

of materials than others sets, with EMERALDSQUARE having over 700 different textures

used in 220 materials. ETERNALVALLEY datasets sit in the middle of the compared sets,

with 89 materials that use 314 textures.

Finally, the details of the animation of each dataset have been noted in Table 6.3. Ani-

mation sizes vary from around 200 frames to over 2400, ranging in 24 frames per second

from 8 seconds to 100 seconds long. The proposed dataset sits in the middle, with around

30 seconds of animation. The Utah animation TOASTERS have the animation run for the

whole duration, but being a morphed target animation, it lacks the object identifiers, mak-

48

Table 6.3. Datasets’ animation details.

animation
frames

static
objects

dynamic
rigid ob-
jects

armatures static
point
lights

dynamic
point
lights

Eternal Valley FPS 760 228 3100 34 46 1266

Eternal Valley VR 760 228 4333 32 46 1439

Toasters 248 - - - - -

Bistro Interior 1433 1414 0 0 4 0

Bistro Exterior 2404 1281 15 0 1 0

Emerald Square 1541 1030 0 0 2 0

Table 6.4. Change in camera’s position.

mean variance max

Eternal Valley FPS 4.711 1.741 10.855

Eternal Valley VR 0.078 0.252 8.859

Toasters 0 0 0

Bistro Interior 0.013 0.000 0.018

Bistro Exterior 0.055 0.001 0.143

Emerald Square 0.154 0.004 0.248

ing it non-trivial to utilize acceleration structures in the recent ray tracing APIs [101].

Like with the face count in Table 6.1, the object count adds to the information on how

complex the given scene is. There are remarkably fewer static objects in the proposed

datasets compared to the ORCA ones. The ETERNALVALLEY sets have more dynamic

rigidbody objects and dynamic lights than the compared datasets. The count of ani-

mated objects continues the trend of the dataset following closer to an actual setting of

an interactive scenario where the objects and lights movement is animated by the game

automatically, and not by an animator by hand. Lastly, the new proposed datasets are the

only sets with animated armatures.

6.2 Camera Movement

In dynamic scenes, in order for the renderer to have a temporal challenge in the rendering

process, either the camera or the scene must change their transform. To validate the

amount of challenge the proposed dataset opposes on a rendering client, we start by

taking a look at the camera’s change in position and rotation during the animation.

We calculate the distance the camera moves each frame using the Eq. (3.1). The calcu-

lated mean, variance, and the maximum value of the movement can be seen in Table 6.4.

49

Table 6.5. Change in camera’s rotation.

mean variance max

Eternal Valley FPS 1.931 4.526 13.665

Eternal Valley VR 1.857 8.142 33.092

Toasters 0 0 0

Bistro Interior Wine 0.136 0.012 0.322

Bistro Exterior 0.134 0.013 0.472

Emerald Square 0.258 0.023 0.554

The amount of camera transforms around the scene varies wildly between the datasets.

One noticeable aspect of the movement in the proposed dataset are the continuous small

changes in its motion compared to other datasets. Continuous change is shown in the

more considerable variance in the ETERNALVALLEY datasets. Other datasets keep the

constant value for a while, then jump abruptly to a new one. This shines some light on the

main difference between the proposed dataset and the previous work: our dataset’s ani-

mation key frames have been recorded during the gameplay with high frequency, whereas

the previous work has the key frames placed by an animator, letting the camera fly be-

tween marked points linearly.

Similarly to the position, we calculate the camera’s intrinsic geodesic distance between

the two orientation quaternions for each frame in the animation using Eq. (2.4), take their

average, variance, and maximum value, and present them in Table 6.5.

The same variance difference can be noticed in the datasets’ rotations in Table 6.5. Fur-

thermore, shown max values are much more significant in the proposed sets. The max-

imum value can be considered the worst-case scenario: how significant a change will

be between two different frames. Proposed datasets’ maximum deltas are about 20×
compared to their average changes show that there are some challenging situations for

temporal algorithms, whereas the compared previous works’ max values are only 3×
higher than the average values. Regardless of the mean of the positional change being

only slightly higher than the movement in BISTROINTERIOR and BISTROEXTERIOR, and

more minor in EMERALDSQUARE, the diminishingly low variance in these scenes shows

how predictable the movement is.

While the position is dependent on the scale of the world, giving only a little information

of the temporal challenge it proposes on the renderer, the camera’s rotation is not. The

camera can rotate a maximum of 180 degrees per frame, so it is a better-suited metric

when comparing datasets’ camera activity. Rotation reveals new scenery previously not

seen by the camera, so the bigger the change, the less can be reused from the previous

frame. Proposed datasets have spikes throughout the animation that have significantly

more significant angular change than the previous work. This is shown as variance in

50

Figure 6.2. Rendering of Sponza scene with camera turned 25 degrees from left with
pitch rotation upwards, center image yaw rotation to left and on the right roll rotation [2].
On red are the frustum discard areas that does not have without any valid temporal history
data. Quick movements especially in yaw direction rapidly invalidates all the available
history, where as roll rotation can invalidate only the corners.

Table 6.6. Change in camera’s rotation per axis.

pitch
mean
(degrees
/ frame)

pitch
variance
(degrees /
frame)

yaw
mean
(degrees
/ frame)

yaw vari-
ance
(degrees
/ frame)

roll mean
(degrees /
frame)

roll vari-
ance
(degrees /
frame)

Eternal Valley
FPS

1.088 2.450 3.454 17.468 0.004 0.000

Eternal Valley
VR

0.939 1.298 3.365 33.086 0.557 0.405

Toasters 0 0 0 0 0 0

Bistro Interior 0.053 0.004 0.266 0.046 0.002 0.000

Bistro Exterior 0.014 0.000 0.265 0.051 0.004 0.000

Emerald
Square

0.044 0.002 0.511 0.095 0.000 0.000

rotation in Table 6.5.

The type of the rotation also matters for the temporal rendering challenge: the same

amount of yaw rotation requires more frustum rendering than roll rotation like seen in

Figure 6.2, but the roll rotation might be more challenging to temporally accumulate than

simple horizontal or vertical rotation [52].

We calculate the change in rotation around each of the camera’s three-axis, pitch, yaw,

and roll, individually using Euler angles with Eq. (3.2), and compare their means and

variances in Table 6.6.

The proposed datasets have a more considerable change in all angles during the an-

imation than any other set. Moreover, compared to the others, the dataset ETERNAL-

VALLEYVR seems to be the only dataset with considerable roll rotation, like seen in the

rendered image in Figure 6.1. This can be explained by the fact that it was captured

from a virtual reality setup, in which the user constantly sways their head slightly during

the recording. The most active compared animation EMERALDSQUARE has the highest

51

average in yaw rotation of the previous work, but it is still 6× smaller than the proposed

dataset. Furthermore, the variance of that set is 649× more minor in pitch rotation and

348× smaller in yaw rotation.

Time-series graphs of these rotational changes can be found in Appendix A.2.

6.3 Discard Percentage

The final aspect of the datasets we are interested in is the discard percentages. To ac-

celerate the rendering of an image, the renderer can guide its efforts to low confidence

areas. Temporal methods accumulate pixel’s history information but cannot do so when a

new frame’s pixel reveals new geometry or the history becomes invalid as the settings for

the lighting of the pixel have changed. Our experimental discard method follows essen-

tially the idea behind temporal accumulation methods: using the information in previous

frames feature buffers to validate how usable the history information is. The discarding

process starts by first reprojecting the pixel to the previous frame, then use the cam-

era’s rotational movement to discard frustum edges fresh for the given frame, and finally,

continue to compare feature buffers with each pixel.

We render datasets’ animation with Blender’s path tracer Cycles and extract feature

buffers, namely world-space positions and normals, direct and indirect radiance, sepa-

rately [139]. Blender’s Cycles is a path tracing renderer with a plethora of supported

features. Notably, the ability to render skeletal armatures was one key reason to select

it as the renderer for the comparisons. Other renderers designed for research purposes,

like PBRT or Mitsuba 2, lack this feature [21, 114]. All of the feature buffers are rendered

with resolution 1920×1080 pixels, and for the indirect buffer, the pixels are sampled 1024

times with 12 next event estimation light bounces. We selected these configurations to

have reasonable rendering time and good enough sample count so that the indirect buffer

has time to converge enough so that the noise is mostly mitigated. Rendering in higher

resolution, using a bigger sample size and a longer sample path would result in higher

precision discard percentages, but selected rendering configuration allows us to compare

the datasets.

For each inspected feature buffer, we take the discard percentage for each scene with the

corresponding discard functions presented in Chapter 3. Finally, we sum the per frame

percentages with Eq. (3.4) and show the mean of the percentages in Table 6.7.

ETERNALVALLEYFPS has the biggest percentage of discarded pixels due to frustum dis-

occlusion, and ETERNALVALLEYVR coming right behind. Both datasets have a much

more significant frustum discard percentage compared to the ORCA sets. This lines up

with the previously recognized change in the motion of the camera. The same trend

continues with all of the discard properties, ETERNALVALLEYFPS having the highest dis-

52

Table 6.7. The percentage of discarded pixel averaged over the length of the animation.

frustum % world
position
%

shading
normal %

direct
radiance
%

indirect
radiance
%

Eternal Valley FPS 29.085 33.521 47.671 8.583 6.403

Eternal Valley VR 19.255 29.956 23.455 5.824 8.077

Toasters 0.0 0.214 1.073 0.973 0.432

Bistro Interior 0.140 2.156 0.962 2.769 0.718

Bistro Exterior 1.192 4.502 2.207 0.706 0.401

Emerald Square 1.781 11.416 17.461 4.983 0.432

card rate, and ETERNALVALLEYVR the second most. The dataset EMERALDSQUARE

does have quite a sizeable discard percentage with world position and shading normal

compared to the other ORCA sets. This most likely is explained due to the amount of

vegetation the scene has, as it is filled with bushes and trees filled with individual leaves.

Proposed datasets show also higher discard due to changing lighting conditions: ETER-

NALVALLEYVR seems to have the greatest change in the indirect radiance of all the

scenes. ETERNALVALLEYFPS on the other hand, has the most change with directional

lighting conditions. BISTROINTERIOR and EMERALDSQUARE do have quite a bit of change

in their direct radiance, but they are still much lower than the proposed sets.

53

7 CONCLUSION

In this thesis, we sought to determine the current status of temporal rendering and bench-

marks available to challenge the methods and produce applicable dynamic benchmarks.

There are no publicly available datasets that can bring forward issues temporal reuse

methods have. Issues include ghosting, blurring, and aliasing in rasterization, judder in

VR, and light update lag in real-time ray and path tracing.

This thesis produces two datasets, ETERNALVALLEYVR and ETERNALVALLEYFPS, that

contain an excellent basis to benchmark temporal rendering. While the proposed scenes

have fewer surface faces than most of the compared ORCA datasets, they have a higher

amount of dynamically moving objects and are the only sets with skeletal animations, as

shown in Chapter 6.1. We show that these produced datasets exceed previously released

benchmarks in their camera’s motion, in both cameras positional change, and in their ro-

tation in the Chapter 6.2. The camera’s animated transform determines how challenging

the temporal reuse cases are, and we exceed the previously released datasets. The

amount of challenge is confirmed even further in the discard percentages shown in Table

6.7, where we show that the features used as input to most of the temporal reuse algo-

rithms change more rapidly on our animations. In summary, we confirm that our datasets

have the most considerable potential of being used as benchmarks for temporal reuse

algorithms.

In addition to the two datasets, we introduced a framework that can capture the anima-

tions out of an interactive system, and we verified that it works by producing our datasets.

Interesting future work would be to generalize the framework further and use it in different

interactive systems. The comparison metrics could also be extended to cover emissive

triangles more depth, which are often commonplace in path tracing settings. A straight-

forward extension would also be to separate the direct and indirect radiance to diffuse,

glossy, transmissive, and volumetric passes. The division would allow finding a bench-

mark that excels in challenging temporal methods in cases where the data flows from

reflections indirectly, and more robust motion vectors must be used.

54

REFERENCES

[1] Tamstorf, R. and Pritchett, H. The challenges of releasing the Moana Island

Scene. (2019). DOI: 10.2312/sr.20191223.

[2] McGuire, M. Computer Graphics Archive. 2017. URL: https://casual-effect
s.com/data (visited on 03/18/2021).

[3] Nicholas Hull, K. A. and Benty, N. NVIDIA Emerald Square, Open Research Con-

tent Archive (ORCA). July 2017. URL: http://developer.nvidia.com/orca
/nvidia-emerald-square.

[4] Abrash, M. Why virtual reality is so hard (and where it might be going). 2013. URL:

https://media.steampowered.com/apps/valve/2013/MAbrashGDC2013.p
df (visited on 03/18/2021).

[5] Richter, S. R., Hayder, Z. and Koltun, V. Playing for Benchmarks. IEEE Interna-

tional Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29,

2017. 2017, 2232–2241. DOI: 10.1109/ICCV.2017.243. URL: https://doi.o
rg/10.1109/ICCV.2017.243.

[6] Richter, S. R., Vineet, V., Roth, S. and Koltun, V. Playing for Data: Ground Truth

from Computer Games. European Conference on Computer Vision (ECCV). Ed.

by B. Leibe, J. Matas, N. Sebe and M. Welling. Vol. 9906. LNCS. Springer Inter-

national Publishing, 2016, 102–118. DOI: arXiv:1608.02192.

[7] Butler, D. J., Wulff, J., Stanley, G. B. and Black, M. J. A naturalistic open source

movie for optical flow evaluation. European Conf. on Computer Vision (ECCV).

Ed. by A. Fitzgibbon et al. (Eds.) Part IV, LNCS 7577. Springer-Verlag, Oct. 2012,

611–625. DOI: 10.1007/978-3-642-33783-3_44.

[8] Akenine-Möller, T., Haines, E. and Hoffman, N. Real-time rendering. Crc Press,

2019.

[9] The Khronos Group, Inc. OpenGL 4.5 Reference Pages. 2021. URL: https://ww
w.khronos.org/registry/OpenGL-Refpages/gl4/ (visited on 03/16/2021).

[10] The Khronos Group, Inc. Vulkan. 2021. URL: https://www.khronos.org/vulk
an/ (visited on 03/16/2021).

[11] Microsoft Corporation. Direct3D 12 reference. 2019. URL: https://docs.micr
osoft.com/en-us/windows/win32/direct3d12/direct3d-12-reference
(visited on 03/16/2021).

[12] Kajiya, J. T. The Rendering Equation. SIGGRAPH Comput. Graph. 20.4 (Aug.

1986), 143–150. ISSN: 0097-8930. DOI: 10.1145/15886.15902.

https://doi.org/10.2312/sr.20191223
https://casual-effects.com/data
https://casual-effects.com/data
http://developer.nvidia.com/orca/nvidia-emerald-square
http://developer.nvidia.com/orca/nvidia-emerald-square
https://media.steampowered.com/apps/valve/2013/MAbrashGDC2013.pdf
https://media.steampowered.com/apps/valve/2013/MAbrashGDC2013.pdf
https://doi.org/10.1109/ICCV.2017.243
https://doi.org/10.1109/ICCV.2017.243
https://doi.org/10.1109/ICCV.2017.243
https://doi.org/arXiv:1608.02192
https://doi.org/10.1007/978-3-642-33783-3_44
https://www.khronos.org/registry/OpenGL-Refpages/gl4/
https://www.khronos.org/registry/OpenGL-Refpages/gl4/
https://www.khronos.org/vulkan/
https://www.khronos.org/vulkan/
https://docs.microsoft.com/en-us/windows/win32/direct3d12/direct3d-12-reference
https://docs.microsoft.com/en-us/windows/win32/direct3d12/direct3d-12-reference
https://doi.org/10.1145/15886.15902

55

[13] Immel, D. S., Cohen, M. F. and Greenberg, D. P. A Radiosity Method for Non-

Diffuse Environments. SIGGRAPH Comput. Graph. 20.4 (Aug. 1986), 133–142.

ISSN: 0097-8930. DOI: 10.1145/15886.15901.

[14] Karis, B. and Games, E. Real shading in unreal engine 4. Proc. Physically Based

Shading Theory Practice 4 (2013), 3.

[15] Nicodemus, F. E. Directional Reflectance and Emissivity of an Opaque Surface.

Appl. Opt. 4.7 (July 1965), 767–775. DOI: 10.1364/AO.4.000767.

[16] Torrance, K. E. and Sparrow, E. M. Theory for off-specular reflection from rough-

ened surfaces. Josa 57.9 (1967), 1105–1114. DOI: 10.5555/136913.136924.

[17] Cook, R. L. and Torrance, K. E. A reflectance model for computer graphics. ACM

Transactions on Graphics (ToG) 1.1 (1982), 7–24. DOI: 10.1145/357290.35729
3.

[18] Trowbridge, T. and Reitz, K. P. Average irregularity representation of a rough sur-

face for ray reflection. JOSA 65.5 (1975), 531–536. DOI: 10.1364/JOSA.65.000
531.

[19] Walter, B., Marschner, S. R., Li, H. and Torrance, K. E. Microfacet Models for Re-

fraction through Rough Surfaces. Rendering techniques 2007 (2007), 18th. DOI:

10.5555/2383847.2383874.

[20] Phong, B. T. Illumination for Computer Generated Pictures. Commun. ACM 18.6

(June 1975), 311–317. ISSN: 0001-0782. DOI: 10.1145/360825.360839.

[21] Pharr, M., Jakob, W. and Humphreys, G. Physically based rendering: From theory

to implementation. Morgan Kaufmann, 2016.

[22] Blender Foundation. Blender. 2021. URL: https://www.blender.org/about/
(visited on 03/01/2021).

[23] Veach, E. and Guibas, L. J. Optimally Combining Sampling Techniques for Monte

Carlo Rendering. Proceedings of the 22nd Annual Conference on Computer

Graphics and Interactive Techniques. SIGGRAPH ’95. New York, NY, USA:

Association for Computing Machinery, 1995, 419–428. ISBN: 0897917014. DOI:

10.1145/218380.218498.

[24] Ahn, S. H. OpenGL Transformation. 2019. URL: http://www.songho.ca/openg
l/gl_transform.html (visited on 03/16/2021).

[25] Gregory, J. Game engine architecture. crc Press, 2018.

[26] Hoag, D. Apollo guidance and navigation: Considerations of apollo imu gimbal

lock. Canbridge: MIT Instrumentation Laboratory (1963), 1–64.

[27] Cube 2: Sauerbraten (game engine & FPS). 2021. URL: https://sourceforge
.net/projects/sauerbraten/ (visited on 03/15/2021).

[28] Ed., S. W. R. H. L. P. F. H. M. R. S. and Corr. M., D. H. or. II. On quaternions; or

on a new system of imaginaries in algebra. The London, Edinburgh, and Dublin

Philosophical Magazine and Journal of Science 25.163 (1844), 10–13. DOI: 10.1
080/14786444408644923.

https://doi.org/10.1145/15886.15901
https://doi.org/10.1364/AO.4.000767
https://doi.org/10.5555/136913.136924
https://doi.org/10.1145/357290.357293
https://doi.org/10.1145/357290.357293
https://doi.org/10.1364/JOSA.65.000531
https://doi.org/10.1364/JOSA.65.000531
https://doi.org/10.5555/2383847.2383874
https://doi.org/10.1145/360825.360839
https://www.blender.org/about/
https://doi.org/10.1145/218380.218498
http://www.songho.ca/opengl/gl_transform.html
http://www.songho.ca/opengl/gl_transform.html
https://sourceforge.net/projects/sauerbraten/
https://sourceforge.net/projects/sauerbraten/
https://doi.org/10.1080/14786444408644923
https://doi.org/10.1080/14786444408644923

56

[29] Shoemake, K. Animating Rotation with Quaternion Curves. SIGGRAPH Comput.

Graph. 19.3 (July 1985), 245–254. ISSN: 0097-8930. DOI: 10.1145/325165.325
242.

[30] Huynh, D. Q. Metrics for 3D Rotations: Comparison and Analysis. J. Math. Imaging

Vis. 35.2 (Oct. 2009), 155–164. ISSN: 0924-9907. DOI: 10.1007/s10851-009-0
161-2.

[31] Adobe Systems Incorporated. Mixamo. 2021. URL: https://www.mixamo.com/
(visited on 03/17/2021).

[32] Magnenat-Thalmann, N., Laperrire, R. and Thalmann, D. Joint-dependent local

deformations for hand animation and object grasping. In Proceedings on Graphics

interface’88. Citeseer. 1988. DOI: 10.5555/102313.102317.

[33] Nintendo Co., Ltd. The Legend Of Zelda Ocarina Of Time Instruction Booklet.

1998. URL: https://cdn02.nintendo-europe.com/media/downloads/game
s_8/emanuals/nintendo_8/Manual_Nintendo64_TheLegendOfZeldaOcari
naOfTime_EN.pdf (visited on 03/07/2021).

[34] Pixar Animation Studios. Toy Story. 2021. URL: https://www.pixar.com/feat
ure-films/toy-story (visited on 03/07/2021).

[35] Lewis, J. P., Cordner, M. and Fong, N. Pose Space Deformation: A Unified Ap-

proach to Shape Interpolation and Skeleton-Driven Deformation. Proceedings of

the 27th Annual Conference on Computer Graphics and Interactive Techniques.

SIGGRAPH ’00. USA: ACM Press/Addison-Wesley Publishing Co., 2000, 165–

172. ISBN: 1581132085. DOI: 10.1145/344779.344862.

[36] Tarini, M., Panozzo, D. and Sorkine-Hornung, O. Accurate and efficient lighting

for skinned models. Computer Graphics Forum. Vol. 33. 2. Wiley Online Library.

2014, 421–428. DOI: 10.1111/cgf.12330.

[37] Kavan, L., Collins, S., O’Sullivan, C. and Zara, J. Dual quaternions for rigid trans-

formation blending. Technical report, Trinity College Dublin (2006).

[38] Alexa, M., Behr, J. and Müller, W. The morph node. Proceedings of the fifth sym-

posium on Virtual reality modeling language (Web3D-VRML). 2000, 29–34. DOI:

10.1145/330160.330172.

[39] Sutherland, I. E., Sproull, R. F. and Schumacker, R. A. A Characterization of

Ten Hidden-Surface Algorithms. ACM Comput. Surv. 6.1 (Mar. 1974), 1–55. ISSN:

0360-0300. DOI: 10.1145/356625.356626.

[40] Yang, L., Liu, S. and Salvi, M. A survey of temporal antialiasing techniques. Com-

puter Graphics Forum. Vol. 39. 2. Wiley Online Library. 2020, 607–621. DOI: 10.1
111/cgf.14018.

[41] Yang, L., Nehab, D., Sander, P., Sitthi-amorn, P., Lawrence, J. and Hoppe, H.

Amortized supersampling. eng. ACM transactions on graphics 28.5 (2009), 1–

12. ISSN: 0730-0301. DOI: 10.1145/1618452.1618481.

https://doi.org/10.1145/325165.325242
https://doi.org/10.1145/325165.325242
https://doi.org/10.1007/s10851-009-0161-2
https://doi.org/10.1007/s10851-009-0161-2
https://www.mixamo.com/
https://doi.org/10.5555/102313.102317
https://cdn02.nintendo-europe.com/media/downloads/games_8/emanuals/nintendo_8/Manual_Nintendo64_TheLegendOfZeldaOcarinaOfTime_EN.pdf
https://cdn02.nintendo-europe.com/media/downloads/games_8/emanuals/nintendo_8/Manual_Nintendo64_TheLegendOfZeldaOcarinaOfTime_EN.pdf
https://cdn02.nintendo-europe.com/media/downloads/games_8/emanuals/nintendo_8/Manual_Nintendo64_TheLegendOfZeldaOcarinaOfTime_EN.pdf
https://www.pixar.com/feature-films/toy-story
https://www.pixar.com/feature-films/toy-story
https://doi.org/10.1145/344779.344862
https://doi.org/10.1111/cgf.12330
https://doi.org/10.1145/330160.330172
https://doi.org/10.1145/356625.356626
https://doi.org/10.1111/cgf.14018
https://doi.org/10.1111/cgf.14018
https://doi.org/10.1145/1618452.1618481

57

[42] Halton, J. H. Algorithm 247: Radical-Inverse Quasi-Random Point Sequence.

Commun. ACM 7.12 (Dec. 1964), 701–702. ISSN: 0001-0782. DOI: 10.1145/35
5588.365104.

[43] Sobol’, I. M. On the distribution of points in a cube and the approximate evaluation

of integrals. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki 7.4 (1967),

784–802. DOI: 10.1016/0041-5553(67)90144-9.

[44] Scherzer, D., Yang, L. and Mattausch, O. Exploiting temporal coherence in real-

time rendering. ACM SIGGRAPH ASIA 2010 Courses. 2010, 1–26. DOI: 10.114
5/1900520.1900544.

[45] Zimmer, H., Rousselle, F., Jakob, W., Wang, O., Adler, D., Jarosz, W., Sorkine-

Hornung, O. and Sorkine-Hornung, A. Path-Space Motion Estimation and Decom-

position for Robust Animation Filtering. Comput. Graph. Forum 34.4 (July 2015),

131–142. ISSN: 0167-7055. DOI: 10.5555/2858834.2858848.

[46] Epic Games, Inc. The Unreal Engine 4 source code. 2015. URL: https://www.u
nrealengine.com/en-US/ue4-on-github (visited on 03/09/2021).

[47] Wihlidal, G. 4k Checkerboard in Battlefield 1 and Mass Effect Andromeda. 2017.

URL: https://www.ea.com/frostbite/news/4k-checkerboard-in-battl
efield-1-and-mass-effect-andromeda (visited on 03/09/2021).

[48] McCool, M. D. Anisotropic diffusion for monte carlo noise reduction. ACM Transac-

tions on Graphics (TOG) 18.2 (1999), 171–194. DOI: 10.1145/318009.318015.

[49] Lottes, T. TSSAA (Temporal Super-Sampling AA). Accessed 2021 via Web

Archive: "http://web.archive.org/". URL: http://timothylottes.blogspot.co
m/2011_04_01_archive.html (visited on 04/06/2021).

[50] Karis, B. High-quality temporal supersampling. Advances in Real-Time Rendering

in Games, SIGGRAPH Courses 1.10.1145 (2014), 2614028–2615455.

[51] Salvi, M. An Excursion in Temporal Supersampling. URL: http://developer.d
ownload.nvidia.com/gameworks/events/GDC2016/msalvi_temporal_sup
ersampling.pdf (visited on 04/06/2021).

[52] Andersson, P., Nilsson, J., Salvi, M., Spjut, J. B. and Akenine-Möller, T. Temporally

Dense Ray Tracing. High Performance Graphics (Short Papers). 2019, 33–38.

DOI: 10.2312/hpg.20191193.

[53] Herzog, R., Eisemann, E., Myszkowski, K. and Seidel, H.-P. Spatio-temporal up-

sampling on the GPU. Proceedings of the 2010 ACM SIGGRAPH symposium on

Interactive 3D Graphics and Games. 2010, 91–98. DOI: 10.1145/1730804.173
0819.

[54] Aalto, T. Towards Cinematic Quality, Antialiasing in ’Quantum Break’. 2016. URL:

https://www.gdcvault.com/play/1023870/Towards-Cinematic-Quality
-Antialiasing-in (visited on 03/18/2021).

[55] Leadbetter, R. Inside PlayStation 4 Pro: How Sony made the first 4K games con-

sole. URL: https://www.eurogamer.net/articles/digitalfoundry-201

https://doi.org/10.1145/355588.365104
https://doi.org/10.1145/355588.365104
https://doi.org/10.1016/0041-5553(67)90144-9
https://doi.org/10.1145/1900520.1900544
https://doi.org/10.1145/1900520.1900544
https://doi.org/10.5555/2858834.2858848
https://www.unrealengine.com/en-US/ue4-on-github
https://www.unrealengine.com/en-US/ue4-on-github
https://www.ea.com/frostbite/news/4k-checkerboard-in-battlefield-1-and-mass-effect-andromeda
https://www.ea.com/frostbite/news/4k-checkerboard-in-battlefield-1-and-mass-effect-andromeda
https://doi.org/10.1145/318009.318015
http://timothylottes.blogspot.com/2011_04_01_archive.html
http://timothylottes.blogspot.com/2011_04_01_archive.html
http://developer.download.nvidia.com/gameworks/events/GDC2016/msalvi_temporal_supersampling.pdf
http://developer.download.nvidia.com/gameworks/events/GDC2016/msalvi_temporal_supersampling.pdf
http://developer.download.nvidia.com/gameworks/events/GDC2016/msalvi_temporal_supersampling.pdf
https://doi.org/10.2312/hpg.20191193
https://doi.org/10.1145/1730804.1730819
https://doi.org/10.1145/1730804.1730819
https://www.gdcvault.com/play/1023870/Towards-Cinematic-Quality-Antialiasing-in
https://www.gdcvault.com/play/1023870/Towards-Cinematic-Quality-Antialiasing-in
https://www.eurogamer.net/articles/digitalfoundry-2016-inside-playstation-4-pro-how-sony-made-a-4k-games-machine
https://www.eurogamer.net/articles/digitalfoundry-2016-inside-playstation-4-pro-how-sony-made-a-4k-games-machine

58

6-inside-playstation-4-pro-how-sony-made-a-4k-games-machine
(visited on 03/20/2021).

[56] Keshavarz, B., Hecht, H. and Lawson, B. Visually induced motion sickness: char-

acteristics, causes, and countermeasures. Handbook of virtual environments: De-

sign, implementation, and applications (2014), 648–697. DOI: 10.1201/b17360-
32.

[57] Rebenitsch, L. and Owen, C. Review on cybersickness in applications and visual

displays. Virtual Reality 20.2 (2016), 101–125. DOI: 10.1007/s10055-016-028
5-9.

[58] So, R. H. and Griffin, M. J. Effects of time delays on head tracking performance

and the benefits of lag compensation by image deflection. Flight Simulation Tech-

nologies Conference, New Orleans, Louisiana. 1991.

[59] LaViola Jr, J. J. A discussion of cybersickness in virtual environments. ACM Sigchi

Bulletin 32.1 (2000), 47–56. DOI: 10.1145/333329.333344.

[60] Sherman, C. R. Motion sickness: review of causes and preventive strategies. Jour-

nal of travel medicine 9.5 (2002), 251–256. DOI: 10.2310/7060.2002.24145.

[61] Antonov, M. Asynchronous Timewarp Examined. 2015. URL: https://develop
er.oculus.com/blog/asynchronous-timewarp-examined/?locale=fi_FI
(visited on 03/09/2021).

[62] Abrash, M. Down the VR rabbit hole: Fixing judder. (2013). Accessed 2021 via

Web Archive: "http://web.archive.org/". URL: http://blogs.valvesoftware.c
om/abrash/down-the-vr-rabbit-hole-fixing-judder/.

[63] Liu, E. DLSS 2.0 - Image reconstruciton for Real-time Rendering with Deep Learn-

ing. URL: http://developer.download.nvidia.com/video/gputechconf
/gtc/2020/presentations/s22698-dlss-image-reconstruction-for-r
eal-time-rendering-with-deep-learning.pdf (visited on 03/04/2021).

[64] Looman, T. Exploring DLSS 2.0 in Unreal Engine 4.26. 2021. URL: https://www
.tomlooman.com/dlss-unrealengine/ (visited on 03/18/2021).

[65] Koskela, M., Immonen, K., Mäkitalo, M., Foi, A., Viitanen, T., Jääskeläinen, P.,

Kultala, H. and Takala, J. Blockwise multi-order feature regression for real-time

path-tracing reconstruction. ACM Transactions on Graphics (TOG) 38.5 (2019),

1–14. DOI: 10.1145/3269978.

[66] Schied, C., Kaplanyan, A., Wyman, C., Patney, A., Chaitanya, C. R. A., Burgess, J.,

Liu, S., Dachsbacher, C., Lefohn, A. and Salvi, M. Spatiotemporal variance-guided

filtering: real-time reconstruction for path-traced global illumination. Proceedings

of High Performance Graphics. 2017, 1–12. DOI: 10.1145/3105762.3105770.

[67] Amazon Lumberyard. Amazon Lumberyard Bistro, Open Research Content

Archive (ORCA). July 2017. URL: http://developer.nvidia.com/orca/amaz
on-lumberyard-bistro.

https://www.eurogamer.net/articles/digitalfoundry-2016-inside-playstation-4-pro-how-sony-made-a-4k-games-machine
https://www.eurogamer.net/articles/digitalfoundry-2016-inside-playstation-4-pro-how-sony-made-a-4k-games-machine
https://doi.org/10.1201/b17360-32
https://doi.org/10.1201/b17360-32
https://doi.org/10.1007/s10055-016-0285-9
https://doi.org/10.1007/s10055-016-0285-9
https://doi.org/10.1145/333329.333344
https://doi.org/10.2310/7060.2002.24145
https://developer.oculus.com/blog/asynchronous-timewarp-examined/?locale=fi_FI
https://developer.oculus.com/blog/asynchronous-timewarp-examined/?locale=fi_FI
http://blogs.valvesoftware.com/abrash/down-the-vr-rabbit-hole-fixing-judder/
http://blogs.valvesoftware.com/abrash/down-the-vr-rabbit-hole-fixing-judder/
http://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s22698-dlss-image-reconstruction-for-real-time-rendering-with-deep-learning.pdf
http://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s22698-dlss-image-reconstruction-for-real-time-rendering-with-deep-learning.pdf
http://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s22698-dlss-image-reconstruction-for-real-time-rendering-with-deep-learning.pdf
https://www.tomlooman.com/dlss-unrealengine/
https://www.tomlooman.com/dlss-unrealengine/
https://doi.org/10.1145/3269978
https://doi.org/10.1145/3105762.3105770
http://developer.nvidia.com/orca/amazon-lumberyard-bistro
http://developer.nvidia.com/orca/amazon-lumberyard-bistro

59

[68] Scherzer, D., Yang, L., Mattausch, O., Nehab, D., Sander, P. V., Wimmer, M. and

Eisemann, E. A Survey on Temporal Coherence Methods in Real-Time Rendering.

Eurographics 2011 - State of the Art Reports. Ed. by N. John and B. Wyvill. The

Eurographics Association, 2011. DOI: 10.2312/EG2011/stars/101-126.

[69] Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. Numerical

recipes in C++. The art of scientific computing 2 (1992), 1002.

[70] Karlsson, B. Renderdoc. 2018. URL: https : / / renderdoc . org/ (visited on

03/18/2021).

[71] Apple Inc. Frame Capture Debugging Tools. 2020. URL: https://developer.ap
ple.com/documentation/metal/frame_capture_debugging_tools (visited

on 03/22/2021).

[72] NVidia Corporation. NSight. 2021. URL: https://developer.nvidia.com/nsi
ght-graphics (visited on 03/18/2021).

[73] Microsoft. PIX on Windows. 2021. URL: https://devblogs.microsoft.com/p
ix/introduction/ (visited on 03/22/2021).

[74] Intel Corporation. Intel® Graphics Performance Analyzers Framework (Intel® GPA

Framework). 2020. URL: https://intel.github.io/gpasdk-doc/ (visited on

03/22/2021).

[75] Apitrace. 2021. URL: https://github.com/apitrace/apitrace (visited on

03/15/2021).

[76] Sutherland, I. E., Sproull, R. F. and Schumacker, R. A. A characterization of ten

hidden-surface algorithms. ACM Computing Surveys (CSUR) 6.1 (1974), 1–55.

DOI: 10.1145/356625.356626.

[77] Luebke, D. A survey of polygonal simplification algorithms. UNC Chapel Hill Com-

puter Science Technical Report TR97 45 (1997). DOI: 10.1109/38.920624.

[78] Unity Technologies. GameObjectRecorder. 2021. URL: https://docs.unity3
d.com/ScriptReference/Animations.GameObjectRecorder.html (visited

on 03/15/2021).

[79] Epic Games. Using Take Recorder. 2021. URL: https://docs.unrealengine
.com/en-US/AnimatingObjects/Sequencer/Workflow/TakeRecorder/Usi
ngTR/index.html (visited on 03/15/2021).

[80] Wang, D. MineNav: An Expandable Synthetic Dataset Based on Minecraft for Air-

craft Visual Navigation. 2020. arXiv: 2008.08454 [cs.CV].

[81] Williams, R. S. What’s Next? [The end of Moore’s law]. Computing in Science

Engineering 19.2 (2017), 7–13. DOI: 10.1109/MCSE.2017.31.

[82] Standard Performance Evaluation Corporation. SPECviewperf® 2020 bench-

mark. 2020. URL: https://www.spec.org/gwpg/gpc.static/vp2020info.h
tml (visited on 03/06/2021).

[83] UL Benchmarks. Benchmarks and Performance Tests. 2021. URL: https://ben
chmarks.ul.com/ (visited on 03/06/2021).

https://doi.org/10.2312/EG2011/stars/101-126
https://renderdoc.org/
https://developer.apple.com/documentation/metal/frame_capture_debugging_tools
https://developer.apple.com/documentation/metal/frame_capture_debugging_tools
https://developer.nvidia.com/nsight-graphics
https://developer.nvidia.com/nsight-graphics
https://devblogs.microsoft.com/pix/introduction/
https://devblogs.microsoft.com/pix/introduction/
https://intel.github.io/gpasdk-doc/
https://github.com/apitrace/apitrace
https://doi.org/10.1145/356625.356626
https://doi.org/10.1109/38.920624
https://docs.unity3d.com/ScriptReference/Animations.GameObjectRecorder.html
https://docs.unity3d.com/ScriptReference/Animations.GameObjectRecorder.html
https://docs.unrealengine.com/en-US/AnimatingObjects/Sequencer/Workflow/TakeRecorder/UsingTR/index.html
https://docs.unrealengine.com/en-US/AnimatingObjects/Sequencer/Workflow/TakeRecorder/UsingTR/index.html
https://docs.unrealengine.com/en-US/AnimatingObjects/Sequencer/Workflow/TakeRecorder/UsingTR/index.html
https://arxiv.org/abs/2008.08454
https://doi.org/10.1109/MCSE.2017.31
https://www.spec.org/gwpg/gpc.static/vp2020info.html
https://www.spec.org/gwpg/gpc.static/vp2020info.html
https://benchmarks.ul.com/
https://benchmarks.ul.com/

60

[84] Unigine. Fair GPU benchmarks. 2020. URL: https://benchmark.unigine.com
/ (visited on 03/06/2021).

[85] Maxon Computer GMBH. Cinebench. 2021. URL: https://www.maxon.net/en
/cinebench (visited on 03/06/2021).

[86] Bienia, C. and Li, K. Benchmarking modern multiprocessors. Princeton University

Princeton, NJ, 2011.

[87] Sakalis, C., Leonardsson, C., Kaxiras, S. and Ros, A. Splash-3: A properly syn-

chronized benchmark suite for contemporary research. 2016 IEEE International

Symposium on Performance Analysis of Systems and Software (ISPASS). IEEE.

2016, 101–111. DOI: 10.1109/ISPASS.2016.7482078.

[88] Antochi, I., Juurlink, B., Vassiliadis, S. and Liuha, P. GraalBench: A 3D Graphics

Benchmark Suite for Mobile Phones. SIGPLAN Not. 39.7 (June 2004), 1–9. ISSN:

0362-1340. DOI: 10.1145/998300.997165.

[89] Lext, J., Assarsson, U. and Moller, T. A benchmark for animated ray tracing. IEEE

Computer Graphics and Applications 21.2 (2001), 22–31.

[90] Haines, E. Neutral File Format. 1987. URL: http://netghost.narod.ru/gff
/vendspec/nff/index.htm (visited on 03/08/2021).

[91] Wald, I., Boulos, S. and Shirley, P. Ray Tracing Deformable Scenes Using Dynamic

Bounding Volume Hierarchies. ACM Trans. Graph. 26.1 (Jan. 2007), 6–es. ISSN:

0730-0301. DOI: 10.1145/1189762.1206075.

[92] Studios, W. D. A. Moana Island Scene (v1.1). 2018. URL: https://www.disney
animation.com/data-sets/?drawer=/resources/moana-island-scene/
(visited on 02/24/2021).

[93] Burley, B., Adler, D., Chiang, M. J.-Y., Driskill, H., Habel, R., Kelly, P., Kutz, P.,

Li, Y. K. and Teece, D. The Design and Evolution of Disney’s Hyperion Renderer.

ACM Trans. Graph. 37.3 (July 2018). ISSN: 0730-0301. DOI: 10.1145/3182159.

[94] Wald, I., Cherniak, B., Usher, W., Brownlee, C., Afra, A., Guenther, J., Amstutz, J.,

Rowley, T., Pascucci, V., Johnson, C. R. et al. Digesting the Elephant–Experiences

with Interactive Production Quality Path Tracing of the Moana Island Scene. arXiv

preprint arXiv:2001.02620 (2020). DOI: arXiv:2001.02620.

[95] Roosendaal, T. Sintel. ACM SIGGRAPH 2011 Computer Animation Festival. SIG-

GRAPH ’11. Vancouver, British Columbia, Canada: Association for Computing

Machinery, 2011, 71. ISBN: 9781450309660. DOI: 10.1145/2019001.2019066.

[96] Blender Foundation. Blender Cloud. 2021. URL: https://cloud.blender.org
/welcome/ (visited on 03/20/2021).

[97] Blender Foundation. Demo Files. 2021. URL: https://www.blender.org/down
load/demo-files/ (visited on 03/15/2021).

[98] Yoon, S.-e. Korea Advanced Institute of Science and Technology (KAIST) Model

Benchmarks. 2014. URL: http://sglab.kaist.ac.kr/models/.

https://benchmark.unigine.com/
https://benchmark.unigine.com/
https://www.maxon.net/en/cinebench
https://www.maxon.net/en/cinebench
https://doi.org/10.1109/ISPASS.2016.7482078
https://doi.org/10.1145/998300.997165
http://netghost.narod.ru/gff/vendspec/nff/index.htm
http://netghost.narod.ru/gff/vendspec/nff/index.htm
https://doi.org/10.1145/1189762.1206075
https://www.disneyanimation.com/data-sets/?drawer=/resources/moana-island-scene/
https://www.disneyanimation.com/data-sets/?drawer=/resources/moana-island-scene/
https://doi.org/10.1145/3182159
https://doi.org/arXiv:2001.02620
https://doi.org/10.1145/2019001.2019066
https://cloud.blender.org/welcome/
https://cloud.blender.org/welcome/
https://www.blender.org/download/demo-files/
https://www.blender.org/download/demo-files/
http://sglab.kaist.ac.kr/models/

61

[99] University of North Carolina, T. G. research group at. UNC Dynamic Scene

Benchmarks. 2018. URL: http://gamma.cs.unc.edu/DYNAMICB/ (visited on

03/08/2021).

[100] Wald, I. Short bio. 2019. URL: http://www.sci.utah.edu/~wald/ (visited on

02/24/2021).

[101] Sanzharov, V., Gorbonosov, A., Frolov, V. and Voloboy, A. Examination of the

Nvidia RTX. Proceedings of the 29th International Conference on Computer

Graphics and Vision (GraphiCon 2019). Vol. 2485. 2019, 7. DOI: 10.30987/grap
hicon-2019-2-7-12.

[102] Gribble, C. P., Ize, T., Kensler, A., Wald, I. and Parker, S. G. A Coherent Grid

Traversal Approach to Visualizing Particle-Based Simulation Data. IEEE Transac-

tions on Visualization and Computer Graphics 13.4 (July 2007), 758–768. ISSN:

1941-0506. DOI: 10.1109/TVCG.2007.1059.

[103] The Stanford 3D Scanning Repository. 2014. URL: http://graphics.stanfor
d.edu/data/3Dscanrep/ (visited on 02/24/2021).

[104] Blender Foundation. Shape Keys. 2021. URL: https : / / docs . blender . or
g/manual/en/latest/animation/shape_keys/index.html (visited on

03/20/2021).

[105] Amazon.com Inc. Demo Files. 2021. URL: https://aws.amazon.com/lumbery
ard/downloads/ (visited on 03/15/2021).

[106] Benty, N., Yao, K.-H., Clarberg, P., Chen, L., Kallweit, S., Foley, T., Oakes, M.,

Lavelle, C. and Wyman, C. The Falcor Rendering Framework. Aug. 2020. URL:

https://github.com/NVIDIAGameWorks/Falcor.

[107] Winkelmann, M. Zero-Day, Open Research Content Archive (ORCA). Nov. 2019.

URL: https://developer.nvidia.com/orca/beeple-zero-day.

[108] Autodesk, I. Adaptable file format for 3D animation software. 2021. URL: https:
//www.autodesk.com/products/fbx/overview (visited on 03/13/2021).

[109] The GL Transmission Format (glTF) version 2.0. Version git checkout 23d81c1.

2020. URL: https://github.com/KhronosGroup/glTF/tree/master/speci
fication/2.0 (visited on 03/20/2021).

[110] Autodesk, Inc. Welcome to the FBX SDK. 2021. URL: https://help.autodesk
.com/view/FBX/2020/ENU/ (visited on 03/13/2021).

[111] MacPherson, G. Adaptable file format for 3D animation software. 2020. URL: htt
ps://godotengine.org/article/fbx-importer-rewritten-for-godot-
3-2-4 (visited on 03/13/2021).

[112] Khronos Group. COLLADA – Digital Asset Schema Release 1.5.0. 2008. URL:

https://www.khronos.org/files/collada_spec_1_5.pdf (visited on

03/18/2021).

[113] Pixar. Welcome to the FBX SDK. 2020. URL: https://graphics.pixar.com/u
sd/docs/index.html (visited on 03/13/2021).

http://gamma.cs.unc.edu/DYNAMICB/
http://www.sci.utah.edu/~wald/
https://doi.org/10.30987/graphicon-2019-2-7-12
https://doi.org/10.30987/graphicon-2019-2-7-12
https://doi.org/10.1109/TVCG.2007.1059
http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
https://docs.blender.org/manual/en/latest/animation/shape_keys/index.html
https://docs.blender.org/manual/en/latest/animation/shape_keys/index.html
https://aws.amazon.com/lumberyard/downloads/
https://aws.amazon.com/lumberyard/downloads/
https://github.com/NVIDIAGameWorks/Falcor
https://developer.nvidia.com/orca/beeple-zero-day
https://www.autodesk.com/products/fbx/overview
https://www.autodesk.com/products/fbx/overview
https://github.com/KhronosGroup/glTF/tree/master/specification/2.0
https://github.com/KhronosGroup/glTF/tree/master/specification/2.0
https://help.autodesk.com/view/FBX/2020/ENU/
https://help.autodesk.com/view/FBX/2020/ENU/
https://godotengine.org/article/fbx-importer-rewritten-for-godot-3-2-4
https://godotengine.org/article/fbx-importer-rewritten-for-godot-3-2-4
https://godotengine.org/article/fbx-importer-rewritten-for-godot-3-2-4
https://www.khronos.org/files/collada_spec_1_5.pdf
https://graphics.pixar.com/usd/docs/index.html
https://graphics.pixar.com/usd/docs/index.html

62

[114] Nimier-David, M., Vicini, D., Zeltner, T. and Jakob, W. Mitsuba 2: A retargetable

forward and inverse renderer. ACM Transactions on Graphics (TOG) 38.6 (2019),

1–17. DOI: 10.1145/3355089.3356498.

[115] Khronos Group. Ray Tracing In Vulkan. 2020. URL: https://www.khronos.org
/blog/ray-tracing-in-vulkan (visited on 03/23/2021).

[116] Wyman, C. and Marrs, A. Introduction to DirectX raytracing. Ray Tracing Gems.

Springer, 2019, 21–47.

[117] The Khronos Group Inc. KHRlightspunctual. 2020. URL: https://github.com
/KhronosGroup/glTF/blob/master/extensions/2.0/Khronos/KHR_light
s_punctual (visited on 03/23/2021).

[118] The Khronos Group Inc. EXTlightsimagebased. 2018. URL: https://github.c
om/KhronosGroup/glTF/tree/master/extensions/2.0/Vendor/EXT_ligh
ts_image_based (visited on 03/23/2021).

[119] Zaal, G. Kloofendal 48d Partly Cloudy. 2019. URL: https://hdrihaven.com/h
dri/?h=kloofendal_48d_partly_cloudy (visited on 03/23/2021).

[120] Creative Commons. About CC Licenses. 2021. URL: https://creativecommon
s.org/about/cclicenses/ (visited on 02/26/2021).

[121] Duske, K. Cube 2: Sauerbraten. 2021. URL: http://sauerbraten.org/ (visited

on 02/26/2021).

[122] Clémençon, J.-M. and Konstin. SuperTuxKart. 2020. URL: https://supertuxka
rt.net/Main_Page (visited on 02/26/2021).

[123] Wild Fire Games. 0 A.D. 2021. URL: https : / / play0ad . com/ (visited on

02/26/2021).

[124] The Mine Test Team. MineTest. 2021. URL: https : / / www . minetest . net/
(visited on 02/26/2021).

[125] The Dark Mod Team. The Dark Mod. 2021. URL: https://www.thedarkmod.co
m/main/ (visited on 02/26/2021).

[126] dot3 Labs. 2021. URL: http://strlen.com/dot3labs/ (visited on 02/26/2021).

[127] Oortmerssen, W. van. Sauerbraten initial development documentation. URL: ht
tp://sauerbraten.org/docs/dev/readme_developer.txt (visited on

02/26/2021).

[128] Id Software. Quake Github repository. 2012. URL: https://github.com/id-So
ftware/Quake (visited on 02/26/2021).

[129] Id Software. Doom Github repository. 2012. URL: https://github.com/id-So
ftware/Doom (visited on 02/26/2021).

[130] David, H. MD5Mesh and MD5Anim files formats. 2005. URL: http://tfc.duke
.free.fr/coding/md5-specs-en.html (visited on 02/26/2021).

[131] Duske, Kristian. Cube 2: Sauerbraten - Model Reference. URL: http://sauerbr
aten.org/docs/models.html (visited on 02/26/2021).

https://doi.org/10.1145/3355089.3356498
https://www.khronos.org/blog/ray-tracing-in-vulkan
https://www.khronos.org/blog/ray-tracing-in-vulkan
https://github.com/KhronosGroup/glTF/blob/master/extensions/2.0/Khronos/KHR_lights_punctual
https://github.com/KhronosGroup/glTF/blob/master/extensions/2.0/Khronos/KHR_lights_punctual
https://github.com/KhronosGroup/glTF/blob/master/extensions/2.0/Khronos/KHR_lights_punctual
https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Vendor/EXT_lights_image_based
https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Vendor/EXT_lights_image_based
https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Vendor/EXT_lights_image_based
https://hdrihaven.com/hdri/?h=kloofendal_48d_partly_cloudy
https://hdrihaven.com/hdri/?h=kloofendal_48d_partly_cloudy
https://creativecommons.org/about/cclicenses/
https://creativecommons.org/about/cclicenses/
http://sauerbraten.org/
https://supertuxkart.net/Main_Page
https://supertuxkart.net/Main_Page
https://play0ad.com/
https://www.minetest.net/
https://www.thedarkmod.com/main/
https://www.thedarkmod.com/main/
http://strlen.com/dot3labs/
http://sauerbraten.org/docs/dev/readme_developer.txt
http://sauerbraten.org/docs/dev/readme_developer.txt
https://github.com/id-Software/Quake
https://github.com/id-Software/Quake
https://github.com/id-Software/Doom
https://github.com/id-Software/Doom
http://tfc.duke.free.fr/coding/md5-specs-en.html
http://tfc.duke.free.fr/coding/md5-specs-en.html
http://sauerbraten.org/docs/models.html
http://sauerbraten.org/docs/models.html

63

[132] Quadropolis. Eternal Valley. 2013. URL: http://quadropolis.us/node/3747
(visited on 03/01/2021).

[133] Schaufler, G., Dorsey, J., Decoret, X. and Sillion, F. X. Conservative Volumet-

ric Visibility with Occluder Fusion. Proceedings of the 27th Annual Conference

on Computer Graphics and Interactive Techniques. SIGGRAPH ’00. USA: ACM

Press/Addison-Wesley Publishing Co., 2000, 229–238. ISBN: 1581132085. DOI:

10.1145/344779.344886.

[134] Bourke, P. Wavefront .obj file format specification. 2011. URL: http://paulbour
ke.net/dataformats/obj/ (visited on 02/24/2021).

[135] Unity Technologies. Unity Real-Time Development Platform. 2021. URL: https:
//unity.com/ (visited on 03/23/2021).

[136] Facebook Technologies, LLC. Develop for the Quest Platform. 2021. URL: https
://developer.oculus.com/quest (visited on 03/23/2021).

[137] Unity Technologies. Unity case studies. 2021. URL: https://unity.com/case-
study (visited on 03/23/2021).

[138] The Khronos Group Inc. unityGltf. 2019. URL: https://github.com/KhronosG
roup/UnityGLTF (visited on 03/23/2021).

[139] Blender Foundation. Cycles Open Source Production Rendering. 2018. URL: htt
ps://www.cycles-renderer.org/about/ (visited on 03/09/2021).

http://quadropolis.us/node/3747
https://doi.org/10.1145/344779.344886
http://paulbourke.net/dataformats/obj/
http://paulbourke.net/dataformats/obj/
https://unity.com/
https://unity.com/
https://developer.oculus.com/quest
https://developer.oculus.com/quest
https://unity.com/case-study
https://unity.com/case-study
https://github.com/KhronosGroup/UnityGLTF
https://github.com/KhronosGroup/UnityGLTF
https://www.cycles-renderer.org/about/
https://www.cycles-renderer.org/about/

64

A APPENDIX

A.1 Pseudocode of linear blend skinning of vertices in Vulkan

vertex shader

#define MAX_JOINTS 64

layout (location = 0) in vec3 inPosition;

layout (location = 1) in vec3 inNormal;

layout (location = 2) in vec4 jointIndices;

layout (location = 3) in vec4 jointWeights;

layout (set = 0, binding = 0) uniform UniformBufferObject {

mat4 projection;

mat4 model;

mat4 view;

vec3 cameraPosition;

} ubo;

layout (set = 1, binding = 0) uniform UBOModel {

mat4 matrix;

mat4 jointMatrices[MAX_JOINTS];

} armature;

layout (location = 0) out vec3 outWpos;

layout (location = 1) out vec3 outNormal;

out gl_PerVertex {

vec4 gl_Position;

};

void main()

{

mat4 skinMat =

jointWeights.x * armature.jointMatrices[int(jointIndices.x)] +

65

jointWeights.y * armature.jointMatrices[int(jointIndices.y)] +

jointWeights.z * armature.jointMatrices[int(jointIndices.z)] +

jointWeights.w * armature.jointMatrices[int(jointIndices.w)];

vec4 position =

ubo.model * armature.matrix * skinMat * vec4(inPosition, 1.0);

outNormal =

normalize(transpose(inverse(

mat3(ubo.model * armature.matrix * skinMat)))

* inNormal);

outWpos = position.xyz / position.w;

gl_Position = ubo.projection * ubo.view * vec4(outWpos, 1.0);

}

66

A.2 Datasets’ camera rotation animation in Euler angles

0 200 400 600

−20

−10

0

10

20

30

Frame

R
ot

at
io

n
an

gl
e

(d
eg

re
es

)
TauEternalValleyFPS

Pitch
Yaw
Roll

0 200 400 600

−60

−40

−20

0

20

40

Frame

TauEternalValleyVR

Pitch
Yaw
Roll

0 50 100 150 200 250

−4

−2

0

2

4

·10−4

Frame

R
ot

at
io

n
an

gl
e

(d
eg

re
es

)

Toasters

Pitch
Yaw
Roll

0 500 1,000

−0.5

0

0.5

Frame

Bistro Interior Wine

Pitch
Yaw
Roll

0 500 1,000 1,500 2,000

−0.5

0

0.5

1

Frame

R
ot

at
io

n
an

gl
e

(d
eg

re
es

)

Bistro Exterior

Pitch
Yaw
Roll

0 500 1,000 1,500
−1

−0.5

0

0.5

1

1.5

Frame

Emerald Square Day

Pitch
Yaw
Roll

Figure A.1. Figure of how much the camera rotated per frame in each of its axis

67

A.3 Datasets’ camera rotation animation distance

0 200 400 600

0

5

10

15

Frame

R
ot

at
io

n
(d

eg
re

es
)

TauEternalValleyFPS

0 200 400 600

0

10

20

30

Frame

TauEternalValleyVR

0 50 100 150 200 250

−4

−2

0

2

4

·10−4

Frame

R
ot

at
io

n
an

gl
e

(d
eg

re
es

)

Toasters

0 500 1,000

−0.5

0

0.5

Frame

Bistro Interior Wine

0 500 1,000 1,500 2,000

−0.5

0

0.5

1

Frame

R
ot

at
io

n
an

gl
e

(d
eg

re
es

)

Bistro Exterior

0 500 1,000 1,500
−1

−0.5

0

0.5

1

1.5

Frame

Emerald Square Day

Figure A.2. Figure of the distance camera rotates in degrees per frame

	Introduction
	Graphics Rendering
	Light Transport
	Animations

	Temporal Rendering
	Reuse Algorithms
	Benchmarking Temporal Rendering
	Benchmark Requirements
	Dataset Comparison Metrics
	Animation Capturing Methods

	Related Work
	Rendering Performance Benchmarks
	Rendering Benchmarks
	The Utah 3D Animation Repository
	NVidia ORCA

	Capturing dataset from Cube 2: Sauerbraten
	High Level Dataset Description in glTF 2.0
	Comparison with Other 3D Animation Formats
	Used glTF 2.0 Features and Extensions

	Sauerbraten Rendering Loop
	Capture Workflow
	Offline Start Up Captures
	Runtime Captures

	Conversion Workflow
	Capturing Virtual Reality

	Results
	Dataset Properties
	Camera Movement
	Discard Percentage

	Conclusion
	References
	Appendix Appendix
	Pseudocode of linear blend skinning of vertices in Vulkan vertex shader
	Datasets' camera rotation animation in Euler angles
	Datasets' camera rotation animation distance

