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ABSTRACT

Vilma Heikkilä: A quantitive analysis of Susceptible-Infected-Removed models of the coronavirus
Bachelor’s thesis
Tampere University
Biotechnology and biomedical engineering
April 2021

Modelling the susceptibility, infection, and recovery of populations with regards to the COVID-
19 pandemic is highly relevant for the implementation of countermeasures by governing bodies.
Between January 1st 2020 and March 1st 2021, 13,076 COVID-19 modelling related publications
were recorded in the PubMed® (National Center for Biotechnology Information of the National
Library of Medicine) database. This study was conducted to assess the tools for modelling the
spread of the virus. To achieve a view of the current scope of mathematical models, a selection
of Susceptible-Infected-Recovered models with a focus on parameter choices was collected and
quantitatively analyzed.

The models varied from simple to highly complex, with the number of used parameters ranging
from one to 18. Many models included additional compartments to account for the shortcomings
of a classical SIR model, but the majority also did not consider essential characteristics of the
virus, such as a temporary immunity or mutated virus variants.
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TIIVISTELMÄ

Vilma Heikkilä: Koronaviruksen Susceptible-Infected-Recovered-mallien kvantitatiivinen analyysi
Kandidaatintutkielma
Tampereen yliopisto
Bioteknologian ja biolääketieteen tekniikka
Huhtikuu 2021

Väestön alttiuden, sairastuvuuden sekä parantumisen mallintaminen on olennainen apuväli-
ne koronavirusta ehkäisevien toimenpiteiden toteuttamiseksi. Vuoden 2020 tammikuun ja 2021
maaliskuun välisenä aikana PubMed® -tietokantaan (National Center for Biotechnology Informa-
tion of the National Library of Medicine) kirjattiin 13 076 koronaviruksen mallintamiseen liittyvää
julkaisua. Tämän tutkielman tarkoituksena oli tutkia koronavirusepidemian mallintamiseen hyö-
dynnettyjä työkaluja ja saada yleiskatsaus matemaattisen mallinnuksen tämänhetkisestä tilasta.
Tutkielmaa varten koottiin laaja valikoima Susceptible-Infected-Recovered-malleja, eritoten keskit-
tyen käytettyihin parametreihin, ja analysoitiin niitä kvantitatiivisesti.

Yksinkertaisimmissa malleissa parametreja tarvittiin yksi, kun kompleksisimman mallin para-
metrien lukumäärä oli 18. Monissa malleissa käytettiin ylimääräisiä väestölokeroita perinteisen
SIR-mallin puutteiden paikkaamiseksi. Suurin osa malleista ei kuitenkaan huomioinut viruksen
olennaisia ominaisuuksia, kuten väliaikaista immuniteettia tai uusia virusmuunnoksia.

Avainsanat: COVID-19, SIR-malli, pandemia, matemaattinen mallinnus, virus

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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1. INTRODUCTION

The coronavirus (COVID-19) pandemic conquered the world in 2020 and is still ongoing,

with 110,749,023 confirmed cases reported on February 21 2021 [1]. Due to the highly

contagious nature and the fast spread of COVID-19 worldwide, a need for tools to fore-

cast the spread of the virus has emerged. Being able to evaluate the number of infections

could aid governments to determine necessary precautions to slow down the pandemic

and assess the needed capacity of healthcare facilities. To portray the behaviour of an

epidemic with mathematical models, a few key characteristics must be considered, such

as the transmission rate and the recovery rate. While any number of parameters can

be added, the challenge in designing a mathematical model is estimating the actual pa-

rameter values. In the case of COVID-19, this often includes fitting the model to actual

data to approximate parameter values. As the models typically focus on a specific region

and use specific data sets, the parameters between models can vary greatly and lead to

differences between simulation outcomes.

This study considered a set of similar mathematical models portraying the COVID-19

outbreak and compared their choice of parameters. This way, the current state of COVID-

19 modelling could be evaluated. Numerous studies are being published on the subject

each month, but they have not been thoroughly reviewed. The chosen mathematical

models in this study focused on the Susceptible-Infected-Recovered (SIR) model and its

modified derivatives.

This study is divided into six sections. In the Theory section, the fundamentals of the

mathematical models are explained in more detail. The materials and methods of this

study are explained in the Methodology section. The Results section introduces the cho-

sen models and their key characteristics, and the results are discussed in the following

section. Finally, a discussion about the state of mathematical models, along with a look

into the future, is included in the Conclusions.
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2. THEORY

2.1 Fundamentals of the SIR model

The Suscepible-Infected-Recovered model is based on earlier epidemics research [2, 3,

4, 5, 6] that propose the division of the population into compartments. The model simpli-

fies the dynamics of the disease to its core three groups: those at risk for infection, those

infectious and infected with the disease, and those no longer infected due to recovery or

death. These compartments are named Susceptible, Infected, and Recovered, or alter-

natively, Removed. The model describes the flow of population from one compartment

into another, particularly the rate of individuals getting infected and recovering from the

virus. In many adaptations of the SIR model additional compartments, such as exposed

and deceased, are used.

The basic model is built on a set of three ordinary differential equations describing the

transfer of population from one group to the next. Each compartment is modeled as a

stock of population at time t. A stock is a supply of people, with inflows and outflows

dictating the amount of supply. The two flow rates in this model are the infection rate and

the recovery rate. The infection rate is the rate of susceptible people becoming infected.

In other words, it is the outflow rate from the Susceptible stock into the Infected stock. It

is typically marked as [7]

dS

dt
= −βIS (2.1)

where S and I denote the Susceptible and the Infected, respectively. The transmission

coefficient of a disease is typically denoted as β, and it marks the probability of trans-

mitting the disease. From this equation it can be seen that the infection rate depends on

the number of infected, the number of susceptible people that can be infected, and the

transmission coefficient. β typically needs to be estimated by fitting the model to actual

epidemic data.

The change in the Infected stock is described by the infection rate inflow from the Suscep-

tible stock, and the recovery rate outflow into the Recovered stock. The rate of change is
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described by the equation [7]

dI

dt
= βIS − γI (2.2)

where γ denotes a recovery coefficient, which describes the rate of recovery. γ is typically

the inverse of the mean duration of the illness [7].

Finally, the change in the Recovered stock is described by the inflow from the Infected

stock. The recovery rate is [7]

dR

dt
= γI. (2.3)

Sometimes dS
dt

and dI
dt

are also expressed as

dS

dt
= −β I

N
S, (2.4)

and
dI

dt
= β

I

N
S − γI (2.5)

where N is the total population and the sum of the three compartments. In these equa-

tions the infected compartment is considered as a proportion of the total population.

Figure 2.1 represents the model in a typical stock and flows diagram (a), and in terms of

the model outputs (b). The output diagram shows the number of people in each compart-

ment on a given day.
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Figure 2.1. A stock and flows diagram (A) and output diagram (B) for a typical SIR model.

A few assumptions are made with this model. Namely, that the susceptible population

is homogenous, the transmission rate is constant throughout the epidemic, and once re-

covered, an individual is immune to the disease and removed from the model. This could

prove problematic with COVID-19 for a few reasons. Firstly, a population is rarely homoge-

nous throughout a region. Secondly, government intervention can affect the transmission

rate of the virus. Lastly, there is conflicting and limited data on whether infection actually

grants immunity [8], and permanent immunity should not be assumed. Thus, some adap-

tations of the model include a time-varying transmission rate or a gradual loss of immunity

for the recovered population.

2.2 Modified SIR models

Many types of compartmental models have been derived from the classical SIR model.

The most common ones include the Susceptible-Infected-Recovered-Dead (SIRD), the

Susceptible-Exposed-Infected-Recovered (SEIR), and the Susceptible-Infected-Infected-

Recovered (SIIR) model. A SIRD model includes an extra compartment for fatalities

resulting from the virus, with the transfer rate often being described by an equation such

as

dD

dt
= dI, (2.6)
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where d would denote the fatality rate. Similarly for SIIR models, the infected compart-

ment in SIIR models is divided into two or more groups, such as asymptomatic and symp-

tomatic. Any additional compartments can be used, such as the quarantined or hospital-

ized populations. Typically all compartments would have their own transfer rates, similarly

to the fatality rate in SIRD models. In more complex models, these rates are not neces-

sarily a single parameter, and could have multiple coefficients taken into account, or even

include time-varying variables.

2.3 Vensim simulations

Vensim® is a simulation software developed by Ventama Systems, capable of solving

systems of differential equations. As showcased in the previous sections, SIR models

consist of differential equations, so Vensim is a fitting tool for simulations with this type of

model.

Keeping in mind the structure of the basic SIR model, the modelling process in Vensim

can be demonstrated. A population, or a stock, is portrayed by a level variable. The value

of a level variable changes dynamically, and is determined by its initial value and an equa-

tion defining the inflows and outflows of population. The model parameters in a simple

SIR model like the one presented here can be implemented as a normal variable with

a constant value. Next, the transfer of population between these stocks is implemented

as a rate, indicated by an arrow determining the flow direction and defined by an equa-

tion. Figure 2.2 shows a Vensim model representing the system defined by equations

(2.1–2.3), where the infection rate is portrayed by (2.1) and the recovery rate by (2.3). It

can be seen that in Vensim each variable affecting an equation must be connected to the

equation by an arrow. After the model structure has been established, the only thing left

is inserting the appropriate stock initial values and parameter values.



6

Figure 2.2. An example model created in Vensim.
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3. METHODOLOGY

This study featured both a literature review segment and a practical segment. A selection

of suitable papers needed to be collected and reviewed to assess their models. Once this

was done, recreations of models from these papers could be attempted to evaluate the

simulation process.

3.1 Literature review

The selected papers were found in the PubMed online database, using queries such as

“(COVID-19) AND (SIR model)”. The timeline was limited to the last 14 months, span-

ning from January 2020 to March 2021. The search was especially focused on extended

models, such as models with additional compartments and additional or time-variant pa-

rameters. Papers with unclear model characteristics, or those otherwise inapplicable for

the purposes of this study, were excluded.

The models were organized in a table in an order of increasing number of parameters.

3.2 Simulations

The simulation of seven select models was showcased. The models were recreated as

presented in the papers using the personal learning edition (PLE) of Vensim. Equations

were inferred from the papers to assess whether the presented results could be achieved

as such. Recreating the models also offered insight of their complexity, such as the

number of variables needed.
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4. RESULTS

This section focuses on the analysis of the models, specifically the type of model and

parameter choices. The selected models and their parameters are organized in Table A.1

in the Appendix by number of parameters used. Additionally, a list of excluded studies is

included.

4.1 Models in detail

Here the details of each model are briefly discussed. The simplest models are showcased

first before getting familiar with increasingly complex ones.

4.1.1 One-parameter models

Katul et al. [9] used a SIR model which they normalized by the recovery rate γ and

the initial condition S0. The parameter used in this model was the basic reproduction

number R0 that they used for simulating the epidemic in 57 countries, but which globally

converged to 4.5.

Sadurní and Luna-Acosta [10] reduced a simple SIR model to a one-variable system and

ran simulations with varying values of the control parameter κ.

4.1.2 Two-parameter models

Ahmetolan et al. [11] used a classical SIR model, but as parameters they used the basic

reproduction ratioR0 which was the ratio of the infection rate and the removal rate, and the

mean infectious period T , which was the reciprocal of the removal rate. The parameter

ranges were 1.5 < R0 < 10 and 2 < T < 30. They modelled the epidemic in China,

South Korea, France, Germany, Italy, Spain, Iran, Turkey, the United Kingdom, and the

United States.

Al-Anzi et al. [12] simulated the epidemic in the United States, Brazil, India, China,

Switzerland, Ireland, and Kuwait using a classical SIR model. They used a MATLAB

SIR modeling tool that estimated the model parameters based on daily new infections.
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Barlow and Weinstein [13] applied a typical SIR model to the case of Japan with the

parameters transmission rate r as 2.9236× 10−5 and the recovery rate α as 0.0164.

Dos Santos et al. [14] included an infection rate β(t) which ran within [0.05, 0.6], and a

recovery rate γ(t) which ran in range [0.07, 0.13]. The model was applied to Germany,

Italy, France, and the United Kingdom.

Jung et al. [15] combined the use of neural networks and a SIR model with time variant

parameters, the infection rate β and the recovery rate γ, to portray the epidemic in South

Korea. Their model assumed the total population number to remain unchanged for the

duration of the simulation. For the whole country, the parameter values were estimated

as 0.1656 for β, and 0.0253 for γ. They repeated the simulation for Seoul, Busan, Daegu,

and Gyeonggi.

Lounis and Bagal [16] used a simple SIR model to simulate the epidemic in Algeria. They

estimated the transmission rate β as 0.0561215 and the removal rate γ as 0.0455331.

They assumed that the total population number would remain unchanged.

Malavika et al. [17] used a basic SIR model to model the epidemic in India. Their trans-

mission parameter β was 0.36 and the recovery rate γ was 0.14. The model focused on

the very early dynamic of the epidemic in February—May.

Miranda et al. [18] combined a regular SIR model with a network diffusion model and

applied it to Brazil. Their parameters included transmission rates βi, βs, and βc for munic-

ipality, state, and the whole country, and the recovery rate γ.

Nguemdjo et al. [19] simulated the epidemic in Cameroon using a simple SIR model.

Their effective contact rate β was 0.36 and the removal rate γ was 0.393. They considered

the whole population, except for the initial infected individual, susceptible.

Srivastava et al. [20] modelled scenarios with different effects of lockdown in India using

an SIR model. The best fit values of the parameters contact rate r and recovery rate a

were stated as 0.0096 and 0.1006, respectively. They also discussed the inclusion of birth

and death rates and the migration of population, but any values for parameterizing these

effects were not estimated.

Szapudi [21] used a SIR model which considered heterogeneity by taking into account the

number of links an individual has to other persons. Their model included the parameters

infection probability β as 0.07 and the recovery rate γ as 0.1.

Turk et al. [22] simulated the epidemic in North Carolina (NC) and the greater Charlotte

Region (CRI) in the United States with an SIR model. They estimated the infection rate β

and the removal rate γ twice for both regions: β values were 0.6415 and 0.6165 for NC,

0.7020 and 0.6381 for CRI, and the γ values were 0.3585 for NC, and 0.2980 and 0.3619

for CRI.
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4.1.3 Three-parameter models

Abuhasel et al. [23] created a classical SIR model representing the Kingdom of Saudi

Arabia, with the contact rate β being 0.133 and, recovery rate γ being 1
14

, and the popula-

tion N being 34, 806, 116. They assumed that the whole population would be susceptible

at the start. To account for deaths, the SIR model was combined with a SIRD model, but

no parameters or results were shown for this modified model.

Ambrosio and Aziz-Alaoui [24] modelled the epidemic in the New York state of the United

States, using a SIRD model with parameters that were adjusted over time. The recovery

rate r was set at a constant 0.64, while the infection rate k varied at 1.047—0.67 and

the death rate d at 0.0016—0.00232. They also integrated people commuting from New

Jersey to New York by coupling two SIR systems. This was implemented by introducing

periodic functions for population densities.

Amiri Mehra et al. [25] first used a simple SIRD model to simulate the epidemic in South

Korea and in the United States. For South Korea, they estimated the transmission rate

β as approximately 1, the recovery rate g as 0.223, and the removal rate µd as 0.0261.

Their other model with more parameters will be introduced later on.

Enrique Amaro et al. [26] used an SI model with an extension for deaths, which did not

consider recoveries. The model employed the parameters a for the theoretical number of

deaths, b for the characteristic evolution time, and c for an inverse dead factor.

Fanelli and Piazza [27] used a very simple SIRD model to simulate the situation in Italy

and China. The parameters were as such: for Italy, the infection rate r was 7.9 × 10−6,

the recovery rate a was 2.13 × 10−2, the death rate d was 1.63 × 10−2, and for China

they were 3.33× 10−6, 1.8× 10−2 and 3× 10−3.

Fort et al. [28] developed a model for estimating hospital capacity, and included vari-

ables for susceptible, infected, recovered, symptomatic, incubating, hospitalized patients,

patients requiring intensive care, patients requiring mechanical ventilation, patients re-

quiring inpatient admission, calculated totals for the Greater New Orleans Metropolitan

Area, and patients discharged. Parameters included the basic recovery rate R0, contacts

per unit time β, and the inverse of the mean recovery time, γ.

Guirao [29] created a simple SEIR model and applied it to Spain, Italy, and Germany.

The presented model used the parameters reproductive number r0, infection period τi,

and latent period τl. Two values for parameters were inferred, so τi values were 1.63 and

2.56, and τl values were 3.0 and 2.0.

Harb and Harb [30] created a theoretical SIRD model with the parameters contact factor
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b, transmit factor a, and a health medication quality factorm which affected the probability

of death. No explicit values were given for the model parameters.

Ianni and Rossi [31] modelled the epidemic in Italy and Germany for the first half of 2020

using a time variant SIRD model. The used parameters were as follows: for Italy, the

initial transmission rate β0 was 1
1.8

, the recovery rate γR was 1
41

, and the mortality rate γD
was 1

145
, and for Germany they were 1

2.2
for β0, but the other parameters were not given

values. Their SIIR model will be presented later on.

Law et al. [32] simulated the epidemic dynamics in Malaysia with time variant parameters.

zBt was the partial transmission coefficient at time t, whereBt was defined by the propor-

tion of depletion p and scaled by a fraction z, and the removal rate was δ. The parameter

values were fitted three times, where the values of z were 0.4374, 0.3914, and 0.4047,

the values of p were 0.0784, 0.0450, and 0.0466, and the values of δ were 0.025, 0.042,

and 0.050.

Mohamed et al. [33] included an M compartment for immune people or those who will

be unaffected by the virus and applied their model to the three cities, Riyadh, Hufof, and

Jeddah, in the Kingdom of Saudi Arabia. Their model included the parameters infection

rate β, recovery rate γ, and the number of unaffected people α.

Roda et al. [34] presented two models to portray the epidemic in Wuhan, China. First they

used a simple SIR model with the transmission rate β as 9.906×10−8, the diagnosis as ρ

being 0.24, and the recovery rate µ as 0.1. R denoted the confirmed cases. They stated

that deaths of susceptible and infected individuals were negligible, and they seemingly

considered a death rate for the R population, but no parameter value for it was given. The

second model, a SEIR model, will be discussed later.

Rubin et al. [35] showcased a SIIR model which introduced a mutation of the virus at day

60. The infected population was divided into the primary infected, and the infected with

the mutation. Their parameters included a transmission constant β as 0.19, the recovery

constant γ as 0.125, and an infectiousness multiplier 1.5, which described the heightened

infectiousness of the new mutation.

Wangping et al. [36] used time-varying parameters in their SIR model by including a

transmission modifier π, the value of which varied depending on intervention measures.

The transmission rate β was then modified by this parameter. A removal rate γ parameter

was also used. They applied their model to Italy and Hunan, China.

Zareie et al. [37] used a SIR model with time-dependent parameters transmission rate

β(t), recovery rate Y (t), and death rate µ(t).
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4.1.4 Four-parameter models

Alanazi et al. [38] added a level of complexity by introducing what they called a SIR-F

model, which was essentially a SIRD model. Their last parameter fitting gave the following

parameter values: the effective contact rate β was 0.1, the mortality rates α1 and α2 were

0.018 and 1
47464

, and the recovery rate γ was 1
17

.

Calafiore et al. [39] modelled the epidemic in Italy using a SIRD model with time-varying

parameters. The parameters were as follows: the infection rate β varied approximately in

range [0.63, 0], the recovery rate γ approximately in range [0, 0.048], and the death rate

ν in range [0, 0.08]. They used a scalar parameter q ∈ [0, 1].

As mentioned, Ianni and Rossi [31] also created a SIIR model in which they considered

the asymptomatic cases of the virus, but not deaths. The model employed four parame-

ters, which were the transmission rates βS and βA for the symptomatic and asymptomatic

infected populations, and similarly, the recovery rates γS and γA. The initial transmission

rate β0 was 1
5
, βA was 1

7
, γS was 1

41
, and γA was 1

78
.

Kobayashi et al. [40] combined a state space model with a simple SIR model. The

unknown parameters of their model were the infection rate β, the recovery rate γ, and

two parameters determining randomness in the model, κ and λ.

Kolokolnikov and Iron [41] integrated spatial distribution of population into their modified

SIR model, which they showcased for the world, the United States, Canada, and Russia.

For the world, they estimated the parameters total population N as 7.7×109, an infection

parameter α as 15050, rate of interaction µ as 1.25 × 10−5, and the recovery rate γ as

0.0232.

Maier and Brockmann [42] created a SIRQ model for Hubei, China, that considered the

quarantining of infectious individuals. The best fit parameters for the basic reproduction

number R0 was 6.2, and for the infection period TI it was 8. They simulated scenarios

with varying containment rates k and k0.

Moussaoui and Zerga [43] created a SIR model which considered intervention strategies

in Algeria, that is, different levels of mask wearing m and social distancing d. They also

considered the level of protection from masks, e, and the basic reproduction number R0.

Peng et al. [44] used an SIR model for China that considered the proportion of unquar-

antined infected individuals α. Their transmission rate composed of the effective contacts

with infected individuals per day λ = 5 and the infection probability p = 0.040, and their

recovery rate was µ = 1
14

.

Prodanov [45] normalized a SIR model to include both the transmission rate and the

recovery rate in the parameter g, which was also the reciprocal of the reproductive number

R0. They also fitted the parameters im for the apparent peak of incidences and fatalities,
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and the apparent peak times T for them. The model was applied to Bulgaria, Belgium,

Netherlands, Germany, and Italy.

Rocchi et al. [46] considered the asymptomatic individuals and the immunity loss in their

SIIR model. They used the parameter values 0.6 for the infection rate α and 0.1 for

the removal rate β, and their immunity loss rate ρ varied from 0.003 to 0.006 and the

proportion of symptomatic individuals p varied from 0.01 to 0.10.

The second model by Roda et al. [34] was a SEIR model where individuals in E were

infected but not infectious. The parameters were β as 8.68× 10−8, ρ as 0.018, µ as 0.1,

and the transfer rate from the exposed population to the infected population, ϵ, as 0.631.

4.1.5 Five-parameter models

As mentioned before, Amiri Mehra et al. [25] also proposed a Susceptible-Infected-

Infected-Recovered-Quarantined (SIIRQ) model, which considered presymptomatics and

quarantined individuals in the previous countries. They considered scenarios with a 0.95

quarantine rate ϕ, and the other parameter values for South Korea were approximately 1

for the transmission rate β, 0.214 for the transfer rate α between the presymptomatic and

infected population, 0.222 for the recovery rate g, and the removal rate µd.

Brandenburg [47] constructed a SIR model with a spatial extension. The model param-

eters were reproduction rate λ, recovery rate µ, and a diffusion constant κ. Additionally,

they considered the spatial and temporal coordinates x and t.

Brugnano et al. [48] used a multiregional SIIR model to simulate the epidemic in Italy.

As parameters the model had the infection rate βi, the removal rates γi1 for undiagnosed

infected individuals and γi2 for diagnosed infected individuals, the probability of detecting

an infection σi, and a delay time τ to account for the time between an onset infection and

the detection of the infection. The country was divided into four regions, and i signified

the region. All other parameters were free, except for γ1 = 0.043 and τ = 10.

Cooper et al. [49] modelled the epidemic with a SIRD model in Italy, India, South Korea,

and Iran. To account for population moving around, it was possible to increase the number

of susceptible individuals. The parameters of the model were the transmission rate a, the

removal rate b, and death constantsD0 and k0 with which the deaths were estimated from

the removed population. For Italy, the parameter values were a = 0.18, b = 0.037, D0 =

3.6× 104, k0 = 1.6× 10−5 and f = 2.4× 105.

Zhao and Chen [50] created a Susceptible-Unquarantined-Quarantined-Confirmed model

with the parameters infection rate α, quarantine rate γ1, and three confirmation rates

γ2, σ, and δ. α was said to be calculated as 0.2967, and the other parameters were es-
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timated for Beijing, Shanghai, Guangzhou, and Shenzhen, in two stages for each. The

stage 1 estimation for Beijing for γ1, for example, was 0.3357. A confirmation rate for this

was estimated the value 0.0906, but it was not specified which rate this was.

4.1.6 Models with six to seven parameters

Bastos and Cajueiro [51] modelled the early evolution of the virus in Brazil. They used

what they called a SIRASD (Susceptible-Infected-Recovered-Asymptomatic-Dead) model,

which here was categorized as a SIIRD model. Their model featured seven parameters:

the infection rates βS = 0.4417 for symptomatic people and βA = 0.4417 for asymp-

tomatic people, the removal rates γS = 0.1508 for symptomatics and γA = 0.1260 for

asymptomatics, the proportion of the symptomatic p = 0.3210, the probability of death

ρ = 0.0347, and the effectiveness of social distancing ψ ∈ [0, 1].

Berestycki et al. [52] proposed a Susceptible-Infected-Recovered-Travelling model. They

included diffusion of population by introducing a road: a line that people travel on. Their

model parameters included diffusion coefficients d for the Infected population and D for

the Travelling population, the transmission rate β, recovery rate α, and exchange coeffi-

cients µ for giving individuals to a region and ν for receiving individuals from a region. No

explicit parameter values were given.

Nakamura et al. [53] reduced the basic model into a single first-order differential equation,

focused on accumulated deaths in their SIRD model by introducing a sigmoid expression

in the model. The model included the parameters transmission rates β, removal rate λ,

mortality rate f and the sigmoid parameters τ, g∞, and b. The model was applied to

France, Denmark, Italy, Spain, the United Kingdom, Germany, and Belgium.

Karaivanov [54] also used neural networks in their SEIRD model. In their model, the

probability of infection was heterogenous between individuals. Their parameters included

the infectivity rate β of 0.5, the removal rate r of 0.2, the mortality rate µ of 0.00074, the

recovery rate γ of 1.9926, an incubation parameter σ of 1
5.2

, the mass testing rate θ of

2%, 5%, and the contact tracing rate ϕ of 10%.

Neves and Guerrero [55] proposed an SIIRD model with asymptomatic and symptomatic

infected populations, which they applied to Lombardy, Italy, and São Paulo, Brazil. They

considered the parameters transmission rate β0, a reduction factor µ for the transmis-

sion rate, the probability of developing symptoms ξ, the removal rates γs and γa for the

symptomatic and asymptomatic cases, the case fatality rate ω, and the intensity of imple-

mented control measures ϵ.
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4.1.7 Models with 9 to 11 parameters

Batistela et al. [56] considered immunity loss and the effect of social distancing in their

SIIR model, which had compartments for unreported and asymptomatic infections, and

confirmed infections. They applied their model to three Brazilian cities, São Paulo, Santos,

and Campinas with five fits for parameters. For example, their first fit for São Paulo was

as follows: birth rate λ as 3.595 × 10−5, death rate δ as δ = 1.822 × 10−5, infection

rate α as 0.9377, removal rate σ as 0.1117, the recovery rates β1 and β3 as 0.1181 and

0.06325, the diagnosis rate β2 as 0.2978, the effect of social distancing θ as 0.5005, and

the immunity loss rate γ of 3.595× 10−5.

Tomochi and Kono [57] used an SIIR model to simulate the epidemic in Japan. Their

model had two Infected compartments for presymptomatic individuals and symptomatic

individuals, and three Removed compartments for infected but quarantined individuals,

the recovered individuals, and the fatalities. They coupled two of these SIIR systems

to account for a second wave. For the systems, the transmission rate β was 0.16, the

transfer rates b1, b2 were 0.012, and 0.188, the transfer rates c1, c2, c3 were 1
17
, 0.942

17
, and

1
17

− 0.942
17

. The immunity loss rate, or the inverse of the antibody duration, d1, was 0, the

incubation period t1 was 5, and the onset period t2 was 17.

Venkatasen et al. [58] used an SIRD model to portray the epidemic in India. They used

the parameters transmission rate which had its measured value vary approximately in

range [0.02, 0.5], fraction of susceptible, a contact success rate of 0.1, infected contacts,

a contact rate of 10, an illness duration of 14 days, a growth rate of 0.28, a reproduction

ratio, and a fatality ratio, of which the measured value varied in range [0.01, 0.04].

The SIR model by Muñoz-Fernández et al. [59] featured a non-constant transmission rate

β, death rate µ′, and γ. They also included a general birth rate λ and a general death rate

µ. For estimating the values of the transmission and death rates, coefficients aβ, aµ′ , bβ ,

and bµ′ were used. They applied the model to the cases of Italy, Spain, and the United

States.

Carli et al. [60] proposed a multi-compartmental and multi-regional Susceptible-Infected-

Removed-Quarantined-Threatened-Healed-Extinct model. Their parameters were the in-

fection rate β(k)i, the diagnosis rate θi, the healing rates γi, δi, πi for the infected, quar-

antined, and threatened individuals, the hospitalization rates λi, µi for the infected and

quarantined individuals, and the death rate ϵi for the ith region. They also had a migra-

tion coefficient ξI,j from region i to j, and intra-regional and inter-regional restrictions

Ui = [0, 0.2, 0.8] and Ri = [0, 1], respectively.

Peng et al. [61] introduced an SIIR model with time-varying transfer rates: undocu-

mented infection rate, transmission rate and infection fatality rate, and estimated their

values based on data from the United States. In their study they used the parameters
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infection rate β, recovery/death rate λ, unreported infection rates ϕ and ϕ′, coefficients

a, b, c, d and constants m,n and k.

4.1.8 Models with 12 or more parameters

Colombo et al. [62] created a Susceptible-Infected-Hospitalized-Recovered model with

age and space dependent parameters, with the parameters hospitalization or quarantin-

ing rate κ, recovery rates θ and η, mortality rates µS, µI , µH, and µR, and a disease

transmission function ρ with position variables x and ξ, and age variables a and α.

Ibarra-Vega [63] used a SIRD model to simulate theoretical scenarios, which had a long

lockdown, two short lockdowns and one smart lockdown, one medium lockdown and one

smart lockdown, and no lock down. The parameters they listed were contacts rate µ, the

fatality rate Fr, the hospital capacity strain index HiC, the incubation time it, the dis-

ease duration Dd, the fraction requiring hospitalization Fh, infectivity β, hospital capacity

HC, lockdown effectivity λ, smart lockdown effectivity k, post-lockdown effectivity q, and

serious cases SC. No numerical values were given for these parameters.

Ferchiou et al. [64] constructed a 15-parameter model with compartments for susceptible,

exposed, infectious, hospitalized, in intensive care units, recovered, and dead. The in-

fected compartment was further divided into asymptomatic, paucisymptomatic, and those

having mild or severe symptoms. Their parameters were the incubation period θ−1 as

5.2, the prodromal phase duration µ−1
p as 1.5, the latency period ϵ−1 as 3.7, the proba-

bility of being asymptomatic Pa as 0.2, the probability of being paucisymptomatic Pps

as 1 for children and 0.2 for adults, the probability of having mild symptoms Pms as 0

for children, 0.7 for adults, and 0.6 for seniors, the probability of having severe symptoms

Pss as 0 for children, 0.1 for adults, and 0.2 for seniors, the serial interval s as 7.5, the

infectious period µ−1 as 2.3, relative infectiousness rβ as 0.51, the probability of going in

ICU pICU as 0 for children, 0.36 for adults, and 0.2 for seniors, the raily rate of recovery

for hospitalized individuals λH,R as 0 for children, 0.072 for adults, and 0.022 for seniors,

the daily rate of recovery for those in an ICU λICU,R as 0 for children, 0.05 for adults, and

0.036 for seniors, the daily death rate for hospitalized individuals λH,D as 0 for children,

0.0042 for adults, and 0.014 for seniors, and finally, the daily death rate for those in an

ICU λICU,D as 0 for children, 0.0074 for adults, and 0.029 for seniors.

Ramos et al. [65] presented the most complex model thus far with 18 parameters, the θ-

Susceptible-Exposed-Infected-Hospitalized-Quarantined-Recovered model, where θ was

the proportion of undetected infections. Other parameters included were population N as

60, 317, 000, transition rates γE as 1
5.5

, γI(t) as 1
5
, γIu(t) as 1

9
, γHR

(t) as 1
14.2729

, γHD
(t)

as 1
5
, γIDu

(t) as ∞, γQ,1 as 1
36.0450

, γQ,2 as 1
24.88646

, disease contact rates βI,0 as 0.4992,

βIDu,0, βHR
, βHD

, instantaneous infection undetected fatality ratios ωu,0, ωu,1 and ωu,2 as
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0.42, 0.42, and 0, and the ratio of new detected infected who will recover after hospital-

ization p0 as 0.7382.

4.2 Recreated simulations

An interesting experiment to conduct using these models is trying to recreate them as

was presented to assess the simulation process and examine whether achieving similar

results as such is possible.

The Abuhasel [23] model was simple to recreate, with the initial conditions being S(0) =

N − I(0), I(0) = 387, and R(0) = 0, where N was 34, 806, 116. The simulation took

three parameters. The recreated results can be seen in Figure 4.1.

Figure 4.1. The Abuhasel [23] model results recreated in Vensim.

For the Nguemdjo [19] model the given initial conditions were (S(0), I(0), R(0)) = (N −
1, 1, 0), where the population size was N = 25, 216, 237. The model was recreatable

with the given information, and it only needed to be normalized by the total population to

achive the same results. Recreating the model took three parameters in total. A Vensim

recreation of the results is in Figure 4.2.
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Figure 4.2. The Nguemdjo [19] model results recreated in Vensim.

The results of the Fanelli and Piazza [27] model were recreatable with the given param-

eter values and the given initial conditions S(0) = 4.13 × 104, I(0) = 3, R(0) = 0, and

D(0) = 0 for Italy. This model was as simple as a SIR model with additional compart-

ments could get, with only four parameters used. This included a parameter determining

the onset period of the epidemic. The recreated results for Italy can be seen in Figure 4.3.
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Figure 4.3. The Fanelli and Piazza [27] model results recreated in Vensim.

The initial conditions used in the model by Law [32] were S(0) = 32, 680, 000, I(0) = 90,

and R(0) = 62. The model for each fit was easily recreatable with the given parameters,

of which the final fit can be seen in Figure 4.4. There did not seem to be a value listed for

the initial transmission rate Bt=0, but using a value of Bt=0 = 0.4114, a value that was

mentioned earlier in their paper, gave similar enough results. Six parameters were used

to recreate this model.
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Figure 4.4. The Law [32] model results recreated in Vensim.

Not all models could be created solely based on information presented in the papers. In

some cases all variable values were not reported or the model was not built the way they

were presented and some tweaking needed to be done, or they the results could not be

recreated at all.

For instance, in the Malavika [17] model no initial values for the compartments were given,

so it could not be tested on Vensim as such. Using a total population number of 1.38

billion and initial values of 0.685, 1 over 1.38 billion, and 0 for Susceptible, Infected and

Recovered, respectively, it was possible to achieve 57,450 active infections on around

May 18 as was reported. Three parameters were used, one of which was the population

number used to scale the Infected compartment. The recreated results are in Figure 4.5.
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Figure 4.5. The Malavika [17] model results recreated in Vensim.

The given inital conditions for the Cooper [49] model were I(0) = 1.3 × 10−3 and

R(0) = 6.21 × 10−4. As there was no explicit initial value given for the Susceptible

compartment, nor were values given for the surges, the model could not be recreated

outright. Assuming S(0) = 1 gave a similar result for the first wave in Italy, specifically the

infected compartment. For India, continuous surges would need to be added to achieve

the correct result. Five parameters were needed in this simulation. The recreation results

for Italy can be seen in Figure 4.6.
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Figure 4.6. The Cooper [49] model results recreated in Vensim.

When attempting the Batistela [56] model on Vensim the results needed to be scaled by

a factor, the population of each city, to achieve similar numbers to those in the paper. An

explicit value for this factor was not given and could thus only be estimated. A total of 10

parameters were needed to recreate this model. Figure 4.7 shows the recreated results

for the second and fourth fits for São Paulo.
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Figure 4.7. The Batistela [56] model results for the Sick compartment recreated in Vensim
with two sets of fitted parameters.
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5. DISCUSSION

Many models assumed an unchanging total population, which is a valid assumption con-

sidering the time windows used in the models were relatively short. Another assumption

present with many of the models was making the whole population susceptible in the be-

ginning, which would not be the case in most countries. The focus was largely on the

early dynamics of the epidemic, meaning the models are not necessarily applicable in the

present times. A high number of models took into account heterogeneity of the popula-

tion in some way, such as by including multiple regions. The transmission rate was often

time-varying, but the recovery or removal rates were typically constant. This is plausible,

as control measures do affect the transmission rate of the virus, but the average duration

of the illness would mostly stay the same and by extension, so would the recovery rate.

Authors are aware that the classical SIR model is not an accurate modelling tool in the

case of COVID-19, and many extended models were used. The asymptomatic carriers

of the virus and fatalities were included in many models. Some models also considered

the effectivity of control measures in another form than by altering the transmission rate,

but thusfar no model had included the effect of vaccines. Surprisingly, only a minority of

the models considered immunity loss which is a real possibility with the virus. Only one

model took into account the possibility of a mutation of the virus, a phenomenon which

has been reported in increasing numbers [66].
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6. CONCLUSIONS

Mathematical models are a promising tool for forecasting the development of an epidemic

and researchers are racing to create increasingly extensive models of COVID-19. With

numerous studies on the subject being published each month, it is important to attain a

view of the current scope of modelling. While the accuracy of the models presented has

not been assessed, they could offer useful insight to the spread patterns of COVID-19

if maintained properly. Maintenance in this context would mean re-fitting the parameters

periodically and including new aspects of the virus as needed. Many models presented

did not include essential characteristics, such as the temporary immunity from infection

and the mutated variants of the virus. COVID-19 models still need more development to

truly portray the epidemic at hand. With vaccines against the virus coming out recently,

there might not be a need for active modeling of the virus in the near future, but it is a

good case study for the usability of the SIR model and its derivatives.
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APPENDIX A: TABLE OF RESULTS

Table A.1. The collection of papers reviewed in an order of increasing number of param-
eters.

Authors Model Parameters Values Notes

Katul et al.

[9]

SIR Basic repro-

duction number

R0

R0 = 4.5 A normalized SIR

model.

Sadurní

and

SIR Control parame-

ter κ

- The model is re-

duced to

Luna-

Acosta

[10]

a one-variable

system.

Ahmetolan

et al. [11]

SIR Basic repro-

duction number

R0

1.5 < R0 < 10 -

Mean infectious

period T

2 < T < 30

Al-anzi et

al. [12]

SIR Infection rate β - They used a MAT-

LAB

Recovery rate γ SIR modeling

tool.

Barlow and

Weinstein

[13]

SIR Transmission rate

r

r = 2.9236 ×
10−5

A closed-form so-

lution

recovery rate α α = 0.0164 of the model.

Dos Santos

et al. [14]

SIR Transmission rate

β

β ∈ [0.05, 0.6] Includes time-

varying

Recovery rate γ γ ∈ [0.07, 0.13] parameters.
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Jung et al.

[15]

SIR Infection rate β β = 0.1656 Features time-

varying parame-

ters and

Recovery rate γ γ = 0.0253 a neural network

model.

Lounis and

Bagal [16]

SIR Transmission rate

β

β = 0.0561215 Adds nothing

new.

Removal rate γ γ = 0.0455331

Malavika et

al. [17]

SIR Transmission pa-

rameter β

β = 0.36 A short-term

model.

Recovery rate γ γ = 0.14

Miranda et

al. [18]

Hybrid SIR Transmission

rates βi,s,c

- Combines SIR

equations and

Recovery rate γi a network diffu-

sion model.

Nguemdjo

et al. [19]

SIR Effective contact

rate β

β = 0.615 Adds nothing

new.

Removal rate γ γ = 0.393

Srivastava

et al. [20]

SIR Contact rate r r = 0.0096 Considers the ef-

fects of lockdown.

Recovery rate a a = 0.1006

Szapudi

[21]

SIR Infection proba-

bility β

β = 0.07 Includes hetero-

geneity.

Recovery rate γ γ = 0.1

Turk et al.

[22]

SIR Infection rate β β =

0.6415, 0.6165,

Fitted parameters

twice

Removal rate γ 0.7020, 0.6381 for each region.

γ =

0.3585, 0.3835,

0.2980, 0.3619

Abuhasel et

al. [23]

SIR Contact rate β β = 0.133 Adds nothing

new.

Recovery rate γ γ = 1
14
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Total population

N

N = 34, 806, 116

Ambrosio

and

SIRD Infection rate k(t) k ∈ [0.67, The infection and

death rates

Aziz-Alaoui

[24]

Recovery rate r 1.057] are adjusted over

time.

Death rate d(t) r = 0.64

d ∈ [0.0016,

0.00232]

Amiri

Mehra et

al. [25]

SIRD Transmission rate

β

β = 1 Adds nothing

new.

Recovery rate g g = 0.223

Removal rate µd µd = 0.0261

Enrique

Amaro et

al. [26]

SID Theoretical num-

ber of

- Does not con-

sider recoveries.

deaths a

Characteristic

evolution time b

Inverse dead fac-

tor c

Fanelli and SIRD Infection rate r r = 7.9 ×
10−6, 3.33× 10−6

Adds nothing

new.

Piazza [27] Recovery rate a a = 2.13 ×
10−2, 1.8× 10−2

Death rate d d = 1.63 ×
10−2, 3× 10−3

Fort et al.

[28]

SIR Basic repro-

duction number

R0

- Considers many

additional groups.

Contacts β

Inverse recovery

time γ
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Guirao [29] SEIR Reproductive

number r0

τi = 1.63, 2.56 -

Infection period τi τl = 3.0, 2.0

Latent period τl

Harb and

Harb [30]

SIRD Contact factor b - Considers the

medication qual-

ity factor.

Transmit factor a

Health medica-

tion quality factor

m

Ianni and

Rossi [31]

SIRD Transmission rate

β(t)

β0 =
1
1.8
, 1
2.2

Time variant

parameters

included.

Recovery rate γR γR = 1
41

Mortality rate γD γD = 1
145

Law et al.

[32]

SIR Fraction parame-

ter z

z = 0.4374 Features a time

variant infection

rate.

Proportion of de-

pletion p

0.3914, 0.4047

Removal rate δ p = 0.0784,

0.0450, 0.0466

δ = 0.025,

0.042, 0.050

Mohamed

et al. [33]

MSIR Infection rate β - Immunity-

Susceptible-

Infected-

Recovery rate γ Recovered

model.

Number of unaf-

fected people α

Roda et al.

[34]

SIR Transmission rate

β

β = 9.906×10−8 R denotes the

confirmed cases.
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Diagnosis rate ρ ρ = 0.24

Recovery rate µ µ = 0.1

Rubin et al.

[35]

SIIR Transmission

constant β

β = 0.19 Considers a mu-

tation of the virus.

Recovery con-

stant γ

γ = 0.125

Infectiousness

multiplier

1.5

Wangping

et al. [36]

SIR Transmission rate

β

- Includes time-

varying transmis-

sion rates.

Removal rate γ

Transmission

modifier π(t)

Zareie et al.

[37]

SIRD Transmission rate

β(t)

- Includes time-

dependent

Recovery rate

Y (t)

parameters.

Death rate µ(t)

Alanazi et

al. [38]

SIRD Effective contact

rate β

β = 0.1 -

Mortality rates

α1,2

α1 = 0.018

Recovery rate γ α2 =
1

47464

γ = 1
17

Calafiore et

al. [39]

SIRD Infection rate β(t) β ∈ [0.63, 0] Includes time-

varying parame-

ters.

Recovery rate

γ(t)

γ ∈ [0, 0.048]

Death rate ν(t) ν ∈ [0, 0.08]

Scalar parameter

q(t)

q ∈ [0, 1]
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Ianni and

Rossi [31]

SIIR Transmission

rates βS,A(t)

βA = 1
7

Includes time

variant parame-

ters and

Recovery rates

γS,A

γS = 1
41

considers asymp-

tomatic cases.

γA = 1
78

Kobayashi

et al. [40]

SIR Infection rate β - SIR combined

with

Removal rate γ a space-state

model.

Randomness pa-

rameters κ, λ

Kolokolnikov SIR Infection parame-

ter α

α = 15050 Considers a spa-

tial distribution

and Iron

[41]

Recovery rate γ γ = 0.0232 of population.

Rate of interac-

tion µ

µ = 1.25× 10−5

Total population

N

N = 7.7× 109

Maier and

Brockmann

[42]

SIRQ Basic repro-

duction number

R0

R0 = 6.2 A Susceptible-

Infected-

Recovered-

Infection period

TI

TI = 8 Quarantined

model.

Containment

rates k, k0

Moussaoui

and Zerga

[43]

SIR Basic repro-

duction number

R0

- Considers inver-

vention strate-

gies.

Proportion wear-

ing masks m

Degree of protec-

tion e
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Proportion dis-

tancing d

Peng et al.

[44]

SIR Effective contacts

λ

λ = 5 Considers the

proportion

Infection proba-

bility p

p = 0.040 of unquarantined

individuals.

Recovery rate µ µ = 1
14

Proportion of un-

quarantined α

Prodanov

[45]

SIR Inverse of repro-

ductive number

g = γ
β

- Uses normalized

variables

Reproductive

number R0

and considers

two waves.

Apparent peak im

Apparent peak

time T

Rocchi et

al. [46]

SIR Infection rate α α = 0.6 Considers immu-

nity loss and

Removal rate β β = 0.1 presymptomatic

individuals.

Immunity loss

rate ρ

ρ ∈
[0.003, 0.006]

Proportion of

symptomatic p

p ∈ [0.01, 0.10]

Roda et al.

[34]

SEIR Transmission rate

β

β = 8.68× 10−8 A Susceptible-

Exposed-

Diagnosis rate ρ ρ = 0.018 Infected-

Confirmed

model.

Recovery rate µ µ = 0.1

Transfer rate from

E to I ϵ

ϵ = 0.631
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Amiri

Mehra et

al. [25]

SIIRQ Transmission rate

β

β = 1 Considers

presymptomatic

Transfer rate α α = 0.214 and quarantined

individuals.

Recovery rate g g = 0.222

Removal rate µd µd = 0.0257

Quarantine rate ϕ ϕ = 0.95

Brandenburg

[47]

SIR Reproduction

rate λ

- A model with a

spatial extension.

Recovery rate µ

Diffusion con-

stant κ

Spatial and tem-

poral

coordinates x, t

Brugnano

et al. [48]

SIIR Infection rate βi γ1 = 0.043 Includes di-

agnosed and

undiagnosed

Removal rates

γi1,i2

τ = 10 cases, and multi-

regionality.

Detection proba-

bility σi

Delay time τ

Cooper et

al. [49]

SIRD Transmission rate

a

a = 0.18 The susceptible

population

Removal rate b b = 0.037 could be in-

creased in

surges.

Death constants

D0, k0

D0 = 3.6× 104

Scaling coeffi-

cient f

k0 = 1.6× 10−5
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f = 2.4× 105

Zhao and

Chen [50]

SUQC Infection rate α α = 0.2967 A Susceptible-

Unquarantined-

Quarantine rate

γ1

γ1 = 0.3357 Quarantined-

Confirmed

model.

Confirmation

rates γ2, σ, δ

0.0906

Bastos and SIIRD Proportion of

symptomatic p

p = 0.3210 A portion of the

infected

Cajueiro

[51]

Infection rates

βA,S

βA,S = 0.4417 are asymp-

tomatic.

Removal rates

γA,S

γA = 0.1260

Death probability

ρ

γS = 0.1508

Effectiveness of ρ = 0.0347

social distancing

ψ

ψ ∈ [0, 1]

Berestycki

et al. [52]

SIRT Diffusion coeffi-

cients d, D

- Population diffu-

sion is included.

Transmission rate

β

Recovery rate α

Exchange coeffi-

cients µ, ν

Nakamura

et al. [53]

SIRD Transmission rate

β

- The model is re-

duced to

Removal rate λ a single first-

order differential

Mortality rate f equation.

Sigmoid parame-

ters τ, g∞, b
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Karaivanov

[54]

SEIRD Infectivity rate β β = 0.5 A network-

augmented

SEIRD model.

Removal rate r r = 0.2

Mortality rate µ µ = 0.0037r

Recovery rate γ γ = r − µ

Incubation σ σ = 1
5.2

Mass testing rate

θ

θ = 2%, 5%

Contact tracing

rate ϕ

ϕ = 10%

Neves and

Guerrero

[55]

SIIRD Infection rate β0 - Considers the

asymptomatic

Reduction factor

µ

population and

control mea-

sures.

Probability of

symptoms ξ

Removal rates

γs,a

Case fatality rate

ω

Measure intensity

ϵ

Batistela et

al [56]

SIIR Birth rate λ λ = 3.595×10−5 Considers immu-

nity loss,

Death rate δ δ = 1.822× 10−5 asymptomatics

and the effect

Infection rate α α = 0.9377 of social distanc-

ing.

Removal rate σ σ = 0.1117

Recovery rates

β1,3

β1 = 0.1181
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Diagnosis rate β2 β2 = 0.2978

Effect of social

distancing θ

β3 = 0.06325

Immunity loss

rate γ

θ = 0.5005

γ = 3.595× 10−5

Tomochi

and Kono

[57]

SIIR Infection proba-

bility beta

β = 0.16 Considers

presymptomatic

Transfer rates

b1, b2,

b1 = 0.012 individuals and

couples two

c1, c2, c3 b2 = 0.188 SIIR systems.

Inverse of anti-

body duration d1

c1 =
1
17

Incubation period

t1

c2 =
0.942
17

Onset period t2 c3 =
1
17

− 0.942
17

d1 = 0

t1 = 5

t2 = 17

Venkatasen

et al. [58]

SIRD Fraction suscepti-

ble

- -

Contact success

rate

0.1

Infected contacts -

Contact rate 10

Duration 14

Transmission rate -

Growth rate 0.28

Reproduction ra-

tio

Fatality rate

Muñoz-

Fernández

SIR Transmission rate

β

- Includes non-

constant transfer
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et al. [59] Death rate µ′ rates and a gen-

eral birth

Recuperation

rate γ

and death rate.

Birth rate λ

Death rate µ

Coefficients

aβ,µ′ , bβ,µ′

Carli et al.

[60]

SIRQTHE Infection rate

β(k)i

Ui = [0, 0.2, 0.8] A multi-regional

Susceptible-

Diagnosis rate θi Ri = [0, 1] Infected-

Removed-

Quarantined-

Healing rates

γi, δi, πi

Threatened-

Healed-Extinct

model.

Hospitalization

rate λi, µi

Death rate ϵi

Migration coeffi-

cient ξi,j

Control actions

ui, ri

Peng et al.

[61]

SIIR Infection rate β - Includes a time

variant

Recovery/death

rate λ

undocumented

infection rate.

Unreported infec-

tion rates ϕ, ϕ′

Coefficients

a, b, c, d

Constants

m,n, k

Colombo et

al. [62]

SIHR Hospitalization/

quarantining

- susceptible-

Infected-
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rate κ Hospitalized-

Recovered model

Recovery rates

θ, η

with age and

space

Mortality rates

µS, I,H,R

dependent pa-

rameters

Disease trans-

mission ρ

Position variables

x, ξ

Age variables

a, α

Ibarra-Vega

[63]

SIRD Contacts rate µ - Takes into ac-

count hospitaliza-

tion

Fatality rate Fr and lockdowns.

Hospital capacity

strain index HiC

Incubation time it

Disease duration

Dd

Fraction requiring

hospitalization

Fh

Infectivity β

Hospital capacity

HC

Lockdown effec-

tivity λ

Smart lockdown

effectivity k

Post lockdown ef-

fectivity q

Serious cases

SC
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Ferchiou et

al. [64]

SEIH-ICU-

RD

Incubation period

θ−1

θ−1 = 5.2 Susceptible-

Exposed

Prodromal phase

duration µ−1
p

µ−1
p = 1.5 -Infected-

Hospitalized-

Latency period

ϵ−1

ϵ−1 = θ−1 − µ−1
p Intensive care-

Probability of be-

ing

Pa = 0.2 Recovered-Dead

model.

asymptomatic Pa Pps = 1, 0.2

Probability of be-

ing

Pms =

0, 0.7, 0.6

paucisymptomatic

Pps

Pss = 0, 0.1, 0.2

Probability of mild s = 7.5

symptoms Pms µ−1 = 2.3

Probability of se-

vere

rβ = 0.51

symptoms Pss pICU =

0, 0.36, 0.2

Serial interval s λH,R = 0, 0.072,

Infectious period

µ−1

0.022

Relative infec-

tiousness rβ

λICU,R = 0, 0.05,

Probability of go-

ing

0.036

in ICU pICU λH,D =

0, 0.0042,

Daily recov-

ery rates

λH,R, λICU,R

0.014

Daily death rates

λH,D, λICU,D

λICU,D =

0, 0.0074,

0.029
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Ramos et

al. [65]

θ-

SEIHQRD

Population N N = 60, 317, 000 Susceptible-

Exposed-

Infected-

Transition rates

γE, γI(t), γIu(t),

γE = 1
5.5

Hospitalized-

Quarantined-

γHR
(t), γHD

(t), γI(t) =
1
5

Recovered-Dead

model.

γIDu
(t), γQ,1 , γQ,2 γIu(t) =

1
9

Disease contact

rates βI,0, βIDu,0

γHR
(t) = 1

14.2729

βHR
, βHD

γHD
(t) = 1

5

Instantaneous

infection unde-

tected

γIDu
(t) = ∞

fatality ratios

ωu,0, ωu,1, ωu,2

γQ,1 =
1

36.0450

Proportion of un-

detected

γQ,2 =
1

24.8646

infections θ(t) βI,0 = 0.4992

Ratio of new de-

tected

ωu,0, ωu,1 = 0.42

infected who will

recover

ωu,2 = 0

after hospitaliza-

tion p0

p0 = 0.7382

Excluded

Alqahtani

[67]

- - - Includes a non-

linear incidence

rate.

Al-Khani et

al. [68]

- - - Unclear model

characteristics.

Ben Has-

sen et al.

[69]

- - - A Poisson model.
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Croccolo et

al. [70]

- - - Focused on a

network model.

De Oliveira

et al. [71]

- - - A Bayesian

model.

Hussain et

al. [72]

- - - Stochastic

model,

not comparable.

Janiak et al.

[73]

- - - Focuses on busi-

ness

reopening proto-

cols.

Karako et

al. [74]

- - - A stochastic

model,

not SIR.

Kudryashov

et al. [75]

- - - Mathematical

analysis that

is not applicable

to our purposes.

Kurita et al.

[76]

- - - Model was not

presented.

Liao et al.

[77]

- - - Not applicable.

Liu [78] - - - Not actually a SIR

model.

Lympero- - - - A neurodynami-

cal SIR

poulos [79] that is not compa-

rable.

Maheshwari

and Albert

[80]

- - - Presents a net-

work SIR not

applicable for our

purposes.
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Pizzuti et

al. [81]

- - - Not a SIR model.

Postnikov

[82]

- - - Uses Verhulst lo-

gistic equations.

Prasse et

al. [83]

- - - Not comparable.

Ray et al.

[84]

- - - A Bayesian ex-

tension.

Sharov [85] - - - Differs too much

from SIR models.

Taghvaei et

al. [86]

- - - A fractional

model.

Vattay [87] - - - An explicit single

variable differen-

tial equation for

deaths.

Vyklyuk et

al. [88]

- - - Not comparable

as a SIR model.

Wacker and

Schlüter

[89]

- - - Not comparable.

Zhou and Ji

[90]

- - - Bayesian model.

Zreiq et al.

[91]

- - - Does not focus

on the

SIR model.
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