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ABSTRACT

Phan Vu Thien Quang: Literature Review on State-of-the-Art Algorithms on Low Power Hearing-
Aid Related Audio Processing
Bachelor of Science Thesis
Tampere University
Bachelor of Science and Engineering
April 2021

In today world, hearing-aid devices are crucial for people with defective hearing ability. In
the heart of such device lies the digital signal processor (DSP), which takes responsibility for
processing the incoming speech and producing the undistorted audio signal to the user. The
hearing-aid devices must be small enough to be worn in human ears, yet powerful to compute a
large amount of data with low latency and high accuracy. Last but not least, hearing-aid batteries
should last for several days to meet the customer satisfaction. Therefore, they should be optimized
in terms of performance and energy consumption.

In this thesis, the state-of-the-art audio processing algorithms that are widely utilized in digital
hearing-aid devices are identified. The potential algorithms are divided into different parts accord-
ing to the DSP functionality. For each part, the fundamentals of the most applicable methods and
some of their revised versions are explained in detail.

Based on the selected domains and algorithms, this thesis work explores some efficient low
power implementations in real digital hearing aids. The collection is again separated into subsec-
tions corresponding to the DSP processing segments. Subsequently, the cutting-edge low-power
implementations of the whole DSP for hearing-aid purposes are classified based on the hardware
architecture.

In summary, most of the findings belong to feedback cancellation and noise reduction cate-
gories because those sections determine the quality of the audio output. In addition to the signal
characteristics, a high output signal amplitude is desired, which is why beamforming algorithms
play an important role in hearing-aid processors. As regards the technology, Application-Specific
Instruction-set Processor (ASIP) with numerous hardware accelerators dominates the recent low-
power hearing-aid implementations because of its performance and power efficiency.

Keywords: digital hearing-aid, low power, feedback cancellation, noise reduction, beamforming,
DSP, ASIP, hardware accelerators

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.
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1. INTRODUCTION

Hearing impairment is one of the most universal chronic diseases for American residents

aged 65 years or older [1]. For people with hearing loss, traditional communication is

almost impossible, especially with significant background noise, because some or all es-

sential parts of the speech are inaudible. Hearing loss is also proved to be involved in

incident all-cause dementia [2]. Hearing-aid devices are invented to help people with

hearing loss overcome these obstacles.

Hearing-aid systems were first popularized as analog, which introduced the elementary

approach of hearing-loss indemnity [3]. The improvement from analog to digital hear-

ing aids made them more indispensable for people with hearing disability. Indeed, when

performing operations with similar complexity, digital hearing aids reduces the required

energy and volume compared to analog devices [4]. Consequently, digital hearing aids

are able to adapt digital signal processing techniques, which further improves its com-

puting performance and output audio quality. However, all systems must preserve a low

power consumption to prolong the limited battery life of the devices [5]. Therefore, the

outstanding power-optimized algorithms and implementations in digital hearing-aid appli-

cations are most interested.

In this thesis, state-of-the-art (SOTA) audio processing methods in digital hearing-aid

systems are classified based on their application domains: beamforming, noise reduction

and acoustic feedback cancellation. All aforementioned processing domains help to im-

prove the audio quality. The algorithms are collected based on popularity, performance

and applicability. In the scope of this thesis, only major algorithms for each domain and

their upgraded versions, if exist, are introduced. A few outstanding low-power platforms

in terms of area and power consumption of the analyzed algorithms are presented next.

Finally, some SOTA hardware implementations of the digital signal processors (DSP) are

illustrated and compared with others that are not covered in this work.

The remainder is organized as follows. Chapter 2 provides a brief picture of modern

digital hearing-aid systems. Chapter 3 presents the observed audio processing algo-

rithms, whilst chapter 4 depicts the procured implementations of these methods. SOTA

implementations of the DSP based on the hardware architecture are discussed next in

chapter 5. Chapter 6 concludes this thesis work and proposes future improvements.
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2. DIGITAL HEARING-AID SYSTEMS

The simplified structure of a digital hearing-aid system and its key electronic components

are introduced in this chapter. Figure 2.1 shows an elementary block diagram of a typical

modern hearing aid (HA).

Figure 2.1. Block diagram of a digital hearing aid

The incoming speech arrives at the hearing aids through microphones, where it is first am-

plified before processing. In the real world, sound signals are analog, whereas advanced

audio processing techniques require digital format (bits and symbols) to maximize their

performance and reduce the computing resources. Therefore, Analog-to-Digital Convert-

ers (ADCs) are used to convert analog waves to digital form. Taking these digitized signals

as input, Digital Signal Processor (DSP) is the core of HAs, where the signal processing

algorithms are executed to create the best audio output without noise or echo. Digital-to-

Analog Converters (DACs) are placed after the processing phase to convert the signals

back to analog and deliver to users through receivers.

2.1 Microphone

Microphones are must-have items of any hearing-aid systems, where speech sound

waves are converted into analog electric currents with similar wave properties. Invented

by E. Berliner in 1877 [6], microphones have evolved drastically with various types such

as pressure, condenser, laser and the latest MEMS (MicroElectrical-Mechanical System).

Directionality shows the orientations to which the microphone can distinguish the desired

sound from background noise. Traditionally, microphones are divided into two categories:

omni-directional or directional. The omni-directional microphones collect sound waves

from any direction. This type of microphone is well suited for quiet environments, where

the noise amplitude is insignificant compared to the speech’s strength. On the other

hand, directional microphones are designed to preserve good receptiveness to sound

from one particular direction, typically the front of the wearers in terms of hearing aids,

while suppressing the noise from some other sources [4]. This feature allows the users



3

to concentrate on desired sound locations without the interference of background noise,

thus is most effective in noisy environments.

Based on the conventional directional microphones, adaptive directional microphones en-

able the wearers to continuously change the focus area according to speech and sound

signals by adjusting the filter parameters. Ultimately, a set of microphones, named micro-

phone array, is used to leverage the advantages of both omni-directional and directional

microphones. The targeted directional response is produced by accommodating the re-

sults of all microphones in the array [6]. The microphone array has unlocked a new era of

portable and accurate HAs by their applications in digital audio processing techniques.

2.2 Converter

In the outside world, speech signals are analog, which is continuous in time domain

and amplitude. However, complex audio processing techniques in HAs require digital

representations of them for better performance and lower energy consumption. There-

fore, incoming analog waves are converted into digital forms before infiltrating the digital

circuits, and then changed back to analog for hearing purposes [4]. This is done by

analog-to-digital and digital-to-analog converters. The basic operation principle of ADCs

is illustrated in figure 2.2 and explained in the following, while DACs can be obtained by

overturning the procedure.

Figure 2.2. Analog-to-digital conversion

In general, the digital format of the signals is actually a sequence of numbers that are

taken from the analog waves once for a particular time interval. This process is referred

to as sampling. In order to preserve all essential information, the duration of this interval

must be small enough. Following the Nyquist theorem, its inverse, called sampling fre-

quency, needs to be larger than twice of the highest frequency in the speech combination

[7]. The converter employs some low-pass filters to exclude all components that have a
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higher frequency than half of the sampling rate to prevent aliasing [4]. The next step is to

map those sampled values into a specific range of numbers, which is referred to as quan-

tization. The algorithm matches each sample with the closest number in the alphabet.

The waveform is finally digitized after transforming the mapped result into binary format

with user-defined coding rules [4].

2.3 Digital Signal Processor

Lying at the center of HAs, Digital Signal Processor (DSP) is responsible for executing

several complex signal processing techniques to enhance the speech quality as well as

suppress the unwanted noise. The DSP structure varies in terms of implementation plat-

forms and dedicated algorithms. Nowadays, there are two main approaches to design a

hearing aid DSP [8]:

• General-purpose processors (GPPs) offer great flexibility to adopt sophisticated

processing methods, but consume more power and silicon area. These are capable

of serving all objectives, but not optimized for any specific function, which might be

extravagant in terms of computation power and energy consumption for DSPs.

• Fixed-function processors (FFPs) are specially designed for some particular pur-

poses, which bring a better performance with a lower power expense. However, one

main drawback of this architecture is the fixed functional behavior which demands

a re-implementation for new algorithms [8].

A rising trend for processor designs is to combine the design flexibility of GPPs and com-

puting power of FFPs. This is where Application-Specific Instruction-set Processor (ASIP)

comes into play. They originate from GPPs, but the instruction-set architecture has been

specialized for a target application [9]. This customization allows the processors to oper-

ate at a lower clock frequency, which reduces the power consumption at the same pro-

cessing rate [8]. ASIPs, which still retain poorer performance characteristics of the GPPs

compared to FFPs, can be further boosted by dividing computational intensive segments

into different dedicated FFP modules, also known as hardware accelerators [10]. There

are different ASIP designing tools such as the commercial ASIP Designer from Synopsys,

or the open-source TCE tool developed at Tampere University [11].

Application-Specific Integrated Circuit (ASIC) is the actual hardware implementation plat-

form for ASIPs and FFPs. It consists of three main categories, specifically full-custom,

semi-custom and programmable [12]. Full-custom ASICs refer to those integrated cir-

cuits where all components such as resistors, transistors, capacitors, etc are hardwired

on the printed circuit layout and cost million of dollars for designing and fabrication [13].

Semi-custom ASICs are somewhat similar, but some blocks are pre-designed in ASIC

standard libraries for reusing. Such components are actually designed as full-custom
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ASICs and then integrated into a larger ASIC implementation. Field-Programmable Gate

Array (FPGA) is a programmable ASIC which allows users to re-configure the functionality

by changing the interconnects between logic elements [14]. FPGAs are now commonly

used for small/medium prototyping, while semi-custom ASICs are the most cost-effective

choice for large-scale projects.

Figure 2.3. Comparison of different hardware architectures

Figure 2.3 displays the comparison between different DSP layouts. In particular, they are

GPP, ASIP, FFP with semi- and full-custom ASIC architecture. It is shown that GPP re-

mains the most flexible design at the expense of low computational capability and high

power consumption. FFPs with ASIC implementation have an extreme processing speed

with low power dissipation. The cost for this feature is the non-tunable nature which

prevents FFPs from adapting complex algorithms. ASIP is a great trade-off between pro-

grammability and computing performance [8], which is well-suited for low-power hearing-

aid applications.
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3. STATE-OF-THE-ART ALGORITHMS IN DIGITAL

HEARING-AID SYSTEMS

This chapter describes some of the most prevalent and effective signal processing algo-

rithms that are widely used in digital hearing-aid systems. They are categorized based on

their application parts in typical hearing aids, specifically Noise Reduction and Acoustic

Feedback Cancellation.

3.1 Signal Models

In this thesis work, the input signal, also known as the regressor, y[k] at time k of n-th

microphone consists of a distorted version of the clean speech s[k] and undesired noise

[15]

yn[k] = hn[k]⊛ sn[k] + vn[k] = xn[k] + vn[k], (3.1)

in which

hn[k] the impulse response between the sound source and microphone;

xn[k] and vn[k] the speech and noise component at the microphone, respectively;

⊛ convolution operation.

Using the analysis and synthesis window technique that bases on overlapping frames, we

can derive the frequency response of the input signal with Short-time Fourier Transform

(STFT) [16] as

Yn = HnSn + Vn. (3.2)

Thus, in general, the lower case x denotes the signal in the time-domain, whereas the

upper case X is used for frequency-domain. Vector û represents the single response

û =
[︂
1 0 ... 0

]︂T
. (3.3)

The superscript T implies the matrix transposition while the superscript ∗ refers to the

complex conjugate operator. Their combination, the complex conjugate transposition, is

indicated as the superscript H. In addition, E[.] intimates the expected or mean value of

a property and can also be expressed using correlation.
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3.2 Beamforming

In realistic situations, the desired speech signal is heavily mixed with background noises

which can cause speech quality degeneration and break the acoustic scenario. Beam-

forming (BMF) methods enhance the desired signal by continuously steering the micro-

phone array towards the direction of arrival and suppresses the unwanted noise or com-

peting sounds from other directions [17]. In this section, we discuss a widely-adapted al-

gorithm named Linearly Constrained Minimum Variance (LCMV) and its realization called

the Generalized Side-lobe Canceller (GSC).

3.2.1 Linearly Constrained Minimum Variance (LCMV)

The Linearly Constrained Minimum Variance (LCMV) beamformer, proposed by Frost

[18], laid the foundation of modern beamforming techniques. The algorithm forces a

linear equality constraint on the array of N microphones to reproduce the non-distorted

speech signal while reducing the unwanted noise and interference [19]. The architecture

of the LCMV beamformer is based on the Filter-and-sum concept, which is introduced in

figure 3.1.

Figure 3.1. Filter-and-sum principle

Beamforming methods are usually associated with the directional microphone array intro-

duced in section 2.1. The filter output in frequency domain is derived as

Z = WHY = WHHS +WHV ≜ Zs + Zn, (3.4)

in which Zs and Zn denote the speech and undesired components, respectively [20]. The

LCMV beamformer produces an output power (PSD) of

E{∥Z∥2} = WHRY YW, (3.5)

where RY Y implies the correlation matrix of the collected input signals [20]. The PSD is
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minimized with respect to the linear constraint matrix C

CHW = û, (3.6)

where û is the response vector defined in section 3.1 [21]. Utilizing the complex La-

grangian function [22], the LCMV optimal solution is obtained as

WLCMV =
R−1

Y YC

CHR−1
Y YC

û. (3.7)

The Minimum Variance Distortion Response (MVDR) algorithm, first proposed by Capon

[23] and upgraded to the adaptive framework by Frost [18], is a particular case of the

LCMV, where the constraint matrix is reduced to just a scalar operator on the desired

speech signal

WMVDR =
R−1

Y YH

HHR−1
Y YH

. (3.8)

Both LCMV and MVDR beamformers are well-recognized in the field of noise reduction

and speech enhancement. When assistive hearing is needed for both ears, LCMV is

usually extended to the Binaural version (BLCMV) [19], which is proved to conserve the

binaural cues and hence protect the auditory scenes for the wearers. Moreover, in the

context of low-power, the BLCMV seems to be a strong candidate, since it is designed

to optimize the output power while producing undistorted speech [24] and can be further

simplified by relaxing the constraint matrix with the cost of higher inaccuracies. However,

although it shows a great performance in noise reduction and interference cancellation

while preserving the speech quality, the BLCMV requires prior knowledge about the de-

sired direction of arrival and the absence of reverberation effect , which might not be

achievable in real life. Furthermore, with a restricted amount of microphones in HAs, the

noise elimination is less effective due to the lack of applicable constraints [25]. To sum up,

the LCMV is a promising technique for the desired low-power hearing-aid applications.

3.2.2 Generalized Side-lobe Canceller (GSC)

The Generalized Side-lobe Canceller (GSC) is a widely-used NR technique for hearing

aid systems, proposed by Griffiths and Jim in 1982 [26]. Perceiving the impulse response

of the acoustic channel, the GSC divides the minimization problem in the LCMV into two

orthogonal phases [27]. The first phase, named spatially pre-processing, contains a fixed

beamformer A(z) and a blocking matrix B(z) [28] and aims to solve the distortionless

speech constraint. The output noise power is minimized in the later phase by a multi-

channel adaptive noise canceller (ANC) [29]. The GSC structure is shown in figure 3.2.
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Figure 3.2. Generalized Side-lobe Canceller structure

The so-called speech reference r0[k] is collected in speech-periods when both speech

and noise are presented by steering the beamformer A(z) towards the source direc-

tion and contains both clean speech and noise components [28]. Meanwhile, the block-

ing matrix B(z) produces the noise references r1:N−1[k] for each secondary channel in

noise-only-periods where only the noise components are received [30]. The noise is as-

sumed to be short-term stationary in speech pauses and uncorrelated with the speech

component so that they can be estimated and used in speech-periods [15].

As proved by Breed and Strauss [31], the GSC and LCMV in section 3.2.1 are equiva-

lent. However, since the speech distortion and noise reduction are split into two separate

components, the filtering part (ANC) is unconstrained, which allows designers to employ

rudimentary noise cancellation techniques to reduce the computational cost [32]. On

the other hand, because of external effects such as speech reverberation, microphone

mismatch or source localization error, unwanted speech parts might leak into the noise

references, also known as speech leakage [33], resulting in the speech distortion and

even signal cancellation [30]. This make the GSC vulnerable to noisy environments and

hence not preferable for the low-power hearing-aid domain. Several methods have been

developed to preserve the speech integrity and enhance the system’s robustness against

signal errors, including the quadratic inequality constraint (QIC), hence the name QIC-

GSC (for example in [34]). Another important and effective technique based on the GSC

that takes the speech distortion into consideration will be introduced in the upcoming sec-

tion. Additionally, the computation complexity of GSC can be saved by estimating the

filter coefficients with adaptive method such as LMS [35], which will be described in the

Feedback Cancellation section.
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3.3 Noise Reduction

Before processing, low-power incoming speech signals with noise added from the sur-

roundings or from the hearing devices themselves are amplified. Such unwanted noise

may deteriorate the quality of the speech and even break its intelligibility. Therefore,

hearing-aid systems require some noise reduction (NR) procedures to minimize the in-

terference of noise to the desired speech signal. In an ideal case, only the clean speech

signal is preserved, whereas additive noise are completely annihilated [4]. This is not

achievable in real life; however, the main goal of NR algorithms is to amplify the speech

as much as possible while maintaining low noise level, in other words to maximize the

signal-to-noise ratio (SNR). Among all, the most popular methods for noise reduction in

digital HAs nowadays are Wiener Filter & its derivations.

3.3.1 Wiener Filter

For audio processing applications, Wiener Filters, named after Norbert Wiener, are used

to diminish the error between input and output signals, or reduce the effect of unpleasant

noise on the coveted speech in detailed. Small devices such as hearing aids need a

compact and simple NR technique, thus finite impulse response (FIR) Wiener Filter is

preferred. Compared to infinite impulse response (IIR) implementations, FIR filters are

more stable and practical, and do not require heavy computation resources [36]. Figure

3.3 illustrates the mechanism of a FIR Wiener filter of length L.

Figure 3.3. FIR Wiener Filter principle

The Wiener filter stores the current input as well as its L−1 delay versions, producing an

output signal of

z[k] =
L−1∑︂
l=0

w∗
l [k]y[k − l] = wH [k]y[k], (3.9)

where w[k] is the filter coefficient vector, also known as weight [29]. The difference
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between the desired signal d[k] and the filter output z[k] defines the error signal e[k] of

FIR Wiener filter [36]

e[k] = d[k]− z[k] = d[k]−wH [k]y[k]. (3.10)

The Wiener filter emphasizes to obtain the minimum of quadratic cost function called the

minimum mean-square error (MMSE) criterion [37]

JMSE(w) = E{e2[k]} = E{d2[k]}−2wHE{d∗[k]y[k]}+wH [k]E{y[k]yH [k]}w. (3.11)

Ryy and ryd denote the auto-correlation matrix of the input and the cross-correlation

vector of the input & desired signals, respectively [37]. Then, (3.11) can be given by

JMSE(w) = σ2
d − 2wH [k]ryd +wH [k]Ryyw[k], (3.12)

where σ2
d indicates the variance of the desired response d[k] [38]. Differentiating this

equation with respect to wH [k] yields

∂JMSE(w)

∂wH [k]
= −2ryd + 2Ryyw[k]. (3.13)

With the assumption that Ryy is non-singular, the famous Wiener-Hopf optimal solution

for filter designing is derived by setting (3.13) to zero

w[k] = Ryy
−1ryd. (3.14)

3.3.1.1 Multi-channel Wiener Filter

In a multi-channel fashion, Multi-channel Wiener Filter (MWF) leverages a microphone

array containing N elementary microphones. Each microphone acts as an individual

channel, delivering its own observed signal to the corresponding Wiener filter. The MWF

estimates the speech signal x[k] by combining the outputs of all microphones yn[k] [15].

Assuming all Wiener filters have a length of L, i.e. each has L taps, according to (3.9),

the output signal z[k] can be derived as

z[k] =
N−1∑︂
n=0

w∗
n[k]yn[k] = wH [k]y[k], (3.15)

where input signals and filter coefficients are now described as stacked vectors for all

secondary channels. Figure 3.4 illustrates the above-mentioned architecture of a MWF.

It should be noticed that there is only one channel containing the desired signal, i.e. this

particular microphone actually faces towards the direction of speech [28].
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Figure 3.4. Basic configuration of a Multi-channel Wiener Filter

Along with the MSE optimization problem, by forcing some linear constraints on the filter

weights, we can reproduce the LCMV algorithm that was described in section 3.2.1 [37].

The MWF approach assumes that the desired speech signal is always known, which is

infeasible in real-life conversations. Besides, the MWF requires correct approximations

of the second order statistics of the noise to generate the clean speech, which might not

be achievable in those complex acoustic situations [39]. Therefore, a linearly optimized

method such as BLCMV or GSC is more favorable in this case.

3.3.1.2 Spatially Pre-processed Speech Distortion Weighted Multi-channel

Wiener Filter

First presented in 2004 by Spriet and her colleagues, Spatially Pre-processed Speech

Distortion Weighted Multi-channel Wiener Filter (SP-SDW-MWF) is an advanced MWF-

based NR approach that compromises between the speech distortion and the noise re-

duction [29]. Figure 3.5 shows the basic components in a SP-SDW-MWF system. The

algorithm leverages the spatially pre-processing part of the GSC illustrated in section

3.2.2 that takes care of the look direction requirement [20]. The mission of the later SDW-

MWF adaptive filtering stage is to reduce the speech distortion effect while estimating the

noise component. Later on, the noise approximation will be subtracted from the speech

reference to produce a purified speech signal [30].

The term Speech Distortion Weighted (SDW) indicates that instead of considering the

output z[k] as a whole as in section 3.3.1.1, the filter adjusts the residual noise and the

speech distortion by introducing a trade-off parameter µ [40]. The MSE cost function of
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the SDW-MWF part can be written as

JMSE(w) = E{(xref [k]−wH [k]x[k])2}+ µE{(wH [k]v[k])2}, (3.16)

where xref [k] describes the pure speech signal at time k.

Figure 3.5. Structure of a SP-SDW-MWF

By adjusting µ > 1, the filter emphasizes more on noise suppression at the expense of

higher speech distortion level [41]. With µ < 1, the algorithm emphasizes on the speech

distortion and becomes the original GSC when µ = 0 [29].

The SP-SDW-MWF method increases the system robustness against large signal model

errors because it does not depend on prior information about the acoustic scheme [28]. It

also solves the need for accurate temporal estimation of the standalone MWF (SDW-MWF

in this case), which is to determine the periods when the speech or noise dominates and

reduce the speech leakage, by introducing the pre-processing part of the GSC. Compared

to the advanced QIC-QSC, the SP-SDW-MWF demonstrates a superior noise suppres-

sion capability for a known level of speech distortion [40]. Combining the merits of both

the QSC and the Wiener-based filtering, the SP-SDW-MWF seems to be the perfect so-

lution for low-power hearing aids, except that the limited resources there might curtail the

noise reduction performance.

3.4 Feedback Cancellation

In any audio system, it is possible for a closed feedback loop to exist between the au-

dio output and input when they are placed close to each other. In hearing-aid systems

particularly, the desired speech signal is captured by the microphones, processed and

passed to the receivers where it will then be delivered to the wearers’ ear canal [42]. The
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audio feedback problem, referred to as acoustic feedback, occurs when some parts of

the output from the receiver are accidentally fed to the microphone [43]. Those feedback

signals are amplified further and further when they get back to the input, and might dam-

age the quality of the desired signal and alter the hearing-aid operations when it reaches

a significant loudness [4]. This results in perceptible audio artifacts and even howling ef-

fect under certain conditions [43] . Many automatic feedback cancellation (FBC) methods

are proposed, but the most auspicious and well-known strategy is the adaptive feedback

cancellation (AFC) [44] using adaptive filters, some of which are the recursive implemen-

tations of the Wiener filter [36]. Under the scope of this work, the most common AFC

algorithms are presented, explicitly Least Mean Square (LMS) & its derivation Normal-

ized LMS (NLMS) and Affine Projection Algorithm (APA).

3.4.1 Least Mean Square

The Least Mean Square algorithm, invented by B. Widrow and T. Hoff in 1960, is one

of the most important adaptive filtering techniques using the stochastic gradient descent

method [38]. The LMS is best known for its simplicity and wide applicability range. Nev-

ertheless, its main limitations are slow convergence speed and higher steady-state error

with unknown systems [45].

To begin with, the LMS algorithm was constructed based on the combination of the

steepest-descent algorithm (SDA) [46] and the Wiener Filter described in section 3.3.1.

Apart from the Wiener solution wWF that minimizes the total error (Least Square), the

LMS solution wLMS reduces the error of the current sample in an adaptive manner, hence

the name Least Mean Square. Consequently, (3.13) can be applied to the LMS as

∂J(wLMS[k])

∂wLMS[k]
= −2y[k]e∗[k]. (3.17)

The LMS adaptation is defined by substituting (3.17) to the SDA solution

wLMS[k + 1] = wLMS[k] + µy[k]e∗[k]. (3.18)

The operating principle of the LMS filtering is displayed in figure 3.6. When the input

signal y[k] and the LMS coefficient vector wLMS[k] are statistically independent, the

LMS algorithm converges in the mean [47] if

0 < µ <
2

λmax

, (3.19)

where λmax indicates the maximum value of the correlation matrix of the input y[k] [38].
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Figure 3.6. The LMS adaptive filter

The LMS technique does not require extra memory, as it depends only on current-time

information of the signals [48]. This is a crucial criterion for the algorithm to be considered

for low-power HAs. Besides the AFC, the LMS is also widely-used for other applications

such as channel estimation or equalization [49].

3.4.2 Normalized Least Mean Square

According to (3.18), the LMS algorithm adjusts the weight vector wLMS proportionally

to the input data as well as the priori error from the previous iteration cycle. Therefore,

for large input signals, it will face the gradient noise amplification problem [38] and may

eventually corrupt the whole system. The revised version of LMS, called Normalized Least

Mean Square (NLMS), tackles this problem efficiently by setting the step-size variable µ

time-variant and normalized with respect to the squared Euclidean norm of the input

vector y[k] [50] as

µ[k] =
µ̂

∥y[k]∥2
, (3.20)

where µ̂ is a positive scaling factor called normalized step size [47] to control the weight

adaptation. In addition, to avoid large step sizes with very small input energy, a random

small positive value α is introduced to the denominator [37], and the NLMS adaptation

can finally be expressed as

wNLMS[k + 1] = wNLMS[k] +
µ̂y[k]e[k]

α + ∥y[k]∥2
. (3.21)

Compared to the traditional LMS algorithm, the updated NLMS shows a potentially faster

convergence speed for both uncorrelated and correlated input signals [38]. However, this

comes at the expense of heavier computation for the norm ∥y[k]∥2 [47].
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3.4.3 Affine Projection Algorithm

First introduced by K. Ozeki and T. Umeda in 1984, the fundamentals of Affine Projection

Algorithm (APA) class of adaptive filters showed a superior performance for correlated

inputs than LMS class in terms of convergence speed at a reasonable computation ex-

pense [51]. While NLMS updates the weight vector w on the basis of the current-time

input signal, APA also relies on its M − 1 predecessors [52]. Apparently, the NLMS is

a special case of the generalized APA algorithm with M = 1. The regressor block of M

latest inputs is formed as a L×M matrix where L is the length of each filter [46]

YT [k] =
[︂
y[k] y[k − 1] y[k − 2] ... y[k −M + 1]

]︂
. (3.22)

The APA directly stores the input and M − 1 of its previous values, whereas the MWF

collects the current input and then delayed versions are produced by passing it to the filter

taps. The error signal of the APA filter is now derived as a vector [45]

e[k] = d[k]− YH [k]wAPA[k]. (3.23)

By means of Affine Projection, hence the name Affine Projection Algorithm, the APA

solution for adaptive signal filtering is defined as

wAPA[k + 1] = wAPA[k] + µ̂YH [k](Y [k]YH [k])
−1
e[k]. (3.24)

where Y [k]YH [k] is a non-singular invertible Gramian matrix under the statistically inde-

pendence assumption [46]. To address the numerical matrix inversion problem, a process

referred to as regularization is executed by adding a small partition δI where δ is a small

positive number called regularization factor and I denotes the identity matrix [53]. This

procedure defines the so-called Regularized APA (R-APA) [46], in which the adaptation

operation for the filter coefficients is stated as

wAPA[k + 1] = wAPA[k] + µ̂YH [k](δI+ Y [k]YH [k])
−1
e[k]. (3.25)

The APA algorithm brings a remarkably higher performance over NLMS even with M = 2

[45], especially for correlated inputs such as speech [48], with an acceptable compu-

tational complexity. As the filter order M rises, meaning that more input vectors are

required, the convergence speed is boosted, whilst the extent of improvement decreases

[52]. Therefore, Benesty [45] had recommended M to be in the range 2 − 5 for the best

cancellation achievement. The aforementioned criteria make the APA one of the most

important AFC techniques in this field. Nonetheless, in hearing-aid domain where battery

lifetime is the most important concern, APA might not be as well-suited as the LMS, since

it exhausts the computational resources when storing a huge amount of signal data.
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4. EFFICIENT LOW-POWER IMPLEMENTATIONS OF

DIGITAL HEARING-AID TECHNIQUES

Based on the algorithms introduced in the previous chapter, this chapter is devoted for

some of the low-power implementations in the digital hearing-aid domain. They are FFPs

produced in different platforms such as FPGA or custom ASIC, but the latter is preferred

due to its power efficiency.

4.1 Adaptive Beamforming

In 2002, Luo and her co-workers [54] presented an adaptive null-forming scenario for

noise reduction in hearing aids. In his work, null indicates the directions from which sound

waves are mostly attenuated. The main obstacle of the algorithm is to precisely steer the

microphones in a way such that the null of the beamforming pattern of the systems points

towards the noise. The system leverages the endfire microphone orientation with a delay

of d/c, where d is the distance between the microphones and c implies the speed of the

sound [54]. The polar pattern is dynamically controlled by an adaptive gain using LMS

algorithm. The gain (or weight) is related to the null direction as

w[k] =
sin (πf d

c
(1 + cos θnull))

sin (πf d
c
(1− cos θnull))

, (4.1)

where f indicates the signal frequency and θnull is the angle between the null and the

microphone plane. With the approximation that sin θ ≈ θ, this filter gain is frequency-

independent as

w[k] =
1 + cos θnull
1− cos θnull

. (4.2)

In 2017, Samtani proposed both ASIC [55] and FPGA [56] implementations of the above

null-forming beamformer; however, in this thesis, we concentrate on the power-efficient

ASIC design. The schematic of the adaptive beamformer is displaed in figure 4.1. In this

design, the adaptive filtering method LMS is applied to estimate the signal gain [56]

asw[k + 1] = w[k] + 2µy[k]b[k]. (4.3)
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Figure 4.1. Schematic of the adaptive null-forming beamformer

His system employs a simple first-order IIR low-pass filter to compensate for the rela-

tion between the microphone output and the signal frequency [56], of which the impulse

response is given by

H[z] =
C1 + C2z

−1

1− C3z−1
, (4.4)

where C1, C2 and C3 are some user-defined constants. Both fixed beamformer and LMS

module are realized as Finite State Machine, while the IIR low-pass filter is implemented

using MATLAB where C1 = C2 = 0.2759 and C3 = 0.9758 [55].

The system initially deploys 5 Radix-2 Booth’s multipliers [57] and three addition opera-

tors. Later on, due to some optimizations in computing, the authors successfully reduce

to only one multiplier that is active at all states. Eventually, this Radix-2 multiplier is sup-

planted by a Radix-4 one, which reduces the dynamic power dissipation significantly with

a reasonable area score [55]. The power and area result of the implementations with

those multipliers is depicted in table 4.1 [55]. There is a 93% reduction in total power and

a 47% reduction in area score, which are extremely high for just a component substitution.

Architecture
Power (µW )

Area (µm2)
Static Dynamic Total

5 radix-2 multipliers 1.39 839.70 841.10 102879.682

2 radix-2 multipliers 0.92 191.32 192.24 69895.902

1 radix-2 multiplier 0.72 106.62 107.34 57191.961

1 radix-4 multiplier 0.68 59.86 60.54 54216.081

Table 4.1. Area and power result of the adaptive beamformer

The architecture was first functionally tested on Xilinx® Artix 7 FPGA family before and

then implemented in ASIC using 0.18 µm SCL library [58] and Cadence® EDA tools. The

result of the two test cases is illustrated in table 4.2 [55]. The proposed beamformer

shows noticeable SNR gains with different null directions and input signal characteristics.
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Noise type Null direction (°) SNR gain (dB)

180 20.81

Monotone 150 22.10

105 21.21

180 15.08

Speech signal 150 15.12

105 14.92

Table 4.2. SNR gain of the adaptive beamformer

4.2 Feedback Cancellation with LMS algorithm

As discussed in section 3.4, shifting from current-time dependency in (Normalized) LMS

to multiple input operation in APA rises the accuracy of the feedback purification but also

the complexity of the algorithms. Hence, towards the low-power hearing-aid applications,

LMS seems to be a more potential solution for AFC because of its ease of implementation

and plausible performance. In 2003, Kim [59] proposed a novel implementation of the so-

called Delay LMS (DLMS) based on the pseudo nMOS logic technology.

With regard to the electronics, Kim leveraged pseudo nMOS in the sub-threshold region,

referred to as sub-pseudo nMOS. Here, sub-threshold or weak-inversion region means

the supply voltage is less than the regular value, which are in turns 0.4V and 3.3V in this

case. Sub-threshold digital logics such as sub-pseudo nMOS are extraordinarily suitable

for applications which prioritize small power consumption over performance, including

hearing aids [60]. They not only preserve the outstanding characteristics of the standard

CMOS, which are exceptional robustness, wide noise margin and low power usage, but

also show a better transconductance and hence improve the voltage transfer characteris-

tics (VTC). In the weak-inversion region with VDD = 0.5 V, the pseudo nMOS consumed a

bit more power, but outperformed the standard CMOS in terms of delay and power-delay

product (PDP). The actual comparison for this particular voltage is displayed in table 4.3.

Gate
CMOS Pseudo nMOS

Power Delay PDP Power Delay PDP

INVERSE 29 nW 68 ns 1.98 fJ 31 nW 45 nW 1.40 fJ

NAND 33 nW 124 ns 4.13 fJ 25 nW 77 nW 1.97 fJ

NOR 36 nW 133 ns 4.78 fJ 46 nW 44 nW 2.01 fJ

XOR 84 nW 430 ns 36.00 fJ 76 nW 248 nW 18.90 fJ

Table 4.3. Statistics of the folded LMS and non-folded DLMS
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In the algorithm selection, the author analyzed the performance of folded LMS and non-

folded DLMS with filter length of L. The term non-folded implies a parallel platform with

numerous functional units (FU) and pipeline phases that can be used for a single-cycle

execution, whereas folded architecture resembles a GPP that employs only one single

FU for all operations [59]. The conventional LMS cannot take advantage of the pipelining,

as the adaptation may only be applied when the error calculation is valid [61]. Meanwhile,

introducing a constant delay to the LMS filter enables it to exploit the parallelism [62]

and thus reduce the power dissipation of the system. Both algorithms considering real

numbers are summarized in table 4.4 [63].

Folded LMS Non-folded DLMS

Number of FUs 1 L

Error calculation e[k] = d[k]−wT [k]y[k] e[k − L] = d[k − L]−wT [k − L]y[k − L]

Adaptation w[k + 1] = w[k] + µy[k]e[k] w[k + 1] = w[k] + µy[k − L]e[k − L]

Table 4.4. Statistics of the folded LMS and non-folded DLMS

The conventional LMS experienced a faster rate of convergence and smaller achieved

MSE as expected, because the DLMS was designed to reduce the power consumption at

the cost of poorer performance. The proposed architecture was able to meet the desired

clock frequency of 22 kHz when the supply voltage was scaled down to just 0.4 V. In

general, the sub-threshold implementation of the standard CMOS saved 87% of the total

active energy. However, this came with an area trade-off where the total transistors used

increased by 3.6 times. Moreover, the design achieved a further reduction of 27% in

energy efficiency by replacing the CMOS with the pseudo nMOS architecture [59]. Table

4.5 summarizes the design configuration and aforementioned result.

Algorithm Architecture Clock Supply Energy per Transistor

frequency voltage operation count

LMS Folded standard CMOS 748 kHz 0.65 V 21.71 nJ 31k

DLMS Non-folded Sub-CMOS 22 kHz 0.45 V 2.80 nJ 111k

DLMS Non-folded Sub-Pseudo nMOS 22 kHz 0.40 V 2.05 nJ 86k

Table 4.5. Implementation result for three AFC schemes
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5. HEARING-AID ARCHITECTURES

The Digital Signal Processor (DSP) is the heart of digital hearing aids, where all audio pro-

cessing techniques are executed to bring the most purified speech signals to the wearers.

Recent technology developments reduces the size of the dies, which allows the design-

ers to adapt more advanced audio processing techniques. In this chapter, we split the

DSP architecture into three main types, specifically FFP, ASIP and ASIP with hardware

accelerators.

5.1 Fixed-function Processor

In the discussed digital fixed-function processor (FFP) architecture, all functioning parts

are soldered before manufacturing and cannot be changed afterwards [64]. Despite this

drawback, the FFPs bring a noticeable performance and a considerable cutback in power

consumption [65]. A digital low-power FFP implementation, presented in [66], made a

compromise between accuracy and power efficiency by using stochastic approximation.

The design consists of a FIR digital filter which was hardwired shifted, ripple-carry adders

and multipliers for the gain and volume adjustments, multiplexers and internal storage

such as D Flip-Flops to create delays. The authors decided to use the standard CMOS

style mostly due to its robustness against the stochastic estimation [66].

The digital filter was coded in VHDL, and then verified with MP3 test files as well as Syn-

opsys HSPICE® simulation output [66]. Table 5.1 describes the result when the voltage

were scaled from 0.8 V to 0.4 V. Compared to the case when VDD = 0.8 V, setting it to 0.4

V yielded a 82% reduction in power dissipation without any functional error [66].

Supply voltage (V) Power consumption (µW )

0.8 120.00

0.7 86.22

0.6 57.36

0.5 37.08

0.4 21.93

Table 5.1. Power result
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This DSP architecture considers the digital audio signals. Besides, there are other excep-

tional low-power implementations for analog [67, 68] or mixed-signal [69, 70] that are not

cover in this thesis work.

5.2 Application-Specific Instruction-set Processor

As described in section 2.3, Application-Specific Instruction-set Processor (ASIP) refers

to the architecture where the instruction set of a processor is customized for a particular

purpose. Programmable ASIP provides a higher flexibility for different applications, which

reduces the development and manufacturing costs. However, this feature also leads to

a commonly greater power dissipation than the hardwired versions [64]. To handle this

problem, a remarkable hearing-aid processing unit with ASIP standard was presented

in 2011 that competed with a strict specification: silicon area of 22 mm2 and a battery

lifetime of at least 50 hours with 1.35 V voltage supply in [45]. The structure of the

proposed system is displayed in figure 5.1.

Figure 5.1. Structure of the DSP as ASIP

The proposed hearing-aid DSP consists of all essential building blocks that are FBC, NR,

BMF, Filterbank (FB) and Wide Dynamic Range Compression (WDRC). Familiar audio

processing techniques are adopted, particularly LMS for FBC, GSC for BMF and wrapped

FIR filter for FB. The noise suppression [71, 72] and dynamic range compression [73]

were done by the combination of FIR filters and frequency-domain computing methods.

To further improve the processing capability, several optimizations were applied to both

hardware and software sides such customized processor instructions, loop optimizations

(merging, unrolling and cache involved), circular buffer, etc [74].

At the clock frequency of 11 MHz and supply voltage of 0.8 V, the system consumes only

0.964 mW. Based on this DSP, a full hearing-aid chip could be implemented, of which the

area occupation and battery lifetime was 0.49 mm2 and over 300 hours [74].
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5.3 ASIP with hardware accelerators

Even though the standalone ASIP brings many valuable merits, it is still slow and power-

consuming for complex arithmetic operations compared to hardwired versions [75]. The

performance can be improved by relocating sophisticated and intensive computing tasks

onto different specialized hardware accelerators [64]. On the other hand, the central

ASIP is now responsible for light parallel computing, data management and controlling

the whole system [76]. Based on this concept, a high-performance DSP architecture [77]

was introduced in 2019. Figure 5.2 demonstrates the block diagram of the design.

Figure 5.2. Block diagram of the high-performance DSP

The proposed configuration represents a rational combination of ASIP and ASIC. Heavy

computations such as FB, FBC, WDRC and most of NR are executed on dedicated accel-

erators, which are ASICs in this case for power and performance constraint [77]. Mean-

while, the noise estimation and gain controller of WDRC are implemented on ASIP, be-

cause they depend on actual user preferences as well as the environment conditions [77].

The adopted algorithms for each processing block are:

• 128-point FFT/IFFT Filter Banks

• Multiband spectral subtraction (mband) [78] and Voice activity detection [79] for

Noise Reduction

• Subband adaptive filter (SAF) [80] for Feedback Cancellation

The design mostly focuses on frequency-domain processing, which introduces the need

for FFT/IFFT filter banks. Indeed, it is the first implemented System-on-Chip (SoC) for

low-power hearing aids that leverages the 128-point architecture [77].

The accelerators are designed as ASICs, while the ASIP is taken from Xilinx Zynq® FPGA

with some pipeline optimizations and customized instruction sets with respect to the noise
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estimation method [77]. The authors made some comparisons in noise suppression level

with other NR techniques in [81] using the NOIZEUS database [82]. They revealed that

the mband algorithm showed a great balance between computation complexity and NR

level; however, other NR methods which are specialized for particular noise patterns can

also be applied due to the flexibility of ASIP [77].

2011 2012 2014 2015 2019 2019

[74] [65] [68] [83] [84] This work

Technology Digital Digital Analog Mixed-signal Mixed-signal Digital

Architecture ASIP only ASIP+acc. FFP ASIP+acc. ASIP+acc. ASIP+acc.

Algorithms NR, WDRC, NR, WDRC, DRC, NR, WDRC, NR, WDRC, NR, WDRC,

BMF, FBC FBC AGC FBC FBC FBC

Power 964 µW 1.3 mW 1.6 mW 1.2 mW 1.1 mW 1.3 mW

Table 5.2. Comparison of different hearing-aid systems

The implementation of Kim’s work is compared with other efficient related models, which

is illustrated in table 5.2. The analog platform seems to be outperformed by the mixed-

signal and especially digital versions. The result also illustrates the superior in power

consumption of ASIP architecture with or without accelerators over the FFPs, where the

analog FFP in [68] has the worst power dissipation with the least number of algorithms

adapted. This can be explained by the hardware and power cost of analog ports and

processing blocks. Additionally, mixed-signal designs require some front-end blocks for

transferring and receiving analog signals, which might be costly than digital platforms

in terms of hardware expense and power optimization. Consequently, digital ASIP with

accelerators is the most promising implementation architecture for DSPs in modern low-

power hearing aids.
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6. CONCLUSION

This thesis analyzes some of the state-of-the-art signal processing techniques in digi-

tal hearing-aid applications, particularly Beamforming, Noise Reduction and Feedback

Cancellation. Generally, the rudimentary approaches are still widely-used due to their

simplicity and adequate performance. These methods can also be efficiently combined

to preserve the quality and intelligibility of the speech as well as the acoustic schemes.

Their advanced versions might be applied in the future when modern technology permits

a larger amount of processing units to be integrated on small circuits as in low-power

hearing aids. The researching also shows two power-efficient implementations of adap-

tive beamformer and feedback cancellation to visualize the application of the discussed

Least-Mean Square algorithm.

In the sequel, three main types of latest digital signal processors (DSPs) are presented

with detailed specifications. Comparisons between those DSP platforms, specifically FFP,

ASIP and ASIP with accelerators, are made to identify the most outstanding architecture

for low-power hearing-aid purposes. Digital and mixed-signal implementations are replac-

ing analog versions because of their broader ranges of supported algorithms and power

efficiency. The FFP is outperformed by ASIPs, which is unexpected because FFPs are

well-known for their solid computing performance and low power consumption. In con-

clusion, digital ASIP with several hardware accelerators is best-suited for the low-power

hearing-aid applications due to its low power dissipation and several intricate audio pro-

cessing algorithms involved.

Our work can be further expanded in several ways. First, other major processing parts of

the hearing aids such as Dynamic Range Compression or Amplification can be covered.

Second, filter banks are worthwhile to mention since most of the findings relies on the FIR

Filters. Finally, some full-chip implementations of low-power hearing aids can be included

to show how the introduced DSPs are integrated in a complete system.
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