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ABSTRACT
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Master’s thesis
Tampere University
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Wind noise is a common nuisance when performing audio recording in outdoor situations.
The aim of this thesis was to investigate different methods of characterizing wind noise occurring
in audio recording situations, and to use these methods in wind noise detection and analyzing
the behaviour of wind noise around a recording device. Four audio signal features zero-crossing
rate, root mean square energy, sub-band spectral centroid and magnitude squared coherence
were used in modeling the characteristics of wind noise with arguments presented for using them.
Measurements were performed using a specific laboratory setup capable of measuring wind and
recording audio. Recordings were performed outdoors with simultaneously recording a device in
natural wind and another device inside a windshield and using devices with multiple microphones.
Directly comparing the two simultaneous recordings a method for approximating absolute amount
of wind noise present was suggested.

Wind detection was performed using logistic regression and Gaussian mixture model based
classifiers, a Hidden Markov model was used in modelling the wind noise in different microphones
around the recording device. Mathematical foundation for the methods was presented. The meth-
ods used were considered successful in characterizing and detecting the wind noise, with classi-
fiers achieving high performance scores. The used methods also have potential to be applied in
further considerations with different recording devices and data.

Keywords: wind noise, audio signal processing, Hidden Markov model, audio classification, likeli-
hood, machine learning

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.
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Huhtikuu 2021

Tuulimelu on yleinen ongelma ulkoilmassa suoritetuissa äänityksissä. Tämän työn tarkoitukse-
na on tutkia erilaisia menetelmiä äänityksissä havaittavan tuulimelun karakterisointiin, sekä hyö-
dyntää näitä menetelmiä tuulimelun havaitsemisessa sekä sen äänityslaitteen ympärillä käyttäyty-
misen tutkimisessa. Neljää äänisignaalin piirrettä, nollanylitysten nopeutta, neliöllistä keskiarvoe-
nergiaa, alivyön spektrikeskusta sekä neliöityä koherenssia, käytettiin karakterisoimisessa. Perus-
telut käytölle esitettiin. Mittauksia suoritettiin käyttäen erityistä laboratoriojärjestelyä, joka mahdol-
listi tuulen mittaamisen sekä äänen nauhoittamisen. Nauhoitukset suoritettiin ulkona nauhoittaen
samaan aikaan monimikrofonista laitetta luonnollisessa tuulessa ja toista samanlaista laitetta tuu-
lisuojan sisällä. Tuulimelun absoluuttisen määrän arvioimiseen esitelttiin samanaikaisten nauhoi-
tusten vertailua hyödyntävä menetelmä.

Tuulen havaitsemisessa käytettiin logistiseen regressioon sekä normaalisekoitemalliin perus-
tuvia luokittelijoita. Markovin piilomallia käytettiin mallintamaan tuulimelun käyttäytymistä äänitys-
laitteen ympärillä. Menetelmien matemaattinen perusta esiteltiin. Käytetyt menetelmät suoriutui-
vat hyvin tuulimelun karakterisoimisessa ja havaitsemisessa. Luokittelijoiden arviointipisteet olivat
korkeat. Käytettyjä menetelmiä voi hyödyntää myöhemmissäkin tarkasteluissa käyttäen erilaisia
äänityslaitteita ja erilaista dataa.

Avainsanat: tuulimelu, äänisignaalinkäsittely, Hidden Markov- malli, äänen luokittelu, mallitoden-
näköisyys, koneoppiminen

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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1. INTRODUCTION

Recording audio with different devices and in different situations has been getting more

and more accessible and common during the latest years. The use of recordings has

also been getting much more varied, with applications such as remote meetings, voice

messages and social media content getting all the more popular and joining professional

audio recordings and regular phone calls in common uses of audio. This has been largely

made possible by the constant evolution of devices such as mobile phones [1], which can

nowadays produce recordings with good quality even in a difficult environment with lots

of background noise. The expectations for devices to be able to handle also different and

difficult cases demands also more from the devices and requires constant evolving and

research.

Dealing with different background noises is a fundamental part in producing quality audio

recordings. In this work the focus is in wind noise, which is a common source of noise

especially in recordings done outdoors and which has been found to have a particularly

harmful effect in intelligibility and quality of the recording [2]. Protecting from the effects of

wind noise is possible using different physical wind shields [3] but that is often not feasible

in smaller devices such as mobile phones or hearing-aid devices [4].

Wind noise also has significantly different characteristics compared to most other com-

mon sources of noise, which makes it more difficult to reduce the effect of wind noise

using signal processing and regular noise-canceling algorithms [5]. Instead a family of

completely different noise-cancelling algorithms specifically for wind noise is required and

this has been a topic of a lot of research [6]. The purpose and topic of this work is not

to go through different algorithms for canceling wind noise, but to investigate the char-

acteristics of wind noise and use them to detect its presence in recordings. That is a

substantial step in the process of reducing wind noise [7]

In this work the generation and characteristics of wind noise are discussed according to

what has been done in previous studies. A set of features of audio signals are presented

and they are discussed in the context of using them for detecting wind noise. For these

purposes a substantial amount of outdoor recordings in windy conditions are made, which

is a different method compared to many other studies, where the wind noise is often

added manually to samples that are studied [8].
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In the recording process two recordings are done simultaneously: one with a device

equipped with a windshield and one without. This approach provides a very efficient

way to analyze the effects of wind compared to the reference recording. It also gives

an opportunity to try to approximate the absolute amount of wind noise present with the

assumption that after calibrating the microphone volumes most of the difference in the two

recordings is due to the wind noise. This approach is used to investigate the performance

of signal feature based classifiers in the task of detecting wind noise. In addition to this,

the effects of the direction of arrival in the wind noise present are investigated using a

Hidden Markov model exploiting the multiple microphones in the recording setup.

In Chapter 2 the mathematical background of the machine learning and modeling meth-

ods used in this study are discussed and in Chapter 3 the fundamental signal processing

concepts needed in this study are presented. After that the reasons for the occurrence

of wind noise are discussed, which leads to the investigation of the characteristics of the

noise. The signal features used in this work are also presented in the chapter, as is the

motivation and the process behind approximating the absolute wind noise. In Chapter 4

the measurement and recording setup is presented and the processing of measurement

data is described, including the creation of training and testing datasets for the machine

learning approaches. Training and performance of the wind noise classifiers is discussed

and the Hidden Markov model approach is explained in Chapter 5.
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2. THEORY CONCEPTS

2.1 Classification

In numerous statistical and machine learning applications the goal is finding the best

possible model to describe the data available and then to use the model to predict some

new data. In classification the goal of the analysis is to find such a model that divides the

data into certain classes. In such cases every instance of data used is paired as (Xi, Yi),

where Xi ∈ X denotes an instance of input data that consists of explanatory variables

that are different features of the data and Yi ∈ Y denotes output data which is the label of

the class. [9] The classification can be binary or multinomial; in binary classification the

label set is Y = {0, 1}. In this work the classification done is mainly binary.

Given an arbitrary model θ ∈ Θ fitted to the data, the model is used in a decision function

h : X → Y to predict the label given the features of the input data [10]. To find the best

possible model to predict the labels as accurately as possible, a loss function that defines

if the predicted label is correct or not is needed. In most applications the decision function

and the loss function are difficult to calculate exactly and thus they can be approximated

with a surrogate loss function that can be used to define the model [9].

Definition 2.1. Let X ∈ X n and Y ∈ {0, 1}n be the input and output data and θ ∈ Θ

be a model that describes the data. Given an arbitrary surrogate loss function f : X ×
{0, 1} ×Θ → R+, the optimal model for binary classification is chosen by

argmin
θ

1

n

n−1∑︂
i=0

f(Xi, Yi | θ), (2.1)

where n is the number of measurements in input and output data. [10]

Many different options exist for the kinds of models and decision functions chosen and

also for fitting the model to the data. These are common discussions and issues in the

field of machine learning and the choice of methods is related to the problem and data

in question. The process of fitting the model is performed using a predetermined set of

training data. If the training data contains output data in addition to the input data, the

training process is called supervised learning and in the case of only input data being

available the training is called unsupervised learning. [11] In both cases the goal is to find
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a model that is the best possible candidate in explaining the properties of the data. This is

called maximizing likelihood and maximizing likelihood is identical to minimizing the loss

function. [12] The likelihood that is maximized is a function of the model and describes

the ability of the model to explain the data [13].

2.1.1 Logistic regression

Logistic regression is a classification method that fits a linear model to the training data.

It predicts the probability of a data instance belonging in a class using the logistic function

s(t) =
1

1 + e−t
. (2.2)

It is a commonly used method in different areas of study due to its relative simplicity and

efficiency [14].

Definition 2.2 (Logit transformation). Given a linear model θ and an instance of input data

Xi, the linear model gives the logarithmic odds of the corresponding response variable

belonging to the class Yi = 1

ln

(︃
π(Xi)

1− π(Xi)

)︃
= θXi, (2.3)

where π(Xi) denotes the probability P (Yi = 1 | Xi, θ). [12]

From the logit transformation it is also possible to calculate the predicted probability of

class Yi = 1 as

π(Xi) =
1

1 + e−θXi
, (2.4)

which is the logistic function evaluated with the linear model. This shows that the infinite

range of the linear model is mapped to the range [0, 1] for classification purposes. In bi-

nary classification the response variable Yi is Bernoulli distributed [10] and thus predicted

probabilities for both classes can be calculated as

P (Yi = C | Xi, θ) =

⎧⎨⎩π(Xi) , C = 1

1− π(Xi) , C = 0.
(2.5)

The class which is more probable is assigned as the label for the instance of data [15].

The optimal linear model is fit using training data that has instances of input data with

assigned labels. As seen in Figure 2.1, for data instances belonging in class Y = 1 the

probability P (Yi = 1 | Xi, θ) = 1 and for instances belonging in class Y = 0, probability

P (Yi = 1 | Xi, θ) = 0. The logistic regression model predicts the probabilities for
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classes and the linear model is fit with the goal of losing as little information as possible,

as described in Definition 2.1.

Figure 2.1. Visualization of a logistic function that is fitted to binary training data

Theorem 2.1. The optimal linear model for the logistic regression is obtained by choosing

the model

argmax
θ

n−1∑︂
i=0

Yi ln (π(Xi)) + (1− Yi) ln (1− π(Xi)) , (2.6)

where Yi is the value assigned to the label and n is the amount of data instances in the

training data.

Proof. Consider a linear model θ. This model predicts the probability of a training data

instance Xi belonging in either class as seen in (2.5). The likelihood li(θ) of the model

predicting the label correctly can be expressed for Bernoullian variables as [12]

li(θ) = π(Xi)
Yi(1− π(Xi))

1−Yi . (2.7)

The data instances in the training data are assumed to be identically independently dis-

tributed [9] and thus the likelihood for the model on the course of the whole training dataset

is the product

l(θ) =
n−1∏︂
i=0

π(Xi)
Yi(1− π(Xi))

1−Yi . (2.8)
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Taking logarithms, the log-likelihood is then

L(θ) =
n−1∑︂
i=0

Yi ln (π(Xi)) + (1− Yi) ln (1− π(Xi)) . (2.9)

As the log-likelihood function is a sum of logarithms of likelihoods of the model predicting

correctly in each instance, maximizing the log-likelihood function gives the best possible

fit for the data.

The log likelihood is usually used instead of likelihood because of numerical stability. With

large datasets a lot of multiplications of numbers between zero and one are needed and

thus eventually precision is lost. Maximizing the log-likelihood can be done with various

optimization algorithms; quasi-Newton methods such as the Broyden–Fletcher–Goldfarb

–Shanno (BFGS) algorithm are popular. [12]

The likelihood of the model can also be used to assess how well the model explains the

data compared to another models. A commonly used statistical test for comparing two

logistic regression models is the likelihood ratio test.

Definition 2.3 (Likelihood ratio test). The likelihood ratio test between models θ1 and θ2

is performed using the test statistic

G = −2 ln
l(θ1)

l(θ2)
, (2.10)

where l(θ1) and l(θ2) are likelihoods of the models and G ∼ χ2(d) with d degrees of

freedom. Degrees of freedom d is calculated from the difference of dimensions between

θ1 and θ2. [12]

Using log likelihoods instead of likelihoods, the test statistic can be written as

G = −2(L(θ1)− L(θ2)) (2.11)

and thus it can be interpreted as describing the difference in the log likelihoods of the

models. As the statistic is χ2(d) distributed, the statistical significance of the likelihood

difference of the two models can be determined using a hypothesis test [16]. If the test

is considering whether model θ2 is significantly better than θ1, the p-value for the test

is P (χ2(d) > G). If the p-value is low, the null hypothesis of θ1 is rejected and the

hypothesis of θ2 is accepted. This kind of test is often used when analyzing the features

in the model and testing, whether all of the features are significant in building the model.

[12]
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2.1.2 Gaussian Mixture Model

Gaussian Mixture Models (GMM) are a way of representing characteristics of data by

assigning the datapoints to different clusters. In a Gaussian Mixture Model, M Gaussian

distributions are fitted to the data and the distribution is considered to be a superposition

of all these distributions.

Definition 2.4. A Gaussian Mixture Model θ can be represented with parameters

θ = {τ,m,Σ}, (2.12)

where τ = (τ1, . . . , τM) defines weights for each of the M Gaussians in the model,

m = (m1, . . . ,mM) contains means for each Gaussian and Σ = (Σ1, . . . ,ΣM) contains

each covariance matrix. [17]

The probability distribution of a GMM can be expressed as the linear superposition [18]

P (Xi) =
M∑︂
j=1

τjN (Xi | mj,Σj), (2.13)

where N (X | mj,Σj) denotes the probability density function of the jth Gaussian distri-

bution

N (X | mj,Σj) =
1√︁

(2π)|Σj|
× e−

1
2
(Xi−mj)

TΣ−1
j (Xi−mj). (2.14)

Due to this probabilistic nature, a condition for the weights τ exists. The weights repre-

sent the probabilities of a sample belonging to a distribution and thus it is required that∑︁M
j=1 τj = 1 [17].

When a trained GMM is used for a classification problem, instead of calculating the whole

mixture distribution, the probability for each of the individual distributions is calculated as

Pj(Xi) = τjN (Xi | mj,Σj) (2.15)

and is interpreted as the probability of data instance Xi originating to the jth Gaussian

distribution. In this context the individual distributions are considered as response vari-

ables, i.e classes, and the component that has the highest weight for the data instance is

assigned as the label. [19]

Gaussian Mixture Models are generally an unsupervised learning method, which means

that for training the model only the explanatory input data is used, not the training labels

that may be available for the user [9]. A maximum likelihood estimate for the model

parameters is derived using an algorithm called the Expectation-Maximization algorithm.
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Expectation-Maximization Algorithm

For finding the maximum likelihood model parameters, a likelihood function for one data

instance Xi using an arbitrary model θ = {τ,m,Σ} can be taken from Equation (2.13)

as

li(θ) =
M∑︂
j=1

τjN (Xi | mj,Σj). (2.16)

For a dataset of N instances the likelihood and the log-likelihood functions are derived

similarly as in Equation (2.9) and thus the log-likelihood for training a GMM for the whole

dataset is

L(θ) =
N∑︂
i=1

ln

(︄
M∑︂
j=1

τjN (Xi | mj,Σj)

)︄
. (2.17)

The maximum likelihood model can be then found maximizing the likelihood function with

respect to the model parameters. In reality though, it is not feasible to use the log-

likelihood instantly, as the summation over the M distributions inside the logarithm makes

it really difficult to differentiate the function during calculating the maximum value [18].

The cause for this lies in the unsupervised nature of training a GMM. Instead of hav-

ing data pairs {Xi, Yi} of input data and label, the training is only done with input data

instances {Xi} and it makes the likelihood function more complicated as it has one pa-

rameter less [18]. This gives the motivation for Expectation-Maximization (EM) algorithm

that tries to iteratively estimate the full likelihood L(X, Y | θ) instead of L(X | θ) in

Equation (2.17). The algorithm is frequently used in different kinds of mixture models, not

just with the Gaussian mixture models.

Definition 2.5 (Expectation-Maximization Algorithm). Expectation-Maximization algorithm

for fitting parameters of a mixture model θ consists of three steps; steps 2 and 3 are iter-

ated for r = 1, 2, . . .

1. Choose initial values for model parameters θ0

2. Estimate Q(θ, θr−1) = E(L(θ) | X, θr−1) =
∑︁

Y P (Y | X, θr−1) lnP (X, Y | θ)

3. Maximize θr = argmaxθ Q(θ, θr−1),

where E() is the expected value and Q(θ, θr−1) is an auxiliary function. Iteration is con-

tinued until convergence is obtained. [17]

In this general form steps 2 and 3 of the algorithm can be interpreted as calculating the

probabilities for each of the data instances being generated by each Gaussian in step 2,

and then updating the model to find the most likely parameters to produce the result of

step 2 in step 3 [18]. Steps 2 and 3 are referred to as Expectation step and Maximization

step. The algorithm has been proven to converge to a local likelihood maximum with each

iteration step monotonically growing the likelihood L(θ) of the model [17].
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In order to apply the EM algorithm for the context of Gaussian mixture models, the two

probabilities in Q(θ, θr−1) =
∑︁

Y P (Y | X, θr−1) lnP (X, Y | θ)) need to be presented

in terms of Gaussian mixture models. The conditional probability P (Y | X, θr−1), which

describes the probability of each class given the data and the model update from the last

iteration, can be calculated using Bayes’ theorem as

P (Yi = C | Xi, θr−1) =
τCN (Xi | mC ,ΣC)∑︁M
j=1 τjN (Xi | mj,Σj)

≡ γ(YiC). (2.18)

In the equation C is one of the possible classes C ∈ Y and γ(Yij) is the notation that

will be used for this probability of the ith data instance being classified in the jth class.

This is the expectation calculation that is performed in the expectation step for a GMM.

[18] The second probability lnP (X, Y | θ) denotes the total log-likelihood given a GMM

θ and with labels Y known. It can be calculated as

lnP (X, Y | θ) =
N∑︂
i=1

M∑︂
j=1

P (Yij)(ln τj + lnN (Xi | mj,Σj)), (2.19)

where the probability P (Yij) = 1 for one Gaussian of M and P (Yij) = 0 for other labels.

[17] This likelihood function is now of a much easier form to maximize with derivatives

than the previous one in Equation (2.17) without knowledge of Y . Combining the γ(Yij)

and the lnP (X, Y | θ) calculated earlier, the function Q(θ, θr−1) to be maximized in the

maximization step is now

Q(θ, θr−1) =
N∑︂
i=1

M∑︂
j=1

γ(Yij)(ln τj + lnN (Xi | mj,Σj)) (2.20)

and it can be maximized with respect to the parameters {τ,m,Σ} using derivatives and

finding the zero point.

For mj in the model, the update m∗
j can be found by setting

∂Q(θ, θr−1)

∂mj

= 0 (2.21)

∂

∂mj

N∑︂
i=1

M∑︂
j=1

γ(Yij) lnN (Xi | mj,Σj) = 0 (2.22)

∂

∂mj

N∑︂
i=1

−γ(Yij)

2
(N ln 2π + ln |Σj|+

(Xi −mj)
TΣ−1

j (Xi −mj)) = 0,

(2.23)
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where part of the Q(θ, θr−1) was omitted as it was only dependent on the value of τj . The

sum over M was omitted because only the index j is considered. The m∗
j is solved from

the derivative [20]

N∑︂
i=1

γ(Yij)Σ
−1(Xi −mj) = 0 (2.24)

N∑︂
i=1

γ(Yij)Xi −
N∑︂
i=1

γ(Yij)mj = 0 (2.25)

mj =

∑︁N
i=1 γ(Yij)Xi∑︁N
i=1 γ(Yij)

. (2.26)

Similarly for Σj , the derivative is taken with respect to Σ−1
j [20] and it can be taken starting

from Equation (2.23). Now the updated Σ∗
j is calculated

−1

2

N∑︂
i=1

γ(Yij)(Σj − (Xi −mj)(Xi −mj)
T ) = 0 (2.27)

N∑︂
i=1

γ(Yij)Σj −
N∑︂
i=1

γ(Yij)(Xi −mj)(Xi −mj)
T = 0 (2.28)

Σj =

∑︁N
i=1 γ(Yij)(Xi −mj)(Xi −mj)

T∑︁N
i=1 γ(Yij)

. (2.29)

For calculating the weights τ , a constraint is needed to make sure the requirement∑︁M
j=1 τj = 1 is fulfilled. It is done using a Lagrange multiplier Λ and for the maximization

the function Q(θ, θr−1) is now [17]

Q(θ, θr−1) =
N∑︂
i=1

M∑︂
j=1

γ(Yij)(ln τj + lnN (Xi | mj,Σj))− Λ(
M∑︂
j1

τj − 1). (2.30)

It is differentiated with respect to τj and set to zero

∂Q(θ, θr−1)

∂τj
= 0

N∑︂
i=1

γ(Yij)

τj
− Λ = 0

τj =

∑︁N
i=1 γ(Yij)

Λ
.

(2.31)

The value for Λ can be calculated by considering the summation over M on both sides
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of the equation. Both sums
∑︁M

j=1 γ(Yij) and
∑︁M

j1
τj equal to one and thus the value of

Λ = N . Now the update for weight τj is

τ ∗j =

∑︁N
i=1 γ(Yij)

N
. (2.32)

The EM algorithm for Gaussian mixture models can thus be defined.

Definition 2.6 (EM algorithm for Gaussian mixture models). The expectation-maximization

algorithm for finding the maximum likelihood Gaussian mixture model θ = {τ,m,Σ} con-

sists of three steps

1. Initial value for model θ0 = {τ0,m0,Σ0}

2. Calculate γ(Yij) =
τjN (Xi|mj ,Σj)∑︁M
j=1 τjN (Xi|mj ,Σj)

3. Calculate updated parameters m∗
j =

∑︁N
i=1 γ(Yij)Xi∑︁N
i=1 γ(Yij)

, Σ∗
j =

∑︁N
i=1 γ(Yij)(Xi−mj)(Xi−mj)

T∑︁N
i=1 γ(Yij)

and τ ∗j =
∑︁N

i=1 γ(Yij)

N
.

Steps 2 and 3 are repeated until convergence criteria is met. [18]

All of the updated parameters can be interpreted as a weighted mean of the data with

the weights being calculated in the expectation step [17]. Using the EM algorithm for

training a GMM requires a certain level of knowledge about the data that is being used

due to some of its drawbacks, such as issues in identifiability of individual classes. The

EM algorithm does not guarantee convergence to a global maximum but only a local one

and thus the result is dependent on the initial value. [18]

2.1.3 Evaluating classifier performance

Validating and evaluating the performance of the classifier is an important part of creating

one. For the testing part another dataset consisting of instances of input data that has

been assigned with a correct label is needed. This test data is classified using the trained

model and the predicted labels are then compared to the correct labels [11]. Various

metrics are used to measure the success of the predicting. [21]

Definition 2.7. Consider a sequence of n labels Ŷ predicted by a classifier θ and a

sequence of corresponding true labels Y . The accuracy of the classifier can be calculated

as

acc(θ) =
#(Yî = Yi)

#(Yi)
, (2.33)

where #() notes the cardinality of the set. [22]

Accuracy gives a good indication of the success of the classification but it does not give
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any information about the type of errors the classifier does. More thorough evaluation

about the errors made is possible by comparing the actual label i and the predicted label

Ŷ i for each data instance. A confusion matrix, where each item of the matrix represents

number of occurrences for each combination of true and predicted labels, is a common

way to present this information [23]. For binary classifiers a confusion matrix is illustrated

in Table 2.1.

Yî = 0 Yî = 1

Yi = 0 #(Yî = 0 | Yi = 0) #(Yî = 1 | Yi = 0)

Yi = 1 #(Yî = 0 | Yi = 1) #(Yî = 1 | Yi = 1)

Table 2.1. Confusion matrix for binary classifiers

In some applications for binary classification particular interest in the performance of the

classifier is related to the ability of predicting a certain class, such as finding cases that

are labeled positive. The items of the confusion matrix give an opportunity to define

indicators that produce information about the performance related to a specific class.

Definition 2.8. Consider a sequence of n labels Ŷ predicted by a classifier θ and a

sequence of corresponding true labels Y . The precision of the classifier for class Y = 1

can be calculated as [21]

prec(θ) =
#(Yî = 1 | Yi = 1)

#(Yî = 1)
(2.34)

and the recall for class Y = 1 is calculated as [21]

rec(θ) =
#(Yî = 1 | Yi = 1)

#(Yi = 1)
. (2.35)

Precision can be interpreted as the ability of the classifier to predict positive labels only for

instances that are true positives. Recall on the other hand describes how big part of the

true positive instances the classifier predicts as positive. [24] Calculating both precision

and recall gives a good indication of how the classifier is able to predict in context of the

wanted class, and for a perfect classifier both prec(θ) = rec(θ) = 1. In realistic situations

a tradeoff situation exists between precision and recall and depending on the preferred

classifier characteristics a model can be chosen [11]. The tradeoff is often described

with a precision-recall-curve, as is shown in Figure 2.2. The curve is plotted by varying

the values of the decision probability threshold for classification between P (Yî = 1) =

[0, 1] and calculating precision and recall for each threshold [21]. The performance can

be analyzed from the curve and the north-east corner in the graph resembles a perfect

classifier. The closer the curve is to that point, the better the classifier is [24].
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Figure 2.2. A precision-recall curve with precision and recall computed with different
thresholds

2.2 Hidden Markov Models

In the statistical models presented in Section 2.1 the data was assumed to be indepen-

dently identically distributed, so that there was no dependence between individual data

instances. This however is not the case in many practical applications, where the data

that is modelled is sequential in nature. Hidden Markov model (HMM) can be used to

process the data in these kind of situations, where the input data X = {X1, . . . XT}
and response data Y = {Y1, . . . YT} are sequences and individual data instances have

an effect on the others [17]. A common example of such data is a time series of mea-

surements, where the past measurements are predictive of the future measurements. In

Hidden Markov models, such stochastic processes are assumed to behave according to

the Markov property, which makes the processes to be called Markovian.

Definition 2.9 (Markov property). The Markov property for the conditional probability of

sequential data holds, if

P (Yt | Yt−1, Yt−2, . . . , Y1) = P (Yt | Yt−1). (2.36)

In Markovian processes the future measurements are only affected by the current state
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and the process is time-invariant. [18]

Figure 2.3. The structure of a Hidden Markov model, where the states Yi are sequential
and observations Xi are emitted by the states

A Hidden Markov model consists of a Markovian sequence of states Y1:T and a sequence

of observations X1:T over a time interval of length T . The architecture of a HMM is

illustrated in Figure 2.3. The states Y are called hidden states due to their nature of

being unobservable. In a Hidden Markov model the values of the states are discrete and

Yi ∈ Y [9]. For the observations a model specific observation model is used. And as

seen in Figure 2.3, each observation is conditionally independent of other observations,

given the current state. Thus the joint probability distribution of the state and observation

sequences is

P (Y1:T , X1:T ) = P (Y1:T )P (X1:T | Y1:T )

=

(︄
P (Y1)

T∏︂
t=2

P (Yt | Yt−1)

)︄(︄
T∏︂
t=1

P (Xt | Yt)

)︄
,

(2.37)

where P (Y1) is the prior probability of the states, P (Yt | Yt−1) is the Markovian conditional

probability of state at time t given the previous state and P (Xt | Yt) is the conditional

probability of the observation given the state [17].

Definition 2.10. A time-invariant Hidden Markov model θ can be defined with parameters

θ = {τ, A,B}, (2.38)

where τ is the prior probability distribution of state Y1, A is the time-invariant state transi-

tion matrix and B is the emission matrix for observations. [18]

The transition matrix A consists of probabilities of transitioning from each possible state

to each possible state, such as Aij = P (Yt = j | Yt−1 = i). The emission matrix

consists of conditions for expected observations given each state and it depends on the
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observation model used. A common choice is to use Gaussian emissions and in these

cases Bj = N (Xt | µj,Σj). [17] A HMM with Gaussian emissions can be considered as

a Gaussian mixture model with the states being sequential.

The parameters {τ, A,B} for Gaussian emissions can be learned using both unsuper-

vised and supervised learning methods, depending on if the training data is labeled. For

unsupervised learning, the parameters are learned using the Baum-Welch algorithm,

which is a special case of the EM algorithm presented in Section 2.5 [18]. For super-

vised learning, the transition matrix A and the other parameters can be calculated using

the training labels Yi. Transition matrix is calculated by counting the occurrences for each

transition as

Aab =
#(Yi+1 = b | Yi = a)

#(Yi = a)
, (2.39)

where a and b are states of the model. [25] The prior probabilities τ can be determined

from the relative occurrences of each label in the training data set as

τa =
#(Yi = a)

#(Y )
. (2.40)

If the HMM has Gaussian emissions, the emission distributions for each state are deter-

mined from the sample means and covariances of the data instances belonging to each

label. Thus [25]

Ba = N (ma,Σa). (2.41)

The trained parameters can give a lot of information about the process that is being mod-

elled with the HMM and defining the parameters by training a model is one of the important

questions that can be answered using Hidden Markov models. Another important use of

Hidden Markov models is a decoding problem, where given the parameters of the model,

the goal is to find the most likely state sequence Y given a sequence of observations X .

A common method of solving this problem is using the Viterbi algorithm. [26]
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3. SIGNAL PROCESSING

3.1 Fundamental signal processing concepts

An audio signal is created when a microphone or a similar transducer device senses

vibrations of pressure in a medium and produces an electric signal x(t). This signal is a

continuous analog signal and it can be transformed into a digital signal for contemporary

signal processing using an analog-digital conversion. In this process the signal is filtered,

quantized and sampled to the wanted sample rate fs. The end product is a discrete

signal x(k) that consists of samples of the original waveform. The number of samples

per second is called the sample rate. [9]

The recording device usually captures audio energy from several different sources. De-

pending on the purpose of the recording, one or several of the sources can be classified

as the wanted target sources and the rest of them are noise sources. Possible sources for

noise can be different background events and processes, such as wind being present near

the recording device. [7] In this work, two recordings are made simultaneously and with

nearly identical placements related to the target source and background noise sources.

One of the recordings is made inside a wind shield that is assumed acoustically invisi-

ble subject to slight calibrations, which leads to the assumption that the sole difference

between the two recordings is the wind noise. With this assumption, the two recorded

signals x1 and x2 can be modeled as

x1(k) = t(k)

x2(k) = t(k) + n(k) = x1(k) + n(k),
(3.1)

where t(k) consists of the target source and different background noises and n(k) is the

wind noise signal.

The signal representation x(k) describes the amplitude of the signal at a specific time and

thus gives information about the signal in the time domain. The time domain gives some

information about the properties of the signal in question, but for purposes of analyzing

the signal, it is usually much more useful to consider the signal in the frequency domain.

[27] This transform from the time domain to the frequency domain can be done by dividing

the time domain signal into frames and then using the Fourier transform.
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The framing is done by taking a frame length LF of samples and then multiplying the

sequence with a window function. This windowing is done in such a way to reduce spec-

tral leakage and other unwanted effects. A commonly used window function is the Hann

window

w(κ) =
1

2
− 1

2
· cos (2πκ

LF

), (3.2)

where κ = 0, . . . , LF − 1. [28] Thus the frame with index λ can be obtained with

xλ =

LF−1∑︂
κ=0

w(κ) · x(λ · LF

4
+ κ), (3.3)

where LF

4
is the windowing step size used. For these frames the Fourier transform can

then be used.

Definition 3.1. The Discrete Fourier Transform (DFT) is the discrete version of the Fourier

transform for converting a function from time domain into the frequency domain. For a

sequence of LF samples, it can be calculated as

S(λ, µ) =

LF−1∑︂
κ=0

xλ(κ) · e
−i2πµκ

LF , (3.4)

with µ = 0, . . . LF − 1 being the discrete frequency bin indices and κ being the sample

index in a single frame. The value S(λ, µ) is a complex number that represents the

magnitude and phase of the given frequency µ being present in the frame λ. [9]

When the DFT is performed for a sequence of consecutive frames, the output is a rep-

resentation of the signal in the time-frequency domain. This representation gives infor-

mation about the spectral components given by the DFT and about the timestamp of the

given frame. This gives the opportunity to construct different signal features and visual-

izations such as spectrograms [29].

In this work the computation of DFTs and frames is done with the Python library librosa,

which uses the FFT algorithm for computing the DFT. It requires the frame lengths to be

of the form 2n, n ∈ N and unless stated otherwise, in this work the used frame size is

LF = 2048.

3.2 Generation of wind noise

The process of generation of wind noise in microphones has been a subject of research

for a long time. The main reason for wind noise in recordings is the turbulent pressure

fluctuations present in the air flow beyond the microphone [30]. These fluctuations in-

teract with the microphone membrane and induce a noise signal in the same way the
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microphone would interact with the sound pressure created by the wanted sound source.

[7]

The turbulences experienced by the recording device can be roughly divided into two cat-

egories: the intrinsic turbulences that occur in the air flow and the eddies and vortices

that are created when the air flow encounters the edges of the device. The intrinsic tur-

bulences are created in a much larger scale than the recording situation and they occur

when the wind stream encounters obstacles such as trees, buildings or vehicles in its

boundary layer. [31] In multiple experiments it has been seen that in outdoor measure-

ments the main source of wind noise are the intrinsic turbulences. That does not mean

that vortices are not created when the air flow hits the device: the air flow that creates

these vortices is just not constant and therefore also the frequency and direction of the

vortices is very inconsistent. This results in the vortices being unable to create a clear

and strong noise spectrum, as the vortice effects often cancel each other. [6, 32]

The characteristics of induced wind noise in different conditions have been investigated

extensively and a strong correlation between the wind velocity and level of wind noise has

been noticed. [32] In one representation, the sound pressure p(f) of the wind noise in

different frequencies can be modeled as

p(f) ∝ U3.15f 1.65, (3.5)

where U is the wind speed and f is the frequency [33]. The model is experimental in

nature and it may be valid only for the microphones and devices used to derive it, but it

shows correlation between wind noise and the wind speed. Finding relationships between

wind noise and the direction of the wind is much more difficult because the wind direction

varies heavily due to the turbulent nature of the windy air flow in outdoor measurements.

The nature of the vortices that are shed by the recording device depend heavily on the

geometry and material of the device. That means that it is a good practice to look for cor-

relations in induced wind noise and wind conditions is by performing measurements with

the single device in question. This also aids in taking the effects of microphone place-

ments in devices into account. In many devices the microphones are mounted inside the

outer shell of the device and the slits above the microphones can also generate additional

vortices that generate noise. [7] In this work data is obtained from multiple microphones

located all over the device and this gives a possibility to compare the generation of wind

noise in different conditions depending on microphone placement.

3.3 Detecting wind noise

Detecting wind noise and reducing its effect in recordings is an important topic of study

in the audio processing community. The ability to do it effectively requires knowledge
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and understanding of the characteristics of wind noise. For a listener the wind noise is

easily identifiable even among other possible noise in the recording. The rapidly changing

low-frequency whooshing sound is characteristic only to wind noise and these properties

can also be used to identify if a recording has wind noise present. Both of these clear

properties arise from the mechanics of generation of wind noise, discussed in section 3.2.

Definition 3.2. When an audio signal is divided to frames of size LF , the frame energy

can be calculated as

E(λ) =

λ·(LF+1)∑︂
k=λ·LF+1

x(k)2, (3.6)

where λ is the frame index. From a sequence of K frames, the short term energy variance

can be defined

σ2
E(λ) =

1

K

λ+(K−1)/2∑︂
i=λ−(K−1)/2

(E(i)− E(λ))2, (3.7)

where E(λ) is the mean of the frame energies in the sequence. [6]

When compared to other common types of encountered noises, such as pub noise [34], it

can be noticed that wind noise has much larger short term energy variance [8]. It means

that a commonly used assumption of background noise level being constant cannot be

applied with wind noise. This temporal variance is what can be heard as constantly

fluctuating noise level in recordings with wind noise.

In addition to the variance, another identifiable property of wind noise is its frequency

spectrum that is concentrated heavily on the lower frequencies [35]. Visualizing the issue,

from the spectrogram in Figure 3.1 it can be seen that most of the energy of the windy

portion is concentrated below 500 Hz, while in the less windy part the energy is distributed

more evenly.

Analysing and detecting the described temporal and spectral characteristics of wind noise

is possible using various signal processing techniques.[6] A common course of action is

to use different feature extraction methods that are more efficient to compute than full

spectrograms or variance analyses but still describe the same properties. Due to the

highly non-stationary characteristic of wind noise, these features must also be computable

in short time intervals. A collection of commonly used and well-working audio features are

discussed in the following sections.
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Figure 3.1. A spectrogram of a 10 seconds long sample of the recordings. A wind gust
with speed U = 1.9 m/s takes place during the first half of the snippet and the second
half has less than 0.5 m/s of wind present.

3.3.1 Zero-crossing rate

Zero-crossing rate (ZCR) is a commonly used and simple feature of audio signal. It

describes how rapidly the signal changes its sign, i.e. crosses zero.

Definition 3.3. Zero-crossing rate of a frame λ of audio signal is

ZCR(λ) =
1

Lf

Lf−1∑︂
k=0

|sgn(xλ(k))− sgn(xλ(k − 1))|, (3.8)

where the function sgn(·) =

⎧⎨⎩1 , x(k) ≥ 0

−1 , x(k) < 0
denotes the sign of the signal. [27]

The rate of signal changing its sign is heavily related to the frequency of the signal, which

makes it a useful feature in getting coarse information about the frequency components

of the signal. Its simplicity and computational feasibility make it attractive, even though

it doesn’t have as much explanation power as some other more complicated features.

Common use cases for zero-crossing rate are voice activity detectors, where it is often

used together with short term energy [36].

In the wind detection context, zero-crossing rate is potentially useful, because of its ability

to give information about the spectral characteristics of the noisy signal. Wind noise is

more active in lower frequencies than the recorded target signal and this means that we

can expect zero-crossing rates to be small in the windy parts and larger in parts where

wind noise is not present. This is also seen in Figure 3.2, where the zero-crossing rates

of same snippet of recording as in Figure 3.1 are plotted along with the ZCRs of the wind
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Figure 3.2. Zero-crossing rates of two signals recorded at the same time and place with
and without wind shielding.

protected audio from the same timestamp. This property can be used in detecting the

presence of wind noise. [6]

3.3.2 Root mean square energy

Another useful temporal feature of a signal is its energy, which can provide information

about the energy and loudness of the signal. Audio signals are waveforms that oscil-

late around zero with both negative and positive amplitudes with both contributing to the

energy of the signal with their magnitude, not their sign. Using a root mean square cal-

culation gives information about the energy in both positive and negative amplitudes and

thus the root mean square energy value is a useful feature in assessing the signal energy

during a frame [37].

Definition 3.4. The root mean square (RMS) energy of a frame λ of audio signal is

calculated as [29]

ERMS(λ) =

⌜⃓⃓⎷ 1

Lf

Lf−1∑︂
k=0

xλ(k)2. (3.9)

Using the RMS energy as a feature it is possible to assess the loudness of the signal

during each frame. It is useful information in the context of detecting wind noise because

the noise created by wind gusts can often be louder than the target signal. That occurs

especially in situations where the wind noise disturbs the recording dominantly [8]. As

also seen in Figure 3.3, the RMS energy in the unprotected microphone rises significantly

when wind occurs.
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Figure 3.3. RMS energies of two signals recorded at the same time with and without wind
shielding.

3.3.3 Spectral sub-band centroid

Spectral centroid is a feature that provides information about the distribution of signal en-

ergy in different frequencies. It can be stated to be the center of the mass of the spectrum.

[29] The spectral sub-band centroid (SSC) that is in question in this work is similar, but

instead of using the full frequency domain, it is divided into smaller pieces that are called

sub-bands. For sub-band spectral centroids the centroid calculation is performed for only

the necessary sub-band in order to get information about that area of the frequency do-

main. In order to calculate spectral centroids for a signal, substantial information about

the frequencies of the signal is required. This is obtained by transforming the signal from

the time domain to the frequency domain using the DFT defined in Equation (3.4).

Definition 3.5. The spectral centroid of the frame λ for the ith sub-band of the signal

frequency domain can be calculated as

SSCi(λ) =
fs
LF

∑︁µi−1
µ=µi−1

µ · |S(λ, µ)|∑︁µi−1
µ=µi−1

|S(λ, µ)|
, (3.10)

where fs is the sample rate of the signal, LF is the frame length, µ is the central frequency

of the frequency bin, S(λ, µ) is the DFT value of the frame and frequency bin in question

and µi and µi−1 represent the edges of the sub-band. [38]

The ability to give information where the energy in concentrated in the frequency spectrum

makes spectral centroid a successful method in analyzing the timbre of the audio signal.

This has made it a frequently used feature in different music classification and detection

tasks. [27] It is also used in automatic speech recognition solutions to help classification
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between voiced and unvoiced speech [38].

In the wind noise detection context, using spectral centroids is useful because we know

that the wind noise spectrum is heavily concentrated in the low frequencies, while the

target signal consists usually of higher frequency components. This also motivates divid-

ing the spectrum into sub-bands and only using the lowest frequency sub-band centroid,

because the higher sub-bands would not be affected by the wind anyway, so trying to

detect it there would also be more difficult. As most of the wind noise is present in very

low frequencies, the sub-band for detecting wind is set to start from µ = 0 Hz and end in

µ1 = 3000 Hz.

Figure 3.4. Sub-band spectral centroids of two signals recorded at the same time with
and without wind shielding.

The low-frequency characteristics of wind noise, as also seen in Figure 3.4, force the

spectral centroid to occur in a significantly lower frequence in the presence of wind noise.

This property can be used to detect wind noise. [6]

3.3.4 Approach for multiple microphones

While the previously addressed features are suitable for detecting wind noise with infor-

mation from only a single microphone, many contemporary devices are equipped with

multiple microphones and this gives an opportunity to use different methods for detecting

wind noise. This approach is important in devices with little computing capacity such as

hearing-aid devices [39]. The methods for using multiple microphones is based on com-

paring simultaneously recorded signals from different microphones and their similarity.

The similarity can be assessed using signal coherence.

Definition 3.6. The magnitude squared coherence (MSC) C12 between signals x1(k) and
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x2(k) can be computed as

C12(f) =
|Φ12(f)|2

Φ11(f) · Φ22(f)
, (3.11)

where Φ12(f),Φ11(f) and Φ22(f) are the auto- and cross power spectral densities (PSD)

of signals. The PSD values describe the distribution of power as a function of frequency f

and are approximated using the Welch method [40]. By the Cauchy-Schwartz inequality,

the values of MSC are between 0 ≤ C12(f) ≤ 1. [41]

MSC thus measures how well the power distributions of the signals match in different

frequencies. If the coherence is close to 1, the result can be interpreted as the signals

having a strong relationship between each other and similarly if the result is close to 0,

the signals have no relationship at all. Ideally in the process of recording sound from a

single source, the value of coherence is 1, but in real situations the coherence is lowered

by the distance between microphones and the presence of noise sources. [42]

While the sound field produced by a single sound source such as a person speaking can

be considered coherent, the sound field produced by wind noise is incoherent. That is

due to the wind noise being generated in the turbulences that occur very near the de-

vice and thus different microphones will sense the turbulences differently [6]. In the past,

several models have been created to represent the coherence in such cases, such as

the Corcos model [43] that has also been shown to approximate the effects in recordings

fairly well [44]. The Corcos model predicts exponential decay in coherence with grow-

ing frequencies which means that coherence will approach zero everywhere except at

low frequencies [42]. In some approaches the coherence is also assumed to be fully

approaching zero when wind is affecting the recording [7].

Figure 3.5. Coherence between two microphones 2 cm apart and with and without wind
noise present
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When recording audio from a coherent sound source with incoherent wind noise present

using multiple microphones, it can be expected that the coherence between the two mi-

crophone signals has properties of both coherent and incoherent sound sources. In Fig-

ure 3.5 the coherence between two microphones with short distance d = 2 cm between

them is plotted for the case with windshield and without shielding. It can be seen that

coherence approaches 1 at frequencies above 800 Hz but in lower frequencies the value

of the windy case is closer to 0. The behavior can be explained with the low frequency

characteristics of wind noise and thus the wind noise lowers the coherence in the low

frequencies but with higher frequencies it has much smaller effect. This implies that high

coherence in the low frequencies indicates the presence of wind noise.

A good way of quantifying the coherence calculated for the lowest frequency bins of a

frame is to take the mean

C12(λ) =

∑︁µmax
µ=1 C12,λ(µ)

µmax
, (3.12)

where µmax denotes the index of the highest frequency bin taken into calculation. When

the mean coherence is close to 1, it is inferred that wind is not affecting the recording and

on the other hand a mean coherence close to 0 suggests the presence of wind noise.

3.4 Approximating absolute wind noise in recordings

The measurements in this work are done simultaneously with a device that is shielded

from wind and a device that is not shielded. As described earlier in Equation (3.1), this

gives an opportunity to see the quantative differences in a signal with and without wind

noise. Obviously there are always differences in the dynamic responses of different micro-

phones of different devices and the two recording devices will also be slightly differently

aligned towards the target sound source, so a simple subtraction as suggested by Equa-

tion (3.1) will not be free of those systematic errors described.

This issue will be tackled with calibrating the recording setup with measurements from

time periods that did not have wind present while recording. The calibration is done in the

frequency domain and with calibration coefficients A(µ) we can represent the two signals

in the frequency domain as

S1(λ, µ) = T (λ, µ)

A(µ)S2(λ, µ) = T (λ, µ) +N(λ, µ),
(3.13)

where T (λ, µ) and N(λ, µ) are the frequency domain representations of the target signal

including non-wind background noises and the wind noise similarly to Equation (3.1).

For the calculation of the calibration coefficients A(µ), a subset of the recording data is
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created from periods where according to the anemometer measurements the wind speed

is lower than 1 m/s. In this subset the wind noise is considered negligible and thus it can

be assumed that the magnitude difference in X1 and X2 is due to the systematic bias

considered earlier. A mean is calculated from all of the frames for each frequency bin and

from this the calibration coefficients for each bin are calculated as

A(µ) =
|S1,µ(λ)|
|S2,µ(λ)|

. (3.14)

In this calculation the frequency spectra of signals X1 and X2 are divided into 1/3-octave

frequency bands [45] and the used DFT frame size is 2048. The used frequency range

is 200 − 8000 Hz. The calibration subset consisted of approximately 30 minutes of data.

With the calibration coefficients calculated, the approximation of pure wind noise present

Figure 3.6. Level difference between a windy recording and a recording shielded from
wind over frequency bins with 1/3-octave bands

in each frequency band and each frame can be calculated as

N(λ, µ) = A(µ)S2(λ, µ)− S1(λ, µ) (3.15)

and the matrix N(λ, µ) consists of level differences between the two signals. An example

result of this approach is shown in Figure 3.6, where the level of wind noise present during

the same example snippet used earlier in this chapter is visualized. Eight consecutive

frames from the wind gust seen in Figure 3.1 are taken and averaged for the visualization.

As it can be seen, large differences occur in the lower frequency bands below 800 Hz,

which is a clear sign of low-frequency wind noise present in the recording. The fluctuating

differences in the higher frequency bands suggest that despite the calibration, there will

be differences of a few decibels between the levels even when wind is not present, as is

seen in Figure 3.7. The visible effect of large differences in low frequencies is however

significant compared to those fluctuations.
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Figure 3.7. Level difference between a windy recording and a recording shielded from
wind over frequency bins with 1/3-octave bands in calm wind

The noise differences in different frequency bins during a frame of audio can be quantified

by summing the differences through the j considered bins

Ntot(λ) =

j∑︂
µ=1

N(λ, µ). (3.16)

The higher the value of the total difference Ntot is, the more wind noise is affecting the

recording.
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4. MEASUREMENTS

The measurements and data for this work were collected using a specific laboratory set-

ting that was designed especially for collecting wind noise measurements. The imple-

menting of the laboratory setup was done by the author as a summer project previous to

this research project. The key principle was for the setup to be fit for different purposes

and to be movable in order to record outdoors in presence of natural wind instead of in-

door measurement in wind tunnels or using an ordinary fan. Indeed, the whole setup was

build on a portable platform and it was also possible to put the plane in a cargo bike to

make measurement trips in different windy locations.

4.1 The measurement setup

The used measurement setup was specifically designed to be used in different applica-

tions of measuring wind noise in recordings. It allows recording of multiple devices in

presence of wind while constantly measuring the wind present. The wind measurement

is done by a Vaisala WMT700 ultrasound anemometer, and in this measurement setting

the audio recording devices are two mobile phone shaped prototypes with 8 microphones

in different positions as described by Figure 4.1. One of the prototypes was put inside a

Rode Blimp MkII windshield to be completely protected from the effects of the wind noise

and the other was placed right below the windshield. A regular Bluetooth speaker was

mounted 40 cm away from the recording devices. The devices and the speakers were

fixed to a Mark Roberts Motion Control SFH-30 camera head, which allowed the devices

to be rotated in order to get wind from different directions. The measurement setup in

action is pictured in Figure 4.2 and the components are highlighted in Figure 4.3.

The measurement software was implemented using Python. The software took care of

the recording and playback of audio, rotating of the camera head and the gathering of the

anemometer data. The python library pyaudio was used in handling the recording and

playback of audio.
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Figure 4.1. An illustration of the recording device used with its microphone locations
described

Figure 4.2. The measurement setup in action at the office rooftop.

4.2 The measurement data

4.2.1 General

For the purpose of this study measurements in different locations were made. Each

measurement lasted for several hours and produced 16 channels of audio, data from wind
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Figure 4.3. The components of the measurement setup

speed and direction and data about the orientation of the camera head. The recorded

audio was sampled at 48000 Hz and the measurement rate of the anemometer is 4 Hz.

The playback signal played from the speaker was a 7 minute sample containing speech

and music and it was looped throughout the measurement. The speech consisted of

sentences gathered from the SPEECON database [46] and the music was a sample of the

song Rosanna by Toto. This kind of playback was used in order to get data from recording

of different types of audio. The extensive amount and the rotating of the devices of data

ensured that a variety of different wind conditions for every microphone was obtained.

In order to get all the data synchronized in time, a pseudo-random signal was played

during the start of the measurement. During the processing of the data every audio file

was then cross-correlated with the synchronization signal and because the time stamp
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of the start of the signal was known, all the audio files were cut from the beginning to

have the signal start from the same timestamp [47]. Also the wind direction data was

processed after the measurements. The position of the microphones in the devices was

known and the angle of wind direction was corrected to be relative to each microphone

instead of just the device.

4.2.2 Clock issues during the measurements

In the initial phase of the measurements it was noticed that the cross-correlation of the

pseudo-random signal did not perform as expected and the correlation did not have a

single spike as theoretically would have been expected [48]. The issue only came up with

one of the recording devices and it was hypothesized that the reason could be clock inac-

curacy in the devices. The issue was investigated further by conducting a measurement

where the same synchronization signal was played multiple times during a course of 15

minutes and from both devices it was checked if the amount of samples recorded be-

tween the synchronizations would be different between devices. Different combinations

of prototypes and sound cards specifically built for them were tried.

As from Figure 4.4 can be seen, the difference between the samples recorded at the

synchronization points did not stay constant in most cases that involved the sound card

referred as Box1. The linear growth in the difference would suggest that the devices were

recording with different intrinsic sample rates and that was deduced to be the case. The

problematic Box1 was a device that was wanted to be applied here because it had a

software that handled possible microphone clipping differently to the other sound cards.

The issue was solved by modifying the setup a bit and using the sound card Box1 with a

slight update for it to be able to handle two input devices simultaneously. That procedure

ensured that both recordings had the same internal clock.

4.3 Creating training and test datasets

The purpose for the measured data is to use it in performing machine learning tasks

described in Chapter 2. Thus the measurements were processed by performing feature

extraction and labeling for the data. For the feature-label pairs {Xi, Yi} the used frame

size was 2048 samples with overlap of 512 samples.

The labeling was done using the absolute wind approximation method described in Sec-

tion 3.4. For each frame from both of the input devices in the measurement system, the

total noise difference Ntot was calculated according to Equation (3.16) using the 6 lowest

frequency bins, that is the first two octaves from 200 Hz to 800 Hz. After that each frame

was assigned with a label according to the Ntot. In this approach, a binary classification

was considered with labels referring to case considered without wind and a case with
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Figure 4.4. Overview of the clock tests with different combinations of sound cards

wind. A threshold was set to Ntot = 10 and thus the labeling was done as

Yi =

⎧⎨⎩0, Ntot < 10

1, Ntot ≥ 10,
(4.1)

where Yi = 0 refers to a frame with no wind and Yi = 1 to a case with wind.

Assigning the labels is a big part in training a machine learning model and a lot of the

performance of the model depends on the quality of the labels [49], and thus assigning

the labels and choosing the threshold for wind and no wind is an important step. The

chosen threshold of Ntot = 10 refers to a case where each of the frequency bins has

Nµ = 1.67 dB of wind noise on average. Realistically the amount per frequency bin

is higher as the performed calibration suppresses slightly too much and thus pushes the

cases with no wind to have a negative noise difference. Regardless, the chosen threshold

assigns windy labels for frames also with relatively little wind noise, which was desired.

Detecting high wind noises is relatively easy, but in those cases the noise has corrupted
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the original signal relatively badly and thus not much can be done in order to improve the

signal [8]. For this reason a model that attempts to detect low wind noise was desired and

the choice of the threshold was done accordingly.

The features used for the explanatory data are described in Sections 3.3.1, 3.3.2, 3.3.3

and 3.3.4, and thus every data instance Xi = (ZCRi, ERMSi,SSCi, Cxyi). Zero-crossing

rates, root mean square energies and sub-band spectral centroids were calculated ac-

cording to equations (3.2), (3.9), (3.10) respectively. For calculating the coherence values

each microphone was assigned a pair with which the coherences were calculated. The

pairs used were microphones (1, 2),(3, 4),(5, 6) and (7, 8), labelled as described in Fig-

ure 4.1

For each pair the coherences were calculated using the Equation (3.11) and then aver-

aged using Equation (3.12) assigning µmax = 800 Hz as was done in the labeling phase.

The prior knowledge about the features suggests that they are all relevant in the context

of wind detection and thus eligible to be included in the model [10]. Feature extraction

and labeling was done separately for the data from all of the input microphones of the

unprotected prototype. This leads to a classification model for a single microphone wind

detection.

Class Number of frames

Total frames 5173016

Yi = 0 2625054

Yi = 1 2547962

Table 4.1. Distribution of the training data instances between labels

For creating a well-generalized classification model, it is important that the training data

used is also as general as possible and contains a lot of different examples [49]. In

this case this was ensured by sampling the training dataset evenly from all the individual

recordings performed, from different wind conditions and using all of the eight micro-

phones evenly in order to ensure that the same wind is captured from all the directions.

A total of 5173016 of frames were assigned to the training set, which corresponds to 15

hours of audio. The training set was labeled and the distribution between labels is de-

scribed in Table 4.1. As can be seen the training set is evenly distributed between the two

classes.

The distributions of classes for each feature are shown as histograms in Figure 4.5, and

as can be seen, in all of the features the distributions are mostly separable with some

overlapping. This kind of situation leads to a training set that is not linearly separable and

thus slightly less likely to overfit [10].

The test data was picked and processed similarly to the training data using data from all
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Figure 4.5. Distributions of training data feature values with each label

of the individual recordings and all of the microphones. The test data was also a balanced

set of frames from both classes, as described in Table 4.2, and consisted of 56 minutes

of audio.

Class Number of frames

Total frames 314256

Yi = 0 170258

Yi = 1 143998

Table 4.2. Distribution of the test data instances between labels
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5. FINDINGS OF THE STUDY

5.1 Wind noise classification

One of the purposes in this study is to be able to explore signal properties that are charac-

teristic for wind noise and to use them in the task of detecting the presence of wind noise

in recordings. The detecting is performed using the two different classifiers described

in Section 2.1 and the performance of those different models used for classification is

compared and discussed.

5.1.1 Exploring the problem

The two models that are to be used in this classification task have a different way of per-

forming the assignment of the label. Logistic regression is a linear model that can be

understood as increasing or decreasing the odds of a positive label assignment as the

value of the feature increases [12] and a GMM tries to fit the best possible multivariate

Gaussian for the data and use that for the classification decision [18]. Considering the

distribution of the training data described in Figure 4.5, it can be argued that both ap-

proaches would be applicable and relevant with this data. The linear approach seems

suitable as each of the features have a clear single threshold between either class being

the most probable one, while most of the distributions are more or less bell-shaped which

would suggest a Gaussian distribution being a good way to model the data.

The purpose is to train both models with identical training data and then compare the

performance of the classifiers over the same test set, with both of the used datasets

described in Section 4.3. Out of the performance indicators described in Section 2.1.3,

in the context of wind detection the most interesting indicator is recall, that describes

the relative amount of detected frames from the frames with wind present. Thus in the

tradeoff between precision and recall it is of interest to get more recall and then evaluate

what the precision is with high recall.

The training of both of the models was performed using a Python library sklearn that

uses the L-BFGS algorithm for maximizing the likelihood of the logistic regression model

and the EM algorithm while fitting the Gaussian mixture model. For the GMM initial values

for means and covariances used were obtained using the common method of performing
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a K-means clustering [17] as the initial step. The covariance matrices for the model were

assigned to be diagonal and thus the different features are considered to be independent

[18].

The training of the logistic regression classifier took 36 seconds and the linear model

θ = θ0 +
∑︁N

n=1 θnXn fit to the data is shown in Table 5.1. As seen in Equation (2.3),

the linear model corresponds to the log-odds of the label being Yi = 1 and thus each

parameter of the model can be assessed in relation to the odds. Generally, for the features

with negative coefficients in the model, the odds decrease as the feature value increases

and vice versa. Comparing the values in Table 5.1 and the histograms in Figure 4.5, the

model seems to agree with the data in this sense.

θ0 θZCR θRMS θSSC θMSC

3.3458 −0.0008 −27.6467 8.2299 −4.6727

Table 5.1. The trained linear model of the logistic regression classifier

The training of the GMM took 23.45 seconds to reach convergence. The weights for

the different gaussians were τ = (0.57778, 0.4222) for classes Yi = 0 and Yi = 1

respectively and the means and covariances for each components are collected in Table

5.2. Considering the weights of classes and comparing them to the initial distribution of

the training data described in Table 4.1, it can be assumed that the training process has

classified some of the windy frames as non-windy. This is expected as the Gaussian

that are fit for both classes are expected to overlap, as shown in Figure 4.5. Further

discussion about the parameters of both classifiers trained here will occur while analyzing

the performance of the classifiers.

Component ZCR RMS SSC MSC

[µ0,Σ0] [0.097, 0.004] [0.004, 7.6 · 10−6] [720, 131900] [0.566, 0.062]

[µ1,Σ1] [0.018, 0.0001] [0.021, 0.0004] [334, 21630] [0.150, 0.009]

Table 5.2. The trained parameters for the GMM classifier

5.1.2 Performance of the classifiers

The performance of the classifiers was evaluated by using the test dataset described

in Section 4.3 and the performance metrics presented in Section 2.1.3. For the logistic

regression classifier the probability π(Xi) for each test data instance was calculated as

described in Equation (2.5) and the predicted label was decided from that. Confusion

matrix showing the true and predicted labels for each instance of the test data is described

in Table 5.3 and the precision-recall curve describing characteristics of the classifier using

different decision thresholds is shown in Figure 5.1. Accuracy score for the classifier is

also shown in Table 5.3.



37

Figure 5.1. Precision-recall curve for the classifiers

Predicted negative Predicted positive

Actual negative 156254 14004

Actual positive 20890 123108

Accuracy 0.89

Table 5.3. Confusion matrix of the logistic regression classifier

For the Gaussian mixture model classifier the probabilities for each instance belonging to

either class were calculated as shown in Equation (2.15). The confusion matrix and the

accuracy are shown in Table 5.4 and precision-recall curve is shown in Figure 5.1.

Predicted negative Predicted positive

Actual negative 157441 12817

Actual positive 36515 107483

Accuracy 0.84

Table 5.4. Confusion matrix of the Gaussian mixture model classifier
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5.1.3 Discussion about the classifiers

The performance of both classifiers with the test set was relatively good and satisfying,

with the accuracy of both classifiers being well over 80%. As the labeling for positive

cases was performed with a low threshold, it was to be expected that false negative

predictions would occur near the threshold. This effect can also be seen in the overlap of

each feature between classes shown in Figure 4.5. As seen from the confusion matrices,

the performance of the Gaussian mixture model classifier suffers more heavily from the

false negative predictions, as both classifiers perform almost identically with the negative

test data instances, but differences occur with the positive instances.

As seen from the precision-recall curve of the logistic regression classifier, it performs for

a large amount of the test data with near-perfect precision and the precision only starts

falling after a decision threshold with recall around 0.6. Thus 60% of the positive test

instances can be detected correctly with a negligible amount of false positives. With max-

imum recall, the precision falls under 0.5 and thus using a decision threshold that allows

the classifier to predict all of the positive test instances correctly, over half of the predicted

instances would be false positives. [21] Using the GMM classifier, the precision starts to

decrease already with low recall values, although with high recall values the decrease in

precision is much slower than in the case of logistic regression. With maximum recall the

the precision of the GMM classifier is larger than that of the logistic regression classifier.

The difference in the behaviour of both classifiers is explained with the differences of the

models used. Logistic regression uses a linear model and thus the decision for classifying

is one-dimensional for each feature. This kind of behaviour leads to near-perfect precision

in classifying data instances with feature values that had little overlap between classes in

training data. This is a characteristic that could be useful in detecting solely higher wind

instead of trying to find all of the wind, as was done in this work. On the other hand the

Gaussian distributions used by the GMM classifier lead to some probability of either class

existing for even the most extreme feature values and thus the precision is not perfect for

even the highest winds. This Gaussian characteristic leads to better performance closer

to the threshold with the overlapping feature values and has its advantages in those kind

of approaches. Overall, the feature distributions described in Figure 4.5 implied that both

linear approach and fitting Gaussian models are viable options in modelling the data. The

good performance of the classifiers supports this observation.

Another thing that was studied about the classification was the importance of each feature

used. Feature importance was assessed using the logistic regression classifier and the

likelihood ratio approach described in Section 2.1.1. It was used to find, whether all of

the four features were necessary for the performance of the classifier. The comparison

was performed calculating the log likelihood of the full model described in Table 5.1 and

then fitting comparison models with omitting one of the features at a time. Log likelihoods
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of the comparison models were compared to the full model value and the decreases of

likelihood caused by leaving each feature out of the model was calculated. The values

are shown in Figure 5.2.

Figure 5.2. Decrease of likelihood for logistic regression model when a feature is omitted

The amount of decrease in model likelihood when omitting a feature can be interpreted

as the importance of the feature for the model. As can be seen, RMS energy is clearly

the most important feature in the model and zero-crossing rate is the least important.

However, all of the features are statistically significant, as by using Equation (2.11), the

likelihood ratio test value for comparing the full model and the model without the least im-

portant feature zero-crossing rate is G = −2(−8535). P-value for this can be calculated

as P (χ2(1) > G) and the value is negligible. The degrees of freedom d = 1 in this test

is the difference in number of features of the compared models [12].

The fact that each of the features has significant importance is rather expected. From a

statistical point of view, the number of training data instances is very large compared to

the number of features, and thus the model is not in danger of having too many features

for too little amount of training data. From a signal processing point of view, the impor-

tance of all features can be explained by considering that all of the features describe a

different characteristic of the signal, as discussed in Section 3.3. RMS energy describes

the amplitude of the waveform, MSC compares the similarity of signals between different

microphones and SSC and ZCR are related to the frequency spectrum of the signal. Wind

noise affects all of the different characteristics and thus for a successful model it is impor-

tant to have information about all of them. The smallest importance of ZCR can also be

explained with similar arguments, as it describes the spectral characteristics along with

SSC, but it is a less powerful explanator than SSC [6]. The substantial importance of
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RMS energy is likely slightly biased in this measurement setup, as the target signal was

played with a constant volume and thus an increase in volume of the recording is very

likely caused by wind noise. In realistic audio recording situations the volume of the tar-

get signal is not constant and thus it can be expected that the classification performance

of the RMS energy would be slightly lower.

All of the features used were relatively well known and commonly used features used in

wind noise applications [6, 7] and thus it was rather expected that they would be success-

ful in predicting the presence of the wind noise. The good performance in the classifica-

tion can also be interpreted as meaning that the features and the labels used describe

the same phenomenon of the data [17]. As the labels were created by using a method

motivated by the measurement equipment, the successful classification indicates that the

absolute wind noise approximation method suggested in Section 3.4 was reasonable and

valid and gives at least a similar level of information about wind noise as four commonly

used signal features.

The classifiers presented performed reasonably well with this measurement setup in

question. However it is necessary to note that the microphones and their implementa-

tion methods used in the recording device of this work can be different to microphones

of other devices, which can alter the recorded sound substantially. Thus it is necessary

to perform similar measurements and analysis with other devices, such as commercial

mobile phones, too, if the performance in wind detection is wanted to be generalized.

With this kind of work performed it would then be possible to use this kind of classifiers

for frame-by-frame wind detection in different kinds of applications.

5.2 Wind noise in multiple microphones

Having multiple microphones available on different sides of the recording device is a good

asset in studying the sequential effects of wind noise in different sides of the device. The

purpose is to find mainly qualitative information about the time dependence and evolution

of wind noise and see if any patterns is possible to be found.

5.2.1 Describing the model

The time dependence of the appearance of wind noise in different microphones is inves-

tigated using a Hidden Markov model. The scenario to be modelled is one with wind

entering the system from a relatively constant direction and the observations Xi for the

model are the noise differences, calculated with Equation (3.16), for each of the three

microphones that are considered. With this setup the hidden states Yi will be all the com-

binations of individual microphones being affected by wind noise or not. The microphones

considered are from different parts of the device and both in front of and behind the ap-
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proaching wind as described in Figure 5.3. That is in order to investigate the vortices all

over the device and to see if there are situations where only a part of the microphones

are affected by wind. The different hidden states of the model are collected in Table 5.5.

Figure 5.3. Illustration of the modelled case for wind in different microphones

State Windy mics

W0 None

W1 {1}
W2 {2}
W3 {3}
W4 {1, 2}
W5 {1, 3}
W6 {2, 3}
W7 {1, 2, 3}

Table 5.5. The hidden states of the created HMM

The purpose of utilizing of the Hidden Markov model in this approach is to verify the hy-

pothesis of time dependency occurring in the vortices producing the wind noise reaching

each microphone. Other hypothesis to consider is to check if there are situations where

the device offers protection from wind to some of the microphones. These hypotheses

can be investigated using the prior probabilities τ and the transition matrix A of the trained

model, as τ contains information about the total occurrences of each state in the train-

ing data and A describes if some transitions are more probable than others [17]. Given

that the direction of the wind is constant, the most probable state transitions can give

insight in how the wind reaches each microphone, if some time dependence is occurring.
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Also, from the probabilities of each state it is possible to see, if some microphone is less

affected by the wind than the others.

The model was trained using a sequence of recording with relatively constant wind direc-

tion. Data was taken from three microphones around the recording device, as described

in Figure 5.3, and data is divided to frames as described in Section 4.3. Noise differences

between shielded and unshielded devices for each microphone used are calculated with

Equation (3.16). The occurrence of wind for each frame is decided from the noise dif-

ferences with Equation (4.1) and the sequence of hidden states Y for the training data

is then labeled by combining the information from individual microphones to form states

as described in Table 5.5. The observations X consist of noise differences for all of the

microphones and thus Xi = {Ntot,i1, Ntot,i2, Ntot,i3}, where the indices i1, i2 and i3 refer

to the ith data instance and the number of microphone used. The duration of the record-

ing instance used is 10 minutes and the average direction of wind during the recording is

−45◦ relative to microphone 1.

As the hidden states are known in the training data, parameters of the Hidden Markov

model are calculated using the supervised learning method described in Section 2.2 with

Equations (2.39), (2.40) and (2.41). The prior probabilities are described in 5.6 and the

emissions for each state and microphone are collected in Table 5.7. The transition matrix

is described in Figure 5.5.

State W0 W1 W2 W3 W4 W5 W6 W7

τj 0.019 0.065 0.018 0.002 0.220 0.039 0.011 0.627

Table 5.6. Prior probabilities of the HMM

State [m1,Σ1] [m2,Σ2] [m3,Σ3]

W0 [4.147, 23.366] [−3.733, 44.253] [−8.997, 53.781]

W1 [54.211, 2161.958] [−4.146, 64.076] [−3.969, 62.707]

W2 [3.686, 29.708] [55.602, 1498.894] [−8.022, 73.647]

W3 [4.534, 21.387] [−2.321, 44.455] [31.397, 457.392]

W4 [75.794, 2595.715] [78.957, 2456.081] [−3.089, 66.981]

W5 98.618, 3873.436] [−2.366, 80.998] [33.698, 520.167]

W6 [4.262, 23.45] [71.136, 1747.739] [45.774, 1106.274]

W7 [124.53, 4113.57] [106.785, 2892.036] [66.526, 1848.988]

Table 5.7. Emissions for each HMM state

The model was verified by solving the HMM decoding problem of the model for the given

training sequence of observations. The sequence Ŷ calculated with the Viterbi algorithm

implementation of the Python library hmmlearn was compared to the manually labelled
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training states Y and the accuracy score was 0.89. This confirms that the model param-

eters predict the characteristics of the observations well.

5.2.2 Discussion

The distribution of states in the model for the given dataset is described in Figure 5.4.

As can be seen from the distribution, only a few states were frequent with some states

being close to negligible with occurrence. This is a thing that needs to be taken into con-

sideration when interpreting the transition matrix, described in Figure5.5. The modelled

situation had constant wind present with relatively few windless moments, and it can also

be seen in the state distribution. The number of frames in the totally windless state was

very small and on the other hand the state with wind in all of the microphones was the

most frequent by far. The latter observation also indicates that in this kind of wind situa-

tion, wind noise occurs in microphones all over the device. This implies that the device

body does not protect from wind in most cases, which indicates that the vortices created

on the device will move along the device body all over it.

Figure 5.4. The distribution of states in the trained Hidden Markov Model

As the state with wind in microphones 1 and 2 is so frequent, it indicates that despite it not

being very common, there still are instances, where the wind is not producing noise on the

opposite side to the arriving wind. As seen in the transition matrix, A44 = 0.698 and thus

the system has a relatively high probability to stay on this state. It indicates that the state

W4 is not only a transition state to the state with all microphones having noise W7, but

that there are longer sequences in the data, where one of the microphones is non-windy.

The importance of the state W4 as a transition state is also evident, as it is a common
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route to transition to state W7 and also state W1 has a high probability to be followed by

W4. Transition A74 is also the most probable one to transition out from the state W7 and

thus the microphone behind the device is the most likely to become windless.

Figure 5.5. The transition matrix of the trained Hidden Markov Model

The most likely state to follow the windless state is W1, which is expected as microphone

1 is the closest microphone to the wind. Considering all of the states that include a

windy microphone 1, it can be seen from the state distribution that they are the four most

frequent states. This implies that it is very likely that the microphone closest to the wind is

affected by wind noise. The modelled data had very few instances without wind and thus

not a lot of information can be acquired regarding wind entering or leaving the system

and the states related to that process.

It is possible that more information about the system going from windless to having wind

would have been achieved with different choice of training data. However the used se-

quence was the best one available from the set of measurements of this work, as the con-

stant direction of wind was deemed more important for this consideration. More in-depth

consideration would require more measurement recordings with constant wind direction

but varying speed. It is also possible that using a shorter FFT step length in the data

would have given more precise information. That is because with higher wind speeds the

wind vortices could have travelled so fast that some of the states would not be caught

with the used sample rate of data instances.

Altogether, the system had some occurrences for every state transition and it generally



45

shows that the behaviour of wind is relatively chaotic around a body of mass such as

the recording device here. It can however be stated, that in this kind of constant wind

situation, a wind reduction system of a recorder cannot rely on wind being less present in

some part of the device. There are some instances where the device body protects the

microphone from the wind but in most situations wind occurs in every microphone. Also

some time-dependencies were possible to be found, as the most common microphone to

encounter wind first is the one closest to the wind. Also it is likely for the wind-induced

vortices to travel along the surface of the device along with the wind direction.
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6. CONCLUSION

This work aimed to investigate the behaviour and occurrence of wind noise in recorded

audio signals by using the characteristics of wind noise signals. The analysis was per-

formed by using multiple microphones in different parts of the recording device and by

comparing the sound recorded simultaneously by two devices; one positioned in wind

and one shielded from wind. This approach made it possible to get information about

behaviour of wind noise in different parts of the device, related to the direction of arrival

of the wind.

Detecting the occurrence of wind noise in recordings was performed using two classifier

models, logistic regression and Gaussian mixture model. The explanatory data consisted

of four signal features, that were zero-crossing rate, root mean square energy, sub-band

spectral centroid and magnitude squared coherence between two microphones. The

mathematical motivation for the models used was discussed and the characteristics of

wind noise described by each used feature were detailed. Induction of wind noise in mi-

crophones was also considered. Values of each feature were compared between two

recordings performed simultaneously in wind and shielded from it, and thus it was visual-

ized, what kind of an effect wind noise has to the feature. Both classifiers performed well

in detecting presence of wind noise and can thus be stated to be well suitable and useful

in wind detection. The result can be generalized further by performing similar analysis

with other types of recording devices.

The measurement equipment and the two comparable recording devices also gave mo-

tivation to a method of approximating the absolute amount of wind noise present in the

recordings. The analysis was performed by comparing the level differences in frequency

bands of shielded and unshielded recordings. Some calibration was applied to consider

the sound level differences present between recording devices regardless of wind. This

method was used to generate labels for the machine learning applications in this work

and the good performance of the wind detectors indicate that this method too performed

relatively well.

The behaviour of wind in different parts around the recording device was investigated

using a Hidden Markov model. The model took into consideration wind with a constant

direction of arrival and microphones in different parts of the device on different sides. The



47

states used in the model were combinations of different microphones that had wind noise

at each time step. The data that was modelled was relatively windy and that caused

some states to be much more frequent than others. Still it was noticed that in windy

conditions there is a probability that the recording device provides some wind protection

for the microphone on the opposite side of the arriving wind. However it is not the most

likely state and in most cases wind noise affects the microphones everywhere on the

device. From the transition matrix of the Hidden Markov model it was also interpreted that

it is likely for the wind-induced vortices to travel along the surface of the device aligned

with the direction of wind. Modelling the process of wind arriving to a windless recording

system or vice versa is possible using the same method, if large enough amounts of data

with constant wind direction and varying wind speed are used.
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