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ABSTRACT

Assessment of the microscopic anatomy of tissue samples forms the cornerstone of
histopathological diagnostics. The current clinical practice is associated with chal-
lenges such as inter-observer variability and a global shortage of pathologists. Many
fundamental aspects of pathology as a medical discipline have remained largely un-
changed for decades, but the field is currently undergoing a transition into a digital
discipline by replacing microscopes with whole slide scanners. Among other ben-
efits, digital pathology unlocks the possibility of applying computational methods
on the resulting image data. Some of the promises of computational pathology, such
as improved efficiency and patient safety, take the advantages of digitization a step
further, while others represent new types of analyses. This thesis focuses on two
techniques in computational pathology: machine learning and 3D reconstructions.

Machine learning is a branch of computer science falling under artificial intel-
ligence, which aims at emulating intelligent decision making. The field has pro-
gressed rapidly during the last decade due to the availability of larger datasets and
improved computational resources. Deep learning in particular, representing a re-
naissance of artificial neural network algorithms, has demonstrated unprecedented
performance across a range of problems and is seen as revolutionary for histopathol-
ogy. By streamlining the work of pathologists, machine learning tools could poten-
tially mitigate the issues with the unsustainable workload and inter-observer vari-
ability, and even enable the discovery of new image-based prognostic markers.

Digital imaging also enables 3D histology, where serially sectioned tissue samples
are reconstructed computationally. Conventionally, 2D tissue sections representing
only limited cross-sectional views of the original 3D samples are used. Studying tis-
sue in 3D holds potential for obtaining a more comprehensive view of normal and
pathological processes where the spatial arrangement of different tissue structures
or cell types is of relevance. Compared to direct 3D imaging using specialized in-
struments, computational reconstruction allows applying various histological and
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biochemical assays, while achieving subcellular resolution even for large tissue sam-
ples. The core methodological problem is how to align a sequence of 2D images to
reconstruct a 3D volume without introducing distortions. Many algorithms have
been proposed for the task, but an objective comparison of their performance has
been lacking, complicating the application of 3D histology.

This thesis presents machine learning based systems for diagnostics of breast and
prostate cancer, which represent a considerable fraction of all samples assessed in
pathology departments worldwide. The system for assessing lymph node samples
of breast cancer patients was based on extracting numerical features describing the
tissue as input for random forest classifiers, and it was demonstrated to be capable of
distinguishing between normal and metastatic tissue. This allows visually highlight-
ing potentially malignant regions. The system for assessing prostate biopsies was
based on deep neural networks and gradient boosted trees. It achieved clinically use-
ful sensitivity and specificity in cancer detection, and cancer length estimates closely
corresponding to those performed by a pathologist. In cancer grading, the system
was comparable to a panel of specialized pathologists. This marks the first time that
diagnostic performance comparable to specialists has been demonstrated on a large,
clinically representative dataset of prostate biopsies.

The other two studies of the thesis present a framework for evaluating the qual-
ity of 3D reconstructions. The developed framework was applied to compare several
publicly available algorithms and two commercial options. Moreover, the feasibility
of automated hyperparameter tuning of reconstruction algorithms using Bayesian
optimization was demonstrated for the first time. Algorithms relying on elastic
transformation models capable of compensating for local tissue deformations were
observed to achieve the most accurate reconstructions. Moreover, all of the studies
in this thesis aimed at developing efficient ways of processing whole slide image data,
resulting in a streamlined computational workflow utilizing parallel computing on
graphics processing units on high-performance computer clusters.

Taken together, this thesis demonstrates that computational pathology techniques
can achieve expert-level diagnostic performance, paving the way for the clinical adop-
tion of such tools. The comparative results concerning 3D reconstruction algo-
rithms highlight useful algorithmic features and hopefully promote further devel-
opment of 3D histology from a prototype technique to a mainstream approach in
biomedical research.
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TIIVISTELMÄ

Kudosnäytteiden mikroskooppisen anatomian tarkastelu on histopatologisen diag-
nostiikan kulmakivi. Nykyisen kliinisen käytännön ongelmia ovat mm. eri patolo-
gien diagnoosien epäyhdenmukaisuus sekä maailmanlaajuinen patologipula. Patolo-
gia on monilta osin säilynyt vuosikymmeniä suhteellisen muuttumattomana, mutta
ala käy nyt läpi digitaalista murrosta, jossa skannerit syrjäyttävät mikroskoopit. Dig-
itaalinen patologia mahdollistaa muiden etujen lisäksi tuotetun kuvadatan lasken-
nallisen käsittelyn. Laskennallinen patologia voi viedä joitakin digitalisaation hyö-
tyjä kuten lisääntynyttä tehokkuutta ja potilasturvallisuutta entistäkin pidemmälle,
mutta myös mahdollistaa aivan uudenlaista analytiikkaa. Tämä väitöskirja käsittelee
kahta laskennallisen patologian tekniikkaa: koneoppimista ja 3D-rekonstruktioita.

Koneoppiminen on tekoälyn piiriin luettava tietotekniikan osa-alue, joka pyrkii
jäljittelemään älykästä päätöksentekoa. Ala on kehittynyt nopeasti viimeisimmän
vuosikymmenen aikana, pääasiassa kasvaneiden aineistojen ja nopeamman lasken-
takapasiteetin ansiosta. Erityisesti syväoppiminen, joka edustaa keinotekoisiksi neu-
roverkoiksi kutsuttujen algoritmien uutta aaltoa, on mahdollistanut ennennäkemät-
tömät tulokset monissa eri ongelmissa. Tätä tekniikkaa pidetään mullistavana myös
histopatologiaa ajatellen. Koneoppimiseen perustuvien työkalujen uskotaan voivan
suoraviivaistaa patologien työtä ja siten helpottaa kestämätöntä työkuormaa ja paran-
taa diagnoosien yhdenmukaisuutta. Lisäksi ne voivat auttaa löytämään uusia, ku-
vapohjaisia tapoja ennustaa tautien kehittymistä.

Digitaalinen kuvantaminen mahdollistaa myös 3D-histologian, jossa sarjaleikat-
tuja kudosnäytteitä rekonstruoidaan laskennallisesti. Tavanomaiset yksittäiset ku-
dosleikkeet edustavat vain rajattua poikkileikkausta alkuperäisestä kolmiulotteisesta
näytteestä. Kudoksen kolmiulotteinen tarkastelu voi auttaa kattavamman kuvan
muodostamisessa sekä normaaleista että patologisista prosesseista, joissa erilaisten
kudoksen rakenteiden ja solutyyppien keskinäisellä sijoittumisella on merkitystä.
Suoraan 3D-kuvantamiseen verrattuna tavanomaisen mikroskopian pohjalta tehty
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laskennallinen rekonstruktio sallii eri histologisten ja biokemiallisten tekniikoiden
monipuolisen käytön ja mahdollistaa solutason erottelukyvyn suurillekin kudos-
näytteille. Teknisesti tehtävä kiteytyy kysymykseen, kuinka sarja 2D-kuvia kohdis-
tetaan toisiinsa ilman, että syntyvään 3D-rekonstruktioon muodostuu vääristymiä.
Ongelmaan esitettyjä monia algoritmeja ei toistaiseksi ole kattavasti vertailtu, mikä
hankaloittaa 3D-histologian käytännön soveltamista.

Tässä väitöskirjassa esitellään koneoppimisjärjestelmät rinta- ja eturauhassyöpien
diagnostiikkaan. Nämä syövät edustavat kaikkialla maailmassa suurta osaa patologi-
sista näytteistä. Rintasyöpäpotilaiden imusolmukenäytteiden arviointiin tarkoitettu
järjestelmä perustuu suureen määrään kudosta kuvaavia numeerisia piirteitä sekä
random forest -algoritmeihin, ja sen havaittiin kykenevän erottelemaan etäpesäk-
keet normaalista kudoksesta. Järjestelmän avulla voidaan esittää visuaalisesti kunkin
näytteen todennäköisesti pahanlaatuiset alueet. Eturauhaskoepaloja analysoiva jär-
jestelmä perustuu syviin neuroverkkoihin ja gradient boosted tree -luokittelijoihin.
Se saavutti kliinisesti käyttökelpoisen herkkyyden ja spesifisyyden syövän havait-
semisessa ja kykeni arvioimaan syöpäkudoksen pituuden kussakin koepalassa pa-
tologia tarkasti vastaavalla tavalla. Syövän pisteyttämisessä järjestelmä on verrat-
tavissa joukkoon erikoistuneita patologeja. Kyseessä on ensimmäinen tutkimus, jossa
on osoitettu asiantuntijoiden kanssa vertailukelpoinen diagnostinen suorituskyky
laajalla, kliinisesti edustavalla eturauhaskoepala-aineistolla.

Muissa osatöissä esitellään 3D-rekonstruktioiden tarkkuuden arviointiin kehitetty
menetelmä, jonka avulla vertailtiin useaa vapaasti saatavilla olevaa sekä kahta kaupal-
lista rekonstruktiotyökalua. Lisäksi osoitettiin ensimmäistä kertaa bayesilaisen op-
timoinnin toimivuus rekonstruktioalgoritmien parametrien säätämisessä. Tarkim-
mat rekonstruktiot saavutettiin elastisia muunnoksia käyttävillä algoritmeilla, jotka
kykenevät kompensoimaan kudoksen muodonmuutoksia. Kaikissa osatöissä tutkit-
tiin myös tapoja digitaalipatologisen datan tehokkaaseen käsittelyyn ja kehitettiin
laskentaklustereilla grafiikkaprosessoreilla suoritettavaa rinnakkaislaskentaa.

Yhteenvetona tämä väitöskirja osoittaa, että laskennallisen patologian keinoin
voidaan saavuttaa asiantuntijatasoinen diagnostinen tarkkuus, mikä kannustaa vas-
taavien menetelmien kliiniseen käyttöönottoon. Eri 3D-rekonstruktiomenetelmien
vertailu paljasti toimivia algoritmisia ratkaisuja ja voi toivon mukaan auttaa 3D-
histologian jatkokehittämistä prototyypistä laajemmin käytetyksi biolääketieteel-
lisen tutkimuksen menetelmäksi.
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1 INTRODUCTION

Histological assessment of tissue samples, that is, the evaluation of their microscopic
anatomy, is frequent in biomedical research and forms the cornerstone of histopatho-
logical diagnostics in clinical practice. Conventionally, these assessments are per-
formed visually by an expert, such as a pathologist, with the help of a microscope.
Many fundamental aspects of pathology as a medical discipline have remained largely
unchanged for decades, but the field is currently undergoing a transition into a digital
discipline (Griffin et al. 2017). In digital pathology (DP), the microscopy slides are
scanned and examined on computer screens (Fig. 1.1). Digitization holds promise
for a number of advantages, such as time savings, improvements in quality and pa-
tient safety aspects, and possibility for efficient remote consultation.

Figure 1.1 Microscopy slides (left), Aperio scanner1(center), a WSI of a prostate biopsy (right).

In spite of these factors, and the fact that whole slide image (WSI) scanners en-
abling the automated imaging of histological samples have been available since the
1990s, the adoption of digital workflows in clinical laboratories has been slow (Colling
et al. 2019; Griffin et al. 2017). Some of the potential reasons for the hesitant adop-
tion have been the requirement for considerable initial investment, technical short-
comings of digital systems, reluctance of pathologists to adopt digital workflows due
to these shortcomings and their familiarity with conventional microscopes, and reg-

1https://www.leicabiosystems.com/digital-pathology/scan/aperio-cs2/, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=77363624.
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ulatory reasons such as the lack of approval by the US Food and Drug Administra-
tion (FDA) until recently. While there is an increasing number of digital laboratories
around the world, the potential benefits of DP have not yet been able to sufficiently
outweigh the drawbacks to promote widespread clinical adoption of the technology.

Besides the logistical benefits offered by storage and examination of samples in
digital format, DP also unlocks the possibility of applying computational image pro-
cessing and analysis techniques on the resulting data (Griffin et al. 2017). In partic-
ular, WSI systems serve as an enabling technology for the application of machine
learning (ML) based image analysis (Bera et al. 2019). Machine learning is a branch
of computer science falling under artificial intelligence (AI), which aims at compu-
tationally emulating intelligent decision making. The field has seen rapid progress
during the last decade, mainly attributable to the renaissance of biologically inspired
artificial neural network (ANN) techniques in the form of deep learning (DL) us-
ing deep neural networks (DNN) (LeCun et al. 2015). Today, the terms machine
learning, deep learning and AI are often used interchangeably. The unprecedented
performance of DNNs across a wide range of problems has not gone unnoticed in
medicine and there is widespread optimism around the application of ML in the
medical domain (Rajkomar et al. 2019), including DP.

Some of the promises of AI for pathology mirror the advantages associated with
digitization, but take them a step further (Bera et al. 2019; Niazi et al. 2019). For
example, a digital workflow could improve safety by reducing human errors in the
information management process, such as the handling of patient identifiers and slide
labels. The use of AI could extend the quality assurance to the diagnosis itself, issuing
a warning to the pathologist about potentially missed cancers. Similarly, digitization
has been claimed to provide time savings by reducing the need to physically trans-
port slides, and AI tools could potentially further improve efficiency for example by
automatically excluding cases that are likely to be benign from the pathologist’s re-
view. By streamlining the work that pathologists currently do, AI-based tools could
help manage the worldwide workload challenge associated with a decreasing num-
ber of practising pathologists and an increasing number of samples that need to be
assessed. These added benefits offered by AI and other computational approaches
might encourage more laboratories to go digital.

Besides automation of routine tasks, computational approaches are expected to
outperform humans by learning from datasets containing more cases than any medi-
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cal expert will assess during their career, and to enable completely new analyses (Bera
et al. 2019). One such prospect enabled by computational techniques is 3D histology,
where tissue samples are analyzed in their native three-dimensional setting (Roberts
et al. 2012). Conventionally, histological assessments rely on 2D sections cut from
the sample, offering only a view based on limited cross-sections of the underlying 3D
structures. Imaging tissue in 3D is possible using specialized instruments, but using
digital image processing, the 3D structure can be reconstructed based on a series of
2D tissue sections prepared conventionally (Pichat et al. 2018).

To describe the field focused on solving problems in pathology via computational
methods, the term ’computational pathology’ (CP) was coined by Fuchs and Buh-
mann (Fuchs 2010; Fuchs et al. 2011). I too have chosen to use this term to emphasize
the computational focus of this work, as opposed to the broader topics encompassed
by DP, and to consider the digital workflow as an established platform for compu-
tational approaches. In doing so, we ignore many questions that have been widely
studied within the DP community, such as the concordance between clinical diag-
noses performed using conventional microscopes and WSI systems, logistics and in-
formation management in a digital laboratory and most regulatory aspects. Instead,
this work focuses on the algorithmic methods built on top of the digital workflow,
representing the transition from digital to computational pathology.

The articles included in this thesis focus on two separate topics: 3D histology and
ML for cancer diagnostics. The aim of Publication I was to reconstruct 3D histol-
ogy from 2D serial sections, and to develop a framework for assessing the quality
of the reconstructions. In Publication II, this framework was extended and applied
to compare several reconstruction algorithms. In Publication III, a ML system for
detecting breast cancer (BCa) metastases in lymph node samples was presented. In
Publication IV, a DL-based system for prostate cancer (PCa) diagnostics using biop-
sies was developed. A further aim shared by all four studies was the development of
high-performance computing (HPC) approaches for processing the WSI data. The
following chapters will present a review of the literature (Ch. 2), define the aims of
the work (Ch. 3), briefly introduce the methodology used (Ch. 4) and summarize
and discuss the results (Ch. 5). The clinical relevance of the results and the future of
CP are then discussed in Chapter 6, followed by concluding remarks in Chapter 7,
and the original publications.
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2 BACKGROUND

2.1 Digital and computational pathology

Whole slide imaging systems have now been available for more than 20 years (Pan-
tanowitz et al. 2018). In 2013, the lack of comprehensive diagnostic validation of the
technology was still pinpointed as the main barrier to large-scale adoption (Ghaz-
navi et al. 2013). Over the course of the past decade, guidelines for conducting vali-
dation studies have been published and several such studies have shown broad con-
cordance between diagnoses made using digital and conventional pathology (Griffin
et al. 2017). A milestone event recently took place, when the long-standing obstacle
of lacking FDA approval of WSI systems was cleared by Philips with their IntelliSite
Pathology Solution, which was shown to be non-inferior to microscopy for primary
diagnosis in surgical pathology (Mukhopadhyay et al. 2018). This success has sim-
plified the process for other manufacturers, leading to Leica obtaining approval for
their Aperio AT2 DX scanner in 2019. Overcoming these hurdles is expected to
promote the rapid adoption of DP in clinical use (Pantanowitz et al. 2018). While
many open questions regarding the detailed clinical implementations still need to
be answered, the scientific focus is already partly shifting towards the next steps of
computational and AI-based approaches (Colling et al. 2019).

It is worth noting, that the application of CP does not necessarily require WSI
systems and a fully digital workflow. Google Health proposed an augmented real-
ity (AR) approach, where computation is integrated into an otherwise conventional
microscope (P.-H. C. Chen et al. 2019). In this solution, a DNN-based diagnostic
system was trained offline using WSI data and a microscope was retrofitted with a
digital camera and an AR display. As a result, the user can operate the microscope as
usual, while being aided by seeing the outlines of predicted malignant regions. Com-
pared to a fully digital workflow, this approach can potentially harvest some of the
benefits of CP while avoiding the costs of setting up scanning infrastructure. More-
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over, pathologists would not be required to adapt to working digitally and could
avoid some of the technical issues that still persist with most WSI systems, such as
inability to examine different focus levels of the sample (Griffin et al. 2017).

While improvements in WSI systems have undeniably accelerated the progress
of CP, computational image analysis has been applied irrespective of the imaging
modality as long as digital images of samples have been available (Prewitt et al. 1966).
Early studies on what would be called CP today relied on limited numbers of pho-
tomicrographs representing manually selected fields of view from the sample. In fact,
the earliest CP algorithms did not even rely on digital images at all, but instead sought
to formulate pathological knowledge and diagnoses into representations that would
allow computational processing and decision support (Hamilton et al. 1994; Heath-
field et al. 1991). As exemplified by these early approaches and the contemporary
AR microscope, CP can be seen not only as the next step following full digitization
of pathology, but as a branch of computer science and (bio)image analysis that has
progressed in parallel with DP. It remains to be seen if a partially digital, but never-
theless computational, approach to pathology will amount to more than a curiosity,
or if large-scale whole slide scanning remains the primary workhorse powering a
transition to fully digital laboratories in the future. Currently, the development of
CP methods builds almost exclusively on image analysis of WSI data (Abels et al.
2019), however, and plans for large-scale clinical implementation typically rely on
the full digitization of pathology departments (Colling et al. 2019).

2.2 Histopathological diagnostics

Development of AI solutions for the diagnostics of prostate and breast cancer is par-
ticularly relevant due to the large volumes of these samples analysed worldwide.
In many regions, including the Nordic countries, PCa is the most common can-
cer among men (Bray et al. 2018). Globally, it is the second most common can-
cer among men, second only to lung cancer. Breast cancer, on the other hand, is
the most frequently diagnosed cancer and the most common cause of cancer death
among women globally. The histopathological assessment of biopsies and resected
specimens is crucial for the diagnostics and treatment choices. These assessments are
formalized into various systems and guidelines, such as the so called TNM staging
system (Edge et al. 2010). Classification of cancers following this system is based on
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the size of the primary tumor (T), spread of cancer to regional lymph nodes (N), and
the presence of distant metastasis (M). An important task in BCa staging is the as-
sessment of sentinel lymph nodes for the presence of metastatic cells (Bejnordi et al.
2017). However, this is a time-consuming task, and sensitivity and inter-pathologist
reproducibility often remain sub-optimal (Vestjens et al. 2012).

Gleason pattern (majority): 3

Gleason pattern (minority): 4 Gleason score 3 + 4
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Figure 2.1 Simplified illustration of the Gleason grading process. The most common and second most
common Gleason patterns in a prostate sample are combined into a Gleason score. The
Gleason score is further converted into an ISUP grade group.

The diagnosis of PCa is based on examination of needle biopsies extracted from
the prostate, graded following the Gleason grading system (Fig. 2.1), where higher
Gleason scores (GS) are associated with a worse prognosis and a need for more radi-
cal treatment (Bulten et al. 2020). Slightly simplified, the GS is based on assigning a
Gleason grade on a scale from 1 to 5 for the dominant and secondary morphology
present in the sample, and calculating the sum of the two grades. In practice, only
grades 3-5 are used. The grade itself is based on the growth patterns of the tumor,
visually assessed by the pathologist. The International Society of Urological Pathol-
ogy (ISUP) recommends reporting with an updated five-step system (ISUP grade
groups), which takes into account the different prognostic values of GS 3+4 and
4+3 (Epstein et al. 2016). The difficulty of producing objective and reproducible as-
sessments is reflected in high variability in Gleason grading performed by different
pathologists, which in turn represents a key problem for the clinical management
of PCa (Egevad et al. 2013). As the Gleason grading is the most important factor in
view of treatment decisions, misclassifications can have severe consequences for both
individual patients and health care systems. The use of reference databases (Egevad
et al. 2017) and AI tools (Egevad et al. 2020) are hoped to mitigate these issues.
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2.3 Image analysis in computational pathology

The methodological roots of CP lie in bioimage analysis (Meijering et al. 2016) and
much of the early research in the field was based on an object-centered view built
using classical image analysis operations (Gurcan et al. 2009). This means that the
images are treated as collections of objects, such as cell nuclei, which in turn may
serve as constituents of other objects, such as glands. This can be seen as a logi-
cal extension of the algorithms for analyzing images of individual cells developed
e.g. for confocal microscopy (Schneider et al. 2012), simply scaled up to analyze the
larger numbers of cells encountered in pathology. As an example, an early attempt
at automated Gleason grading relied on detecting nuclei, modeling their geometrical
arrangement with spanning trees and comparing the obtained trees to a database of
samples with known Gleason grades (Wetzel et al. 1999). In line with this evolution,
the initial focus of pathological image analysis tended to be on cytology, where iso-
lated cells are examined instead of tissues (Gurcan et al. 2009). This simplified the
analysis due to the absence of complex structures and the relative ease of segmenting
individual cells or nuclei on the homogeneous background of cytological samples.

Most workflows in bioimage analysis and CP can be decomposed into a number
of key image processing tasks (Kothari et al. 2013; Meijering et al. 2016) (Fig. 2.2).
Initial pre-processing may involve quality control to e.g. detect artefacts such as poor
focus or folded tissue (Janowczyk et al. 2019; Palokangas et al. 2007) and correction
for uneven illumination, noise or optical blurring via deconvolution. In pathology,
color is of particular interest (Clarke et al. 2017), and pre-processing is often em-
ployed to reduce variation due to differences in tissue staining and imaging. This
may involve e.g. color normalization relative to a reference slide or stain deconvolu-
tion, i.e. separation of the signals representing different stains such as hematoxylin
and eosin (HE) (Bejnordi et al. 2015; Khan et al. 2014; Macenko et al. 2009; Ruifrok et
al. 2001). A key pre-processing operation for many applications is image registration
(Sotiras et al. 2013; Zitova et al. 2003), where images representing e.g. different spec-
imens, imaging modalities or histological stains are aligned into a shared coordinate
frame to establish pixelwise correspondence between the images. Image registration
allows e.g. joint analysis of multiple immunohistochemistry (IHC) stains (Borovec
et al. 2020), cross-modality analysis between e.g. histology and magnetic resonance
imaging (MRI) (Reynolds et al. 2015) and 3D reconstructions (Roberts et al. 2012).
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Figure 2.2 A typical bioimage analysis workflow. Pre-processing steps are often applied to produce
enhanced versions of the input images, which may serve as the final output in some cases.
Subsequently, numerical features are extracted to characterize the objects and the texture
present in the images, yielding a quantitative representation of the input data. Finally, this
representation can be further analyzed to gain insights of the process being studied, or to
build predictive models.

Some bioimage analysis workflows may merely consist of pre-processing, produc-
ing enhanced and registered images as output for visual examination or archiving, but
further image analysis steps are often required. Following the classical object-based
approach, most of these steps can be formulated as either detection or segmentation
(Gurcan et al. 2009). Detection consists in estimating if some objects of interest are
present or absent, as well as often estimating their locations in the image. In segmen-
tation, the aim is to group image pixels into sets that represent the objects of interest,
allowing one to additionally quantify the sizes, shapes and other properties of the
objects. Over the years, considerable effort has been devoted to the development
of detection and segmentation algorithms tailored for specific cellular organelles,
such as nuclei (Irshad et al. 2013). A number of numerical parameters (e.g. diam-
eter, eccentricity or mean brightness) are then typically extracted to describe the
objects quantitatively in the form of object-level features (Kothari et al. 2013). An
alternative feature extraction approach is to compute pixel-level features, including
e.g. histogram statistics, Haralick features based on gray-level co-occurrence matri-
ces (GLCM) (Haralick et al. 1973) or local binary patterns (LBP) (Ojala et al. 2002;
Pietikäinen et al. 2000). Pixel-level features can be employed to obtain a quantitative
description of the image independently of any notion of objects but they can also
be used as the basis for object detection or segmentation. One may also combine
these approaches and compute pixel-level features for subsets of pixels belonging to
individual segmented objects to describe nuclear texture, for example.
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Analysis steps following feature extraction vary greatly depending on the appli-
cation, but typically they represent some form of classification, modeling, visualiza-
tion or exploratory analysis of the resulting data (Kothari et al. 2013; Meijering et
al. 2016). One may for example study how different samples cluster in feature space
with the aim of discovering morphological patterns in an exploratory setting (Valko-
nen, Ruusuvuori et al. 2017), or use the features as input for ML algorithms with the
aim of predictive modeling of clinical diagnoses (Tabesh et al. 2007). In tasks like cell
counting, the extracted features may already contain the desired information with-
out further analysis. Most state-of-the-art approaches integrate the feature extraction
and ML steps into a single, automated process using DNNs (Gupta et al. 2019).

In addition to the complexity of the patterns present in histological data, the large
data volume, especially in the case of WSIs, represented a significant computational
bottleneck for years (Gurcan et al. 2009). As an example, the data used in Publica-
tion IV contained over 8600 WSIs with dimensions of approximately 50 000 x 30
000 pixels each. This amounts to roughly 1.3×1013 pixels and, when expressed at 24
bits per pixel, 39 terabytes of raw image data. Although a considerable amount of
these pixels can be excluded as background, a dataset of this scale would have been an
insurmountable challenge for most of the computer systems successfully used to pro-
cess cytological images a decade ago. In radiology, the data volumes have historically
been even more manageable than in the case of cytology (Gurcan et al. 2009).

As a result of the increasing amounts of data and computation power becom-
ing available, bioimage analysis in general, and CP in particular, have become data-
intensive disciplines where statistical ML plays a central role (Fuchs et al. 2011; Mei-
jering et al. 2016). Top-performing solutions to detection (Bejnordi et al. 2017), seg-
mentation (Ronneberger et al. 2015), classification (Bulten et al. 2020) and even qual-
ity control (Kohlberger et al. 2019) tasks in CP today rely on ML, and more specifi-
cally DNNs, nearly without exception. In Section 2.4 we will focus on ML, with an
emphasis on applications to PCa and BCa diagnostics in view of Publications III-IV.
However, more classical image processing methods still remain important for many
pre- and post-processing operations, and some tasks are less amenable to formulation
as a ML problem than classification or segmentation, with image registration being
a notable example. ML-based solutions to medical image registration have only re-
cently started to emerge (Fan et al. 2019; Haskins et al. 2020; Miao et al. 2016), but
applications to histology are still nearly non-existent (Awan et al. 2018). Image reg-
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istration is the cornerstone of 3D histology (Pichat et al. 2018), which we will focus
on in Section 2.5 in view of Publications I-II.

2.4 Machine learning in computational pathology

2.4.1 Feature-based learning for diagnostics

The early attempts of employing ML to detect cancer from histopathological im-
ages relied on tens to hundreds of photomicrographs representing manually picked
regions of interest (ROI) (Jafari-Khouzani et al. 2003; Tabesh et al. 2007). These stud-
ies relied on general-purpose features popularized in the image processing commu-
nity, such as those based on wavelet transforms, which provide a natural multi-scale
framework for texture analysis (Laine et al. 1993), fractal geometry (Jacquin 1993)
and GLCM statistics (Haralick et al. 1973), as well as tailored morphological features
based on segmenting the image into various histological objects. Support vector ma-
chine (SVM) (Cortes et al. 1995), Gaussian and k-nearest neighbors (kNN) classifiers
were trained in these studies to classify prostate tissue into benign or malignant, and
further into different Gleason grades. Tabesh et al. reported accuracies of 96.7% and
81.0% for the tasks of classifying benign vs. malignant tissue (n = 367) and Gleason
grading (n= 268), respectively, while Jafari-Khouzani and Soltanian-Zadeh reported
97% accuracy in Gleason grading (n = 100). While impressive for their time, one
should note that the performance estimates only rely on cross validation (CV) on
a limited number of ROI. With regards to classification models, it is worth noting
that despite the popularity of SVM and random forest (RF) (Breiman 2001) classifiers
prior to the 2010s DL era, neural networks in their shallow multilayer perceptron
form have been applied in CP already decades ago (Cheng et al. 1995).

An early work by Diamond et al. (Diamond et al. 2004) is notable in its patch-
based approach, where images of radical prostatectomy (RP) specimens were divided
into sub-regions, each processed in turn to obtain predictions across a full slide. This
has become a standard approach in contemporary WSI based studies (Bejnordi et al.
2017), including Publications III-IV. Another patch-wise method for WSI analysis
used a multi-resolution, RF-based framework for classifying BCa samples follow-
ing the modified Bloom-Richardson grading (Basavanhally et al. 2013). The features
engineered in that study were mainly based on the segmentation of nuclei, and char-
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acterization of their organization using graphs constructed by Voronoi diagrams,
Delaunay triangulation and minimum spanning trees.

Likewise, the studies by Doyle et al. (Doyle et al. 2010; Doyle et al. 2006) are note-
worthy as they attempted to analyze WSI of entire samples. The obvious challenges
posed by the computational capacity at the time were circumvented by designing a
multi-resolution approach inspired by the way pathologists work with the samples.
The images were decomposed into a resolution pyramid, and the feature extraction
and classification process was first applied at a low resolution to exclude regions
that are likely to be benign. Potentially malignant regions were then re-analyzed
at higher resolution, and the process was repeated iteratively over several resolution
levels. The large pool of over 900 features, mined using an AdaBoost (Freund et al.
1996) ensemble method is also reminiscent of studies published years later (e.g. Pub-
lication III). On a dataset of 100 prostate biopsy WSIs from 58 patients, a receiver
operating characteristics (ROC) analysis estimated an area under the curve (AUC)
of 0.85 in pixel-wise PCa detection. Notably, Doyle et al. not only utilized a rela-
tively large number of slides, but also performed patient-level CV, meaning that all
biopsies from a given patient were included in either training or testing data, which
has since been indicated as an important consideration when evaluating classifiers
(Nir et al. 2019). Other early feature-based approaches have been reviewed in detail
elsewhere (Gurcan et al. 2009; Kothari et al. 2013; Mosquera-Lopez et al. 2014).

A more recent study investigated feature selection approaches to improve gener-
alization across histopathological data from multiple sites (Leo et al. 2018). In DNN-
based approaches, the problem is typically attacked by applying data augmentation
during training to encourage learning representations that are invariant to pertur-
bations resembling the inter-site variation (Tellez, Litjens, Bandi et al. 2019). In the
feature-based setting, one can explicitly select features that are not only discrimina-
tive but also robust to the inter-site variation. The study was based on a total of 212
RP samples from four institutions and used ROIs cropped from the WSIs to repre-
sent benign, Gleason grade 3 and Gleason grade 4 tissue. A set of 242 features was
considered, including descriptors of gland morphology and Haralick features. The
authors achieved an improvement of 4.38 % in AUC for the task of distinguishing
between Gleason patterns 3 and 4, when compared to feature selection that only
considers discriminative capacity of the features. However, in the classification of
malignant versus benign tissue, no improvement was reported.
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In contrast to object-level features designed to capture some biological property
of the tissue, such as the organization of nuclei relative to glands (D. Wang et al.
2015), many pixel-level features, such as Gabor filter banks (Lee 1996), lack straight-
forward biological or physical interpretations (Kothari et al. 2013). Arguably, ap-
proaches relying on large numbers of such generic, low-level features represent a
gradual transition from the classical methods, which utilized small numbers of bio-
logically meaningful descriptors carefully tailored to a particular task, towards the
current DNN-based paradigm, where feature engineering has become nearly obso-
lete. For example, in the work of Wang et al. (H. Wang et al. 2017), multi-scale fea-
tures including LBP (Ojala et al. 2002; Pietikäinen et al. 2000), Gabor filter banks,
Haralick features and Pyramid Histogram of Visual Words (Bosch et al. 2007) were
extracted and used as input to train a RF classifier for detecting pixels that repre-
sent cancer using prostate MRI scans and digitized biopsies. Gertych et al. used a
similar concept for PCa detection (Gertych et al. 2015): instead of segmenting ob-
jects, they extracted histogram features from deconvolved HE stain components to
discriminate epithelial from stromal tissue using an SVM, followed by pixel-wise
classification of the epithelial tissue into benign and malignant using LBP and local
variance features as input for a RF classifier. Publication III is also an example of an
approach combining elements from the earlier object-based tradition with the now
dominant ideas of "blindly" employing large numbers of pixel-level features as the
basis for classifiers with very high capacity. Deep learning can be seen as a further
step in this direction in the evolution of ML-based computational pathology.

2.4.2 Feature-based learning for quality control

Feature-based ML has also been applied for quality control. For example, Hashimoto
et al. used linear regression to derive a quality index consisting of terms representing
image sharpness and noise (Hashimoto et al. 2012). Training images annotated by
pathologists according to their perceived quality were utilized to estimate weights
for the individual features constituting the index. The feature used for sharpness
quantification with the aim of detecting poor focus was based on the Canny edge
detector (Canny 1986), whereas noise quantification was performed by a filtering
process that enhances isolated pixels exhibiting large intensity gradients along all
directions. Moles Lopez and colleagues used 48 000 patches extracted from 27 WSIs
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containing heterogeneous tissue morphology stained with HE and IHC as training
data and 3438 patches from 97 WSIs for evaluation (Lopez et al. 2013). A total of 16
features were used to estimate sharpness of the patches, including several gradient-
based descriptors and GLCM features. Decision trees and SVM classifiers were then
trained for classifying patches as sharp or blurred. As a result, the system was able
to generate maps indicating poorly focused regions on whole slides.

2.4.3 Deep neural networks

Deep learning is a family of ML methods which can be classified as representation
learning (LeCun et al. 2015). The fundamental difference compared to feature-based
approaches is that DL bypasses the need of designing feature extraction steps, where
the raw data are transformed into a representation capturing the patterns relevant
for the task. Instead, learning a relevant representation is part of the training phase
of DNNs. In DL, the representations are composed of a multi-level, or deep, hierar-
chy of relatively simple transformations, which together have the capacity to learn
complex, non-linear functions. This approach has proven to be highly successful in
discovering useful patterns from complex, high-dimensional data, such as images.

Modern DL builds on the research conducted on ANNs between the 1940s and
1990s (Schmidhuber 2015), initially based on neurobiological considerations and
leading to the invention of the perceptron, a simple model of a neuron functioning as
a linear classifier (Hebb 1949; McCulloch et al. 1943; Rosenblatt 1958). Multi-layer
perceptrons allowed more complex representations to be learned by composing mul-
tiple layers of perceptrons, and the neocognitron (Fukushima 1980) introduced the
concept of convolutional neural networks (CNN), which are central in modern DL.
Backpropagation of errors and optimization of neural network parameters via gra-
dient descent, which is the dominant algorithm for supervised training of DNNs
today, was also introduced nearly four decades ago (Linnainmaa 1970; Rumelhart et
al. 1986; Werbos 1982). Still, training ANNs consisting of several layers to discover
useful features was considered difficult, and the interest of the ML and computer
vision communities shifted to other types of models (Schmidhuber 2015).

Despite a period of domination by other approaches like SVMs (Cortes et al.
1995), a string of incremental improvements to ANN training took place during the
1990s and early 2000s (Schmidhuber 2015). As larger training datasets have become
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available, these algorithmic improvements, such as stochastic gradient descent based
training accelerated on graphics processing units (GPU), have enabled DNNs to ef-
ficiently utilize the increasing quantities of data. An event frequently quoted as the
beginning of the renaissance of ANNs and the current DL era took place in 2012,
when a CNN dominated the popular image classification competition ImageNet,
which was based on one million images depicting 1000 different classes, achieving
close to half the error rate of its closest competitors (Krizhevsky et al. 2012).

The distributed, hierarchical representations learned by CNNs make them a par-
ticularly good fit for the properties of many natural signals, most notably images
(LeCun et al. 2015). In a CNN, weight sharing across different locations of the in-
put space is achieved by performing convolution between the input signal and filters
with learned weights. This has the effect of being able to learn representations of
local patterns, such as objects of a specific type, irrespective of the location of the
patterns in the input. By alternating between such convolutional layers, and pooling
layers, where similar features are pooled together, CNNs are able to model hierar-
chical structure in data. As an example, it is typical for natural images to contain
minute patterns, such as edges, which act as the building blocks of individual parts,
which in turn form objects. A particular collection of objects can in turn have a
more abstract semantic meaning. In contrast to ANNs of the earlier decades, deep
CNNs and other types of DNNs can consist of tens or even hundreds of layers. Since
the ImageNet success, DNNs in general, and CNNs in particular, have become the
dominant approach for most detection, recognition and segmentation tasks.

The application of DL to medical images mirrors the wider adoption process of
the technology, that is, there are sparse examples from earlier decades (Sahiner et al.
1996), but interest in solving medical problems using DNNs has only truly peaked
after the breakthroughs in other image analysis tasks (Greenspan et al. 2016). The
medical domain poses some special challenges: data collection is typically costly,
patient privacy issues need to be considered, and labeling images for training requires
medical experts, whose time is a scarce resource. Still, DL has gained dominance also
within medical imaging and pathology (Janowczyk et al. 2016). Before, the designer
had to closely examine the data and collect domain knowledge to recognize relevant
patterns, and then design suitable features to capture them. Designing features that
generalize well typically required manual examination of cases where the system
failed, and iterative improvement of the features to cover the problematic parts of
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the input space. After having optimized the design for a given dataset and task, the
process typically had to be repeated at least partially on new data sources and tasks.
Streamlining this process by DL allows scalable utilization of the growing datasets
generated by WSI systems. Some of the first problems in CP attacked with modern
DL included e.g. detection of mitotic cells (Roux et al. 2013; Veta et al. 2015) and
invasive ductal carcinoma (Cruz-Roa et al. 2014) for BCa diagnostics.

2.4.4 Deep learning for diagnostics

The field of DL-based computational pathology has expanded tremendously during
the last few years and several comprehensive reviews have already been published
(Bera et al. 2019; Gupta et al. 2019; Niazi et al. 2019). We will highlight selected key
studies, with a focus on PCa diagnostics. Much of the recent research has focused on
pursuing performance comparable to, or even exceeding, that of medical experts in
routine diagnostic tasks, with the aims of streamlining the pathology workflow by
partial automation and improving patient safety. One of the first studies to convinc-
ingly demonstrate expert-level performance using DL was focused on skin cancer
(Esteva et al. 2017). In that study, an Inception V3 CNN (Szegedy et al. 2016) was
trained using close to 130 000 clinical images, and performance in classifying them
to benign and malignant skin lesions was found comparable to 21 experts.

The popularity of the field has also led to the organization of challenges, where
competitors try to find optimal ways of solving a specified task (Hartman et al.
2020). The contributed solutions are evaluated using the same criteria and data, al-
lowing direct comparison of different approaches, which can be highly beneficial for
the development of the field. One of the best-known challenges, CAMELYON16,
aimed at the detection of metastatic BCa in lymph nodes and was based on a dataset
of 399 HE stained WSIs. Approaches based on DL clearly outperformed leading
feature-based contributions and represent another landmark result where DNNs
were shown to achieve expert-level diagnostic performance (Bejnordi et al. 2017).
The winner of CAMELYON16 achieved an AUC of 0.994 in classifying WSIs into
benign or metastasis-containing, and the top 5 algorithms were all comparable to an
expert analysing the samples without time constraints. In an experiment featuring
time constraints, several top algorithms outperformed a panel of 11 pathologists.
The associated large public dataset, extended for CAMELYON17 (Bándi et al. 2018;
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Litjens et al. 2018), has also contributed to a number of other studies.

The availability of increased amounts of training data has been a major factor
in these successes. For solutions aimed at PCa diagnostics, lack of data has been a
limitation until recently. For example, the early study on PCa detection by Jafari-
Khouzani (Jafari-Khouzani et al. 2003) relied on only 100 ROI and even the more
recent attempts by Wang et al. (D. Wang et al. 2015) and Niazi et al. (Niazi et al.
2016) were based on only 300 and 131 ROI, respectively. Training classifiers to cor-
rectly capture the heterogeneous tissue morphologies encountered in PCa samples
is probably impossible based on such limited data. Källén et al. tried to address this
problem by transfer learning (Källén et al. 2016). They extracted the activations of
several layers of a CNN pre-trained on photographic images and fed these as features
to RF and SVM classifiers to train them to predict the Gleason grade of input patches.
An accuracy of 81.1% was reported based on 10-fold CV on a small, but balanced,
dataset containing approximately 50 ROI representing each class (benign and Glea-
son grades 3-5). In a follow-up study, a CNN was instead trained from scratch for the
same task using the same dataset, with the help of data augmentation (Gummeson
et al. 2017). In this case, the accuracy improved to 92.7% based on 4-fold CV.

Arvaniti et al. approached Gleason grading by training their system on 641 tis-
sue microarray (TMA) spots, and evaluating on a test set of 245 spots (Arvaniti et
al. 2018). Each spot represents a relatively small tissue region (3100 x 3100 pixels at
0.23 µm per pixel) obtained from a single patient following surgery. The spots were
processed patch-wise to train a MobileNet CNN (Howard et al. 2017), resulting in
a Cohen’s quadratic kappa of 0.55 relative to the same pathologist who had graded
the training data. Compared to a second pathologist, the kappa was 0.49, and the
pathologist-to-pathologist value was 0.67. When considering GS on the TMA spot
level, the system reached kappa values of 0.75 and 0.71 for the two pathologists, com-
parable to the inter-pathologist agreement of 0.71. Li et al. (J. Li et al. 2018) chose a
semi-supervised semantic segmentation approach, where they trained a U-Net (Ron-
neberger et al. 2015) to classify pixels as benign, low grade or high grade cancer using
135 patches from RP samples, annotated in pixel-wise manner. They then applied
the trained model on a larger dataset of 1800 samples having only image-level labels
and utilized them as additional training data through an expectation-maximization
process. On a test set of 289 patches, the system reached 74.79% pixel-wise accuracy
and a mean intersection over union of 49.47% over all three classes.
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In contrast to only using patches or TMA spots, processing entire slides provides
more tissue for training and evaluation and is also more relevant in view of clinical
use. Moreover, in the case of PCa, biopsies represent the majority of all diagnostic
samples, and their WSI-based analysis is thus of considerable clinical interest. With
this in mind, 225 pixel-wise annotated WSIs of prostate biopsies allowed training a
CNN, which achieved an impressive AUC of 0.99 in detecting slides with cancer
(Litjens et al. 2016). The slide-level prediction was obtained as the median probabil-
ity across all pixels in a WSI. While this study marks an improvement over most of
the earlier research, the data contained very few examples of high grade PCa (e.g. not
a single sample with GS 5+5). This not only prevented training a system to perform
grading, but also complicates evaluating the cancer detection performance, since it
may vary between low grade and high grade cases.

Campanella et al. based their study on an unprecedented amount of 24,859 WSI
of prostate biopsies, 9,962 WSI of skin samples, and 9,894 WSI with lymph node
samples (Campanella et al. 2019). They relied on the multiple instance learning
paradigm, which enabled patch-wise training of ResNet34 models in weakly super-
vised manner using only slide-level labels extracted from pathology reports. The un-
derlying assumption is that in negative slides, all patches must be negative, and in pos-
itive slides, at least one patch has to be positive. The process then involves repeated
predictions on the training data, followed by picking the top-ranking patch for each
slide in terms of estimated cancer probability, and optimization of the loss function
on these top-ranking patches. To perform slide-level classification, the patch-wise
probabilities from each slide were summarized into pre-specified features and used
to train a RF classifier. This approach is virtually identical to that of Publication III
and closely related to the one used in Publication IV. The authors also evaluated us-
ing the DNN as a feature extractor, and training a recurrent neural network (RNN)
using the DNN’s representations of the patches as input sequences. This is similar to
the approach proposed for outcome prediction in colorectal cancer (Bychkov et al.
2018). The RNN slightly outperformed the RF method and resulted in AUC values
of 0.991, 0.988 and 0.966 for prostate (n=1,784), skin (n=1,575) and breast cancer
(n=1,473) detection, respectively. Notably, when repeating the analysis on prostate
biopsies scanned with a different scanner or prepared in different laboratories, rela-
tively large decreases of 3% points and 6% points in AUC were observed.

Perhaps due to limited data and complications in multiple instance learning for
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a multi-class problem, neither Litjens et al. nor Campanella et al. considered grad-
ing. The first study to present automated Gleason grading on large-scale WSI data
used 1226 WSI of RP samples for training and 331 WSI for evaluation (Nagpal et al.
2019). An ensemble of Inception V3 CNNs was trained in patch-wise manner, em-
ploying hard-negative mining to improve sensitivity. The patch-level predictions of
the CNNs were summarized into tissue fractions per Gleason grade for each WSI,
and fed to a kNN classifier to perform slide-level classification. Relying on a second
classifier to aggregate patch-level predictions into slide-level outputs resembles Pub-
lications III-IV and the study by Campanella et al. Compared to the grading by a
genitourinary pathologist, the system achieved an accuracy of 0.70, higher than the
mean accuracy of 0.61 among a panel of 29 non-specialist pathologists. The system
outperformed 8 of the 10 pathologists who graded the entire test set.

Publication IV marks the first time a clinically representative WSI dataset was
used to demonstrate automated expert-level Gleason grading of biopsies, as opposed
to RP samples. Another study, independently performed at the same time, reported
comparable results using 933 WSI with 4712 biopsies as training data (Bulten et al.
2020). First, malignant tissue was detected using a DNN (Litjens et al. 2016), fol-
lowed by detection of epithelial tissue (Bulten et al. 2019) and assignment of pixel-
wise grade labels for the malignant epithelium based on pathology reports. A U-Net
was then trained in patch-wise manner based on the labels. Biopsy-level Gleason
grade groups were obtained based on the percentages of tissue pixels classified into
each grade. The system achieved an AUC of 0.990 in detection of biopsies with can-
cer, and a quadratic Cohen’s kappa of 0.918 relative to the consensus grading of three
urological pathologists on a test set of 550 biopsies. On a subset (n=100) of sam-
ples graded by 15 pathologists, the system outperformed 10 pathologists in terms of
kappa measured against the grading by the specialists. On an external test set com-
prising the same 245 TMA spots used by Arvaniti et al., the system reached kappa
of 0.723 and 0.707 relative to two different pathologists. Despite slightly different
methodology, the results of Bulten et al. are similar to those of Publication IV, al-
though the kappa values are not directly comparable due to different weighting. In
contrast to Publication IV, Bulten and colleagues did not explicitly consider estima-
tion of tumor burden in the form of cancer length in each biopsy, even though that
would most likely be feasible based on the pixel-wise output of their U-Net model.
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2.4.5 Deep learning for quality control

In view of quality control, DL has been employed to detect out-of-focus tissue. The
work of Senaras et al. (Senaras et al. 2018) relied on training data collected by phys-
ically perturbing the focus level while scanning slides, creating images with varying
levels of out-of-focus blur. A DNN was then trained to perform binary classification
between sharp and blurry image patches. In contrast, Kohlberger and colleagues
(Kohlberger et al. 2019) asked pathologists to delineate regions in sharp focus based
on visual evaluation, and then created simulated out-of-focus examples by applying
low-pass filtering to the sharp patches. A DNN based multi-class classifier was then
trained on the simulated examples to estimate the degree of blur on a 30-step scale.
The main advantage of DNN based focus quality assessment compared to the classi-
cal approaches relying e.g. on a single gradient-based descriptor is that if the training
data sufficiently cover different tissue morphologies, one can reliably estimate the
degree of focus independently of the image content. The challenge with classical ap-
proaches is that different tissue types naturally exhibit differing amounts of sharp
edges, which are typically used as an indirect measure of good focus.

The important topic of color variation has also been approached using DNNs.
Recent studies have proposed using sparse autoencoders and generative adversarial
networks (GAN) (Goodfellow et al. 2014) for standardizing histological staining
across different WSI datasets (BenTaieb et al. 2017; Janowczyk et al. 2017). By using
cycle-consistent GANs (Zhu et al. 2017), it is even possible to perform style trans-
fer between unpaired images (Shaban et al. 2019). This allows one to map WSI data
collected from a new site to a specified color model, harmonizing staining variation
between different scanners or laboratories. Classical color standardization meth-
ods and data augmentation have also been studied in the context of DNNs (Tellez,
Litjens, Bandi et al. 2019). As a potential sign of the field maturing towards clinical
adoption, some studies have started to shed light on other aspects that may influence
performance in a real-world setting but have been largely overlooked thus far, such
as image compression (Y. Chen et al. 2020; Zanjani et al. 2019). Encouragingly, Zan-
jani et al. reported that their DNN-based system developed for the CAMELYON17
challenge was tolerant to relatively high JPEG2000 compression ratios.
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2.5 3D reconstruction in computational pathology

2.5.1 From 2D to 3D histology

Histological samples are normally examined in 2D using thin sections cut from the
tissue (Roberts et al. 2012). However, studying tissue in 3D holds potential for ob-
taining a more comprehensive view of normal and pathological processes where the
spatial arrangement of different tissue structures or cell types is of relevance. A con-
ceptually straightforward approach for achieving this is obtaining consecutive 2D
slices of the 3D object via serial sectioning (Pichat et al. 2018). The difficulty of
then mentally recreating the 3D structure by only examining the 2D sections was
acknowledged much before the time of computer graphics and was initially tackled
using wax models (Born 1883). More than a century later, 3D histology has been
enabled by digital imaging of the 2D sections, followed by computational 3D re-
construction (Fig. 2.3). Typically, the reconstruction process consists in a series of
image registration operations, where each pair of consecutive sections in the image
stack are aligned to obtain a series of transformations (Magee et al. 2015). Since each
transformation relates the previous section to its neighbor, all of the sections can be
brought into a common coordinate system by serially applying a composite trans-
formation for each section. As the end result, a coherent 3D volume is produced.

Figure 2.3 The principle of 3D histology. A sample is sectioned serially, the sections are stained and
scanned, followed by computational 3D reconstruction.1

Direct 3D imaging of tissue can be accomplished using techniques such as MRI or
computed tomography (Roberts et al. 2012). However, compared to these methods,
using light microscopy has the advantage of achieving both subcellular resolution

1Figure panels courtesy of Pekka Ruusuvuori, Leena Latonen and Kaisa Liimatainen, modified
from Ruusuvuori et al. 2016.
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and large sample sizes at the same time. This holds true especially if the imaging of
the serial sections is performed using WSI scanners. This allows e.g. the construction
of high-resolution atlases of entire organs (Amunts et al. 2013; Johnson et al. 2010;
Lein et al. 2007). Moreover, since standard histological stains can be used, patholo-
gists can in principle rely on conventional interpretation techniques when visually
examining the 3D reconstructions. Another advantage is that since sample prepara-
tion is identical to conventional histology, biochemical techniques such as IHC or
in situ hybridization are fully compatible with 3D histology. This would even allow
integration of spatially resolved genomic, transcriptomic or proteomic data within
the 3D model (Koos et al. 2015; Mignardi et al. 2016; Ståhl et al. 2016). Such cell
atlases are expected to provide new insights in e.g. cancer research (Ledford 2017).

The core methodological problem in 3D histology is how to accurately align a
sequence of 2D images to reconstruct a 3D volume without introducing distortions
(Pichat et al. 2018). The images cannot be merely stacked in the correct order, since
random rotations and translational offsets are introduced during sample preparation
and scanning. While conceptually simple, due to technical and anatomical variation
from image to image the reconstruction process is generally a difficult task. The
problem is further complicated by tissue deformations introduced during embed-
ding and sectioning (Gibson, Gaed, Gómez et al. 2013b). Various algorithms have
been proposed to address these issues (Pichat et al. 2018), and they will be reviewed in
Sections 2.5.2 and 2.5.3. Evaluating if a 3D reconstruction is accurate is a non-trivial
problem in itself and will be discussed in Section 2.5.4.

2.5.2 Image registration

Virtually all 3D reconstruction methods are based on image registration (Pichat et
al. 2018), which has been traditionally divided into two main categories: area-based
and feature-based (Zitova et al. 2003). In area-based image registration, detection
and matching of features are combined into a single process. These methods do not
attempt to detect particular salient structures, such as edges of objects, but rather
try to directly match the images. For example, in a block-matching scheme, patches
from the two images are compared and corresponding pairs are detected based on a
similarity metric (e.g. correlation between pixel values). In the spectral approach,
properties of the Fourier transform are utilized to estimate the translation, rotation
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and scaling differences between the images. A third widely used approach is using
numerical optimization to find transformation parameters that maximize some mea-
sure of similarity between the two images. The result of the matching is an estimated
transformation relating coordinates in one image to those in the other image.

In feature-based image registration, feature detection and matching are separated
into two steps (Zitova et al. 2003). First, features usually representing some salient
structures are found using e.g. edge detectors. Scale-invariant feature transform
(SIFT) (Lowe 2004) and Speeded up robust features (SURF) (Bay et al. 2008) are two
popular types of features that are invariant to uniform scaling, rotation and even par-
tially to affine distortion and changes in illumination. A number of ‘keypoints’ are
then detected from each image, and corresponding keypoint pairs are found using
a matching algorithm operating in the feature space. Based on the corresponding
point pairs, a transformation relating the two images can then be estimated.

A key algorithmic choice common to all image registration methods is the type
of transformation to use for modeling the image-to-image correspondences (Sotiras
et al. 2013). For 3D histology, typically at least a rigid transformation is needed
to accommodate for translation and rotation between tissue sections, and an affine
transformation can further compensate for shrinking, swelling and shearing of the
tissue by allowing scaling of the image. As opposed to global transformations that
apply similarly to the entire image, so called elastic transformations can compensate
for locally varying tissue deformation in different parts of the image.

It is worth noting, that new ML-based image registration methods, where the
transformation parameters are in some cases even learned directly from the raw im-
ages, are blurring the line between the traditional classification into area- and feature-
based algorithms (Haskins et al. 2020). Several reviews of medical image registration,
which has been an active research topic for decades, provide a more comprehensive
view of the field (Maintz et al. 1998; Oliveira et al. 2014; Viergever et al. 2016).

2.5.3 Three-dimensional reconstruction

The first computational 3D histology reconstructions were attempted already before
the 1990s (Merickel 1988; Salisbury et al. 1993). Early methods often relied on par-
tial interaction. For example, Kay et al. reconstructed microvessels of RP specimens
by first segmenting edges and performing serial registration using a surface matching
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algorithm (Kay et al. 1998). Misaligned sections were then manually adjusted, and
reconstruction quality was assessed visually. Besides the need to compensate for tis-
sue deformations, a common issue in 3D histology is the unintended straightening
of curved structures, sometimes referred to as the banana-to-cylinder problem (Ma-
landain et al. 2004) or the shear effect (Hughes et al. 2012). This happens if patterns
visible in several consecutive cross-sections of a curved structure are forced into co-
alignment by pairwise registration. Moreover, sections having e.g. missing tissue can
lead to catastrophic failure of the entire reconstruction if one only relies on pairwise
serial registration without considering the global 3D structure (Pichat et al. 2018).
Since each composite transformation is formed by concatenating all of the preceding
transformations, even a single erroneously estimated transformation can introduce
significant distortions into the 3D reconstruction. Much of the algorithmic work to
date has focused on designing automated means of mitigating these problems.

Algorithmic features since included in many other solutions, namely block-wise
matching and multi-resolution processing, were proposed in the fully automated
method of Ourselin et al. in application to brain tissue (Ourselin et al. 2001). They
divided the images into blocks and searched for corresponding block pairs based on
the correlation coefficient between pixel values. They then robustly estimated a
global rigid transformation for each image pair based on the set of displacement vec-
tors represented by the block-wise matches. Even if some parts of an image contain
e.g. torn off tissue, the algorithm can tolerate such artefacts as long as a sufficiently
large fraction of the blocks can be matched. The multi-resolution scheme consists in
first performing registration at a coarse scale with low resolution images, and then
proceeding to progressively finer scales. This not only speeds up computation, but
can also increase the capture range of the algorithm, that is, the magnitude of trans-
lational and rotational offsets between a pair of images that can still be compensated
for. Moreover, the initial low-pass filtering of the coarse levels may reduce the risk of
the registration process converging prematurely to local minima of the loss function
(Sorzano et al. 2005). The same reasoning can be extended to the type of transfor-
mations performed, starting from a global rigid transformation, followed by more
refined registration using elastic transformations (Braumann et al. 2005), based e.g.
on B-splines (Arganda-Carreras et al. 2006; Sorzano et al. 2005).

One aspect to consider is the choice of the so called reference section (Pichat et al.
2018). One of the images in the series is typically fixed, and all the other images are
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brought into alignment relative to this reference section. Since registration errors
accumulate with every pairwise step, it is beneficial to select the reference section
from the middle of the stack and proceed serially towards both ends of the stack
(Magee et al. 2008). This minimizes the number of transformations that need to be
concatenated. In view of computational efficiency, this choice also allows running
the two sequential processes in parallel, as they are independent of each other. Select-
ing the best reference section automatically, considering image quality, has also been
proposed (Bagci et al. 2010). A special case of interest is multi-stain 3D reconstruc-
tion, where multiple histological stains, e.g. HE alternating with IHC, have been
applied to the serial sections (Song et al. 2013). The question then is, whether to first
reconstruct each stain separately, followed by aligning the two 3D stacks, or to e.g.
use each HE-stained section as a reference for the adjacent IHC section, followed by
serial pairwise registration of the HE-IHC pairs to obtain the 3D reconstruction.

Even if the robustness of the individual registration steps can be improved using
the algorithmic features above, the quality of the overall reconstruction is still to
a large extent dictated by the poorest pairwise result (Pichat et al. 2018). Pairwise
methods are also prone to accumulation of errors. One way of mitigating the issue
is to still rely on pairwise registration operations, but refine or regularize them to
introduce some dependency across individual image pairs. For example, the transfor-
mation matrices obtained during the registration steps can be subjected to Gaussian
filtering across the series, decreasing the effect of outlier pairs on the entire recon-
structed volume (Ju et al. 2006). Another solution also relies on serial pairwise regis-
tration, but the process is performed several times according to a Gauss-Seidel itera-
tion scheme (Gaffling et al. 2014). This has the effect of separating smoothly varying
true anatomical changes throughout the stack from random, ‘high-frequency’ errors.
Using a reconstruction smoothness metric that is directly incorporated into the loss
function of the optimization process has also been proposed (Cifor et al. 2011).

Some algorithms consider the entire stack simultaneously or, as the method by
Saalfeld et al., align each section to several neighbors (Saalfeld et al. 2012). An ini-
tial alignment step relying on SIFT, followed by block-matching, is used to initialize
a spring mesh system representing the entire volume. An optimization process is
then performed to find a solution representing a compromise between exact match-
ing of neighboring sections and overall coherence of the volume. The role of the
spring model is thus to regularize the solution. One can also utilize an external 3D
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reference, such as block-face photographs acquired during serial sectioning, to help
estimate a reconstruction that is true to the original shape (Feuerstein et al. 2011).
Casero et al. captured block-face images with a customized polarized light illumina-
tion system for pre-aligning the stack of histology images (Casero et al. 2017). They
developed a reconstruction algorithm, conceptually related to that of Gaffling et al.,
that refines the estimated transformations iteratively using a process called transfor-
mation diffusion, which is formulated following a physical analogue of heat diffu-
sion. The algorithm is trivially parallelizable and produced reconstructions of heart
tissue that are both smooth and closely correspond to the 3D shape of the block-face
reference. The approach of Xu et al. is unique in that it utilizes natural histological
landmarks - nuclei (Xu et al. 2015). The rationale of the method is that a fraction of
the nuclei present on the sections get halved by the microtome blade such that the
two halves are visible on two adjacent sections. By detecting these nuclei and using
them as landmarks for the registration, the banana-to-cylinder effect can be avoided.

Numerous questions and tissue types have been studied using 3D histology, in-
cluding e.g. analysis of tumor growth patterns of metastatic BCa in lymph nodes
(Paish et al. 2009), ductal carcinoma in situ (Booth et al. 2015; Norton et al. 2012),
PCa in RP samples (Hovens et al. 2017; Rojas et al. 2015; Tolkach et al. 2018) and
adenocarcinoma of the lung (Onozato et al. 2012). Other examples include the study
of vasculature in different tissues (Brown et al. 2015; Fónyad et al. 2015; Grothaus-
mann et al. 2017; Liang et al. 2015). Studying histology in 3D has also shed light
on the organization and functioning of stem cells responsible for the normal epithe-
lial homeostasis in the human prostate (Moad et al. 2017). Several studies have also
sought to integrate 3D histological data with other modalities such as MRI (Johnson
et al. 2010; Reynolds et al. 2015; Stille et al. 2013). Nevertheless, 3D histology is still
rarely used in clinical applications or mainstream biomedical research, and mainly
remains a technology utilized in proof-of-concept studies. However, new imaging
and tissue processing techniques may relieve some of the current bottlenecks of 3D
histology in the future (Farahani et al. 2017).

2.5.4 Evaluation of reconstruction quality

As reconstructions are often performed in the absence of any ground truth on the
true 3D structure, assessing their quality is challenging. Most of the proposed met-
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rics measure the accuracy of the pairwise image registration operations as a substitute
instead. A direct measure of image registration accuracy can be obtained by com-
puting target registration error (TRE) (Fitzpatrick et al. 1998). TRE is simply the
Euclidean distance between the locations of the same, known target in two images.
Calculating TRE requires that the target points can be somehow detected or anno-
tated. For annotating a large number of image pairs, the amount of manual labor
can be substantial. However, TRE represents the only direct measure of registration
accuracy and is in many cases more reliable than indirect metrics (Rohlfing 2011).

Indirect metrics of registration accuracy compare the values of corresponding
pixels in the two images after registration (Rohlfing 2011). Widely used pixel-wise
similarity metrics include root mean squared error (RMSE) or mean squared error
(MSE), normalized cross correlation (NCC), mutual information (MI) and normal-
ized mutual information (NMI). The basis for these metrics is the assumption that
correctly aligned pixels should be similar to each other and the difference between
the metrics listed above is the definition of similarity. An alternative is to perform
segmentation of some objects of interest and compare the segmented regions in the
two images in terms of the Jaccard index, which quantifies the relative overlap of the
two sets of pixels. In 3D histology, different images represent tissue from slightly
different locations in the sample, and perfect overlap or matching pixel values are
thus not a likely consequence of successful reconstruction. On the other hand, these
metrics have the advantage that they can be computed without any annotations or
ground truth information. Moreover, TRE is usually computed only using a small
set of landmarks while the pixel-wise metrics can be evaluated at all pixels.

There are also metrics proposed specifically for 3D reconstructions, considering
not only the pairwise errors but also the global 3D shape. One direct measure of
accumulated errors is a variation of TRE, where the error is not computed as the
Euclidean distance between corresponding points on adjacent tissue sections but in-
stead between the positions of each point in the reconstruction under evaluation and
a reference reconstruction (Xu et al. 2015). We refer to this metric as the accumulated
target registration error (ATRE). While ATRE allows directly quantifying the dis-
tortion of the reconstructed volume, it is dependent on the availability of a reference
reconstruction. In the work of Xu et al., a reference in principle free of accumulated
distortions was obtained using bisected nuclei as landmarks. However, as in the case
of TRE, the amount of work required to manually annotate or curate automatically
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detected bisected nuclei can be a limiting factor for applying this metric.

In addition to pairwise registration, indirect metrics have also been proposed
specifically for 3D reconstructions (Cifor et al. 2011; Gaffling et al. 2014). They
are based on the assumption that a correct reconstruction should exhibit pixel val-
ues slowly changing from section to section. This requires that the distance between
adjacent sections is shorter than the dimensions of anatomical structures within the
tissue. If the sections are sampled sparsely, abrupt changes in pixel values due to
anatomical differences between adjacent sections are likely. If the assumption holds,
quantifying the smoothness of the intensity profile along the stack of sections can
function as a surrogate measure for the coherency of the 3D volume. The proposed
metrics rely on GLCM-based contrast or correlation descriptors computed along the
direction across the slices. An accurate reconstruction featuring a smoothly varying
intensity profile should then exhibit low contrast and high correlation.

Approaches based on physical fiducial markers have also been proposed. For ex-
ample, catheters perfused with a mixture of cuttlefish ink and flour were inserted
into fixed tissue prior to embedding in paraffin, resulting in fiducial markers that
are visible both in blockface images acquired during sectioning and the resulting
WSI (Shojaii et al. 2011). Gibson et al. used strand-shaped fiducials, visible in both
MRI and histology, inserted into RP specimens (Gibson, Gaed, Gómez et al. 2013a),
whereas Hughes et al. designed a device consisting of three needles fixed at known
angles relative to each other, allowing the generation of a known pattern of holes
through the sample (Hughes et al. 2012). In addition to numerical measures, it is
also commonplace to visualize cross-sectional views of the reconstructed volume in
order to visually evaluate quality (Cifor et al. 2011; Gaffling et al. 2014; Ju et al. 2006;
Magee et al. 2015; Saalfeld et al. 2012; Song et al. 2013).

Many 3D reconstruction algorithms have been proposed, but very few studies
have attempted any objective comparisons. Evaluations of 2D histological image
registration methods (Borovec et al. 2020) can provide some information that is of
relevance, but due to specific aspects such as the need to minimize accumulation of
errors during the serial registration process, findings from these studies cannot be
fully extrapolated to 3D histology. To the best of my knowledge, the previous study
comparing 3D reconstruction algorithms was published over 10 years ago (Beare et
al. 2008). In that study, five algorithms were compared for reconstructing mouse
brains from serial sections. The algorithms included semi-automatic methods based
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on fiducial markers, as well as automatic registration methods based on maximizing
pixel-wise similarity or tissue section overlap. Feature-based registration using SIFT
was also evaluated. By assuming that two holes drilled into the sample were straight,
the residual errors between the locations of the holes relative to a linear fit could be
used as a measure of reconstruction accuracy. This method served as an inspiration
for Publication II, where a sample was pierced with an industrial laser prior to sec-
tioning. The methods evaluated by Beare et al. can be considered as relatively simple
baseline algorithms, and most of the more advanced algorithms aimed at 3D histol-
ogy were not published yet at the time. Moreover, hyperparameter tuning was not
considered. These limitations were addressed in Publications I-II.
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3 AIMS OF THE STUDY

The main aims of the work were:

1. Develop machine learning techniques for breast cancer diagnostics.

2. Develop machine learning techniques for prostate cancer diagnostics.

3. Evaluate and compare 3D histology reconstruction algorithms.

4. Optimize computational approaches for efficient processing of WSI data.
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4 MATERIALS AND METHODS

4.1 Data collection

4.1.1 Murine samples

Murine prostate and liver samples were prepared as described in Publication I-II at
Tampere University, Finland, according to permits by Etelä-Suomen aluehallintovi-
rasto (ESAVI/6271/04.10.03/2011, ESAVI/5147/04.10.07/2015). The liver was pro-
cessed with an industrial laser after fixation to introduce four holes functioning as
artificial landmarks. The tissue blocks were serially sectioned and HE stained. The
slides were scanned using a system based on a Zeiss Axioskop40 microscope (Carl
Zeiss Microimaging, NY, USA).

From each pair of consecutive images of the prostate sample, four pairs of corre-
sponding landmark points were manually selected at the centers of nuclei bisected
by the sectioning blade. The annotation was performed by one observer for Publica-
tion I and repeated independently by another observer for Publication II. For each
image of the liver sample, the two observers independently marked the locations of
the four artificial landmarks introduced with the laser. A total of 2448 landmarks
were annotated by the two observers across the two samples.

4.1.2 Lymph node samples

The samples for Publication III were obtained by participation in CAMELYON16
and collected as described by the challenge organizers (Bejnordi et al. 2017). The
dataset contained sentinel axillary lymph nodes retrospectively sampled from 399
BCa patients at Radboud University Medical Center, Nijmegen and University Med-
ical Center Utrecht, The Netherlands, with one HE stained tissue section per WSI.
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Among the 170 WSI from Nijmegen, 60 out of 70 WSI containing metastases were
fully annotated and 10 were partially annotated. Among the 100 WSI from Utrecht,
37 out of 40 metastatic WSI were fully annotated and 3 were partially annotated.
The annotations were provided in the form of binary masks indicating the pixels
labeled as representing metastases by pathologists.

4.1.3 Prostate biopsies

Diagnostic prostate biopsies used in Publication IV were mainly collected in the
prospective, population-based, screening-by-invitation trial STHLM3 conducted in
Stockholm, Sweden (ISRCTN84445406) (Grönberg et al. 2015). The study protocol
was approved by Stockholm regional ethics committee (2012/572-31/1, 2012/438-
31/3 and 2018/845-32). For Publication IV, 8313 biopsy cores from 1222 randomly
selected participants, stratified by ISUP grade, were digitized. We also obtained 271
cores from 93 men with high-grade disease from Capio St. Göran Hospital, Stock-
holm as additional training data. As an additional test set, we collected 87 cores
from Pathology Imagebase, a reference collection launched by ISUP (Egevad et al.
2018). Furthermore, external validation data comprising 330 biopsies from 73 men
was obtained from Karolinska University Hospital, Stockholm. All samples were
formalin fixed and HE stained. The biopsies from STHLM3, Capio St. Göran
Hospital and Imagebase were scanned using a Hamamatsu C9600-12 (Hamamatsu
Photonics, Hamamatsu, Japan) at Karolinska Institute, Stockholm and an Aperio
Scanscope AT2 (Leica Biosystems, Wetzlar, Germany) at SciLifeLab, Uppsala, Swe-
den. The external validation data were scanned using a Hamamatsu S360 C13220-01
at Karolinska University Hospital.

A single urological pathologist (Prof. Lars Egevad), blinded to the clinical char-
acteristics of the patients, examined the slides using a microscope and graded the
biopsies following the ISUP grading system (see Section 2.2). He also measured the
linear cancer length for each biopsy core, and reported a summary ISUP grade and
length for each patient. Additionally, he drew a line next to each cancerous area
with a marker pen. Biopsies in the Pathology Imagebase were graded by 23 urologi-
cal pathologists, including Prof. Egevad, independently of each other following the
ISUP grading system. The assessment was performed based on digital images of the
relevant tissue regions captured with a microscope.
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4.2 Image processing

4.2.1 Tissue segmentation

Tissue segmentation was performed to exclude the background pixels in each WSI
from further analysis, first manually (Publication I) and later automatically using an
algorithm based on applying Otsu’s thresholding (Otsu 1979) to the saturation com-
ponent of the HSV transformed image (Publications II-III). An improved segmenta-
tion algorithm, based on Laplacian filtering to detect tissue based on local variance,
followed by Otsu’s thresholding of the filter response, was developed for Publication
IV. By excluding regions lacking local variation, out-of-focus tissue was also removed
from further analysis. Post-processing based on mathematical morphology and ex-
clusion of pen markings and other artefacts using color-based rules was applied to
refine the segmentation result. The results were stored in the form of binary images
indicating tissue pixels, which we refer to as tissue masks.

4.2.2 Label extraction

Since most of the 3D reconstruction tools in Publication II do not allow applying
the estimated transformations on numerical coordinates, landmarks had to be rep-
resented as images for the purpose of evaluating TRE and ATRE. This was accom-
plished by generating images containing disks of different colors at the landmark
locations. The unique color of each disk allowed identification of each landmark
after applying the transformations. The image processing workflow used in Publi-
cation II is depicted in Fig. 4.1. In Publication I, landmark images were not needed
as the transformations could be applied directly to numerical coordinates.

To train ML models in supervised manner, labels for the tissue pixels in each
WSI had to be extracted. For Publication III, labels were available as binary masks
indicating metastatic tissue. For Publication IV, in addition to the labels reported
on the biopsy core level, the slides had pen markings adjacent to malignant tissue re-
gions (see Section 4.1.3). To convert these physical annotations into digital pixel-wise
form, the markings were segmented using an algorithm relying on Otsu’s threshold-
ing and color-based rules. Each segmented marking was then mapped to the adjacent
segmented tissue. The mapping algorithm involved constructing vectors defined by
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Figure 4.1 Evaluation framework for 3D reconstructions. Tissue images are input to the evaluated recon-
struction algorithm and a stack of co-registered images is produced as output. The estimated
transformations are re-applied to a series of mask images indicating the tissue regions and
images defining landmark locations. The registered stacks of tissue, mask and landmark
images are used to numerically and visually evaluate reconstruction quality. If the algorithm
has tunable settings, they can be optimized iteratively. Reprinted from Publication II.

pairs of nearest neighbors between the marking and tissue region boundaries. Based
on these vectors, sets of tissue boundary pixels were picked, and the areas enclosed by
these pixels were assigned the label ’cancer’. Other tissue pixels were then assigned
the label ’benign’, and the results were stored as label masks.

4.2.3 Patch extraction

In Publications I-II, WSIs at different downsampling factors were stored in TIFF for-
mat and directly used as input for the evaluated reconstruction tools. In Publications
III-IV, the images were processed patch-wise, allowing thousands of training samples
to be extracted from each WSI. As a side note, alternatives to the popular patch-wise
approach have also been proposed, such as neural compression (Tellez, Litjens, van
der Laak et al. 2019), where lower-dimensional representations are constructed to
allow treating an entire WSI as a single training sample.
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In Publication III, the segmented tissue regions were first split into subimages
(8192 x 8192 pixels) to reduce the memory usage and allow parallelization of the
following steps. Histogram matching (Gonzales et al. 2002) relative to a reference
image was performed for each subimage to reduce color variation, followed by color
deconvolution to separate the HE stain components (Ruifrok et al. 2001). Nuclei
were then segmented from the H channel using adaptive thresholding (Bradley et al.
2007). In the training phase, the final patches of 200 x 200 pixels at full resolution
(approx. 49 x 49 µm) were randomly sampled from the subimages, with labels as-
signed according to the label masks. In the prediction phase, all of the subimages
were fully tiled into patches. The overall system design is presented in Fig. 4.2.

In Publication IV, all tissue regions were directly split into patches. After evalu-
ating several patch sizes and resolutions, we opted for 598 x 598 pixels (approx. 540
x 540 µm) and 50% overlap between neighboring patches. Patches were resampled
using Lanczos interpolation to harmonize the pixel sizes of different scanners, and
background pixels were masked based on the tissue masks to remove any pen mark-
ings from the patches. The pre-processing system is depicted in Fig. 4.3.

4.3 Feature-based learning

4.3.1 Feature extraction

In Publication III, features extracted from the H and E channels of each patch in-
cluded 104 texture features, e.g. GLCM descriptors (Haralick et al. 1973), LBP (Ojala
et al. 2002; Pietikäinen et al. 2000), histograms of oriented gradients (Dalal et al. 2005)
and maximally stable extremal regions (Matas et al. 2004). Additionally, a number
of features quantifying e.g. inter-nuclei distances and the number of nuclei in local
neigborhoods were computed. The over 200 features extracted from each patch rep-
resent generic texture descriptors rather than application-specific tailored features.
The nucleus-based features are specific to histological images but not tailored to a
specific tissue type or task. This approach is thus more similar to DL or the more re-
cent feature-based systems (Yu et al. 2016) than the ones relying on features carefully
tailored to a specific task (Niazi et al. 2016).
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4.3.2 Patch classification

Different classifier models (NN, SVM, logistic regression and RF) were evaluated us-
ing 10-fold CV for discriminating between benign and metastasis-containing patches
based on the extracted features, and RF (Breiman 2001) was chosen in Publication
III based on this experiment. The RF algorithm consists in training a set of deci-
sion trees to obtain an ensemble classifier via bootstrap aggregation, or bagging, by
sampling the patches used for training each decision tree randomly with replacement
(Hastie et al. 2009). The overall decision is then obtained based on voting among the
trees, which decreases the variance of the overall model while having the same bias
as the constituent classifiers. De-correlating the individual decision trees by training
them on different samples of the data is important, since averaging highly-correlated
classifiers would provide little improvement. A random subset of features is selected
for consideration at each split when growing the decision trees to further reduce
correlation between individual trees.

In Publication III, RF models consisting of 50 trees were built using the TreeBag-
ger implementation in MATLAB (The MathWorks Inc., Natick, MA, USA). In the
prediction phase, when a patch arrives at a leaf node of a decision tree, the number
of training patches labeled with the corresponding class relative to the total number
of training patches in that leaf node is computed. This fraction represents the prob-
ability associated with the decision for a given tree. After probabilities have been
obtained from all the other trees in the RF model in similar manner, their mean is
taken to represent the overall probability of malignancy for a patch.

4.3.3 Slide classification

The predicted patch-wise probabilities were collected into images we refer to as con-
fidence maps, representing the estimated likelihood of malignant tissue being present
across the input WSI. Confidence maps allow visual examination of high-probability
regions, which might be sufficient as a diagnostic aid, but they can also be further
post-processed to obtain WSI-level predictions. In Publication III, this was accom-
plished by generating confidence maps for the training slides, and re-applying the
feature extraction and RF training procedure using the confidence maps as input in-
stead of the original WSI. In this case, only the 104 texture features were extracted.
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As a result, an RF model predicting whether a WSI contains metastatic tissue or not
was obtained. Such a two step approach relying on a second ML stage to integrate
patch-level predictions into slide-level predictions has become relatively common in
the field (Bychkov et al. 2018; Campanella et al. 2019; Nagpal et al. 2019).

Figure 4.2 Overview of the breast cancer detection system. The tissue is segmented (left, blue outline)
and split into subimages. Color deconvolution is applied to obtain channels corresponding
to hematoxylin and eosin. In the training phase (top), patches representing malignant (red)
tissue are randomly sampled from annotated regions (yellow outline). Benign patches (green)
are sampled from other regions. Features are extracted from the patches and used to train
RF classifiers. In the prediction phase (bottom), the probability of cancer is predicted for all
patches using the trained model. Confidence maps of the probabilities across the WSI are
generated and can be further used for different applications. Reprinted from Publication III.
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4.3.4 Feature analysis

An advantage of feature-based ML is that the relevance of different features for the
decision can be analysed. Features used by RF models can be ranked in terms of their
relative importance by calculating how much the split criterion used for constructing
the decision trees improves at each split. An overall importance measure for a feature
can then be obtained as the average improvement over all splits in the RF model
where the feature appears (Hastie et al. 2009). In Publication III, the outputs of each
feature relative to the input image were additionally examined visually.

4.4 Deep learning

4.4.1 Patch classification

In Publication IV, the extracted patches were used to train DNN classifiers. The fol-
lowing DNN architectures were evaluated on a fixed validation split on the training
data: Inception V3 (Szegedy et al. 2016), ResNet50 (He et al. 2016), Inception-ResNet
V2 (Szegedy et al. 2017) and Xception (Chollet 2017), and based on this Inception
V3 was selected. A key problem was the lack of pixel-level annotations for Gleason
grades (see Section 4.2.2). For samples with a single Gleason pattern (e.g. GS 3+3),
all malignant regions represent the pattern reported for the slide. In cases with mul-
tiple Gleason patterns (e.g. GS 3+4), there is no information on which malignant
regions represent which pattern. Several approaches for utilizing the multi-pattern
samples in training were evaluated, but ultimately training only on the single-pattern
WSI was found to result in the best performance. However, this wastes training data
that could still serve as examples of PCa tissue, even if the grade is unknown. For this
reason, two separate models were used to perform: 1) cancer detection and 2) Glea-
son grading. The detection model was trained using all WSI, whereas the grading
model was trained only using WSI with a single Gleason pattern.

Another problem was the class imbalance present in the training data, especially
in terms of Gleason grades. That is, patches representing benign tissue are much
more abundant than patches representing cancer, and particularly high grades. Fail-
ure to compensate for class imbalance can lead to poorly performing DNN mod-
els (Buda et al. 2018). The adopted solution consisted in picking all patches of the
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Figure 4.3 Image pre-processing for the prostate biopsy analysis system. (A) From left: Tissue (blue
outline) and annotations (red outline) are segmented from each WSI and stored as binary
masks. The annotations are projected onto adjacent tissue to obtain label masks indicating
malignant (white), benign (grey) and unknown or background pixels (black). (B) From left:
Each WSI is split into patches extracted from the tissue regions and labeled according to
the label mask. Non-tissue pixels in the patches are masked with a constant white value.
Approximately 1000 patches are obtained per WSI and input to DNNs for training (benign
and malignant patches) or prediction (all tissue patches). Reprinted from Publication IV.

minority class and randomly sampling an equal amount of patches from all other
classes, running one ’epoch’ of training on these balanced data, and then repeating
the sampling for the next ’epoch’. Overfitting against the minority class patches was
decreased by applying data augmentation consisting of random rotations and flips
every time a patch was drawn. As a result, the DNN was presented with modified
versions of the minority class patches on every ’epoch’. Moreover, one can specu-
late that this approach, where random sampling is performed repeatedly during the
training process, perturbing the set of training samples, may reduce the risk of the
optimization getting stuck in local minima in a manner analogous to e.g. simulated
annealing (Kirkpatrick et al. 1983). This aspect was not studied in Publication IV,
but the approach was found to perform well empirically.

59



Figure 4.4 Overview of the prostate biopsy analysis system. Patches obtained from a WSI (top) are input
to ensembles of 30 DNNs, trained to detect malignant patches (left box, top row) and estimate
Gleason grade (right box, top row). The class-wise probabilities output by each DNN for each
patch (grayscale squares) in the prediction phase are used to construct a probability map for
each WSI and each class (both boxes, middle row). The probability maps are summarized
using a number of statistical features, which are used for training ensembles of boosted trees
for predicting cancer presence and length (left box, bottom row) and ISUP grade (right box,
bottom row). The predictions from the boosted trees in each of the three ensembles are
averaged to obtain the final prediction for a WSI. Reprinted from Publication IV.
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We used an ensemble of multiple DNNs as the final classifier, with the same aim
as in the case of the RF model, that is, to reduce the variance by averaging the out-
put of multiple partially correlated classifiers. Similarly to decision trees, this can
be beneficial also for neural networks due to their training process being stochastic
(Hastie et al. 2009). We observed that the training process of the individual DNNs
was relatively unstable, which carries a risk of converging to a poor, local optimum.
Moreover, due to considerable label noise in the patch-level annotations, measuring
patch-level performance during training was deemed unreliable in view of estimating
when to stop training to obtain optimal slide-level performance. These issues can be
mitigated by ensembling, and we chose to use 30 DNNs for cancer detection and 30
DNNs for Gleason grading. In the prediction phase, class-wise probabilities were
assigned to each patch and composed into confidence maps similarly to Publication
III. The overall ML system is depicted in Fig. 4.4.

4.4.2 Slide classification

As in Publication III, another ML stage was employed to obtain slide-level predic-
tions. One XGBoost gradient boosted tree classifier (T. Chen et al. 2016) was trained
per DNN, using features computed from the confidence maps as input. The features
included statistics such as the median patch-wise probability estimated by the DNN
for each WSI. Three ensembles of boosted trees were trained using the confidence
maps generated for all training slides: one for detecting slides containing cancer, one
for estimating cancer length, and one for estimating the ISUP grade of a slide. Since
the first two tasks only depend on detecting patches with cancer irrespective of grade,
the corresponding boosted trees were trained using the predictions from the cancer
detection DNNs as input. The boosted trees performing grading were trained using
the Gleason grading DNNs’ predictions as input. The final slide-level predictions for
each of the three tasks were obtained by taking the mean of the predictions produced
by the boosted trees forming the corresponding ensemble.

4.4.3 Feature analysis

The representations learned by the DNN models were analyzed by two techniques.
By extracting the activations from the second to last layer of the Inception V3 net-
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work, a feature representation was obtained for each patch. These 2048-dimensional
representations were condensed into two dimensions by performing dimensionality
reduction with the t-distributed stochastic neighbor embedding (t-SNE) algorithm
(van der Maaten 2014; van der Maaten et al. 2008). This allows visualizing where in-
dividual patches are located relative to each other in the feature space learned by the
DNN, and allows some interpretation of the way the model has learned to represent
the different morphologies. In addition, we analyzed the patterns in the input space
that are relevant for the classification using the deep Taylor decomposition technique
(Montavon et al. 2017) implemented in the iNNvestigate toolbox (Alber et al. 2019).
This is a relevance backpropagation algorithm that produces estimates of the relative
importance of pixels in the input images for the final output for the classifier, and
allows visual examination of these estimates in the form of heatmap images.

4.5 3D reconstruction

The murine prostate and liver samples (see Section 4.1.1) were 3D reconstructed
using the following algorithms to allow comparative analysis in Publications I-II.

• Landmark-based reconstruction: As a manual baseline method, an affine
transformation was estimated for each pair of images representing adjacent tis-
sue sections by minimizing MSE of the displacements between corresponding
manually annotated landmarks.

• Optimization-based reconstruction: As an automated baseline method rep-
resenting optimization-based registration, an affine transformation was esti-
mated for each pair of consecutive images by maximizing pixel-wise MI (Pub-
lication I) or minimizing MSE (Publications I-II). A regular step gradient de-
scent algorithm was used for the optimization task.

• Feature-based reconstruction: As an automated baseline method represent-
ing feature-based registration, an affine transformation was estimated for each
pair of consecutive images using SURF (Bay et al. 2008) (Publication I) and
SIFT (Lowe 2004) (Publications I-II) to obtain keypoints between the two im-
ages. Robust fitting of affine transformations to the keypoint pairs was per-
formed using the Random Sample Consensus algorithm (Fischler et al. 1981).

• HyperStackReg: The HyperStackReg plugin (Ved P. Sharma, Albert Ein-
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stein College, New York, https://github.com/ved-sharma/HyperStackReg)
was used in Publication II. HyperStackReg is a multi-channel implementation
of the optimization-based StackReg registration algorithm (Thevenaz et al.
1998). Global affine transformations were used as the transformation model.

• Register Virtual Stack Slices: The RegisterVirtualStackSlices and Transfor-
mVirtualStackSlices plugins (Arganda-Carreras et al. 2006) are based on the
bUnwarpJ algorithm, which allows elastic registration based on the optimiza-
tion of a loss function which combines SIFT and optimization based registra-
tion with regularization terms.

• Elastic Stack Alignment: The ElasticStackAlignment plugin (Saalfeld et al.
2012), a part of the TrakEM2 package (Cardona et al. 2012), implements a
multi-step, elastic reconstruction process relying on optimization-based ini-
tialization, SIFT-based establishment of corresponding landmarks across the
image stack, and a final optimization process relying on a physical model.

• Medical Image Manager: The 3D pathology add-on of Medical Image Man-
ager (HeteroGenius Ltd, Leeds, UK) relies on an algorithm consisting in multi-
resolution optimization of a spline-based elastic transformation. The volumes
reconstructed using a trial version of the software were converted from MHD
to TIFF format using the University of Leeds Volume Viewer.

• Voloom: Voloom (microDimensions GmbH, Munich, Germany) is a com-
mercial software based on an elastic transformation model. A trial version of
the software was used to perform 3D reconstructions.

In the case of the landmark-, optimization- and feature-based baseline methods
implemented in MATLAB, the estimated pairwise transformations were concate-
nated to obtain a composite transformation for each image. The transformations
were applied to each image using bilinear interpolation and to each corresponding
tissue mask and landmark image using nearest neighbor interpolation. The ImageJ
(Schneider et al. 2012) plugins were used in Fiji (Schindelin et al. 2012) and run via
a Jython script through the ImageJ-MATLAB interface (Hiner et al. 2016). Medical
Image Manager and Voloom represent standalone software.
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4.6 Hyperparameter optimization

Simple grid search was used in Publication I to study the effect of hyperparameters
on TRE, and in Publication IV to tune the hyperparameters of the DNN system.
No systematic hyperparameter tuning was performed in Publication III. In Publi-
cation II, the hyperparameters of the reconstruction methods were optimized using
Bayesian optimization, which lends it well to problems where a single iteration re-
quired for evaluating the objective function is computationally costly (Shahriari et
al. 2015; Snoek et al. 2012). Moreover, Bayesian optimization is well-suited for non-
convex objective functions. As TRE can be considered as the most reliable quality
metric (Rohlfing 2011), mean pairwise TRE calculated over the entire stack of sec-
tions was chosen as the objective function to minimize.

4.7 Software and computing

The computations for Publications I-III were implemented in MATLAB apart from
a number of reconstruction tools (see Section 4.5). For Publication IV, the image
pre-processing steps were implemented in MATLAB and Python, the DL algorithms
in Python using Keras (Chollet et al. 2015) with the TensorFlow backend (Abadi et
al. 2016) and the gradient boosted trees using XGBoost (T. Chen et al. 2016) for
Python. In Publications I-III, the images were stored in TIFF or JPEG2000 format
(Tuominen et al. 2010). In Publication IV, the images were stored and accessed in
the native WSI formats of the scanners using OpenSlide (Goode et al. 2013). This
simplifies the overall processing pipeline by reducing unnecessary conversion steps,
and avoids repeated image compression, which could introduce artefacts. Visual-
ization of the confidence maps produced in Publication IV was performed using
TissUUMaps, a web-based WSI viewer platform (Solorzano et al. 2020).

Resources provided by Tampere Center for Scientific Computing and CSC, Fin-
land, were utilized for HPC. The computations for Publications I-III relied on par-
allel CPU computing, whereas Publication IV relied mainly on GPU computing.
The GPU computing was performed on Nvidia Tesla P100 and V100 accelerators
(Nvidia, Santa Clara, CA, USA) on the Narvi, Taito and Puhti compute clusters.
Training was performed on multiple GPUs using the data parallelism strategy pro-
vided by Keras, where the DNN model is replicated on each GPU, and each mini-
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batch is divided across the GPUs and processed in parallel. The results are then
concatenated on the CPU and the weights of the model replicas are updated in syn-
chronized manner. In addition to training each DNN in parallel on multiple GPUs,
the training process of the ensemble in Publication IV was parallelized, such that all
of the constituent classifiers were trained simultaneously. Moreover, efficient GPU
computation required a buffering approach, where input patches are constantly read
from a fast solid state drive and prepared on a multi-core CPU in parallel with the
GPUs processing the preceding minibatch.

4.8 Statistical analysis

4.8.1 Evaluation of machine learning models

Splits between training and testing data were performed on patient-level meaning
that all patches or biopsy cores from a given patient were used either for training
or evaluation, which provides a more realistic setup in view of clinical use (Nir et
al. 2019). In Publication III, all the evaluations were based on CV, i.e. there was
no independent test set. The reason for this was that the study was prepared as a
contribution to CAMELYON16, using data provided by the organizers, and in the
context of a competition it was not reasonable to sacrifice training data for building
an independent test set. In Publication IV, the evaluation was performed on an
independent test set that was held out during the entire project and only used once
for evaluation. Performance was additionally evaluated on the Pathology ImageBase
(Egevad et al. 2018) and an external test set (see Section 4.1.3).

Cancer detection performance was evaluated using ROC analysis and quantified
using AUC by comparing the output of the classifier to the pathologist’s diagno-
sis. In Publication III, the analysis was performed primarily on the level of patches,
since accurate patch-level annotations were available and highlighting the correct re-
gions containing metastatic tissue was considered the main aim of the study. In Pub-
lication IV, the pixel-level annotations contained considerable label noise, which is
why the analysis was performed on the level of biopsy cores and patients. Moreover,
sample-level analysis was considered more relevant in view of the clinical focus of the
study. In Publication IV, cancer detection performance was additionally evaluated
in terms of specificity at multiple operating points corresponding to a range of sensi-
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tivity values that were considered acceptable for clinical use. Cancer length estimates
were compared to the pathologist’s measurements in terms of the linear correlation
coefficient. The analysis was performed both for individual biopsy cores and sum-
marized on patient-level. Moreover, the evaluation was performed both using all
cores, and only the cores indicated as positive by the pathologist.

Gleason grading performance was evaluated by comparing the ISUP grades esti-
mated by the system in Publication IV to those assigned by the study pathologist
(internal and external test set) or each of the 23 pathologists in the ImageBase panel.
Cohen’s kappa with linear weights was used as the metric, as it penalizes more for
larger disagreements on the ordinal ISUP scale (Egevad et al. 2018). In the case of Im-
ageBase, we calculated the mean of all pairwise Cohen’s kappa values obtained for
each pathologist and the DNN system when comparing them against all the other
panel members and the system. All observers (including the DNN system) were
then ranked in terms of their mean Cohen’s kappa. Observers that tend to be most
consistent with all other observers obtain the highest ranking in this evaluation.

4.8.2 Evaluation of 3D reconstructions

Manually selected landmarks were used to assess pairwise TRE (Fitzpatrick et al.
1998) between each pair of adjacent sections, followed by calculating mean TRE and
other statistics across all section pairs to evaluate the entire reconstructed volume.
Quantifying the accumulated distortion of the 3D shape using ATRE was performed
slightly differently depending on the sample. In the case of the prostate, ATRE was
calculated based on the displacement of the landmarks relative to their locations in
the distortion-free, landmark-based reconstruction (see Section 4.5) (Publication I).
This approach was modified in Publication II to allow estimating ATRE even if the
volumes do not share the same coordinate system. In this case, the pairwise displace-
ments of each landmark were treated as vectors and averaged to obtain the mean dis-
placement of each tissue section. Distortion through the stack of sections was then
evaluated by cumulatively summing the mean displacement vectors. In the case of
the liver sample in Publication II, ATRE was estimated directly based on the dis-
placement of the landmarks relative to the linear 3D trajectories they were expected
to follow (see Section 4.1.1 and Fig. 4.5).

Pixel-wise similarity was evaluated for each pair of adjacent sections in the re-
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constructed volume using RMSE, NCC and MI, calculated only on tissue pixels
overlapping between the two sections. The mean and other statistics across all pairs
of sections were calculated to evaluate the entire reconstruction. Reconstruction
smoothness was quantified as suggested before (Cifor et al. 2011; Gaffling et al. 2014)
by computing a GLCM for each pair of sections considering only the set of overlap-
ping pixels, followed by summing the resulting matrices over the entire volume, and
computing the f2 contrast and f3 correlation metrics.

Figure 4.5 Evaluation of accumulated errors using fiducial markers. The liver sample was penetrated
with an industrial laser (left), creating holes visible in the resulting WSIs (center). The devia-
tions of the holes’ locations on each section (blue dots) from linear trajectories (yellow lines)
were evaluated post-reconstruction (right, reprinted from Publication II).

As control measures, we also calculated the Jaccard index (Rohlfing 2011) be-
tween each pair of adjacent sections and the relative tissue shrinkage compared to
the original tissue section areas. A low Jaccard index, that is, a low degree of over-
lap between sections may indicate that the values of the pixel-wise similarity metrics
are inconclusive. If not properly regularized, 3D reconstruction algorithms may also
lead to excessive shrinkage of the tissue sections, which may lead to overly optimistic
results in terms of pixel-wise similarity or TRE.
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5 RESULTS

5.1 Feature-based learning for breast cancer detection

In Publication III, a feature-based ML method for detection of metastatic tissue
in lymph node samples of BCa patients was presented. The system was shown to
discriminate malignant from normal image patches with mean AUC values (95%
CI) of 0.905 ([0.886, 0.925]) and 0.887 ([0.869, 0.905]) when analysed separately
on samples from Radboud University Medical Center and University Medical Cen-
ter Utrecht, respectively, each one evaluated using sample-level leave-one-out-cross-
validation. That is, in these experiments, the training and testing data were always
collected at the same site. When training on all samples from one institution and
evaluating on all samples from the other institution to assess generalization perfor-
mance, mean AUC values (95% CI) of 0.839 ([0.821, 0.856]) and 0.855 ([0.831, 0.879])
were obtained. Alternatively, the tissue segmentation step can be considered a part
of the detection task, in which case the evaluation can be performed based on the en-
tire WSI area instead of tissue areas only. Since tissue segmentation was considered
a non-trivial step in view of metastasis detection, the AUC values corresponding to
this problem formulation were also presented in Publication III. However, taking
into account the ease at which tissue segmentation can be performed today and the
performance of the improved segmentation algorithm developed for Publication IV,
considering the segmentation step in the evaluation is of limited interest.

Publication III represents a contribution to CAMELYON16 (Bejnordi et al. 2017),
and this context is reflected in some of the limitations of the study. The study was
only based on data provided by the challenge organizers and the aim of the study was
to obtain maximal metastasis detection performance within the setting of the com-
petition. This means that all of the available data were used for model training and
development, resulting in the lack of a held-out test set. As a result, performance es-
timates reported for the method of Publication III as well as those of other challenge
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participants are likely to be overly optimistic in view of generalization to completely
unseen data. One must therefore be cautious in drawing conclusions, as is the case
for many challenge results in general (Maier-Hein et al. 2018).

Moreover, the system was initially designed to obtain optimal performance mea-
sured on the metric used in the challenge, based on free-response ROC analysis.
This required providing one coordinate point with an associated probability per each
metastatic region, and has a number of complications. Firstly, it does not evaluate if
the shape or size of the detected region corresponds to the annotations. Secondly, it
requires a post-processing algorithm for condensing regional pixel or patch-level pre-
dictions into a single coordinate. The performance of this post-processing step may
have a considerable impact on the results, but its practical relevance is questionable
in view of using such a system as a detection aid for highlighting suspicious regions
on WSIs. For these reasons, conventional patch-wise ROC analysis was chosen in
Publication III. However, as the system was not initially designed with this metric
in mind, the reported performance may be somewhat pessimistic compared to what
could be achieved with a similar system fully optimized for the task of choice.

Figure 5.1 Output of the metastasis detection system for example WSIs from Radboud University Med-
ical Center (A) and University Medical Center Utrecht (C) as confidence maps (B) and (D),
respectively. The brightness corresponds to the estimated probability of malignancy. Anno-
tated metastatic regions are indicated with yellow outlines. Reprinted from Publication III.

Due to the above limitations, the presented method can be mainly considered
a proof-of-concept, demonstrating that detection of metastatic tissue using feature-
based learning on whole-slide scale is feasible both in terms of computation and in
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terms of promising classification performance. The result met Aim I of the research,
but the work on pre-processing and handling WSI datasets of considerable size was
relevant also in view of Aim IV. Being able to produce visual outputs highlighting
the approximate regions of each WSI most likely to contain metastasis (Fig. 5.1)
could already be useful for speeding up the work of pathologists if utilized as a semi-
automated diagnostic aid. However, considering the rapid progress of the field, the
main value of the work presented in Publication III is perhaps the point of refer-
ence it provides as the top-ranked (11th) feature-based method in CAMELYON16.
The proposed method outperformed a number of DNN-based contributions, and
reached performance comparable to some of the top 10 methods, all of which relied
on DL. However, the top-performing DNN-based methods were clearly superior,
exemplifying the wide performance gap to even the best feature-based approaches of
the time, similar to other image analysis tasks.

5.2 Deep learning for prostate cancer grading

In Publication IV, a DL system for assessing prostate biopsies was presented. In
terms of detecting biopsies with PCa, the system achieved an AUC (95% CI) of 0.997
([0.994, 0.999]) on a held out test set sampled from the same data source as the train-
ing data, and an AUC of 0.986 ([0.972, 0.996]) on an external test set. Cancer length
in each biopsy could be estimated with linear correlation coefficients of 0.96 ([0.95,
0.97]) and 0.87 ([0.84, 0.90]) on the internal and external test sets, respectively, when
compared to the values reported by the study pathologist. In terms of Gleason grad-
ing, the system reached linearly weighted Cohen’s kappa values of 0.83 (internal test)
and 0.70 (external test) relative to the study pathologist. On the Pathology Image-
Base dataset graded by 23 experienced uropathologists, the DNN system reached a
mean pairwise kappa of 0.62, whereas the pathologists in the panel had correspond-
ing values ranging from 0.60 to 0.73. An example prediction is shown in Fig. 5.2.

The demonstrated performance would most likely be sufficient for such a system
to be useful in clinical practice. For example, at a sensitivity of 99.3 % for detecting
malignant biopsy cores, which would have meant correctly detecting every patient
with cancer in the internal test set, the specificity of the system was estimated to be
88.9 %. This corresponds to positive and negative predictive values of 87.6 % and
99.4 %, respectively. In the clinical setting, this could be leveraged by automatically
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Figure 5.2 Output of the prostate biopsy analysis system visualized for a case from the test set. The in-
tensity of the colors indicates the estimated probability of benign (blue) and Gleason pattern 3
(yellow) or 4-5 (red) across the biopsy, combined into RGB values. A magnified tissue region
(right) exemplifies a predicted transition between low and high Gleason grades (center). The
sample had GS 4+3 according to the pathologist. Reprinted from Publication IV.

pre-screening all the samples, after which only those predicted to be positive would
be assessed by a pathologist. As benign biopsies constitute the majority of all sam-
ples, this would greatly decrease the workload in pathology departments. A lower
risk alternative would be to re-analyze all samples indicated as benign by the pathol-
ogist, potentially improving safety by detecting cancers that were initially missed.
Moreover, automating cancer length measurements appears feasible in view of the
obtained results and could lead to time savings for pathologists. The question of
how automated grading could be used in the clinic is less straightforward. One op-
tion would be to consider it as decision support especially for inexperienced pathol-
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ogists, or as a means of providing expertise to regions where pathologists are not
available. However, further studies in a clinical setting are needed to understand
how pathologists would interact with automated decision support systems and how
these systems would influence clinical decisions.

Publication IV marks the first time automated uropathologist-level grading of
prostate biopsies has been demonstrated based on a sizable WSI dataset representing
a well-defined clinical cohort. A particular strength of the study is that the samples
were collected within the STHLM3 clinical trial (Grönberg et al. 2015) and repre-
sent a population-based sample of patients, which allowed clinically meaningful es-
timation of performance metrics. Moreover, the data contain the full spectrum of
prostate tissue morphology encountered in clinical practice, for example, difficult
to diagnose cancer variants and benign mimickers of cancer. The fact that similar
results were independently achieved by another research group based on a different
dataset (Bulten et al. 2020) supports the finding that DNN models can indeed as-
sess prostate biopsies comparably to experienced pathologists. Taken together, these
findings met Aim II of the research. In addition, the computations required for con-
ducting the study necessitated the use of HPC, and as another product of the study, a
streamlined computational workflow utilizing parallel GPU computing on compute
clusters was designed. Together with the initial work conducted for Publication III,
this met Aim IV of the research.

5.3 Comparison of 3D reconstruction algorithms

In Publication I, a panel of quality metrics for evaluating 3D histology reconstruc-
tions was designed and demonstrated on a set of baseline algorithms used to recon-
struct a murine prostate sample. The main outcome of the study was the evalua-
tion framework itself, which represents a collection of metrics and evaluation tech-
niques which have been used variably in earlier 3D histology studies. The algorithms
based on SIFT and SURF features outperformed optimization-based algorithms in
terms of TRE but not in terms of pixel-wise similarity metrics or reconstruction
smoothness. Compared to the result of the manual landmark-based method, which
is in principle free of global distortions, the optimization-based approaches exhibited
some undesired straightening of curved structures. Since these algorithms consider
all tissue pixels in their optimization process, they are more prone to distorting elon-
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gated structures that are curved or located at an angle relative to the sectioning plane.
This explains the seemingly better pixel-wise similarity results of these methods and
underlines the importance of considering multiple complementary metrics when
interpreting reconstruction quality results. Moreover, the effect of hyperparameter
selection on TRE was found to be considerable for all of the algorithms and it should
not be overlooked in comparative studies.

In Publication II, the evaluation framework was applied to compare a compre-
hensive selection of 3D reconstruction algorithms, including two commercial soft-
ware products. Moreover, in addition to the prostate sample, a liver sample was
prepared, and both samples were independently annotated by two observers. More-
over, artificial fiducial markers allowing direct evaluation of accumulated distortions
were introduced into the liver sample using a novel method, an industrial laser. In
terms of hyperparameter tuning, most of the tunable parameters of each algorithm
were now considered and Bayesian optimization was employed instead of parameter
sweeps in view of computational feasibility.

Based on the evaluation, algorithms using elastic transformation models were
found superior to methods that only use global affine transformations. Interestingly,
the leading algorithms outperformed even the baseline reconstruction that relied on
the manually selected landmarks. This finding, while not overly surprising, confirms
that compensating for local tissue deformations is required for obtaining optimal 3D
reconstructions. Moreover, all of the top algorithms feature some sort of a multi-
resolution scheme and a transformation model where different parts of the image
are registered independently of each other, which increases robustness against re-
gions containing artefacts. Differences between the evaluated algorithms were more
subtle on the prostate dataset, but the more challenging liver tissue caused more
considerable variation in the results (see Fig. 5.3). The two commercial solutions,
Medical Image Manager and Voloom, and the free ElasticStackAlignment (Saalfeld
et al. 2012) performed most robustly even when facing artefacts such as torn tissue.

To the best of my knowledge, Publication II marks the first time Bayesian opti-
mization has been utilized to successfully tune the hyperparameters of 3D recon-
struction algorithms. This supports earlier findings demonstrating the utility of
Bayesian optimization for other WSI analysis tasks (Teodoro et al. 2016). While this
was not the main aim of the study, it may serve as an example encouraging automated
hyperparameter optimization in CP applications. Hyperparameter optimization
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was performed on the prostate dataset, and the same parameters were used for the
liver sample. Encouragingly for practitioners of 3D histology, the top methods per-
formed well on both datasets without tissue-specific parameter tuning. Moreover,
the results collected during the optimization process provide a semi-quantitative
view of the behaviour of each reconstruction algorithm in response to parameter ad-
justments. This revealed differences which have practical utility for the users of these
algorithms: for example, RegisterVirtualStackSlices (Arganda-Carreras et al. 2006)
was found to be highly sensitive to parameter choices and difficult to tune, whereas
the optimization and feature-based baseline algorithms reacted in a predictable and
stable manner. This aspect is often overlooked in comparative studies of algorithms,
but Publication II underlines its importance. Taken together, the results presented
in Publications I-II met Aim III of the research.

Figure 5.3 The liver sample reconstructed using (a) manual landmarks, (b) optimization, (c) SIFT
features, (d) HyperStackReg, (e) RegisterVirtualStackSlices, (f) ElasticStackAlignment, (g)
Medical Image Manager and (h) Voloom, all using optimized hyperparameters. The manually
annotated locations of the landmark holes on each section are indicated with dots and lines
of best fit to the landmarks are shown as yellow lines. Reprinted from Publication II.
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6 DISCUSSION

6.1 Clinical adoption of machine learning based diagnostics

The field of ML-based histopathological diagnostics has progressed rapidly during
the last few years, a process that is clearly mirrored by the publications included in
this thesis as well. In as late as 2014, the commercial availability of clinically appli-
cable computer-aided diagnostics for histopathology was seen as a prospect of the
distant future (Mosquera-Lopez et al. 2014). This conclusion referred to the assess-
ment of prostate biopsies, but the diagnosis of PCa is hardly a special case. Even
how to computationally process entire WSIs was still considered an open question
at the time. Much of the work behind this thesis focused on overcoming such practi-
cal obstacles as well. Deep learning, efficient GPU computing and the exponentially
increasing amount of WSI data have, however, quickly led to results such as those pre-
sented in Publication IV and by others (Bulten et al. 2020; Campanella et al. 2019;
Esteva et al. 2017), demonstrating performance comparable to medical experts on
data that are representative of the clinical reality.

With the emergence of breakthrough results, within the span of only a few years,
computer aided diagnostics for histopathology has turned to a realistic candidate for
imminent clinical adoption, with even commercial software such as Galen Prostate
(IBEX Medical Analytics Ltd, Tel Aviv-Yafo, Israel) (Pantanowitz et al. 2020) and IN-
IFY Prostate (ContextVision AB, Stockholm, Sweden) (Fraggetta 2019) becoming
available. The recent developments have also been met with optimism by patholo-
gists. In a recent survey conducted among ISUP members, 71% of the respondents
believed ML will have a role in screening, decision support and efficiency improve-
ments in PCa histopathology during the current decade (van Leenders et al. 2020).
Moreover, 31% of the respondents had themselves been involved in ML projects.

While the optimism is well motivated by the impressive recent results, there
have been voices of caution regarding some of the current practices in the field,
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which might jeopardize successful clinical adoption of the technology. Shortcom-
ings pointed out in the way that medical AI research is currently being carried out
include incomplete reporting that hampers the reproducibility of the studies, lack of
rigour in the way algorithms are evaluated (Liu et al. 2019), and a trend towards only
publishing results as preprints without a peer-review process ("AI diagnostics need
attention" 2018). Very few prospective clinical trials have so far evaluated the use
of ML tools in actual clinical workflows (Rajkomar et al. 2019). Reliable evaluation
of the algorithms is, however, crucial if they are to be deployed in the clinic. Eval-
uation metrics need to be chosen carefully to reflect the intended diagnostic task,
as opposed to e.g. only evaluating performance in terms of low-level segmentation
metrics (Gurcan et al. 2009). Ultimately, the focus has to be on patients rather than
pixels or patches. In line with this, it has been shown to be important to perform
splits between training and testing data at the patient level, as was done in Publica-
tions III-IV (Nir et al. 2019). While a somewhat obvious requirement, evaluation
of algorithms has rarely been performed on external validation data, which would
provide more realistic performance estimates than CV experiments (Liu et al. 2019).
One reason for neglecting this aspect has previously been the limited amount of WSI
data, but with the collection of larger datasets, construction of sufficiently large in-
dependent test sets becomes feasible.

Encouragingly, there are signs that the focus of the field is now shifting from
demonstrating the accuracy of prototype ML algorithms to devising concrete plans
and guidelines on how to implement the technology in health care, taking into ac-
count the associated regulatory and administrative steps as well as health economics
(Colling et al. 2019). For example, the World Health Organization and the Interna-
tional Telecommunication Union recently established a focus group with the aim of
developing a benchmarking process for AI tools in healthcare (Wiegand et al. 2019).
Initiatives like this will hopefully enable safe, evidence-based adoption of ML in clin-
ical diagnostics, as well as in other medical applications.

6.2 Handling real-world variability in WSI data

One question crucial for the clinical use of CP systems is how to handle the variabil-
ity present in real-world WSI data, such as that introduced by different scanners (Fig.
6.1). The way factors like scanner characteristics, different laboratories and patient
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populations affect ML algorithms is still relatively poorly understood. Moreover,
different healthcare providers may have varying preferences in terms of the operating
characteristics of the systems, such as sensitivity, perhaps necessitating site-specific
calibration of classifiers. In the few studies which have presented external validation
on samples that originate from a different source than the training data, it has not
been uncommon to observe considerable degradation in performance compared to
internal test sets. For example, Campanella et al. reported drops of 3% points and
6% points in AUC for a different scanner and different laboratories, respectively,
in the task of PCa detection (Campanella et al. 2019). While these results are far
from catastrophic and regarded by the authors as an indication of successful gen-
eralization, the clinical implications of such a drop in performance would not be
negligible. Similarly, a drop of 1.1% points in AUC was observed in Publication IV
when applying the system to samples prepared in a different laboratory and scanned
on a device different from the training and internal test data.

Figure 6.1 An example prostate biopsy digitized with Aperio, Hamamatsu and Philips scanners. Proba-
bility of prostate cancer presence estimated by the DNN system of Publication IV is visualized
as a heatmap alongside each image. Differences in both the appearance of the tissue and in
the resulting predicted probabilities are visible.

The simplest way of mitigating the issues due to variability in the data is to collect
heterogeneous training material. This brute-force approach was relatively successful
in Publication IV, where the training images were obtained using scanners from two
different vendors. However, including all possible sources of variability in the train-
ing data is difficult. Moreover, new sources of variation may arise over time, for ex-
ample as the scanner used in a particular laboratory ages. Handling such variability
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would then require always collecting more and more training material and period-
ically retraining the classifier. This would be problematic not only in terms of the
workload, but also in view of regulatory aspects. Various computational solutions
such as color normalization or augmentation (Tellez, Litjens, Bandi et al. 2019), the
stain-GAN (Shaban et al. 2019) or domain-adversarial training (Lafarge et al. 2019)
have been proposed but thus far there have been few comparative studies on these
methods. Evaluating these methods in terms of their effects on the clinical operating
characteristics of AI systems will be a key question to solve in the near future.

Another way of looking at the issue of generalization to data that differs from
the training material is automated quality control, which can be used to ensure that
the classifiers only operate on data they are suited for. In some sense, this seems a
more realistic concept than attempting to train classifiers that are robust against all
known and unknown input perturbations. Moreover, incorporating estimates of
the uncertainty associated with a classifier’s decision could be helpful in recognizing
cases where intervention by a human expert is necessary, and could help pathologists
to build trust on computational diagnostic aids (Colling et al. 2019; Rajkomar et al.
2019). To this end, techniques such as conformal prediction and Bayesian DL are
currently being studied (Gupta et al. 2019).

6.3 The issue of explainable decisions

There is an ongoing debate on whether machine-based decisions should always be
explainable in high-risk domains such as healthcare, or if performance should be
prioritized even at the expense of interpretability (Rudin 2019). Arguably, if a diag-
nostic classifier has been reliably shown to be accurate, and it can be monitored to
ensure it retains its performance over time, then the process used to arrive at the de-
cisions is irrelevant in view of the desired output of accurate diagnoses. On the other
hand, clinical application of models whose operating principles are not fully under-
stood can be problematic in terms of medical device regulations (Bera et al. 2019).
Troubleshooting a system whose decision process is unknown is also difficult. Per-
haps even more importantly, blind reliance on machine-generated decisions without
any associated explanations may even lead to the deterioration of the clinical skills of
pathologists over time (Colling et al. 2019). If taking this worrying thought exper-
iment to the extreme, application of non-explainable AI over several decades could
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eventually lead to the loss of the human skill of visually assessing and understanding
tissue morphology. Of course, many skills have faced the same fate over the course
of history. Perhaps a more likely consequence at least in the medium term is that
changes in pathologist education are required to train ’computational pathologists’
with a skillset combining medical and algorithmic expertise (Colling et al. 2019).

One way of obtaining explainable decisions is to use models designed with this
in mind from the start, such as feature-based ML instead of DL. For example, sev-
eral relatively recent studies aimed at automated Gleason grading using features engi-
neered to capture spatial properties of nuclei and glands, designed based on existing
histopathological knowledge (Niazi et al. 2016; Nir et al. 2018; D. Wang et al. 2015).
The authors claimed that the visual interpretability of the features aids pathologists
in validating and accepting the results (Niazi et al. 2016). Combinations of DL and
feature engineering have also been proposed, where predefined features are extracted
and provided as input to a DNN in addition to the raw images (Sadanandan et al.
2016) or fused with DNN-based features at the final classification stage (Valkonen,
Kartasalo et al. 2017). However, considering the widening performance gap between
DL and feature-based approaches, it seems unlikely that a return to classical meth-
ods solely for the sake of explainability will happen. Moreover, even feature-based
models can be difficult to explain, if the features used do not have clear histological
interpretations, such as most of the features used in Publication III.

An alternative is designing additional algorithms for explaining the decisions of
black box classifiers. Publication IV relied on such DNN interpretation methods
(Alber et al. 2019) that help highlight input patterns relevant for the classifier (Fig.
6.2). However, these methods do not explain what a particular pattern represents
for the model, and why it is important for the decision. Interpreting such visual ex-
planations is qualitative and subjective at best. Moreover, these methods have been
criticized as they can merely approximate the model they are trying to explain (oth-
erwise an explanation would not be needed in the first place) and it is difficult to
judge whether the explanation is true to the original model (Rudin 2019). These
techniques can, however, help a human designer to spot hidden biases in the under-
lying data (Lapuschkin et al. 2019). Such hidden stratification, where a model learns
to recognize undesired patterns in the data, instead of those truly relevant for the di-
agnosis can have severe consequences (Oakden-Rayner et al. 2020). In the context of
CP, an example are subtle patterns introduced into the images by different scanners.
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If the data are biased such that samples representing some condition of interest are
more frequently scanned on one scanner than other samples, the classifier may learn
to associate the patterns representing that scanner with the condition. Even crude
model interpretation techniques may help in detecting such effects. Ensuring that
the trained model is not relying on any such biases in the underlying data was the
main rationale for applying model interpretation algorithms in Publication IV.

Figure 6.2 Randomly selected tiles representing Gleason patterns 3 (top row), 4 (middle row) and 5
(bottom row) with estimates of the relative importance of input image pixels for the DNN’s
decisions. The analysis was performed using deep Taylor decomposition. Nuclei and the
edges of glands are highlighted as important input patterns. Axis units are in µm. Modified
from Publication IV.

Studying the phenomenon of adversarial examples, frequently criticized as a weak-
ness of DNN models, provides another viewpoint on explainability (Ilyas et al. 2019).
The introduction of subtle, artificial perturbations, such as the addition of a minute
amount of noise to input data has been shown to often fool DNNs to produce er-
roneous predictions. This has been interpreted as an indication of the tendency of
DNNs to overfit to irrelevant patterns in the data, and as proof for the necessity of
using model interpretation techniques to diagnose such undesired behaviour. Inter-
estingly, Ilyas et al. showed that this interpretation may merely be the result of a
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biased human-centric view, which is built on the assumption that patterns used by
humans in their decisions are true and robust, whereas patterns imperceptible to hu-
mans are irrelevant artefacts, and a classifier relying on such patterns is not robust.
Classification errors caused by artificial perturbation of these subtle patterns in a
way that is imperceptible to a human observer, but might never happen naturally in
the real-world data, do not prove that the patterns are irrelevant for the decision task.
The root cause of this issue may well be fundamental differences in the way that hu-
mans and current machine intelligence work. Forcing ML models to only utilize the
same patterns that humans recognize inevitably means that all the potential perfor-
mance that lies beyond human cognition is never achieved. However, these observa-
tions should not be taken as a confirmation of some sort of natural law dictating that
a trade-off between performance and interpretability is always unavoidable (Rudin
2019). In other words, there are no guarantees that increasingly complex black box
models will always be superior to human-comprehensible solutions, even if that is
currently the case in image analysis, but there are neither guarantees of new inter-
pretable models emerging that could challenge the performance of DNNs.

6.4 Large-scale 3D histology

Even though studies such as Publications I-II have shown that 3D reconstructions
can be performed with subcellular registration accuracy, and many studies over the
years have demonstrated the potential value of the technology, 3D histology has not
become a mainstream approach. By far the biggest obstacle to clinical or widespread
research use is the considerable manual work needed to prepare serial sections. Scan-
ning of the prepared slides is no longer an issue due to the high throughput of WSI
systems, but cutting of the samples remains a manual process performed by skilled
technicians. Automated sectioning machines have been demonstrated to produce
high-quality serial sections and these kind of devices could potentially remove the
tissue preparation bottleneck (Fu et al. 2018; Onozato et al. 2013). However, the
task is difficult and requires sophisticated robotics. So far these systems have not
been widely adopted in histology laboratories, but should they become sufficiently
reliable, they would represent a breakthrough for 3D histology.

Microscopy techniques that directly image the sample in 3D have also been pro-
posed (Farahani et al. 2017). For example, knife edge scanning microscopy integrates
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the sectioning and imaging process using a line scanner built into the sectioning blade
(Mayerich et al. 2008). Scanning is performed while cutting the sample, section by
section, producing a 3D volume directly. The technology has been commercialized
by 3Scan, Inc. (San Francisco, CA, USA). A very similar device called micro-optical
sectioning tomography has also been proposed (A. Li et al. 2010). The same destruc-
tive layer-by-layer imaging principle can be coupled with other sources of contrast,
such as multiphoton imaging (Ragan et al. 2012) or optical coherence microscopy
(Min et al. 2020). Optical clearing of tissue followed by multi-photon imaging (Tor-
res et al. 2014) or confocal microscopy (van Royen et al. 2016) has been suggested
as an alternative, allowing 3D imaging of uncut specimens without the destructive
serial sectioning. However, all of these techniques have the limitation that tissue
staining is challenging, as it has to be done by perfusing the uncut sample prior to
sectioning. Serial sectioning followed by computational 3D reconstruction does not
share this limitation, as the tissue sections can be processed with any histological
or biochemical techniques prior to scanning. Therefore, while these new imaging
techniques can undoubtedly produce exciting new data, they do not fully answer
the problems associated with achieving high-throughput 3D histology. One inter-
esting future prospect is, however, using non-stained tissue material coupled with
DL-based virtual staining (Rivenson et al. 2019) to circumvent the problems with
staining uncut samples.

Another hurdle for 3D histology is the analysis and examination of the resulting
volumetric data. This is of course routine in other types of medical imaging, such
as MRI, but the considerably higher resolution means that most tools developed for
3D medical imaging cannot be directly applied to 3D histology. For example, at full
resolution, the mouse prostate reconstructed in Publications I-II contains more than
50 gigavoxels, corresponding to over 150 GB of image data. The size of a correspond-
ing human organ would of course be vastly larger. In addition to the technical issues,
visualizing and analysing the data in a manner that allows intuitive interpretation is
a challenge. Three-dimensional examination of tissue morphology at microscopical
resolution is quite simply a task that experts are not accustomed to. For this reason,
the ability of 3D histology based on serial computational reconstruction to utilize
standard techniques like HE staining can be considered an advantage, as the tissue
itself appears similar to the 2D images pathologists are already used to. Many of the
computational analytics can also be extended from 2D to 3D in a relatively straight-
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forward manner (Liang et al. 2015). Virtual reality has been proposed as a way of
exploring 3D microscopy data in a manner that is intuitive to humans (Cali et al.
2016; Theart et al. 2017). There is ongoing work focused on applying virtual reality
to the 3D histology data generated using the methods of Publication II, allowing
one to examine the morphology of the murine prostates at full resolution as if one
was inside the sample (Liimatainen et al. 2020). As an alternative, physical models
produced by 3D printing have also been studied (Liimatainen et al. 2019).

6.5 From imitating to surpassing human experts

Besides emulating pathologists to match or exceed human performance in routine
tasks (e.g. Publications III-IV), and performing quality control and enhancement,
attempts are increasingly made to extend CP to new kinds of analyses (Bera et al.
2019; Niazi et al. 2019). The first step in this direction is quantification of patholog-
ical features that are difficult and time consuming for humans to assess. An example
is the detection and further spatial analysis of tumor infiltrating lymphocytes, which
has prognostic significance across several cancers (Saltz et al. 2018). Precise quantifi-
cation of such features, requiring the assessment of large numbers of individual cells
and their relative spatial locations, may be better suited for computational systems
than humans. Another example is using DL to discover patterns that, while not
perhaps completely overlooked by pathologists, are not formally part of structured
grading schemes. For example, DNNs have been used to identify tumor-associated
patterns in stromal tissue in breast biopsies (Bejnordi et al. 2018). The diagnosis of
BCa is mainly based on the morphology of epithelial tissue, but the associated stroma
appears to also contain patterns that are potentially relevant for the diagnostics.

An obvious way to try and leverage the capacity of ML to detect patterns in data
is to train models directly with clinical outcomes to derive image-based prognostic
predictors as opposed to producing readouts following current pathological report-
ing systems, such as Gleason grading (Gurcan et al. 2009). This would avoid some
of the issues associated with the subjectivity of pathologist-derived ground truth la-
bels (Colling et al. 2019). While there have been attempts at performing prognos-
tics based on engineered features as well (Yu et al. 2016), the key advantage of DL
in these applications is that it can potentially allow data-driven discovery of novel
image-based biomarkers, since the features used do not need to be fixed by a human
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designer a priori. An example is stratification of colorectal cancer patients into low-
and high-risk cases based on TMA samples (Bychkov et al. 2018). In that study, rely-
ing on transfer learning, generic features were extracted from the tissue samples using
a VGG-16 CNN (Simonyan et al. 2014) pre-trained on ImageNet (Russakovsky et al.
2015). The features extracted from patches across each slide were then used as input
to a long short-term memory network (Hochreiter et al. 1997), a type of RNN, to
predict the probability of 5-year disease specific survival. The system outperformed
experts when the cases were dichotomized into low- and high-risk groups.

Following a similar line of thought, generic features were extracted from more
than 13 000 images of RP samples in an unsupervised manner using deep autoen-
coders (Yamamoto et al. 2019). This resulted in a 100-dimensional feature represen-
tation for each case, and these representations were then used to train a SVM to pre-
dict 1-year and 5-year biochemical recurrence of PCa. The authors reported AUC
values of 0.820 and 0.721 for 1 and 5 year predictions, respectively. This outper-
formed predictions based on GS (0.744 and 0.695). Interestingly, combining both
the autoencoder features and GS resulted in even better predictions. Nagpal et al.
also assessed the ability of their system to predict risk of biochemical recurrence of
PCa and reported improved prognostic performance compared to a genitourinary
specialist (Nagpal et al. 2019). However, due to the fact that the grading performed
as part of the clinical routine had already affected the treatment decisions of these pa-
tients, drawing such a conclusion is not straightforward (Eklund et al. 2019). Avoid-
ing such pitfalls when comparing the prognostic utility of new markers to those in
routine use requires careful study design.

Integrated analysis of morphology and molecular markers has been proposed as a
means of extracting more useful information from histopathological samples (Gur-
can et al. 2009). Mobadersany et al. used CNNs to predict survival times in glioma
cases (Mobadersany et al. 2018). The model, termed survival-CNN by the authors,
features a combination of a CNN and a Cox proportional hazards model layer and
was trained using 1061 WSIs of glioma cases from The Cancer Genome Atlas. The
performance of the algorithm in predicting survival was comparable to current mod-
els based on visual assessment and molecular subtypes. By adding genomic informa-
tion on mutations and deletions as input to the CNN, the authors reported a further
improvement in performance. Another way of blurring the line between image-
based morphological data and the underlying molecular information is image-based
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modeling of molecular features, such as the presence of mutations. Besides accurately
diagnosing and classifying lung cancer samples into subtypes, Coudray et al. also at-
tempted to train an Inception V3 model to predict the mutational status of the most
commonly mutated genes in lung adenocarcinoma based only on the image data,
succeeding in six out of ten genes (Coudray et al. 2018). As another example, Jain et
al. were able to predict the mutational burden of lung cancer samples based on WSI
data, achieving high concordance with whole exome sequencing (Jain et al. 2020).
Performing such analyses, combining many different inter-related data types, is con-
sidered to be beyond human cognition and thus an exciting opportunity for a new
kind of AI-enabled pathology (Bera et al. 2019; Niazi et al. 2019).

6.6 Scalability of computational pathology development

The recent improvements in CP have, to a large extent, relied on increasingly larger
datasets being analyzed using increasingly complex models, run on increasingly faster
computers. Whether this process is scalable, allowing further development at an in-
creasing pace, is thus a key question in view of the future of the field. A key require-
ment for this progress is the accessibility of data. There are unfortunate technical
hurdles in the form of lacking standards for WSI formats, which complicates data
access in comparison to e.g. radiology, and has required CP developers to resort to
reverse engineering (Goode et al. 2013). Efforts are ongoing to incorporate WSI data
into the DICOM standard (Colling et al. 2019) but it remains to be seen if time is
finally ripe for this long-standing aim (Tuominen et al. 2010) to become reality.

A bigger hurdle in terms of data availability is that relatively few institutions are
capable of collecting the kind of datasets used in Publication IV or other recent stud-
ies (Bulten et al. 2020; Campanella et al. 2019) in-house, and only some of these insti-
tutions are willing and allowed to share the data. One consequence of data not being
openly available is that comparison of proposed algorithms is difficult, since each
study typically relies on a different dataset and different performance metrics (Gur-
can et al. 2009). The role of comparative studies such as Publication II, challenges
(Hartman et al. 2020) and openly available data for benchmarking algorithms, such
as the CAMELYON datasets (Litjens et al. 2018), are therefore considered central
for the advancement of the field. All of the data used for this thesis has either been
openly shared by other institutions (Publication III), deposited to public reposito-
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ries (Publications I-II) or made available through the organization of a challenge1

(Publication IV). It is easy to claim that all data should always be shared in the name
of open science, but realizing this in practice in a fair manner is a whole different mat-
ter. Collection and annotation of large medical datasets is costly and time-consuming
and getting adequate return on these investments is not an unreasonable requirement
from the data owner. In the case of medical data, further questions arise in terms of
who should actually own the data and what are the legal and patient information
security constraints on data sharing. These are important questions in view of the
future of CP as a clinically and commercially utilized set of technologies.

Even if data are available, they are typically not useful for development in their
raw form. A much discussed bottleneck for the development of ML algorithms is
the annotation of data by medical experts (Gurcan et al. 2009). Performing the kind
of detailed annotations used in all publications of this thesis cannot be scaled up in-
definitely to larger datasets. It has been suggested, that ML in the medical domain
ultimately cannot rely only on supervised learning (Greenspan et al. 2016). The use
of weakly supervised learning, relying only on sample-level labels rather than pixel-
level annotations, has recently been advocated as a more scalable alternative (van der
Laak et al. 2019) and demonstrated to result in excellent performance when applied
to data encompassing tens of thousands of WSI (Campanella et al. 2019). The advan-
tage of weakly supervised learning is that sample-level labels are typically obtained
as a by-product of routine clinical practice instead of requiring medical experts to de-
vote time to labeling data. However, one can question if the process of extracting this
information from often unstructured and even non-digital pathology reports and pa-
tient records is truly scalable either. Suggested approaches for collecting annotations
in a more automated manner include tracking the microscope usage of pathologists
(Gecer et al. 2018) or using IHC to obtain biochemically derived pixel-wise labels
(Sadanandan et al. 2017; Turkki et al. 2016; Valkonen et al. 2019). However, the
former includes considerable uncertainty as the time spent by pathologists exam-
ining a particular region may not always correlate reliably with the final label, and
the latter requires that a biomarker indicative of the target of interest is known and
can be stained. The application of new imaging techniques such as scanning Raman
microspectroscopy may provide an alternative way of obtaining labels, but this will
require more research to establish the correspondence of e.g. Raman spectra with

1https://www.kaggle.com/c/prostate-cancer-grade-assessment
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known histological features (Hollon et al. 2020).

Another less discussed bottleneck may be the AI development process itself. De-
signing increasingly complex systems in a scalable manner may require accelerat-
ing the design process itself via algorithmic solutions. While systematic design ap-
proaches are emerging and replacing trial and error, the role of optimal design choices
and parameter tuning has been largely ignored in CP. Considerable improvements
in many ML tasks were achieved when feature engineering was replaced by DL (Le-
Cun et al. 2015). However, the requirement for “craftsmanship” has arguably merely
shifted to the tasks of designing DNN architectures, pre-processing and data augmen-
tation algorithms, and tuning hyperparameters (Hutter et al. 2019). Besides acceler-
ating development of AI systems for new tasks, reducing the involvement of human
designers may lead to further performance improvements. The emerging field of
automated machine learning (Auto-ML) aims at automating system design in a data-
driven manner. Applications of Auto-ML to the design of CP algorithms have so far
been nearly non-existent (Koohbanani et al. 2018). However, there is no reason to as-
sume Auto-ML would not be effective also within this field. Publications I-II and IV
addressed hyperparameter tuning in a systematic manner, using Bayesian optimiza-
tion and grid searches, but algorithmic approaches for designing entire AI pipelines
from low-level building blocks are now emerging (Real et al. 2020). Ultimately, de-
signing increasingly complex AI systems by hand to model pathology even at the
level currently considered by human experts, let alone exceeding that, may not be
feasible. Adoption of Auto-ML algorithms in the future may help to not only sur-
pass human medical experts but also human ML designers and data scientists.

The third ingredient to the recent progress besides more data and more capable
ML models is HPC. Thus far, CP developers, and the AI field in general, have to a
large extent settled on a brute-force mentality, where the growing datasets and neu-
ral networks are powered by increasing amounts of parallel computation (B. Chen
et al. 2019). The studies presented in this thesis are no different, and Publication IV
in particular greatly benefited from parallel GPU computing, which enabled train-
ing large DNN ensembles. At the moment, it seems that this trend of hardware
investments dominating over algorithmic improvements is set to continue. For ex-
ample, the European HPC Joint Undertaking is investing in compute clusters such
as LUMI2, featuring thousands of GPU accelerators. However, there have recently

2https://www.lumi-supercomputer.eu/
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been voices of concern over the energy consumption and the resulting CO2 emis-
sions caused by the inflating computations (Strubell et al. 2019). Using large DNN
models for natural language processing with expensive hyperparameter tuning as an
extreme example, Strubell et al. claimed that the CO2 footprint of the entire process
of training such a model once can exceed that of an average car in the USA during
its entire lifespan. Data center design resulting in carbon neutral operation can ar-
guably mitigate the problem in terms of CO2 emissions, and development of more
efficient hardware customized for DL to replace GPUs may allow scaling up the
computational capacity for long into the future. Still, it is unclear if neglecting algo-
rithmic development and focusing on further scaling up existing solutions will stop
yielding performance improvements at some point, and if so, when this will happen.
Encouragingly, recent studies have presented some progress on more efficient DNN
architectures (Tan et al. 2019) and approximate algorithms for accelerating compu-
tations even on CPUs (B. Chen et al. 2019). It would be easy to imagine that despite
the many successes highlighted in this thesis, this period of "brute-force machine
learning" will be seen as rather primitive in the future.
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7 CONCLUSIONS

The studies presented in this thesis handled methodology for 3D histology and ma-
chine learning based diagnostics in computational pathology. The results of these
studies can be summarized as follows:

• In Publication I, a quality evaluation framework for 3D histology reconstruc-
tion algorithms was designed. Quality metrics measuring pixel-wise similarity
and reconstruction smoothness were found to complement those quantifying
target registration error based on manually selected landmarks. The effects of
hyperparameter tuning, assessed using grid search, were found to be consid-
erable for all of the evaluated methods, indicating that parameter adjustments
should not be ignored when comparing reconstruction algorithms.

• In Publication II, the 3D histology evaluation framework was extended to
achieve compatibility with most reconstruction tools and then applied to com-
pare several publicly available algorithms and two commercial options. The
feasibility of automated hyperparameter tuning of 3D reconstruction algo-
rithms using Bayesian optimization was demonstrated for the first time, and
the process resulted in improved performance compared to default parameters
for all of the evaluated algorithms. Algorithms relying on elastic transforma-
tion models capable of compensating for local tissue deformations achieved the
most accurate reconstructions. The commercial tools Medical Image Manager
3D Pathology and Voloom, as well as the freely available Elastic Stack Align-
ment plugin for ImageJ exhibited the best overall performance.

• In Publication III, a machine learning based solution was developed for detect-
ing metastatic tissue in lymph node samples of breast cancer patients. A tissue
segmentation algorithm and a patch-wise processing method were developed
to efficiently handle entire whole slide images. The system, based on extract-
ing a large number of features quantifying texture characteristics and spatial
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properties of cell nuclei as input for random forest classifiers, was shown to
have good discriminatory performance for distinguishing between patches of
normal and metastatic tissue. This allowed generating visualizations highlight-
ing potentially malignant regions on the slides, which could potentially speed
up the work of pathologists.

• In Publication IV, a deep learning based system for detecting and grading
prostate cancer in biopsies was presented. Pre-processing methods were de-
signed for tissue segmentation and digitization of annotations manually drawn
on the slides, allowing training of ensembles of DNN classifiers to detect ma-
lignant patches and predict their Gleason grade. Slide-level predictions of can-
cer presence, cancer length and ISUP grade were obtained by using ensembles
of gradient boosted trees operating on the patch-wise outputs of the DNN
classifiers. Using an independent test set reflecting a population-based, clini-
cally representative sample of patients, the system was shown to achieve over
99% sensitivity at approximately 89% specificity in cancer detection and can-
cer length estimates were shown to closely correspond to those performed by
a pathologist. The grading performance of the system was comparable to a
panel of experienced urological pathologists. External validation on samples
prepared in a different laboratory and scanned on a different scanner also re-
sulted in acceptable performance. This marks the first time that diagnostic
performance comparable to specialized pathologists has been demonstrated
on a large, clinically representative dataset of prostate biopsies.
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ABSTRACT

Studying tissue structure in 3D is beneficial in many applica-
tions. Reconstructing the structure based on histological sec-
tions has the advantages of high resolution and compatibil-
ity with conventional staining and interpretation techniques.
However, obtaining an accurate 3D reconstruction based on
a sequence of 2D sections is a difficult task. Evaluating the
accuracy of such reconstructions is also challenging and it is
often performed based only on visual inspections or a single
indirect numerical measure. Here, we present a benchmark-
ing framework composed of a panel of complementary met-
rics for assessing the quality of 3D reconstructions. We then
apply the framework to evaluate the performance of several
popular image registration algorithms in this context.

Index Terms— Image registration, 3D reconstruction,
histology, digital pathology, benchmark

1. INTRODUCTION

Studying tissues in 3D at the microscopic scale can provide
new insights into many normal and pathological processes
[1, 2]. Visualizing tissue directly in 3D is possible using
techniques such as magnetic resonance imaging. However,
conventional histology based on light microscopy has the im-
portant advantages of higher resolution and the possibility of
applying techniques such as immunohistochemistry or in situ
hybridization. Reconstructing the original 3D structure from
a sequence of 2D histological images combines these advan-
tages with the capability to examine the tissue in 3D.

The reconstruction process typically consists of a series of
pairwise image registration operations to bring the sequence
of images into alignment [2, 3]. This is generally a difficult
task due to anatomical and technical variation from image to
image. Evaluating the quality of the obtained reconstruction
is equally challenging, especially in the absence of ground

This work was supported by Academy of Finland (269474), Tekes –
The Finnish Funding Agency for Innovation(269/31/2015), Cancer Society
of Finland, Sigrid Juselius Foundation and Doctoral Programme of Comput-
ing and Electrical Engineering, Tampere University of Technology.

truth data concerning the true 3D structure of the sample. The
evaluation is often based only on indirect measures of regis-
tration accuracy, which can produce misleading results [4].

In this paper, we demonstrate the use of a collection of
measures for evaluating the quality of 3D tissue reconstruc-
tions. We constructed a reference least-squares solution based
on manually selected point pairs (REF), compared to which
we evaluated a number of popular algorithms representing the
two main approaches to image registration [5]: area-based
registration via optimization of mean squared error (MSE)
or mutual information (MI), and registration using SIFT [6]
or SURF [7] features coupled with model fitting by Random
Sample Consensus (RANSAC) [8].

2. MATERIALS AND METHODS

2.1. Material

A prostate of a 14 month old male FVB/N mouse was fixed
in PAXgene molecular fixative (PreAnalytiX GmbH, Hom-
brechtikon, Switzerland) according to manufacturer’s recom-
mendations, and embedded in paraffin. The tissue block
was sectioned through, with 3x3 5µm sections used for
hematoxylin-eosin (HE) staining, and every 10th section
saved for other purposes. The slides were scanned with a
Zeiss Axioskop40 microscope (Carl Zeiss MicroImaging,
NY, USA) with 20x objective, a CCD color camera (QICAM
Fast; QImaging, Canada) and a motorized specimen stage
(Märzhäuser Wetzlar GmbH, Germany). Image acquisition
was controlled by the Surveyor imaging system (Objective
Imaging, UK). The pixel size was 0.46 µm.

2.2. Dataset preprocessing

Uncompressed bitmap output was converted by JVSdicom
Compressor to JPEG2000 WSI format [9] and further pro-
cessed using MATLAB R2015a (The MathWorks Inc., Nat-
ick, MA, USA). The dataset contained 260 images with one
tissue section per image. Four corresponding points located



preferably at the centers of bisected nuclei were manually se-
lected from each pair of adjacent sections. From each image,
manual delineation of the tissue section was also performed,
while excluding the background and torn-off pieces of tissue.

Variation in image appearance was compensated for by
using histogram matching separately for each color channel
based on a selected reference image [10]. The background
pixels in each image were then set to the mean value of the
tissue pixels, eliminating the effect of non-tissue pixels dur-
ing the registration process. The images were subsampled
using the JPEG2000 wavelet decomposition scheme to obtain
a pixel size of 7.36 µm, which is close to the diameter of nu-
clei. This leads to the exclusion of small subcellular details
which are not present on multiple slices and are not useful for
registration. The images were converted to grayscale format
following the NTSC standard by computing the weighted sum
of the RGB components: 0.2989R+0.5870G+0.1140B.

2.3. Three-dimensional reconstruction

A 3D reconstruction of the sample was formed by serially
registering each pair of consecutive sections via affine trans-
formations, starting from the first section in image I1. The
pairwise transformations were estimated as described in Sec-
tions 2.4 - 2.6. The quality of the first image was verified
visually. Let Ti denote the pairwise affine transformation that
warps the image Ii to the image of the neighboring slice, Ii−1.
The overall transformation for image Ii was obtained by con-
catenating the pairwise transformations as follows:

T ∗
i = T1 ◦ T2 ◦ · · · ◦ Ti−1 ◦ Ti (1)

where ◦ is composition. The transformations were applied via
bilinear interpolation using MATLAB’s imwarp function.

2.4. Least-squares image registration

An optimal reference reconstruction in the least-squares sense
was formed by fitting an affine transformation to the manu-
ally selected points for each pair of images. Since the points
represent mostly bisected nuclei appearing on only two con-
secutive sections, the reference reconstruction is in principle
unaffected by the accumulation of errors over multiple sec-
tions [11].

2.5. Area-based image registration

Area-based registration was performed using MATLAB’s im-
regtform function. A regular step gradient descent optimiza-
tion algorithm was used to optimize the value of either the
MSE or MI metric. As area-based techniques require an ini-
tial transformation which is close to the correct local opti-
mum, we used a simple translation for initialization. The
translation was computed as the displacement of the centroid
of the tissue region in image Ii−1 compared to image Ii.

We used the following parameters: number of multi-
resolution pyramid levels 5, gradient magnitude tolerance
10−5, minimum step length 10−6, maximum step length
10−3, maximum number of iterations 1000 and relaxation
factors of 0.1 for MSE and 0.9 for MI. The number of pyra-
mid levels was the largest possible given the image resolution.
Maximum step length was chosen to be as large as possible
without causing divergence. The gradient magnitude toler-
ance was set so low and the maximum number of iterations
so high that convergence was essentially controlled by the
minimum step length only. The minimum step length and re-
laxation factor were chosen based on an evaluation of values
ranging from 10−8 to 10−2 and from 0.1 to 0.9, respectively.

2.6. Feature-based image registration

Feature-based registration was performed by computing SIFT
and SURF keypoints for each image pair using the implemen-
tations in the VLfeat package [12] and the Image Alignment
Toolbox (IAT) [13], respectively. Corresponding keypoints
were established using the algorithm suggested by Lowe
[6] and implemented in the VLfeat function vl ubcmatch.
An affine transformation was fitted to the keypoints using
RANSAC, implemented in the IAT function iat ransac.

We used default parameters for computing the SIFT fea-
tures and a descriptor length of 64 for the SURF features.
A minimum ratio of 1.25 between the distances to second
closest and closest matches was used. For RANSAC, we
used the following parameters: maximum number of itera-
tions 100 000, probability to pick a minimum sample set with
no outliers 0.99, maximum number of invalid set picks 1000
and maximum error tolerances of 0.01 for SIFT and 0.06 for
SURF. The minimum distance ratio and the maximum error
tolerances were chosen based on an evaluation of values rang-
ing from 1.125 to 3 and from 0.001 to 1, respectively.

2.7. Evaluation of Target Registration Error

Pairwise target registration error (TRE) was quantified for
each point and pair of images as the Euclidean distance be-
tween the location of manually selected point j in the image
Ii−1 and the location of the corresponding point in image Ii
after applying the transformation Ti [14].

In addition to the pairwise errors, we quantified the ac-
cumulated error relative to the reference reconstruction [11].
Accumulated target registration error (ATRE) was quantified
for each manually selected point j in each image Ii as the
Euclidean distance obtained by comparing the point’s loca-
tion after applying either the overall reference transformation
T∗

i,REF or the overall transformation T∗
i under evaluation.

2.8. Evaluation of tissue overlap

Let A denote the set of pixels belonging to the tissue region
of image Ii−1 and B denote the set of pixels belonging to the



tissue region of image Ii after the transformation Ti has been
applied. Tissue overlap was quantified for each image pair
as the Jaccard index [4], which is defined for the two sets of
pixels, A and B, as

JA,B =
|A ∩B|
|A ∪B|

(2)

Due to anatomical and technical differences between consec-
utive sections, a perfect overlap is usually not the target of
registration and Jaccard index alone is not a reliable measure
of accuracy [4]. However, a low value can still be indicative
of a poor registration result. The Jaccard index can also be
considered a quality measure for the pixel-wise metrics de-
scribed in Section 2.9, as computing them based on a small
number of overlapping pixels can provide misleading results.

2.9. Evaluation of pixel-wise similarity

For each pair of images, we evaluated the similarity of cor-
responding pixels of image Ii−1 and image Ii after applying
the transformation Ti to the latter. The following measures
were computed: root mean squared error (RMSE), normal-
ized cross correlation (NCC), mutual information (MI) and
normalized mutual information (NMI) [15]. We only con-
sidered overlapping tissue pixels, that is, the set of pixels
A ∩B. Post-registration similarity of corresponding pixels is
frequently used to evaluate registration accuracy, even though
this indirect approach has been shown to be unreliable [4].
On the other hand, the more direct TRE measure is typically
computed based only on a small set of landmark points. Pixel-
wise measures provide at least some indirect information con-
cerning regions located far from the landmarks.

2.10. Evaluation of reconstruction smoothness

The smoothness of the reconstructed volume was quantified
using contrast and correlation features computed based on
gray-level co-occurrence matrices (GLCMs) [16]. After ap-
plying the overall transformations to all images, we computed
the GLCM for each pair of registered images by again consid-
ering only the set of overlapping tissue pixelsA∩B. The pixel
values were not quantized, that is, we computed 256x256
GLCMs for our 8-bit images. The GLCM for the whole vol-
ume was obtained by summing the pairwise GLCMs. This
approach is equivalent to computing the GLCM along the di-
rection going across slices using a distance of 1, as suggested
earlier [2, 3, 17]. Based on the combined GLCM, we com-
puted the contrast feature f2 and the correlation feature f3.
The rationale behind using these measures is that pixel val-
ues should change slowly when moving from slice to slice
through the reconstructed volume [2, 3, 17]. A smooth recon-
struction should thus exhibit low contrast and high correla-
tion. In addition, we adopted the usual practice of visualizing
cross-sectional views of the volume.

Fig. 1. Mean (surface height) and standard deviation (color)
of TRE for SIFT (a), SURF (b), MSE (c) and MI (d) with
different combinations of the RANSAC maximum error and
minimum 2nd/1st match distance (a, b) or the relaxation fac-
tor and minimum step length (c, d). Minima of the mean TRE
are marked with red dots. Parameter combinations producing
failed or highly erroneous reconstructions have been omitted.

3. RESULTS AND DISCUSSION

3.1. Sensitivity to parameter selection

The mean and standard deviation of the TRE computed over
all images and points are shown in Fig. 1 for different meth-
ods and combinations of parameter values. For SIFT and
SURF, a low threshold of 1.25 for the second closest/closest
match distance ratio coupled with a strict RANSAC maxi-
mum error tolerance (0.01 for SIFT, 0.06 for SURF) was op-
timal in this experiment. This produces a large number of
putative matches, which are then strictly filtered for inliers
by RANSAC. SURF produced satisfactory results for most
parameter combinations, while SIFT failed to estimate valid
transformations for many combinations with the RANSAC
maximum error tolerance exceeding 0.3 and/or the distance
ratio exceeding 2. Distance ratios over 2.5 also caused SURF
to fail due to an insufficient number of putative matches ful-
filling this criterion in some image pairs.

In the case of the MSE and MI methods, the error de-
creased rapidly as the value of the minimum step length was
lowered down to 10−6. Lowering the value further had only a
negligible effect on the error while greatly increasing compu-
tation time and we therefore chose the value of 10−6. Tuning
the relaxation factor had a less dramatic effect on the results,
but the more stable convergence obtained with higher values
was beneficial for the MI method. This effect was not ob-
served with the MSE method. Overall, the effect of tuning
the parameters of the MSE and MI methods was more pre-
dictable than in the case of SIFT and SURF, which is certainly
desirable when using the algorithms in practice.



Table 1. Pairwise errors (mean ± std, n = 259) for different
methods and metrics. TRE is given in µm.

REF MSE MI SIFT SURF
TRE 15.19±16.00 23.87±30.53 26.20±42.51 22.72±26.55 23.07±25.23
Jaccard 0.97±0.02 0.97±0.02 0.97±0.02 0.97±0.02 0.97±0.02
RMSE 47.46±5.48 45.31±5.43 45.58±5.74 46.03±5.58 46.02±5.56
NCC 0.53±0.11 0.57±0.10 0.56±0.11 0.56±0.10 0.56±0.10
MI 0.45±0.13 0.51±0.13 0.50±0.14 0.49±0.14 0.49±0.13
NMI 1.03±0.01 1.04±0.01 1.04±0.01 1.04±0.01 1.04±0.01

3.2. Pairwise errors

Values of pairwise metrics computed over all image pairs are
shown in Table 1. According to the pixel-wise metrics, there
are hardly any differences between the automated methods.
Interestingly, REF had the worst pixel-wise values but the
lowest mean TRE. The latter is not surprising, as the same
landmarks are used by the REF method and for evaluating
TRE. The nonzero TRE values of the REF method represent
residual errors which cannot be corrected using a global affine
model. The residual errors and the high standard deviations
of TRE are probably caused by local deformations or errors
in landmark selection. The contradicting TRE and pixel-wise
metrics hint towards ”overfitting” of pixel values by the auto-
mated methods but could also be explained by limitations of
the reference such as relying on only four points per section.

Fig. 2. Mean ATRE by section for different methods.

3.3. Accumulated error

Mean ATRE of the four landmarks for each pair of sections
is visualized in Fig. 2 for each method. Accumulation of er-
rors is also manifested in cross-sectional views of the volume
in Fig. 3 as the distortion of structures relative to the refer-
ence reconstruction when proceeding from the beginning of
the stack towards the end. However, it is important to note
that cross-sections cannot capture the true 3D distortion of
the volume. ATRE, on the other hand, is computed based on
landmarks in different parts of the tissue and thus reflects the
degree of distortion in 3D. In terms of ATRE, differences be-
tween the methods started to arise in the second half of the
stack with MSE and SIFT outperforming MI and SURF.

Fig. 3. Cross sections of volumes reconstructed using differ-
ent methods. The top row in each cross section corresponds
to I1 and the bottom row corresponds to I260. The contrast
(f2) and correlation (f3) measures are shown for each case.

3.4. Reconstruction smoothness

Results concerning reconstruction smoothness are shown in
Fig. 3 for each method. It is again important to note that the
visual examination is limited to a single cross-sectional slice
and also that the visual impression is dominated by salient
structures. In contrast, the numerical measures are computed
based on the entire volume, complementing the visual eval-
uation. Interestingly, the automated methods outperformed
the REF method in terms of the contrast and correlation
values. Especially in the case of the best-performing MSE
method, this was accompanied by some visible straighten-
ing of curved structures. Failure to differentiate between
the desired straightening of jagged edges and this type of
”over-smoothing” might be a shortcoming of these metrics.

4. CONCLUSIONS

We developed a framework for assessing the quality of 3D tis-
sue reconstructions using a panel of metrics and demonstrated
it by comparing several algorithms. An evaluation of different
parameter choices indicated that their effect on the results can
be substantial and should not be neglected. Contradictions
between different metrics underlined the necessity of using
multiple complementary metrics. In the future, the frame-
work will allow us to perform a comprehensive comparison
of different approaches to 3D reconstruction while extending
our dataset with other tissue specimens. The computational
test bench and the associated data will be made available to
the scientific community to support the evaluation of future
algorithms. It will also be crucial to develop methods for ob-
taining ground truth data in an automated and reliable manner.
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Abstract

Motivation: Digital pathology enables new approaches that expand beyond storage, visualization or

analysis of histological samples in digital format. One novel opportunity is 3D histology, where a

three-dimensional reconstruction of the sample is formed computationally based on serial tissue sec-

tions. This allows examining tissue architecture in 3D, for example, for diagnostic purposes.

Importantly, 3D histology enables joint mapping of cellular morphology with spatially resolved

omics data in the true 3D context of the tissue at microscopic resolution. Several algorithms have

been proposed for the reconstruction task, but a quantitative comparison of their accuracy is lacking.

Results: We developed a benchmarking framework to evaluate the accuracy of several free and

commercial 3D reconstruction methods using two whole slide image datasets. The results provide

a solid basis for further development and application of 3D histology algorithms and indicate that

methods capable of compensating for local tissue deformation are superior to simpler approaches.

Availability and implementation: Code: https://github.com/BioimageInformaticsTampere/

RegBenchmark. Whole slide image datasets: http://urn.fi/urn: nbn: fi: csc-kata20170705131652639702.

Contact: pekka.ruusuvuori@tut.fi

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Digitalization of pathology has been accelerated by improvements in

technology allowing acquisition of whole slide images (WSI)

(Ghaznavi et al., 2013; Griffin and Treanor, 2017). Besides

computer-aided facilitation of pathologists’ tasks, digital pathology

can enable new approaches like 3D histology, where three-

dimensional reconstructions of samples are formed in silico based

on serial sections (Magee et al., 2015; Roberts et al., 2012). While

other techniques allow imaging directly in 3D, they are currently

incapable of matching the subcellular resolution and throughput of

whole slide imaging. Examples of potential applications include con-

struction of data-driven computer models and improved diagnostics

of diseases associated with changes in the 3D microarchitecture of

tissue. Moreover, 3D histology is compatible with established histo-

pathological interpretation techniques and biochemical assays such

as immunohistochemistry or in situ hybridization. This raises inter-

esting prospects in view of recent advances in spatially resolved

omics (Mignardi et al., 2017; Ståhl et al., 2016). Pairing imaging

with genomic, epigenomic, transcriptomic and proteomic data in the

spatial context of tissue holds great promise for pathology and other

fields (Koos et al., 2015). Taking a step further, this could be per-

formed in 3D to truly probe the relationships between structural

and functional features as well as the heterogeneity and interplay

between different cell types in tumors, and significant projects are
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now pursuing these goals (Ledford, 2017; Rusk, 2016). These kind

of approaches have already led to the creation of brain atlases

(Amunts et al., 2013; Johnson et al., 2010; Lein et al., 2007). Such

high-dimensional data also represent an exciting challenge for new

ways of scientific visualization based e.g. on virtual reality techni-

ques (Calı̀ et al., 2016; Ledford, 2017; Theart et al., 2017).

Despite earlier computational and image acquisition bottlenecks

(Roberts et al., 2012), several algorithmic 3D histology solutions

were already proposed before the recent developments in digital

pathology (Ju et al., 2006; Wang et al., 2015). The key methodologi-

cal problem is how to accurately register a sequence of 2D images to

produce a 3D volume. Simply stacking the images does not result in

a coherent volume due to differences between the relative locations

and rotation angles of the sections and tissue deformations intro-

duced during embedding and sectioning (Gibson et al., 2013).

Algorithms for image registration (Sotiras et al., 2013) constitute the

methodological basis of 3D histology. These algorithms are used to

sequentially register each image with its neighbors to bring the entire

series into alignment (Magee et al., 2015; Wang et al., 2015).

Registration is accomplished by estimating transformations relating

the images. Rigid transformations only allow translation and rota-

tion of the entire image, while affine transformations are addition-

ally able to model anisotropic scaling. Locally varying

transformations, also called elastic models, can compensate for

deformations on a local scale. Considering several nearby sections

together (Saalfeld et al., 2012) or applying regularization may be

needed to obtain smooth, continuous 3D volumes (Casero et al.,

2017; Cifor et al., 2011; Gaffling et al., 2015; Ju et al., 2006). After

estimating the transformations, they need to be applied to the

images via interpolation, which is possibly followed by postprocess-

ing such as 3D visualization. Our focus is on the reconstruction step,

which is usually the most difficult and crucial part of the image

processing chain. Numerous approaches have been reported, relying

on manual alignment (Onozato et al., 2012; Paish et al., 2009),

semi-automatic methods using artificial landmarks (Hughes et al.,

2013; Rojas et al., 2015) and automated algorithms (Arganda-

Carreras et al., 2010; Braumann et al., 2005; Casero et al., 2017;

Cifor et al., 2011; Ju et al., 2006; Magee et al., 2015; Saalfeld et al.,

2012; Song et al., 2013; Stille et al., 2013; Xu et al., 2015).

Despite the widely acknowledged need for objective assessment

of algorithms (Meijering et al., 2016), an evaluation of modern com-

putational methodology for 3D histology is lacking. Moreover, the

common practice of relying only on visual inspections or a single

indirect metric is insufficient (Rohlfing, 2012). The previous com-

parison of algorithms was published a decade ago and only included

three basic approaches (Beare et al., 2008). We have previously

demonstrated a framework (Kartasalo et al., 2016) based on a panel

of indirect metrics and manually annotated landmarks allowing

direct quantification of reconstruction accuracy (Rohlfing, 2012). In

this study, we applied an extended version of the framework (see

Fig. 1) to address the problem of comparing algorithms for 3D his-

tology. As the basis of our evaluation, we used two WSI datasets

representing two different tissue types. One obstacle complicating

both the application and fair comparison of most algorithms is sen-

sitivity to various settings or hyperparameters, which typically have

to be selected by the user based on rules of thumb and tuned via trial

and error. Encouraged by their recent application in the context of

digital pathology, we employed automated hyperparameter selection

methods to adjust tunable parameters (Shahriari et al., 2016;

Teodoro et al., 2017).

As a baseline, we evaluated three basic methods: a least-squares

fit to landmarks (LS), an optimization-based approach (OPT) and a

method based on the Scale Invariant Feature Transform (SIFT)

(Lowe, 2004). More advanced methods included the Fiji/ImageJ

(Schindelin et al., 2012; Schneider et al., 2012) plugins

HyperStackReg (HSR), which is an extension of StackReg

(Thevenaz et al., 1998), RegisterVirtualStackSlices (RVSS), which is

based on bUnwarpJ (Arganda-Carreras et al., 2006), and

ElasticStackAlignment (ESA) (Saalfeld et al., 2012), which is part of

the TrakEM2 package (Cardona et al., 2012). In addition, we eval-

uated two commercial tools: Medical Image Manager (MIM)

(HeteroGenius Ltd, Leeds, UK) and Voloom (microDimensions

GmbH, Munich, Germany). While LS, OPT, SIFT and HSR are

based on global transformations, RVSS, ESA, MIM and Voloom use

elastic models which make it possible to account for local tissue

deformations. For a summary of the evaluated tools, see

Supplementary Table S1.

2 Materials and methods

2.1 Data collection and preprocessing
A murine prostate and a liver were fixed in PAXgeneTM

(PreAnalytiX GmbH, Hombrechtikon, Switzerland) and formalin,

respectively, embedded in paraffin, and cut into serial 5mm sections.

The liver was processed with a laser prior to embedding in order to

introduce artificial landmarks into the otherwise homogeneous tis-

sue. Four holes were successfully introduced into the sample. The

sections were hematoxylin-eosin (HE) stained and scanned at 20�
(pixel size 0.46mm) to obtain 260 (prostate) and 47 (liver) RGB

images. The images were processed in MATLAB R2016b (The

MathWorks Inc., Natick, MA, USA) to segment tissue from back-

ground and store the results as binary masks.

A total of 2448 landmarks were manually annotated. In the pro-

static tissue, four corresponding points preferably at the centers of

bisected nuclei were selected by two observers from each pair of

adjacent sections. For the liver, the four holes in each image were

marked by the same two observers. Most of the evaluated methods

do not allow direct application of transformations to coordinates

but support re-applying them to another stack of images. Therefore,

we stored the landmarks as images with four disks placed at the

landmark locations, each consisting of red, green, blue or yellow

pixels. Color is invariant to the applied transformations, allowing

Fig. 1. Evaluation framework. A series of tissue images is input to a recon-

struction method for registration. The transformations estimated by the

method are re-applied to masks defining the tissue region and images con-

taining landmarks. The registered tissue, mask and landmark images are

used to evaluate reconstruction accuracy based on numerical metrics and vis-

ual examination. Moreover, tunable settings can be optimized. (Color version

of this figure is available at Bioinformatics online.)

3014 K.Kartasalo et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/34/17/3013/4978049 by R
aila M

elin user on 16 July 2020



post-registration detection of the disks. The tissue, mask and land-

mark images were downsampled to different resolutions and stored

as TIF. See Supplementary Methods for details.

2.2 Evaluation of reconstruction accuracy
2.2.1 Target registration error

Pairwise target registration error (TRE) (Fitzpatrick et al., 1998), a

direct measure of registration accuracy (Rohlfing, 2012), was quan-

tified for each pair of adjacent sections. From the landmark images,

we detected each landmark based on the colors of the disks and

obtained their coordinates as the centroids of the detected pixels.

For N pairs of sections, TRE was measured for each point (j¼ {1, 2,

3, 4}) and section pair (i¼ {1, 2,. . ., N}) as:

TREj;i ¼ kX j;i � X j;iþ1k (1)

that is, the Euclidean distance between the location Xj,i of point j on

the section i and the location of the corresponding point on section

iþ1.

2.2.2 Accumulated error

Accumulated target registration error (ATRE) was calculated to

quantify distortion accumulated through the stack, referred to as

‘the banana problem’ (Malandain et al., 2004) or ‘the shear effect’

(Hughes et al., 2013). Each landmark of the prostate dataset is only

present on two consecutive sections and pairwise errors on different

sections should thus be independent of each other. However, in the

presence of accumulated errors, the error vectors on nearby sections

are correlated (Beare et al., 2008). We quantified this effect by treat-

ing the displacement of each landmark (j¼ {1, 2, 3, 4}) for each pair

of sections (i¼ {1, 2,. . ., N}) in vector form as X j;i � X j;iþ1 and aver-

aging the four vectors to obtain the mean displacement of each

entire section. We then computed the cumulative sum of these mean

vectors, proceeding from section 1 to section N. For section k,

ATRE was defined as the Euclidean norm of the cumulative dis-

placement vector:

ATREk ¼
�����
Xk

i¼1

X4

j¼1

X j;i � X j;iþ1

4

����� (2)

For the liver, a more direct quantification of ATRE was possible

due to the landmarks extending through the sample. Ideally, the

landmarks should lie on four parallel lines. In practice, parallelism

could be violated due to slight movement of the sample between

repeated applications of the laser. In a distorted volume, the land-

marks deviate from the linear trajectories when proceeding through

the stack. To measure this, we fitted a line in 3D to each of the four

series of landmarks, minimizing mean squared error on the image

plane. ATRE was then quantified for section i and landmark j as the

Euclidean distance between the location of the landmark Xj,i and

that of the fitted line Yj,i, on the image plane:

ATREj;i ¼ kX j;i � Y j;ik (3)

2.2.3 Tissue shrinkage and overlap

As certain reconstruction methods tend to shrink the tissue, relative

change in tissue area (DA-%) was computed based on the tissue

masks for each section. Overlap was quantified based on the masks

for each section pair using the Jaccard index (Rohlfing, 2012). The

Jaccard index can be considered a quality measure for pixel-wise

metrics, as computing them for a pair of sections with little overlap

can provide misleading results. Let A denote the set of tissue pixels

of section i and B the set of tissue pixels of section iþ1. The Jaccard

index is defined as:

Jaccardi ¼
A \ Bj j
A [ Bj j (4)

2.2.4 Pixel-wise similarity

For each section pair, we evaluated the similarity of corresponding

pixels. After conversion to grayscale we computed the following

measures: root mean squared error (RMSE), normalized cross corre-

lation (NCC), mutual information (MI) and normalized mutual

information (NMI) (Studholme et al., 1999). Only the set of over-

lapping tissue pixels A\B was considered. These indirect metrics

provide information from the entire tissue area and complement the

TRE evaluation.

2.2.5 Reconstruction smoothness

We quantified the smoothness of the reconstruction using contrast f2
and correlation f3 based on gray-level co-occurrence matrices

(GLCMs) (Cifor et al., 2011; Gaffling et al., 2015; Haralick and

Shanmugam, 1973). Low contrast and high correlation indicate a

smooth reconstruction. We formed the GLCM for each pair of gray-

scale images based on pixels A\B and summed them to obtain a sin-

gle GLCM for the whole volume.

2.3 3D reconstruction

• LS: Least-squares fitting of an affine transformation to the land-

marks was implemented in MATLAB R2016b. The result is in

principle unaffected by error accumulation (Xu et al., 2015).
• OPT: Optimization-based reconstruction implemented in

MATLAB R2016b was used to estimate pairwise affine transfor-

mations by minimizing the value of pixel-wise MSE.
• SIFT: Feature-based reconstruction was performed by computing

SIFT keypoints (Lowe, 2004) for each image pair, establishing

putative matches and robustly fitting an affine transformation to

the point pairs (Fischler and Bolles, 1981). We used the

RegisterVirtualStackSlices (Arganda-Carreras et al., 2006) imple-

mentation in Fiji, also used as an initial step in RVSS and ESA.
• HSR: HyperStackReg v. 5 (Ved P. Sharma, Albert Einstein

College, https://sites.google.com/site/vedsharma/imagej-plugins-

macros/hyperstackreg) was run in Fiji to perform reconstruction

using affine transformations.
• RVSS: Elastic reconstruction based on the bUnwarpJ algorithm,

which is a combination of SIFT and optimization based methods,

was applied using the RegisterVirtualStackSlices plugin in Fiji.
• ESA: The algorithm implemented in the ElasticStackAlignment

plugin (Saalfeld et al., 2012) was run via the TrakEM2 package

(Cardona et al., 2012) in Fiji to perform elastic reconstruction

based on a combination of SIFT and optimization methods.
• MIM: Medical Image Manager, trial v. 0.94, was applied using

images subsampled by a factor of 4 (magnification of 5�) as

input. Sections 130 and 24 were used as references for the pros-

tate and liver, respectively. We varied the initial magnification

(0.3125�, 0.625�, 1.25� or 2.5�) and the number of non-

rigid levels (1, 2, 3 or 4), thus modifying the image resolution

used.
• Voloom: Trial v. 2.7.1 was used for elastic 3D reconstruction.

Fiji (Schindelin et al., 2012; Schneider et al., 2012) (v. 1.51h) plugins

were run via ImageJ-MATLAB interface (v. 0.7.1) (Hiner et al.,

2016). Transformations were re-applied to the mask and landmark
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images. Output was saved as TIF. See Supplementary Methods for

details.

2.4 Parameter optimization
In the case of MIM, which had to be operated interactively, we eval-

uated each combination of tunable values by a parameter sweep.

Tunable parameters of the other methods were optimized via

Bayesian optimization (Shahriari et al., 2016; Snoek et al., 2012),

which is well-suited for such problems, where the objective function

is computationally expensive to evaluate, nonconvex, multimodal,

and typically has low to moderate dimensionality. Bayesian optimi-

zation has been shown to perform favorably in comparison to other

global optimization algorithms on benchmarking functions (Jones,

2001) as well as on real WSI data (Teodoro et al., 2017). We used

MATLAB’s bayesopt implementation (https://www.mathworks.

com/help/stats/bayesian-optimization-algorithm.html) with mean

pairwise TRE as the objective function. We utilized a Gaussian proc-

ess model of the objective function and an automatic relevance

determination (ARD) Matérn 5/2 kernel (Snoek et al., 2012) with

‘expected-improvement-plus’ as the acquisition function (Bull,

2011). Reconstructions with output image dimensions over fivefold

compared to the input due to extreme error accumulation were con-

sidered failures. The number of variables to optimize was 2 (OPT),

4 (SIFT), 7 (RVSS) or 15 (ESA). We first optimized SIFT alone and

used the optimal values for the SIFT step of RVSS and ESA. See

Supplementary Table S1 for descriptions of the parameters. The

number of seed points was set to twice the number of variables. We

ran 30 iterations for OPT due to its simple objective function

(Kartasalo et al., 2016) and 100 iterations for the other tools. We

used the prostate images subsampled by factors of 8 and 16, except

for ESA, for which optimization was only feasible using the factor

16. Parameters optimized for ESA using the lower resolution were

scaled to be used with the high resolution images. Computations

were run on a workstation with Intel Xeon E5-1660 v3 3 GHz and

64 GB of RAM (low resolution) and a cluster node with Intel Xeon

E5-2680 v3 2.5 GHz and 128 GB of RAM (high resolution).

3 Results

3.1 Effect of image resolution on evaluation metrics
First, we analyzed whether our metrics depend on image resolution

(see Supplementary Results). TRE, ATRE, Jaccard and DA-% are

essentially invariant to image resolution. They can be compared

across different datasets and resolutions, as long as the accumula-

tion of interpolation errors is avoided. RMSE, NCC, MI, NMI, f2
and f3 depend both on resolution and image content, and these met-

rics should thus only be compared within the same dataset and reso-

lution. In all following analyses, we used images subsampled to

pixel sizes of 7.36 and 3.68 mm, referred to as low and high resolu-

tion, respectively. The pixel sizes are close to the 5mm section spac-

ing and metrics computed from these images are not distorted by

interpolation errors. Furthermore, we will only present RMSE as a

measure of pixelwise similarity and f2 as a measure of reconstruction

smoothness due to their strong correlations with NCC, MI, NMI

and f3 (see Supplementary Table S1 for details).

3.2 Automated parameter tuning
Of the evaluated methods, LS, HSR and Voloom do not have tuna-

ble parameters. For OPT, SIFT, RVSS, ESA and MIM, we tuned the

parameters automatically, minimizing the mean TRE computed for

the prostate dataset. Parameter optimization took approximately

1500 hours in total to compute, producing 23 terabytes of data.

The optimization mostly converged close to the final solution in

a handful of iterations (see Supplementary Results). By inspecting

the variation in mean TRE values obtained during the process it is

possible to reach a semi-quantitative view of the sensitivity of each

method towards parameter adjustments. OPT and SIFT produced

similar results for most parameter combinations while ESA, MIM

and especially RVSS exhibited more sensitivity to parameter tuning.

We evaluated possible connections between accuracy and com-

putation time, which might require the user to make a trade-off

when selecting parameters (see Supplementary Results). The time

taken by OPT varied only by a few minutes, except for the single

inaccurate solutions where the parameters have not allowed proper

convergence of the algorithm. For SIFT, there were no signs of a

connection between accuracy and computation time. The differences

in computation time between the fastest and slowest iterations of

RVSS were roughly twofold and the fastest iterations were generally

the ones with the highest error, indicating that minimizing the com-

putation time of RVSS would sacrifice accuracy. In the case of ESA,

the effect of parameter tuning was dramatic, leading to variation

from approximately 12 min to more than 41 h. However, any clear

relationship between computation time and accuracy was not

observed.

3.3 Comparison of algorithms based on the prostate

dataset
Results for the prostate dataset are listed in Table 1. The TRE values

of LS based on landmarks by the two observers (LS1 and LS2) estab-

lish a baseline of accuracy. The case where the same landmarks were

used for reconstruction and for calculating errors (LS1) is an opti-

mistic estimate, representing the best accuracy reachable using an

affine model. The errors calculated based on landmarks not used for

reconstruction (LS2) represent a more realistic estimate of the accu-

racy of LS, serving as a cross-validation experiment between the two

observers. The discrepancy between the optimistic and cross-

validation results indicates that the LS solutions represent overfitting

to the landmarks. Therefore, any methods with accuracy approach-

ing LS can be regarded as highly accurate, since the other methods

are not provided with any information concerning the landmarks.

The systematic difference between TRE and ATRE calculated based

on the two sets of landmarks (see Supplementary Table S1) is due to

the fact that the two observers were free to select different land-

marks and the error is generally not constant over the entire tissue

section. However, using either set of landmarks leads to the same

conclusions regarding the relative accuracy of the methods, con-

firmed by linear correlation coefficients of approximately 0.999 for

mean TRE, 0.995 for maximum TRE, 0.888 for mean ATRE and

0.901 for maximum ATRE between the two sets of landmarks for

the low resolution reconstructions. This also holds for the high reso-

lution with corresponding values of 0.999, 0.986, 0.894 and 0.922.

This indicates that even though four landmarks per section pair rep-

resent a relatively sparse sampling of the entire tissue section area,

this number of landmarks is sufficient for reliable error estimation.

All methods benefited from parameter tuning on both image res-

olutions based on most of the metrics, using either set of landmarks

for evaluation (see Table 1 and Supplementary Results). Of the top

three methods, MIM and RVSS obtained better accuracy using high

resolution images and ESA worked better on the low resolution

images. ESA and MIM reached similar mean TRE values, slightly

better than RVSS and approaching or exceeding the accuracy of LS.
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In terms of maximum TRE and ATRE, the three methods were com-

parable, but RVSS reached slightly lower ATRE than ESA or MIM.

Among all tools, ESA and MIM also obtained the highest Jaccard

index values. The RMSE and f2 metrics do not allow comparison

across different image resolutions and one should note that MIM’s

output was always stored at the lower resolution for technical rea-

sons. Considering these limitations, we can observe that ESA per-

formed best in terms of these metrics on both image resolutions

ahead of RVSS. Changes in tissue area introduced by ESA, MIM

and RVSS were moderate. Behind the top three, most other tools

reached accuracy comparable to each other. The worst results were

obtained using default parameters and for some methods, most

notably ESA and RVSS, they were even comparable to the unregis-

tered original images.

Visual examination in 3D revealed differences in the geometry of

the reconstructions formed using each of the methods (Fig. 2).

Compared to the undistorted reference (LS1), the distortions intro-

duced by OPT, SIFT, HSR, ESA and MIM were a manifestation of

the typical ‘banana-into-cylinder’ issue. This gradual straightening

of curved structures is most clearly seen here in the displacement of

the urethra at the top of the stacks. As indicated by the numerical

ATRE values, the overall magnitude of this effect was rather similar

across the tools. The distortions caused by RVSS and Voloom were

more complex, representing clockwise twisting of the sample when

seen from the top.

3.4 Comparison of algorithms based on the liver dataset
Results for the liver dataset are listed in Table 2. The four artificial

landmarks were annotated by both observers and the two sets of

TRE and ATRE values can be treated as replicates. This is reflected

by linear correlation coefficients of approximately one (ranging

from 0.99993 to 0.99998) for mean TRE, maximum TRE, mean

ATRE and maximum ATRE calculated based on the two sets of

landmarks (see Supplementary Table S1). In this case, LS thus repre-

sents an optimistic estimate of the accuracy reachable with a global

affine model. Compared to the prostate sample, this dataset is more

challenging to reconstruct due to the more homogeneous appearance

of the tissue and the presence of deformations such as folded and

torn tissue. This is reflected by the metrics, which generally indicate

higher errors, except for RMSE and f2 which are lower due to the

more homogeneous image content. Ideally, it would be convenient

to process different datasets without having to readjust parameters.

With this in mind, we reused the parameters optimized for the pros-

tate dataset, treating the evaluation on the liver dataset as an inde-

pendent validation experiment. Based on most metrics, the

optimized parameters generally resulted in an improvement over the

default parameters also when applied to the liver dataset (see

Table 2 and Supplementary Results).

As with the prostate, the lowest TRE values among the auto-

mated methods were achieved by ESA on the lower resolution and

MIM on the high resolution data with RVSS being the third best

method. The other methods reached TRE values comparable to each

other. In terms of maximum TRE and ATRE, the conclusion was

less clear. Voloom performed better on the lower resolution, reach-

ing a maximum TRE second only to LS, while ESA and OPT also

reached comparable values. On this dataset, MIM suffered from

larger maximum errors compared to the higher quality prostate

sample. The lowest mean ATRE values among all automated meth-

ods were obtained by ESA, MIM and Voloom, while in terms of

maximum ATRE Voloom was superior to ESA and MIM. ESA was

the top method in terms of RMSE and f2, and MIM obtained the

highest Jaccard index. Again, the poorest results were obtained

when using the default values of tunable parameters.

Visualization in 3D supported the numerical results (Fig. 3).

ESA, MIM and Voloom formed reconstructions with landmarks

concentrated on four roughly parallel lines as expected, but some

Table 1. Evaluation results for the prostate data at low (top) and high resolution (bottom)

Prostate, low resolu�on

Algorithm TRE1 μ TRE1 max TRE1 σ ATRE1 μ ATRE1 max ATRE1 σ RMSE μ RMSE σ Jaccard μ Jaccard σ Contrast f2 ΔA-% μ ΔA-% σ
Unregistered 0.00
LS 1 8.89
LS 2 22.22
OPT default 7.68
OPT op�mal 7.33
SIFT default 13.20
SIFT op�mal 8.84
HSR 5.32
RVSS default 21.13
RVSS op�mal 5.44
ESA default 0.10
ESA op�mal 2.73
MIM default 2.38
MIM op�mal 2.46
Voloom

489.26 2392.19 444.68 1153.08 2528.76 728.66 64.29 6.58 0.72 0.23 4260.86 0.00
15.60 133.84 15.84 3.55 7.94 1.45 44.87 8.66 0.97 0.02 2150.63 5.28
36.81 426.21 44.47 318.71 523.71 172.64 44.96 8.48 0.97 0.02 2126.81 31.75
74.39 840.69 103.75 1207.72 2009.45 613.59 48.92 9.48 0.94 0.04 2538.84 –0.19
23.89 350.99 28.67 417.90 648.24 206.70 42.83 8.65 0.97 0.02 1954.89 6.52
24.74 362.78 30.43 442.32 645.14 183.04 43.96 9.16 0.97 0.02 2066.20 –6.77
22.90 383.45 28.62 474.01 680.56 204.64 43.31 8.79 0.97 0.02 2001.13 –1.40
24.02 664.22 36.11 450.51 752.32 245.11 46.26 8.64 0.96 0.02 2280.25 3.18
93.96 4805.50 281.03 1228.69 2659.39 741.15 45.63 10.15 0.93 0.11 2072.08 –33.09
32.18 850.09 67.36 954.97 1353.44 431.53 42.46 8.89 0.96 0.04 1843.81 –8.99

368.07 2278.21 442.01 834.71 1982.43 557.07 57.53 9.22 0.78 0.25 3127.28 0.01
15.81 476.33 35.67 414.62 602.38 184.81 38.41 9.87 0.98 0.02 1603.96 2.34
29.91 401.78 32.29 518.58 934.15 242.96 57.71 7.70 0.97 0.02 3449.70 0.01
24.38 395.29 29.57 551.12 780.07 231.99 56.03 8.05 0.97 0.02 3266.80 –0.62
39.18 730.44 48.39 713.29 1232.42 408.67 53.99 7.13 0.96 0.03 2988.03 –3.61 3.38

Prostate, high resolu�on

Algorithm TRE1 μ TRE1 max TRE1 σ ATRE1 μ ATRE1 max ATRE1 σ RMSE μ RMSE σ Jaccard μ Jaccard σ Contrast f2 ΔA-% μ ΔA-% σ
Unregistered 489.25 2392.11 444.69 1152.97 2526.57 728.25 69.73 6.61 0.72 0.23 5021.08 0.00 0.00

77.819.449.939220.079.004.818.2572.112.580.388.5184.43194.511 SL
80.2282.1304.809220.079.062.818.2557.96119.51563.51325.4419.62407.632 SL
67.957.12–28.404350.049.012.920.7535.43689.310222.723195.30129.40959.47tluafed TPO
40.537.143.317220.079.034.857.0563.10210.33697.20464.9286.54352.42lamitpo TPO
82.5144.31–95.838211.059.078.815.2540.65220.854164.77579.91317.154571.26tluafed TFIS
67.644.1–82.367220.079.074.842.1591.77116.19563.28363.6240.67323.22lamitpo TFIS
06.530.123.099220.079.073.862.3513.93258.33718.63453.6350.06619.32RSH
52.3160.82–03.055260.069.015.962.0522.84102.070116.15381.9602.851153.43tluafed SSVR

l 19.49 446.90 28.31 352.14 579.83 162.65 48.92 8.56 0.97 0.02 2470.84 –4.28 3.62
80.020.040.340452.077.025.895.4689.04607.822234.43944.14472.872295.383tluafed ASE
03.212.112.643230.079.054.0118.6485.01322.48909.32623.8413.56545.12lamitpo ASE
00.373.0–59.923330.069.021.847.6524.09292.501188.38605.5477.56415.92tluafed MIM

l 15.17 456.13 24.97 493.14 706.91 211.23 53.03 8.29 0.98 0.02 2944.42 –0.76 3.40
32.392.4–50.549330.069.096.623.2675.10472.632164.78682.6511.48653.34mooloV

Note: Results for the unregistered images, LS based on landmarks by observer 1 (LS1) or 2 (LS2) and the automated methods (OPT, SIFT, HSR, RVSS, ESA,

MIM, Voloom) using default or optimized parameters. Mean (l), maximum (max) and standard deviation (r) over all sections are shown. TRE and ATRE based

on landmarks by observer 1 are in lm. In the online version, columns with TRE, ATRE, RMSE, f2 and DA-% are colored from low (blue) to high values (red).

Columns with Jaccard are colored from high (blue) to low values (red). (Color version of this table is available at Bioinformatics online.)
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Fig. 2. Reconstructions using (a) LS based on landmarks by observer 1, (b) OPT, (c) SIFT, (d) HSR, (e) RVSS, (f) ESA, (g) MIM and (h) Voloom. Optimized parame-

ters and the most suitable resolution were used for each method. The dots represent the trajectory of accumulated target registration error from section to sec-

tion. The horizontal lines indicate the direction and magnitude of the cumulative mean displacement of each section relative to the ideal error-free trajectory

(vertical line). Magnified views are shown next to each reconstruction. Viewing the high-resolution color version of the Figure online is recommended. (Color ver-

sion of this figure is available at Bioinformatics online.)

Table 2. Evaluation results for the liver data at low (top) and high resolution (bottom)

Liver, low resolu�on

Algorithm TRE1 μ TRE1 max TRE1 σ ATRE1 μ ATRE1 max ATRE1 σ RMSE μ RMSE σ Jaccard μ Jaccard σ Contrast f2 ΔA-% μ ΔA-% σ

49.851.652.522170.009.093.696.4369.5351.41378.5226.5587.69303.721 SL
01.955.757.032170.009.014.667.4355.6314.81325.9207.5572.10425.332 SL

69.999.51–14.025160.029.062.672.8300.3813.70451.81161.71158.81799.68RSH

Unregistered 726.81 2558.97 528.95 543.56 1706.62 298.02 44.90 5.03 0.67 0.15 2031.62 0.00 0.00

OPT default 200.11 1120.63 197.43 189.74 933.68 154.81 39.70 5.90 0.86 0.08 1663.83 –40.28 21.10
l 84.86 617.62 112.51 97.28 482.65 80.44 35.26 6.44 0.92 0.06 1293.17 –10.76 8.69

SIFT default 178.38 3900.82 383.37 729.60 2096.57 511.87 36.28 7.08 0.86 0.12 1327.28 –6.61 10.43
l 173.15 3755.45 453.05 668.41 2837.41 572.90 35.07 6.91 0.87 0.14 1258.35 –0.78 7.44

RVSS default 330.02 3764.99 600.79 656.13 2186.17 494.23 36.85 7.46 0.92 0.08 1338.65 –13.23 14.70
l 252.32 2689.75 436.63 855.53 1677.06 334.83 35.20 7.45 0.85 0.16 1261.35 –0.39 3.31

ESA default 717.22 2558.97 539.55 538.28 1702.38 302.25 44.44 6.07 0.67 0.16 1992.03 0.00 0.01
l 46.32 618.27 92.03 63.72 599.97 68.07 32.23 7.03 0.90 0.08 1075.18 –0.44 2.27

MIM default 121.44 2241.90 327.01 380.34 1500.07 370.61 42.83 5.70 0.90 0.11 1857.95 0.41 3.49
l 79.74 1767.90 169.53 75.82 1233.78 108.02 42.58 5.59 0.92 0.08 1841.03 2.34 6.68

15.578.190.444170.019.093.596.7321.1787.28321.0818.30164.55589.09mooloV

Liver, high resolu�on

Algorithm TRE1 μ TRE1 max TRE1 σ ATRE1 μ ATRE1 max ATRE1 σ RMSE μ RMSE σ Jaccard μ Jaccard σ Contrast f2 ΔA-% μ ΔA-% σ

29.878.598.455170.009.078.512.9359.5383.41328.5206.5510.89352.721 SL
80.972.738.065170.009.088.582.9345.6309.71315.9226.5543.10435.332 SL

78.0170.91–96.638170.029.037.542.2499.02188.89534.35155.33136.711180.88RSH

Unregistered 726.87 2559.07 528.92 543.55 1706.53 298.04 48.79 4.90 0.67 0.15 2396.69 0.00 0.00

OPT default 202.50 1115.20 198.27 185.80 961.31 154.84 43.85 5.48 0.86 0.08 2000.94 –40.49 20.46
l 83.68 625.48 112.30 97.24 481.94 79.82 39.75 5.90 0.92 0.06 1628.50 –14.25 9.50

SIFT default 145.16 1388.05 173.41 223.89 1052.81 146.44 41.91 6.28 0.88 0.08 1782.81 –6.94 6.81
l 84.94 1026.27 130.96 157.17 630.95 117.20 39.51 6.01 0.90 0.08 1590.79 0.18 4.62

RVSS default 179.82 1097.54 165.98 332.02 1052.27 165.93 42.31 5.84 0.92 0.06 1813.05 –7.96 8.40
l 79.26 1135.00 135.65 167.36 602.79 123.38 38.97 6.17 0.90 0.08 1548.98 –1.57 3.64

ESA default 693.75 2559.07 544.51 538.73 1711.11 301.12 47.90 6.70 0.68 0.16 2315.71 0.00 0.02
l 60.60 929.16 142.25 56.58 832.23 99.19 37.68 6.44 0.90 0.09 1448.05 0.44 1.20

MIM default 95.74 1150.34 156.76 150.75 866.23 134.37 43.27 5.98 0.90 0.09 1896.02 0.85 3.79
l 65.42 1060.78 122.46 66.54 646.40 78.31 42.00 5.70 0.92 0.07 1792.75 3.38 6.73

Voloom 144.08 3335.29 399.41 113.82 3159.53 274.36 42.77 4.84 0.91 0.07 1848.66 1.45 5.41

Note: Results for the unregistered images, LS based on landmarks by observer 1 (LS1) or 2 (LS2) and the automated methods (OPT, SIFT, HSR, RVSS, ESA,

MIM, Voloom) using default or optimized parameters. Mean (l), maximum (max) and standard deviation (r) over all sections are shown. TRE and ATRE based

on landmarks by observer 1 are in lm. In the online version, columns with TRE, ATRE, RMSE, f2 and DA-% are colored from low (blue) to high values (red).

Columns with Jaccard are colored from high (blue) to low values (red). (Color version of this table is available at Bioinformatics online.)
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distortion is visible at the bottom part of the stack reconstructed by

MIM. These kind of distortions were more severe in the case of

OPT, SIFT, HSR and RVSS.

4 Discussion

Based on this study, methods utilizing locally varying transforma-

tions (ESA, MIM, RVSS, Voloom) were superior to those con-

strained to global affine models (OPT, SIFT, HSR). ESA was the

only method to consistently outperform or match the other

approaches on two datasets based on the majority of metrics. In the

case of the higher quality prostate dataset, differences in accuracy

between the tools were rather subtle. All three top-performing meth-

ods on this dataset incorporate an elastic transformation model:

MIM and RVSS use a B-spline grid and ESA is based on a piecewise

linear mesh. While methods relying on a global transformation

model also performed reasonably well, the additional accuracy

offered by elastic transformations could be crucial when microstruc-

ture at the cellular scale is of interest. In the case of the liver sample,

more profound differences between the methods were observed,

likely due to the more challenging tissue content and the presence of

deformations, which cannot be compensated for using a global

model. ESA, MIM and Voloom stood out from the other methods.

While Voloom appeared to be less accurate on average compared to

ESA and MIM based on mean TRE, it demonstrated the lowest

maximum and accumulated errors of all automated methods, indi-

cating capability to avoid propagation of errors even in the presence

of considerable deformations. The ability of the algorithms to toler-

ate such deformations is a significant benefit. Due to the mostly

manual nature of histological sectioning and brittleness of the thin

tissue sections, deformations in the form of folds and tears often

occur. This challenge is especially encountered in 3D histology,

when uninterrupted sequences of sections are desired.

Another important property of algorithms to consider is sensitiv-

ity to adjustable parameters. Even an algorithm that produces highly

accurate results with a carefully selected set of parameter values will

be useless if the user has little chance of finding this set of values.

Comparing algorithms from this perspective is difficult. Each algo-

rithm has a different set of parameters and the range of values to

evaluate has to be selected for each parameter, which can in turn

affect the amount of variation observed in the results. Nevertheless,

this study still provides a semi-quantitative view of the sensitivity of

the studied algorithms against parameter adjustments. Of the eval-

uated methods, LS, HSR and Voloom are the most convenient due

to their lack of tunable parameters. OPT and SIFT also produced

similar results with most parameter values. The results produced by

ESA varied greatly depending on parameters, but we discovered

numerous combinations leading to almost optimal results. In the

case of MIM, there are only a handful of tunable parameters and

they are relatively easy to tune. Moreover, ESA and MIM appear to

Fig. 3. Reconstructions using (a) LS based on landmarks by observer 1, (b) OPT, (c) SIFT, (d) HSR, (e) RVSS, (f) ESA, (g) MIM and (h) Voloom. Optimized parame-

ters and the most suitable resolution were used for each method. The locations of the four landmark points on each section are indicated with dots, shown

together with lines of best fit to each of the four series of points. Note that the scale of the vertical axis is different from the horizontal axes in the visualization.

Viewing the high-resolution color version of the Figure online is recommended. (Color version of this figure is available at Bioinformatics online.)
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be well-behaving in the sense that parameters optimized for the

prostate dataset also suited the liver dataset. In contrast, RVSS was

found to be difficult to optimize and even though its accuracy using

optimized settings was close to ESA and MIM on the prostate data-

set, reaching this level of accuracy without automated parameter

tuning would be challenging.

An open question common to all of the methods is how image

resolution affects reconstruction accuracy. A pixel size close to the

section spacing is often recommended (Amunts et al., 2013;

Braumann et al., 2005; Dauguet et al., 2007; Ju et al., 2006;

Kartasalo et al., 2016; Saalfeld et al., 2012) based on the assumption

that objects smaller than this are only visible on a single section and

are thus not useful for registration, and may even introduce errors

(Beare et al., 2008). However, suitably oriented elongated structures

such as blood vessels can be observed on several sections even if

their diameter on the image plane is smaller than the section spacing.

In principle, some algorithms might thus benefit from a smaller pixel

size. We evaluated reconstruction accuracy using pixel sizes of 3.68

and 7.36 mm. Based on the rule of thumb above, it is unclear which

one of these should be preferred given a section spacing of 5 mm.

Our results indicate that using a pixel size close to the section spac-

ing is a reasonable starting point, but the optimal image resolution

depends on the algorithm and also somewhat on the image content.

Furthermore, we cannot rule out the possibility that algorithms

which performed better on the high resolution images, most notably

MIM, might benefit from an even smaller pixel size. In conclusion,

the image resolution thus needs to be selected experimentally for

each application and algorithm.

The two samples selected for this study are markedly different in

their histological composition. The fact that the top methods per-

formed well on both the prostate and the liver dataset without any

retuning of parameters indicates that these methods are not overly

sensitive to tissue appearance, and that the results obtained in this

study are not specific to a single dataset. However, some variation

in the relative performance of the algorithms on the two datasets

was still observed. Thus, collecting and annotating additional data-

sets representing diverse tissue types and other histological stainings,

such as immunohistochemistry, remains an important goal for

future studies.

While we evaluated a comprehensive set of methods for 3D his-

tology, it might be worthwhile to adapt general-purpose image regis-

tration algorithms to this context. Another opportunity, not

supported by any of the methods here, could be the exploitation of

additional data obtained e.g. by magnetic resonance imaging or in

the form of blockface images (Amunts et al., 2013; Casero et al.,

2017; Dauguet et al., 2007; Gibson et al., 2013; Johnson et al.,

2010; Stille et al., 2013). Furthermore, although advances in image

acquisition and processing have enabled the first steps towards 3D

histology, sample preparation still constitutes a significant bottle-

neck. In the future, emerging technologies for automated sample

preparation (Onozato et al., 2011) or integrated sectioning and

imaging (Li et al., 2010; Ragan et al., 2012) might potentially trans-

form 3D histology into a high-throughput process.
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Metastasis Detection fromWhole Slide
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� Abstract
Digital pathology has led to a demand for automated detection of regions of interest,
such as cancerous tissue, from scanned whole slide images. With accurate methods
using image analysis and machine learning, significant speed-up, and savings in costs
through increased throughput in histological assessment could be achieved. This article
describes a machine learning approach for detection of cancerous tissue from scanned
whole slide images. Our method is based on feature engineering and supervised learn-
ing with a random forest model. The features extracted from the whole slide images
include several local descriptors related to image texture, spatial structure, and distribu-
tion of nuclei. The method was evaluated in breast cancer metastasis detection from
lymph node samples. Our results show that the method detects metastatic areas with
high accuracy (AUC5 0.97–0.98 for tumor detection within whole image area,
AUC5 0.84–0.91 for tumor vs. normal tissue detection) and that the method general-
izes well for images from more than one laboratory. Further, the method outputs
an interpretable classification model, enabling the linking of individual features to
differences between tissue types. VC 2017 International Society for Advancement of Cytometry

� Key terms
metastasis detection; digital pathology; computer aided diagnosis; whole slide images;
machine learning; random forest; breast cancer; sentinel lymph nodes

INTRODUCTION

IN recent years, improvements in computational power and whole slide digital scan-

ners have allowed digitalization of histopathological tissue sections and enabled the

development of digital pathology into a routine practice (1). Histopathological whole

slide images (WSI) contain vast amounts of data, for which digital pathology enables

quantitative analysis and the utilization of all available data, allowing for more infor-

mation to be gained from the images (2,3). This has led to increased interest in the

development of image analysis tools for tasks such as automatic detection of regions of

interest (4), stain normalization (5), and nuclei detection (6). These advances hold

great promise for providing clinical decision support systems for pathologists (7).

Breast cancer is the most common malignant disease in women worldwide (8).

In less developed countries, it is the most frequent cause of cancer death in women,

while in developed countries it is the second most common cause of cancer death

after lung cancer (8). With over 1.7 million new cancer cases diagnosed annually,

diagnosis, and treatment of breast cancer poses a humane as well as an economic

challenge all over the world.

In breast cancer patients, the main cause of death is metastasis at distant sites of

the body. Metastasis in sentinel lymph nodes is one of the most important prognostic
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variables in breast cancer (9). Traditional histopathological

diagnosis is, however, time-consuming as well as prone to

misinterpretation and subjectivity. Automated detection of

lymph node metastasis could facilitate the task of pathologists

by reducing their workload in breast cancer diagnostics and

overcome the subjective interpretation problem (10). Ideally,

automated analysis would screen the samples and provide the

detected regions for pathologist review, or even proceed

directly to decisions. A more realistic scenario is to use auto-

mated analysis for pre-screening the images in order to give

supporting information and to potentially exclude areas not

relevant for diagnosis.

As diagnosis of cancer requires a significant amount of

expertise—in practice, a pathologist—it is natural that any

automated methods should be capable of incorporating or

mimicking such knowledge in their decision making process.

Certain qualitative decision rules apply in the diagnosis, and

in order to automatize the process, such rules should be

replaced by quantitative analysis of numerical data. Supervised

machine learning provides a powerful tool for deriving deci-

sion rules based on example data. Traditionally, supervised

learning involves the process of feature extraction from images

prior to applying the learning algorithm. Thus, in addition to

providing the teaching samples by outlining regions of tumor

content and normal tissue, expert, and prior knowledge can

be included in the feature generation step.

A number of studies available in the literature show the

great potential of machine learning tools in digital pathology

applications, such as in the detection of regions of interest

(ROI), or in phenotype, cell type, or tissue type classification,

see Refs. 11–15 for recent examples. In order to use learning

based methods, a training dataset is required, that is, slides/

images for which the ground truth segmentation/annotation

of ROIs is available. Typically, this approach utilizes available

training data both for determining the decision rules and for

selecting the features to be used in the decision process, where

the latter property may be either a separate step or belong

intrinsically to the classifier design (16,17). Recently, methods

relying on built-in automated feature extraction and deep

learning, such as convolutional neural networks, have gained

ground in classification and detection tasks (18–21). Using

the deep learning approach, several breakthrough results in

contest challenges and image classification tasks have been

achieved (22–24). While appealing due to the high accuracy in

tasks where a large amount of training data is available, meth-

odology for interpreting a deep classifier model is currently

lacking.

The requirement of a large and representative annotated

dataset when applying machine learning for image segmenta-

tion poses a challenge in practice (2). Generation of such

annotations is expensive, since it requires expertise and time

of pathologists, and an extensive amount of manual work

especially when considering pixelwise annotations. Thus,

datasets of decent size paired with ground truth information

are extremely valuable for the community developing the

detection and segmentation methods. Recently, challenges

and contests organized within conferences in the field of

biomedical image analysis have gained interest from the com-

munity of image analysis developers. Such events facilitate the

sharing of new ideas and best practices. More importantly,

they provide annotated datasets for the use of the community.

In this study, we use data from the Camelyon16 breast cancer

metastasis detection challenge which was organized in con-

junction with the IEEE International Symposium on Biomedi-

cal Imaging 2016 (http://camelyon16.grand-challenge.org).

The challenge dataset contains altogether 270 images obtained

at two separate laboratories, each equipped with a different

scanner device. The set consists of images from 160 normal

samples and 110 tumor samples with cancer metastases out-

lined by experts, providing a valuable resource for method

development and validation purposes.

In this article, we present a method for automated detec-

tion of cancer hot-spots in hematoxylin and eosin (H&E)

stained WSI of sentinel lymph node sections. Our method is

based on feature engineering and machine learning, and it is

an extension of the learning-based analysis presented in Ref.

25 into a fully automated WSI analysis pipeline. The proposed

system also enables learning about tissue texture, potentially

linking the extracted features with growth properties in nor-

mal and metastatic tissue. We evaluated the performance of

the method in breast cancer metastasis detection via blockwise

receiver operating characteristic (ROC) analysis.

MATERIALS AND METHODS

Image Data
The first dataset used in this study consists of 170 whole

slide images of sentinel lymph node sections collected at the

Radboud University Medical Center (Nijmegen, the Nether-

lands). A total of 100 WSIs presented normal lymph node sec-

tions and 70 WSIs contained micro- and macro-metastases.

Altogether 60 of these cancerous lymph node sections were

fully annotated and 10 partially annotated. The second dataset

of 100 WSIs was collected at the University Medical Center

Utrecht (Utrecht, the Netherlands) and it contains 60 WSIs of

normal lymph node sections and 40 WSIs with lymph node

metastases. Of the 40 cancerous slides, 37 were fully annotated

and 3 partially annotated. Both datasets were provided for the

Camelyon16 challenge (http://camelyon16.grand-challenge.

org). The whole slide images and the corresponding annota-

tion masks were provided as multi-resolution pyramids in

Phillips BigTIFF format. The pixel size of the images at the

full resolution level was 243 nm. We used the fully annotated

slides to obtain both positive and negative training examples.

The partially annotated slides were only used to obtain posi-

tive examples to avoid the risk of using unannotated metastat-

ic regions as negative training data.

System Overview
An overview of the system presented in this study is

shown in Figure 1. As preprocessing steps, we segment the tis-

sue region, and apply color correction through matching the

color space to that of a reference image. Color correction is

needed for the purpose of generalizing the method to inputs

with different characteristics due to scanner and staining
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protocols. The feature engineering phase is tailored to the

extraction of a large set of quantitative descriptors of image

texture, spatial structure, and distribution of nuclei. The

machine learning module applies a random forest model

learned from the annotated samples, which outputs confi-

dence values indicating the likelihood of cancer cells being

present in the corresponding part of the image. Depending on

the exact application at hand, these maps of confidence values

can be further refined to for example classify entire slides as

negative or positive, visualize hotspots of cancer cells for the

pathologist to focus on or numerically quantify the properties

of detected lesions. Individual steps of the pipeline are

described in more detail in the following sections.

Tissue Segmentation
In order to simplify the classification task and to reduce

the amount of data, we first performed a rough segmentation

step for each image to detect the lymph node tissue while

excluding the background and most of the adipose tissue. The

segmentation procedure applied to a single image consisted of

the following steps:

1. Compute the HSV transform of the image.

2. Filter the S component using a circular Gaussian

kernel (standard deviation5 50 pixels) to blur subcellular

details which are not relevant for segmenting the tissue

region.

Figure 1. The analysis workflow for training (upper half) and classification (lower half). During model training, the lymph node tissue
(blue outline) is first segmented from the whole slide image containing annotated metastatic regions (yellow outline). The detected tissue
sections are then divided into 8,192 3 8,192 pixel RGB subimages and subjected to an optional stain normalization step. Eosin and hema-
toxylin channels are separated from each subimage using a color deconvolution approach. Tissue blocks of 200 3 200 pixels are then ran-
domly sampled from normal (boxes outlined in green) and cancerous (boxes outlined in red) regions from both channels. Features are
extracted from each tissue block to get feature vector representations, which are fed to a random forest model as training data. During
classification, the workflow proceeds similarly until the extraction of eosin and hematoxylin channels. Instead of random sampling, all
200 3 200 pixel blocks (boxes outlined in blue) are analyzed from each stain channel and fed to the feature extraction module. The trained
random forest model is then used to classify each test block and as an output the model assigns a confidence value associated with its
choice. Confidence value is an estimate of probability for a sample block to belong to the group of cancerous tissue. This confidence value
is assigned for each tissue block to get a confidence map for the entire WSI as an output. Here, the ground truth annotations are overlaid
in yellow on the confidence map for reference. Depending on the application, the confidence maps can be further refined to obtain differ-
ent final outputs, such as binary classification of entire slides, visualizations of cancer hotspots or quantification of the properties of
detected lesions.
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3. Apply a threshold of 0.5 3 tOtsu to S, where tOtsu is the val-

ue obtained using Otsu’s method (26), to obtain a binary

image B.

4. Exclude objects in B with aspect ratio (defined as major

axis length per minor axis length) over 10 or mean value

of the V component under a fixed threshold (here: 0.3).

These objects are dark and thin artifacts caused by cover-

slip edges.

5. Perform dilation for B using a disk-shaped structuring ele-

ment with a radius of 50 pixels to obtain smooth object

boundaries.

6. Fill holes within objects in B.

7. Exclude pixels close to the image’s edges in B. Pixels on the

left and right side or the top and bottom are excluded if

their distance from the closest edge is less than 2% of the

image’s width or height, respectively.

8. Exclude objects in B with area under a desired limit

(500,000 pixels). These small objects represent remaining

debris or very small torn-off pieces of tissue.

The value of 50 pixels (�12 mm) was selected for the

smoothing operations in steps 2 and 5 based on the consider-

ation that details smaller than this are mainly subcellular and

can be neglected when detecting the gross boundaries of the

tissue slice. A constant multiplier of 0.5 was introduced in

step 3 to avoid losing faintly stained lymph node tissue, while

still excluding the background and most of the weakly stained

adipose tissue. The thresholds in steps 4, 7 and 8 were selected

experimentally to exclude most of the debris and imaging arti-

facts present in the images. For the tissue segmentation, we

used the fifth image in the resolution pyramid stored within

the input TIF files. The images on this level had been down-

sampled by a factor of 16. All values given above in pixels are

reported relative to the full resolution and were scaled accord-

ingly and rounded to the nearest integer. The numerical

parameter values are given as applied for the data in this

study, and should be modified when data with a different res-

olution or different characteristics is processed.

Color Normalization
We used histogram matching, applied separately to each

color channel, to correct for color variation across the WSIs

(27). The training image Tumor_015.tif was selected as the

reference based on visual examination, and the histograms of

the image were used as templates for the other images. For

each WSI and color channel, we computed the mapping func-

tion required for matching the original histogram to the

template histogram. When estimating the histograms and the

resulting mapping functions, we again used images down-

sampled with a factor of 16 and only considered lymph node

tissue pixels detected in the previous step (i.e., the pixels indi-

cated by TRUE in B). As a result, a mapping function was

obtained for each color channel of each WSI.

Data Handling and Storage
After the detection of lymph nodes in an image, we com-

puted the bounding box for each of the remaining objects in B

and merged any overlapping bounding boxes into larger

boxes. Regions of the WSIs corresponding to each bounding

box were then retrieved at full resolution. The histogram map-

ping functions estimated in the previous step were then

applied to the lymph node tissue pixels of the full resolution

bounding box image. Each region was saved into a separate

file first in uncompressed BigTiff format using a tile size of

1,024 3 1,024, followed by conversion into JPEG2000

format with a compression ratio of 50 using the JP2 WSI Con-

verter (28).

In addition to the actual images, we also saved the seg-

mentation masks in B corresponding to each bounding box.

The masks were scaled up to full resolution by nearest-

neighbor interpolation and saved in BigTiff format using one

bit per sample, a tile size of 1,024 3 1,024 and PackBits com-

pression. In the case of training images containing tumor, the

parts of the ground truth masks corresponding to each

bounding box were retrieved at full resolution and saved in

separate image files using the same format as the segmenta-

tion masks.

For convenient handling of the image data during model

training and classification, we further divided the images

obtained in the previous step into smaller subimages and

stored them in JPEG2000 format. Each resulting subimage

had dimensions of 8,1923 8,192, except for partial subimages

at the edges of the bounding boxes. The segmentation and

ground truth masks were processed similarly and saved in TIF

format. The location of each subimage relative to the corre-

sponding full-resolution WSI was also stored.

Preprocessing of Subimages
Color deconvolution and nuclei segmentation steps were

applied to each train and test subimage. A color deconvolu-

tion algorithm (29) was used to convert the image’s RGB

channels into hematoxylin stain, eosin stain and background.

In H&E stained images, hematoxylin stains mainly the cell

nuclei and therefore the hematoxylin channel was used in the

nuclei segmentation. The hematoxylin channel was filtered

with a 10 3 10 pixel Gaussian filter (standard deviation5 5

pixels) and then an adaptive thresholding method was applied

to get the binary image. The applied adaptive thresholding

method (30) separates the cell nuclei from the background

based on an individual threshold for each pixel. The individu-

al threshold is selected based on the mean intensity in 20 3 20

pixel local neighborhood. Watershed segmentation was used

to separate the overlapping and touching nuclei from each

other. The separation lines of the watershed segmentation

were computed from the distance transform of the binary

image using 8-connected neighborhood.

Sampling
Random sampling was performed to reduce the amount

of training data. Approximately 200,000 sample blocks were

randomly selected from the subimages containing normal tis-

sue and 200,000 sample blocks from subimages containing

tumor. Sample blocks were selected from the full resolution

subimages and the block size was 2003 200 pixels. These neg-

ative and positive samples were selected only from the seg-

mented lymph node tissue mask area and ground truth mask
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area, respectively, while excluding the background. As all pro-

vided tissue area from all training images was covered, this led

to approximately 200 sample blocks per tumor subimage and

15 sample blocks per normal tissue subimage. From each sam-

ple block, 214 descriptive features related to image texture,

spatial structure, and distribution of nuclei were extracted.

Feature Extraction
The properties of each tissue sample block were described

with 104 texture features extracted from both hematoxylin

and eosin channels. See Supplementary Table for a full list of

features with descriptions. Texture features included, for

example, contrast, correlation and energy, calculated from the

gray level co-occurrence matrix (GLCM). Spatial sampling

parameters for the gray level co-occurrence matrix were dis-

tance of one pixel and 8 directions. More specifically, the co-

occurrences of gray values were computed for all adjacent pix-

els including corner pixels at distance of one pixel. The texture

of each tissue sample block was further described using local

binary patterns (LBP) (31,32). This texture operator is a mea-

sure of the spatial structure of local image intensities. The

basic idea of the LBP operator is to transform a local circular

neighborhood into a binary pattern by thresholding the

neighborhood with the gray value of the center pixel. Due to

this thresholding, the features are robust in terms of gray scale

variations caused by changes in illumination caused by, for

example, different scanners. The circularly symmetric neigh-

borhood is determined by assigning parameters that control

the quantization of the angular space and radius of the neigh-

borhood. In our method, we used radius of 2 pixels with

angular space of 8 points. By applying a shift operation, the

extracted LBP features are also rotation-invariant. Other

extracted texture features were scale-invariant descriptors

obtained via the Scale-invariant feature transform (SIFT)

(33), the histogram of oriented gradients (HOG) descriptor

(34,35), and maximally stable extremal regions (MSER) (36).

In this work, the VLFeat (37) implementation of MSER and

SIFTwas used.

In addition to the texture features, six nuclei density fea-

tures were extracted, calculated from a nuclei location map.

This location map was generated by marking the center point

of each segmented nuclei. Nuclei density features included

descriptors related to inter-nuclei distance inside the sample

block, such as mean, maximum, minimum and standard devi-

ation. Also density and number of nuclei inside the sample

block were calculated. The density feature was the mean value

of the Gaussian filtered sample block from the nuclei location

map.

Model Comparison
For selecting the learning algorithm, we compared the

performance of a number of different models for classifying

the sample blocks as either normal or tumor tissue based on

the extracted features. Approximately 1,000,000 sample blocks

were randomly selected and used to train a linear regression

model, a support vector machine (SVM), a random forest

model and two nearest neighbor (NN) classifiers, one using

all the features and one using a subset of 28 manually selected

features which roughly corresponds to the feature set in Ref.

38 in single resolution. The trained regression model is a gen-

eralized linear regression model for the binomial distribution

using logit link function. The SVM model utilizes a nonlinear

radial basis function as a kernel function and grid-search was

used to find the optimal values for kernel size and soft margin.

NN classifiers utilize kd-tree search to find the Euclidean dis-

tance to the closest neighbor.

Sensitivity, specificity, F-score and the percentage of cor-

rectly classified samples are shown for each method in Table 1.

The random forest model outperformed the other models in

terms of correctly classified samples, sensitivity, and F-score.

The specificity of the NN classifier was higher than that of the

random forest (96.8% vs. 93.3%). However, as this was at

the expense of much lower sensitivity (85.7% vs. 92.6%), and

the random forest model had a higher percentage of correctly

classified samples (93.0% vs. 91.3%), and a higher F-score

(0.93 vs.0.91), we selected the random forest model as the

learning algorithm for our system.

Random Forest Model
We used the feature representations of tissue samples to

train a random forest model (17). The model was an ensemble

of 50 classification trees. The number of features selected

randomly for each decision split was the square root of the

total number of features. Bootstrap aggregation was used to

improve the stability and accuracy of the model. Bootstrap

aggregation is a machine learning algorithm that combines

multiple versions of decision trees into a random forest mod-

el. Each decision tree version is constructed from a randomly

sampled dataset with replacement. The trained model was

then used to evaluate the test images. About 214 features were

Table 1. Results concerning the performance of different classification models

CORRECTLY CLASSIFIED SAMPLES (%) SENSITIVITY (%) SPECIFICITY (%) F-SCORE

Logistic regression 87.0 86.4 87.6 0.87

NN 82.8 74.4 91.0 0.81

NN feature subset 91.3 85.7 96.8 0.91

Random forest 93.0 92.6 93.3 0.93

SVM 88.3 85.9 90.6 0.88

Approximately 1,000,000 sample blocks were classified using the following models: logistic regression, nearest neighbor (NN) using
either all or a subset of features, support vector machine (SVM) and a random forest model. Percentage of correctly classified samples,
sensitivity, specificity, and F-score are shown for each model.
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extracted from each 200 3 200 pixel block in test subimages.

The confidence for being either a normal tissue block or a

tumor tissue block was predicted with the trained random

forest model. These subimage confidences were stored in

unsigned 8-bit integer format and pieced together to form a

metastasis confidence image for each test WSI. Since a single

confidence value is predicted for each 200 3 200 pixel block,

the size of the resulting confidence images corresponds to a

1:200 downsampling of the original WSIs along each

dimension.

Training of one random forest model with 700,000 train-

ing samples takes approximately 90 minutes. To classify a new

WSI with a trained random forest model, our method takes

approximately 130 minutes. The processing time varies of

course depending on the amount of tissue in WSI. These com-

putation times for training the random forest model and

processing of one WSI are obtained using parallel computing

with 95 GB of memory and two six-core Intel X5660

processors.

RESULTS

Detection of metastatic regions from whole slide images

was evaluated with the data from the Camelyon 2016 contest.

First, we determined the performance for a set of 170 images

from a single scanner, eliminating the variability of source

images due to technical reasons. Leave-one-out cross-valida-

tion (LOOCV) was used to assess the performance of our ran-

dom forest classification approach. Each sample from one

WSI not used in training was scored with confidence levels

using a random forest model trained with all the samples

from 169 other images.

To interpret our random forest model, we visualized pre-

dictor importance weights assigned by the model for each fea-

ture. These weights are higher for the features that have

higher impact on the correct classification result. Weight esti-

mates for every feature are based on changes in the mean

squared error due to splits in every decision tree. The averaged

feature importance’s of the 10 most significant features for the

LOOCV experiment are shown in Figure 2A. An example area

of normal (Fig. 2B) and tumor tissue (Fig. 2C), as well as the

feature values for the same areas, are shown in Figures

2B1210 and 2C1–10. The majority of the ten most significant

features were calculated from the hematoxylin channel,

excluding the NumberOfNuc-feature, which is based on the

binary image of segmented nuclei and e-LBP9, which is calcu-

lated from the eosin channel. Differences in feature values

between normal and tumor samples are clearly visible for

most of the ten features. LBP-3, number of nuclei, LBP-7, con-

trast, LBP-8, correlation, LBP-6, and LBP-4 all tend to be

higher in normal lymph node tissue than in cancerous areas

(Figs. 2B and 2C). Of these, LBP-3 (Figs. 2B1 and 2C1) and

correlation (Figs. 2B8 and 2C8) seem most robust in

tolerating the follicular material in addition to lymph node

cortex, representing the normal variation in the lymph node

tissue. eLBP-9 (Figs. 2B4 and 2C4) and kurtosis (Figs. 2B7

and 2C7) signals were higher in cancerous material than in

the normal tissue. Contrast (Figs. 2B5 and 2C5) is especially

low in cytoplasm-rich cancer cells and high in lymph node

cortex and helpful in finding especially large areas of

metastases.

An example of a classification result for a WSI is shown

in Figure 3. An original image of a tumor sample with pathol-

ogist’s annotations overlaid in yellow is presented in Figure

3A. The corresponding confidence values given by the random

forest classifier are shown as an image in Figure 3B. The

higher confidence values are concentrated in areas marked as

tumor by the pathologist, while confidences in normal tissue

area are generally lower, with occasional higher hits scattered

around the tissue. The visual appearance of the example result

in Figures 3A and 3B suggests that the classifier is able to

detect the metastatic areas.

In order to evaluate the performance of our system

numerically, we collected all confidence values within normal

and tumor tissue areas for all 170 images of the first dataset in

Figure 2. Relative importance of the 10 most significant features selected by the random forest model (A). Example H&E images of nor-
mal tissue (B) and metastatic tissue (C) are shown with the corresponding features computed from the hematoxylin (H) or eosin (E) chan-
nel: local binary pattern 3 (H) (B1 and C1), number of nuclei (B2 and C2), local binary pattern 7 (H) (B3 and C3), local binary pattern 9 (E)
(B4 and C4), contrast (H) (B5 and C5), local binary pattern 8 (H) (B6 and C6), kurtosis of the intensity distribution (H) (B7 and C7), correlation
(H) (B8 and C8), local binary pattern 6 (H) (B9 and C9) and local binary pattern 4 (H) (B10 and C10). The intensity scales in 1–10 are compa-
rable between each feature pair B and C. [Color figure can be viewed at wileyonlinelibrary.com]
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the LOOCVexperiment (Fig. 4A) and calculated the blockwise

ROC curve both for the whole image area (Fig. 4B) and for

the lymph node tissue areas with the background excluded

(Fig. 4C). Next, we applied the same computational pipeline

to the second image dataset containing 100 WSIs scanned

with another device to obtain the corresponding confidence

WSIs. We again collected all confidence values within normal

and tumor tissue areas (Fig. 4D) and calculated the blockwise

ROC curves for all blocks and tissue blocks only (Figs. 4E and

4F, respectively). Partially annotated images were excluded

from all numerical evaluations. The mean area under the

curve (AUC) value for metastatic tumor versus all image

blocks including background was 0.983 for the first image set

(Fig. 4B) and 0.975 for the second set (Fig. 4E). For metastatic

tumor versus normal tissue, the mean AUC value was 0.905

for first image set (Fig. 4C) and 0.887 for the second set (Fig.

4F). The numerical results in Figure 4 support the conclusions

drawn from the visual example in Figure 3.

In order to determine the generalizability of our

approach to datasets with more variability, containing images

originating from different laboratories and imaged with differ-

ent scanners, we combined the two datasets. Although repre-

senting the same tissue and in principle processed with a

similar H&E staining procedure, the visual appearance of the

tissues differs between the images from the two laboratories,

as can be seen from the example images in Figures 3A and 3C.

We trained our RF model with 700,000 samples from the

combined dataset and conducted the LOOCV experiment for

all of the 270 images. The confidence values from normal and

metastatic tumor tissue areas (Fig. 5G) and the blockwise

ROC curves from all image blocks (Fig. 5H, mean

AUC5 0.985) or tissue blocks only (Fig. 5I, mean

AUC5 0.902) indicate that the method generalizes well to

datasets containing images from different laboratories. The

effect of metastasis size on the detection accuracy was

examined by separately considering tissue blocks from meta-

static regions larger and smaller than the median area

(0.1867 mm2) of all regions in the LOOCV ROC analysis of

the combined dataset. In line with the approach adopted in

the Camelyon16 competition, we considered all regions anno-

tated in the ground truth masks with area larger than that of a

circle having a radius of 100 mm. This analysis resulted in

AUC values of 0.801, 95% CI [0.787, 0.814] and 0.906, 95%

CI [0.896, 0.916] for the small and large metastatic regions,

respectively.

Finally, we used the two independent image sets in turn

as a training set and as a testing set to determine if the system

is capable of handling the situation where the testing data are

markedly different from the data used for training. First, we

trained our RF model with 350,000 samples collected from the

first set of 170 WSIs and evaluated the 100 WSIs from the sec-

ond set. Then, we trained the RF model with 350,000 samples

collected from the second set of 100 WSIs and evaluated the

170 WSIs from the first set. The results of this experiment are

presented in Figures 5J–5L for the former and in Figures 5M–

5O for the latter case. The distributions of confidence values

and the ROC analysis for all image blocks (mean AUC5 0.970

and mean AUC5 0.978) and tissue blocks only (mean

AUC5 0.839 and mean AUC5 0.855) indicate that classifica-

tion accuracy remains relatively high even when the testing

data are completely independent of the training data and have

different characteristics, although a slight decrease in perfor-

mance is observed compared with the LOOCV results.

Most false positive signals were detected where normal

lymph node medulla was misinterpreted as cancerous tissue

(Fig. 5A). The reticular cells forming the lymph node stroma

have partly similar color tones and size of nuclei as certain

breast cancer cell phenotypes, especially in areas surrounding

lymph node trabeculae and/or vasculature. False positive sig-

nals were occasionally resulting also from nerve bundles cut in

Figure 3. An example whole slide image from the first dataset (A) with the corresponding confidence map (B) and an example whole slide
image from the second dataset (C) with the corresponding confidence map (D). Ground truth annotations are shown in yellow.
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Figure 4. Results obtained using leave-one-out cross validation for dataset 1 (A–C), dataset 2 (D–F) or the combined dataset (G–I) and for
a classifier trained on dataset 1 and evaluated on dataset 2 (J–L) or for a classifier trained on dataset 2 and evaluated on dataset 1 (M–O).
Distribution of confidence values for all normal and tumor tissue blocks in the dataset is shown in (A, D, G, J, M). The red line represents
the median, the edges of the blue box correspond to the 25th and 75th percentiles and the length of the whiskers is 1.5 times the interquar-
tile range. Outliers beyond this limit are shown in red. Blockwise ROC curves are shown for all blocks in (B, E, H, K, N) and for tissue blocks
only in (C, F, I, L, O). The solid lines represent the mean and the dashed lines represent the pointwise 95% confidence interval. Corre-
sponding AUC values are shown above each ROC curve. The total number of classified blocks was 85,545,658 (dataset 1, all blocks),
6,393,412 (dataset 1, tissue blocks), 29,660,702 (dataset 2, all blocks), or 5,301,888 (dataset 2, tissue blocks). [Color figure can be viewed at
wileyonlinelibrary.com]
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such an orientation that an approximately similar ratio of

blue nuclei to surrounding light pink material was created,

where myelin sheets in nerve bundles resembled the appear-

ance of the cytoplasm of cancer cells (Fig. 5B). Some out-of-

focus image areas also resulted in false positive signals (Fig.

5C). False negative signals were detected in especially infiltra-

tive areas (Fig. 5D) or small metastases, where single or only a

few cancer cells are surrounded by lymphocytic cells.

The blockwise confidence output can be used as a start-

ing point for other tasks. Ideally, automated analysis would

screen the WSIs and for example provide the detected cancer-

ous regions for pathologist’s review or perform slide-level clas-

sification to exclude some slides as completely negative for

cancer. To provide an example of further analyzing the WSI

confidence maps and to determine the generalization capabili-

ty of our computational pipeline, we finally used our

approach for slide-level binary classification. We used the

same feature extraction and random forest classification

approach as in the earlier experiments but this time, the input

to the classifier was the WSI confidence map (in other words,

the output from the classification model for an H&E WSI)

instead of the underlying tissue image. The same 104 texture

features, which were extracted from each hematoxylin or eosin

sample block, were now extracted from the WSI confidence

map. These features were then used to train our RF model to

separate the normal WSIs from the WSIs containing metasta-

sis. LOOCV was used to determine one confidence value for

each of the 270 WSIs indicating the likelihood for the whole

slide to contain any metastatic tissue. We collected all whole

slide confidence values and calculated the image-wise ROC

curve and obtained a mean AUC value of 0.73 for metastasis-

containing WSIs versus normal WSIs. This example

demonstrates the generic nature of the features used in our

system and exemplifies one possible approach for utilizing the

WSI confidence maps for downstream analysis, such as for

slide-level classification between cancer versus normal.

DISCUSSION

Automated processing of whole slide images and detec-

tion of regions of interest is an open challenge in digital

pathology based cancer diagnosis (14). Herein, we developed

a method for automated detection of hot-spot regions in

whole slide images. The feature based classification approach

presented here is generic and can be applied to a variety of

segmentation and detection tasks. We evaluated the perfor-

mance of the method in detection of breast cancer metastases

in lymph node sections from H&E stained WSI. This detec-

tion task represents an interesting challenge for digital pathol-

ogy, since one of the major factors in breast cancer

prognostics is metastasis of cancer cells to sentinel lymph

nodes (9). The diagnostic procedure for pathologists is cur-

rently tedious and time-consuming, as well as prone to misin-

terpretation. Automated detection of lymph node metastases

has great potential to help the pathologist to improve diagnos-

tics as well as to reduce both the workload and costs. Our

anticipation is that the method presented in this study is use-

ful for the detection of hot-spots, including the task of sepa-

rating regions of metastatic breast cancer cells from normal

lymphatic tissue composed of lymphocytes. Qualitative (Fig.

3) and quantitative (Fig. 4) results support this anticipation.

From the pathologist’s viewpoint, the sensitivity of the

method (Table 1) and the confidence map provided by the

method of the possible hotspots in each slide are the most

useful parameters for pre-screening the slides to help focus on

Figure 5. Examples of false positives caused by normal tissue texture resembling metastatic tissue (A, B) or an out-of-focus region (C)
and an example of a false negative where a small lesion has been falsely detected as normal tissue (D). The H&E images are shown on the
left and the corresponding confidence maps on the right. The ground truth annotation in (D) is shown as a green outline.
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suspect areas. In addition to the hot-spot (here: metastatic

tumor tissue) detection, our method enables linking the dif-

ferences between tissue types in hot-spot areas versus normal

tissue to specific features describing the tissue properties. This

can potentially provide insights into the tissue type character-

istics or even suggest differences in growth patterns. The aver-

age random forest model obtained in the cross validation

study was illustrated in Figure 2A. The top ten most impor-

tant features contributing to the classifier model are in prac-

tice the descriptors which behave differently in normal and

metastatic tumor tissue areas. While part of them are not

straightforwardly interpretable, there are also some features

that either support existing knowledge (e.g., nuclear count in

local neighborhood, Figs. 2B2 and 2C2) or stand out as candi-

dates for straightforward computational readouts (e.g., local

contrast, Figs. 2B5 and 2C5).

Evaluating the performance of methods for cancer detec-

tion from digitized slides is a non-trivial task (2). Obtaining

ground truth annotations can be a very laborious process and

represents a significant bottleneck in the development of new

methods. Even if this issue can be overcome to obtain large,

annotated datasets, as in the case of the Camelyon16 chal-

lenge, the problem of designing a relevant performance metric

remains. The selection of a suitable evaluation metric depends

heavily on the way the method is intended to be used in a

practical setting. If the aim is to, for example, classify entire

WSIs as either normal or tumor containing, it is sensible to

evaluate performance using slide-level ROC analysis. This

approach was adopted by us in our slide-level classification

experiment and as the first metric in the Camelyon16 chal-

lenge. If, on the other hand, the intention is to use the method

to pinpoint suspicious areas in the images to speed up the

work of pathologists, as in the case of metastasis detection

from lymph node sections, performance must be evaluated in

a pixelwise, blockwise, or region-based manner for each WSI.

As an example, for the second evaluation metric of the Camel-

yon16 challenge, participants of the competition had to pro-

vide a single coordinate and a confidence value for each

metastatic region detected from the images. Coordinates

located within annotated tumor regions were considered as

correct detections and the teams were ranked according to the

AUC metric computed based on free-response receiver operat-

ing characteristic (FROC) analysis. This metric relies on scor-

ing a single coordinate point per region as either a hit or a

miss, instead of evaluating the identification of the actual

regions. However, accurate detection of the boundaries of

metastatic areas is a prerequisite for further computational

analysis of their size, shape and numerous other characteris-

tics. Moreover, selecting a single coordinate to represent the

entire cancerous region in a meaningful way is problematic,

especially for regions with a complicated shape featuring, for

example, protrusions.

Considering the above, in this study we treated the

metastasis detection task as a blockwise classification problem

and evaluated the performance of our method by ROC analy-

sis applied to the 200 3 200 pixel blocks. A similar approach

has been used for example to evaluate the performance of

classifiers applied to non-small cell lung cancer samples (39).

In comparison to the Camelyon16 measure, blockwise or pix-

elwise metrics take into consideration the entire tumor

regions and avoid the artificial coordinate selection step. The

downside of blockwise evaluation is that larger tumor regions

attain more weight in the final scoring, as they consist of a

larger number of pixels than smaller lesions.

This is problematic in the sense that examining the slides

for micrometastases or individual tumor cells can be very

time-consuming for the pathologist, while large macrometa-

stases can often be spotted more easily. In the context of com-

puter aided diagnosis, the capability to accurately detect small

tumor regions should thus not be neglected during evaluation.

Still, in the absence of a universal evaluation metric suitable

for all intended applications, the blockwise metrics represent a

straightforward application-independent approach for quanti-

fying detection performance in a task that can be seen as the

basis for all further steps—discrimination between target and

non-target areas in an image. Good performance in this task

is a prerequisite for the consequent delineation of entire meta-

static regions, binary classification of entire WSIs and other

more refined analysis steps, and should thus be a common

characteristic of all well-performing methods.

In addition to performing large-scale numerical evalua-

tion using the entire dataset, we also visually examined exam-

ples of different normal and metastatic tissue areas, which had

been either successfully or unsuccessfully detected. Normal

lymph nodes are composed of primarily lymphocytic cells and

follicles structured along a supportive reticular network. The

appearance of cancer cells of epithelial origin is most often

well distinguishable from especially the lymph cell component

of lymph nodes with their relatively large size, prominent

presence of cytoplasm and light staining of nuclei. However,

there are phenotypically various cancer cell types, and the

growth pattern within the lymph node may affect the classifi-

cation outcome. Most nodular metastatic lesions are easily

distinguishable with our method. In contrast, especially small

metastatic lesions with only a few cells and especially with an

invasive growth pattern alongside normal tissue structures are

more challenging for the method to detect.

False positives occasionally emerged at certain areas of

normal lymph node medulla. This seems to be due to that

the reticular cells forming the lymph node stroma have partly

similar color tones and size of nuclei as certain breast cancer

cell phenotypes, especially in areas surrounding lymph node

trabeculae. Another source of error was out-of-focus image

areas, emphasizing the importance of consistently high tech-

nical quality of the images. False negative signals were mainly

associated to small metastases with a small number of cancer

cells or especially infiltrative metastatic growth patterns. In

these cases, cancer cells appeared as single cells, or small

groups of cells were surrounded by lymphocytic cells. A

probable reason for the weaker performance observed in

such tissue regions is that many of the analyzed subimages in

these regions contain some normal tissue in addition to can-

cer cells. The feature values computed from such subimages

partly resemble those obtained from entirely normal tissue,
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which leads to false negatives. Improved performance in

these kind of regions could possibly be achieved by using a

multi-scale approach, where the size of the analysis window

would be varied over a certain range, and/or by utilizing

superpixels (4).

In conclusion, the machine learning based approach for

detecting metastatic tissue regions presented in this article

performs well in blockwise detection of breast cancer metasta-

ses from lymph node tissue sections. The method was applied

to whole slide images of H&E stained tissue obtained using

two different scanners at two separate laboratories. Even

though H&E images were used here, the presented method is

generic in nature, and the information extracted from other

histological images can be included in our analysis pipeline in

a straightforward manner. The method is extendable also in

the sense that it allows the incorporation of any number of

new features that can be extracted from H&E images and,

when available, other measurements from the same spatial

location, such as images of immunohistochemically stained

samples. Other potential places for improvement and further

study include applying more advanced strategies for training,

such as using misclassification from the cross validation step

for boosting the classifier in a re-training step. Furthermore,

deep learning based methods have been used in similar tasks

with very high detection accuracy (40,41). The presented clas-

sification pipeline could benefit from complementing the fea-

ture extraction phase with convolutional neural networks or

autoencoders, gaining the benefits of deep learning methods

while preserving also the interpretable features.
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Artificial intelligence for diagnosis and grading of prostate 
cancer in biopsies: a population-based, diagnostic study
Peter Ström*, Kimmo Kartasalo*, Henrik Olsson, Leslie Solorzano, Brett Delahunt, Daniel M Berney, David G Bostwick, Andrew J Evans , 
David J Grignon, Peter A Humphrey, Kenneth A Iczkowski, James G Kench, Glen Kristiansen, Theodorus H van der Kwast, Katia R M Leite, 
Jesse K McKenney, Jon Oxley, Chin-Chen Pan, Hemamali Samaratunga, John R Srigley, Hiroyuki Takahashi, Toyonori Tsuzuki, Murali Varma, 
Ming Zhou, Johan Lindberg, Cecilia Lindskog, Pekka Ruusuvuori, Carolina Wählby, Henrik Grönberg, Mattias Rantalainen, Lars Egevad, 
Martin Eklund

Summary
Background An increasing volume of prostate biopsies and a worldwide shortage of urological pathologists puts a 
strain on pathology departments. Additionally, the high intra-observer and inter-observer variability in grading can 
result in overtreatment and undertreatment of prostate cancer. To alleviate these problems, we aimed to develop an 
artificial intelligence (AI) system with clinically acceptable accuracy for prostate cancer detection, localisation, and 
Gleason grading.

Methods We digitised 6682 slides from needle core biopsies from 976 randomly selected participants aged 50–69 in 
the Swedish prospective and population-based STHLM3 diagnostic study done between May 28, 2012, and Dec 30, 2014 
(ISRCTN84445406), and another 271 from 93 men from outside the study. The resulting images were used to train 
deep neural networks for assessment of prostate biopsies. The networks were evaluated by predicting the presence, 
extent, and Gleason grade of malignant tissue for an independent test dataset comprising 1631 biopsies from 246 men 
from STHLM3 and an external validation dataset of 330 biopsies from 73 men. We also evaluated grading performance 
on 87 biopsies individually graded by 23 experienced urological pathologists from the International Society of 
Urological Pathology. We assessed discriminatory performance by receiver operating characteristics and tumour 
extent predictions by correlating predicted cancer length against measurements by the reporting pathologist. We 
quantified the concordance between grades assigned by the AI system and the expert urological pathologists using 
Cohen’s kappa.

Findings The AI achieved an area under the receiver operating characteristics curve of 0·997 (95% CI 0·994–0·999) 
for distinguishing between benign (n=910) and malignant (n=721) biopsy cores on the independent test dataset and 
0·986 (0·972–0·996) on the external validation dataset (benign n=108, malignant n=222). The correlation between 
cancer length predicted by the AI and assigned by the reporting pathologist was 0·96 (95% CI 0·95–0·97) for the 
independent test dataset and 0·87 (0·84–0·90) for the external validation dataset. For assigning Gleason grades, the 
AI achieved a mean pairwise kappa of 0·62, which was within the range of the corresponding values for the expert 
pathologists (0·60–0·73).

Interpretation An AI system can be trained to detect and grade cancer in prostate needle biopsy samples at a ranking 
comparable to that of international experts in prostate pathology. Clinical application could reduce pathology workload 
by reducing the assessment of benign biopsies and by automating the task of measuring cancer length in positive 
biopsy cores. An AI system with expert-level grading performance might contribute a second opinion, aid in 
standardising grading, and provide pathology expertise in parts of the world where it does not exist.
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Introduction
Histopathological evaluation of prostate biopsies is crucial 
to the clinical management of men suspected of having 
prostate cancer. However, the histopathological diagnosis 
of prostate cancer is associated with several challenges. 
More than one million men undergo prostate biopsy in 
the USA annually.1 With the standard biopsy procedure 
resulting in 10–12 needle cores per patient, more than 
10 million tissue samples need to be examined by 
pathologists. The increasing incidence of prostate cancer 

in an ageing population means that the number of 
biopsies is likely to further increase. Additionally, a global 
shortage of pathologists exists. For example, China has 
only one pathologist per 130 000 population, and in many 
African countries the ratio is in the order of one 
per million.2,3 Western countries are facing similar 
problems, with an expected decline in the number of 
practicing pathologists due to retirement.4 Gleason grade 
is a strong prognostic factor for the survival of patients 
with prostate cancer and is crucial for treatment decisions. 
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Gleason grade is based on morphological examination 
and is recognised as subjective. This subjectivity is 
reflected in high intrapathologist and interpathologist 
variability in reported grades, as well as both 
underdiagnosis and overdiagnosis of prostate cancer.5,6

A possible solution to these challenges is the application 
of artificial intelligence (AI) to prostate cancer 
histopathology. The development of an AI system to 
identify benign biopsies with high accuracy could 
decrease the workload of pathologists and allow them to 
focus on difficult cases. Furthermore, an accurate AI 
could assist the pathologist with the identification, 
localisation, and grading of prostate cancer among those 
biopsies not excluded in the initial screening process, 
thus providing a safety net to protect against potential 
misclassification of biopsies. AI-assisted pathology 
assessment could reduce inter-observer variability in 
grading, leading to more consistent and reliable 
diagnoses and better treatment decisions.

By use of high resolution scanning, tissue samples can 
be digitised to whole slide images and used as the input 
for the training of deep neural networks (DNNs), an AI 
technique that has achieved state-of-the-art accuracy in 
many classification problems across various fields, 
including medical imaging.7–10 However, little work has 
been undertaken in prostate diagnostic histopathology.11–16 
Attempts at grading prostate biopsies by DNNs have 
been limited to small datasets or subsets of Gleason 
patterns, and they have not analysed the clinical 
implications of the introduction of AI-assisted prostate 
pathology. In this study, we aimed to develop an AI 
system with clinically acceptable accuracy for prostate 
cancer detection, localisation, and Gleason grading.

Methods
Study design and participants
Between May 28, 2012, and Dec 30, 2014, the prospective, 
population-based, screening-by-invitation STHLM3 study 
(ISRCTN84445406) evaluated a diagnostic model for 
prostate cancer in men aged 50–69 years residing 
in Stockholm, Sweden.17,18 STHLM3 participants had 
10–12-core transrectal ultrasound-guided systematic 
biopsies if they had prostate-specific antigen (PSA) 
concentration of 3 ng/mL or more or a Stockholm3 test 
score of 10% or more. Urologists who participated in the 
study and the study pathologist were blinded to the clinical 
characteristics of the patients. A single pathologist (LE) 
graded all biopsy cores according to the International 
Society of Urological Pathology (ISUP) grading 
classification (where Gleason scores 6, 3 + 4, 4 + 3, 8, and 
9–10 are reported as ISUP grade 1 to 5, also referred to as 
Gleason Grade Groups).19 LE also delineated cancerous 
areas using a marker pen and measured the linear cancer 
extent.

The biopsy cores were formalin fixed and stained with 
haematoxylin and eosin. A random selection of 
8571 biopsies from 1289 STHLM3 participants stratified 
by ISUP grade was digitised (figure 1). The cases were 
chosen to represent the full range of diagnoses, with an 
overrepresentation of high-grade disease. To further 
enrich the data with high-grade cases, 271 slides from 
93 men with ISUP 4 and 5 prostate cancers were obtained 
from outside STHLM3 (figure 1; appendix p 3). These 
slides were regraded by LE, digitised, and used for training 
purposes only. We used 1631 cores from a random 
selection of 246 (19·1%) men to evaluate the performance 
of the AI (the independent test set), and the rest were used 

Research in context

Evidence before this study
We did a literature search in PubMed, searching the title, 
abstract, and keywords of peer-reviewed, English-language 
journal and conference articles published between database 
inception and May 17, 2019, using the terms “prostate cancer” 
AND “histo*” AND (“machine learning” OR “deep learning” OR 
“artificial intelligence”). We also examined the reference lists of 
relevant publications. Contemporary studies using whole slide 
imaging of entire histopathological slides and deep learning 
techniques have shown promising results for detection of 
prostate cancer, and attempts at grading in prostatectomies 
and tissue microarrays. These previous studies have not shown 
experienced urological pathologist-level consistency in grading 
or investigated grading of needle biopsies, which is the 
diagnostic sampling method used in routine clinical practice. 
Moreover, automated estimation of tumour burden in biopsies 
has not been reported. None of the previous studies have relied 
on a well defined sample cohort, which allows for clinically 
meaningful estimation of diagnostic performance metrics, 
such as sensitivity and specificity.

Added value of this study
To the best of our knowledge, we present for the first time 
an algorithm that reaches a performance comparable to 
experienced urological pathologists in the detection, tumour 
burden estimation, and grading of prostate cancer in needle 
biopsies. The AI system was developed and evaluated on a 
population-based dataset prospectively collected within a clinical 
trial, which included standardised biopsy procedures, centralised 
pathology reporting, and blinding to clinical characteristics, such 
as PSA. This dataset represents a broad spectrum of malignant 
morphologies of prostatic tissue encountered in clinical practice.

Implications of all the available evidence
Use of AI to assist pathologists could substantially decrease their 
workload by pre-screening cases and by automatically estimating 
tumour burden, improve patient safety by alarming about 
potentially missed cancers, and reduce variability in grading by 
providing decision support. Our results warrant prospective 
validation in clinical trials to confirm the potential benefits of 
AI-assisted prostate histopathology in routine clinical practice.
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for model training. All biopsies from a given participant 
were assigned to either the training or the test dataset.20

Because slides from different pathology labs differ in 
appearance and quality due to differences in slide prepara
tion and because the characteristics and appearance of 
whole slide images vary by scanner, assessment of the 
performance of DNN models on external labs and 
scanners (ie, images of slides from different pathology 
labs and scanners than the images on which the model 
was trained) from a real-world clinical setting is crucial. 
We therefore obtained 330 slides (73 men) from the 
Karolinska University Hospital and digitised them on the 
scanner available at the hospital’s pathology laboratory to 
replicate their entire workflow of processing and slide 
digitisation (the external validation dataset; figure 1). The 
selection of slides was enriched for higher ISUP grades to 

permit evaluation of predictions for these uncommon 
grades. LE graded all biopsies in the external test dataset 
to avoid confounding from introducing a different 
reporting pathologist and a different laboratory and 
scanner workflow simultaneously.

As an additional test dataset, we digitised 87 cores from 
the Pathology Imagebase, a reference database launched 
by ISUP to promote the standardisation of reporting of 
urological pathology (figure 1).21 These cases were 
independently reviewed by 23 highly experienced 
urological pathologists (the ISUP Imagebase panel). The 
experts were selected on the basis of their international 
reputation and scientific production. A Medline search 
informed that they had authored an average of 105 papers 
on prostate pathology (range 21–321), with an average of 
39 first-author or last-author papers (5–190) at the time of 

Figure 1: Study profile

1069 individuals
 (6953 cores)
 included in the
 training dataset

93 individuals
 (271 cores) included
 as extra training

1289 individuals
 (8571 cores)
 randomly assigned

67 individuals
 (258 cores) in 
 Imagebase excluded

246 individuals 
 (1631 cores) included
 in the independent
 test dataset

86 individuals (87 cores)
 included in the
 Imagebase dataset

73 individuals (330 cores)
 included in the external
 validation dataset

1043 individuals
 (6940 cores) 
 assigned to training
 dataset

1297 individuals
 (9054 cores) selected

59 159 individuals in
 STHLM3, of whom
 7406 were biopsied

89 individuals (90 cores) in
 Imagebase

366 individuals who had a 
 biopsy done at 
 Karolinska University 
 Hospital in 2018

8 individuals (483 cores) excluded
 189 cores for technical issues
 294 cores for disagreement of 
  core annotation and 
  pathology report

Data from 3 individuals 
(3 cores) could not be 
retrieved

6109 individuals (74 416 cores)
 excluded on the basis of
 random selection
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recruitment to Imagebase.21 Cores from the men in the 
three test datasets were not part of model development and 
were excluded from any analysis until the final evaluation.

The study protocol was approved by Stockholm regional 
ethics committee (permits 2012/572-31/1, 2012/438-31/3, 
and 2018/845-32). Additional details concerning data 
collection are in the appendix (p 3).

Test methods
We processed the whole slide images with a segmentation 
algorithm based on Laplacian filtering to identify the 
regions corresponding to tissue sections and annotations 
drawn adjacent to the tissue. We then extracted digital 
pixel-wise annotations, indicating the locations of 
cancerous tissue of any grade, by identifying the tissue 

STHLM3 Participants (n=1454)

Biopsied 
(n=7406)

Training 
(n=976)

Extra training 
(n=93)

Test 
(n=246)

Imagebase 
(n=86)

External 
(n=73)

Age, years

<49 45 (0·6%) 4 (0·4%) 0 1 (0·4%) 0 2 (2·7%)

50–54 639 (8·6%) 76 (7·8%) 2 (2·2%) 11 (4·5%) 10 (11·6%) 5 (6·8%)

55–59 1221 (16·5%) 136 (13·9%) 4 (4·3%) 44 (17·9%) 8 (9·3%) 10 (13·7%)

60–64 2027 (27·4%) 255 (26·1%) 5 (5·4%) 67 (27·2%) 23 (26·7%) 12 (16·4%)

65–69 3294 (44·5%) 482 (49·4%) 14 (15·1%) 115 (46·7%) 44 (51·2%) 15 (20·5%)

≥70 180 (2·4%) 20 (2·0%) 48 (51·6%) 8 (3·3%) 1 (1·2%) 29 (39·7%)

Missing 0 3 (0·3%) 20 (21·5%) 0 0 0

Previous negative biopsy

Yes 505 (6·8%) 33 (3·4%) 0 13 (5·28%) 7 (8·1%) ··

No 6901 (93·2%) 940 (96·3%) 0 233 (94·72%) 79 (91·9%) ··

Missing 0 3 (0·3%) 93 (100·0%) 0 0 ··

Prostate-specific antigen

<3 ng/mL 1933 (26·1%) 228 (23·4%) 2 (2·2%) 43 (17·48%) 13 (15·1%) ··

3–<5 ng/mL 3458 (46·7%) 428 (43·9%) 2 (2·2%) 100 (40·65%) 48 (55·8%) ··

5–<10 ng/mL 1612 (21·8%) 213 (21·8%) 13 (14·0%) 73 (29·67%) 16 (18·6%) ··

≥10 ng/mL 403 (5·4%) 104 (10·7%) 47 (50·5%) 30 (12·2%) 9 (10·5%) ··

Missing 0 3 (0·3%) 30 (32·3%) 0 0 ··

Digital rectal examination

Abnormal 680 (9·2%) 133 (13·6%) 46 (49·5%) 39 (15·85%) 12 (14·0%) ··

Normal 6726 (90·8%) 840 (86·1%) 8 (8·6%) 207 (84·15%) 74 (86·0%) ··

Missing 0 3 (0·3%) 39 (41·9%) 0 0 ··

Prostate volume

<35 mL 2701 (36·5%) 425 (43·5%) 19 (20·4%) 92 (37·4%) 42 (48·8%) ··

35–<50 mL 2494 (33·7%) 319 (32·7%) 14 (15·1%) 82 (33·33%) 36 (41·9%) ··

≥50 mL 2211 (29·9%) 229 (23·5%) 19 (20·4%) 72 (29·27%) 8 (9·3%) ··

Missing 0 3 (0·3%) 41 (44·1%) 0 0 ··

Cancer length

No cancer 4605 (62·2%) 142 (14·5%) 0 35 (14·23%) 0 16 (21·9%)

>0–1 mm 545 (7·4%) 133 (13·6%) 2 (2·2%) 35 (14·23%) 4 (4·7%) 1 (1·4%)

>1–5 mm 922 (12·4%) 258 (26·4%) 10 (10·8%) 61 (24·8%) 20 (23·3%) 10 (13·7%)

>5–10 mm 449 (6·1%) 135 (13·8%) 17 (18·3%) 28 (11·38%) 20 (23·3%) 6 (8·2%)

>10 mm 885 (11·9%) 308 (31·6%) 64 (68·8%) 87 (35·37%) 42 (48·8%) 40 (54·8%)

Cancer grade*

Benign 4605 (62·2%) 142 (14·5%) 0 35 (14·2%) ·· 16 (21·9%)

ISUP 1 (3+3) 1558 (21·0%) 413 (42·3%) 1 (1·1%) 104 (42·3%) ·· 12 (16·4%)

ISUP 2 (3+4) 761 (10·3%) 200 (20·5%) 1 (1·1%) 53 (21·5%) ·· 12 (16·4%)

ISUP 3 (4+3) 253 (3·4%) 96 (9·8%) 1 (1·1%) 16 (6·5%) ·· 16 (21·9%)

ISUP 4 (4+4, 3+5, and 5+3) 101 (1·4%) 63 (6·5%) 19 (20·4%) 21 (8·5%) ·· 8 (11·0%)

ISUP 5 (4+5, 5+4, and 5+5) 128 (1·7%) 62 (6·4%) 71 (76·3%) 17 (6·9%) ·· 9 (12·3%)

Data are n (%). No cancer grade information is shown for Imagebase, because the grading of this set of samples was done independently by multiple observers. Imagebase 
cancer length was assessed by LE. ISUP=International Society of Urological Pathology. *Numbers in brackets are the Gleason scores associated with the ISUP grades.

Table 1: Baseline characteristics
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region corresponding to each annotation. To obtain 
training data representing the morphological character
istics of Gleason patterns 3, 4, and 5, we extracted 
multiple partially overlapping smaller images, or patches, 
from each whole slide image. We used patch dimensions 
of 598 × 598 pixels (around 540 × 540 µm) at a resolution 
corresponding to 10× magnification (pixel size around 
0·90 µm). The process resulted in around 5·1 million 
patches usable for training a DNN (appendix p 24).

We used two convolutional DNN ensembles, each 
consisting of 30 Inception V3 models pretrained on 
ImageNet, with classification layers adapted to our 
outcome.22,23 The first ensemble performed binary 
classification of image patches into benign or malignant, 
while the second ensemble classified patches into 
Gleason patterns 3–5. To reduce label noise in the second 
ensemble, we trained it on patches extracted from cores 
containing only one Gleason pattern (ie, cores with 
Gleason score 3 + 3, 4 + 4, or 5 + 5). The test data still 
contained cores of all grades to provide a real-world 
scenario for evaluation. Each DNN in the first and the 
second ensemble thus predicted the probability of each 
patch being malignant, and whether it represented 
Gleason pattern 3, 4, or 5 (appendix p 25).

Once the probabilities for the Gleason pattern at each 
location of the biopsy core were obtained from the DNN 
ensembles, we mapped them to core-specific character
istics (ISUP grade and cancer length) using boosted 
trees, a machine learning algorithm based on decision 
tree models and gradient boosting.24 All cores in the 
training data were used for training the boosted trees. 
Specifically, aggregated features from the patch-wise 
probabilities predicted by each DNN for each core were 
used as input to the boosted trees, and the clinical 

assessment of ISUP score and cancer length were used 
as outcomes. The ISUP grade group was assigned based 
on a Bayesian decision rule of the core-level classifier to 
obtain ISUP predictions at a clinically relevant operating 
point (appendix p 14).

Statistical analysis
No formal sample size calculation was done. We 
summarised the operating characteristics of the AI system 
in a receiver operating characteristic (ROC) curve and the 
area under the ROC curve (AUC), both on core-level and 
patient-level. We then specified a range of acceptable 
sensitivities for potential clinical use and evaluated 
achieved specificity when compared to the pathology 
report. The enrichment of high-grade disease in the 
independent test data and the external validation data 
might inflate the estimated AUC values, because high 
grades might be easier to discriminate from benign cases 
compared with ISUP 1 and 2. Therefore, we also estimated 
the AUC when ISUP 3–5 cases were removed from the 
independent test and the external validation datasets.

We predicted cancer length in each core and compared 
it with the cancer length described in the pathology report. 
The comparison was done with individual and aggregated 
cores (ie, total cancer length) for each participant. Linear 
correlation was assessed in all cores and participants, as 
well as limited to positive cores and men.

Cohen’s kappa with linear weights was used for eval
uation of the AI’s performance against the 23 experienced 
urological pathologists on the Imagebase test dataset. 
Linear weights emphasise a higher level of disagreement 
of ratings further away from each other on the ordinal 
ISUP scale, in accordance with previous publications on 
the Imagebase study.21 Each of the 87 slides in Imagebase 

STHLM3 Digitised biopsy slides (n=8980)

Biopsied 
(n=83 470)

Training 
(n=6682)

Extra Training 
(n=271)

Test 
(n=1631)

Imagebase 
(n=87)

External 
(n=330)

Cancer length

No cancer 73595 (88·2%) 3724 (55·7%) 1 (0·4%) 910 (55·8%) 0 108 (32·7%)

>0–1 mm 3307 (4·0%) 915 (13·7%) 7 (2·6%) 203 (12·4%) 8 (9·2%) 33 (10·0%)

>1–5 mm 4135 (5·0%) 1239 (18·5%) 41 (15·1%) 295 (18·1%) 44 (50·6%) 77 (23·3%)

>5–10 mm 1822 (2·2%) 591 (8·8%) 85 (31·4%) 150 (9·2%) 24 (27·6%) 75 (22·7%)

>10 mm 611 (0·7%) 213 (3·2%) 111 (41·0%) 73 (4·5%) 11 (12·6%) 37 (11·2%)

Missing 0 0 26 (9·6%) 0 0 0

Cancer grade

Benign 73595 (88·2%) 3724 (55·7%) 1 (0·4%) 910 (55·8%) ·· 108 (32·7%)

ISUP 1 (3+3) 5664 (6·8%) 1530 (22·9%) 1 (0·4%) 349 (21·4%) ·· 65 (19·7%)

ISUP 2 (3+4) 2051 (2·5%) 538 (8·1%) 1 (0·4%) 142 (8·7%) ·· 63 (19·1%)

ISUP 3 (4+3) 903 (1·1%) 261 (3·9%) 2 (0·7%) 66 (4·0%) ·· 49 (14·8%)

ISUP 4 (4+4, 3+5, and 5+3) 689 (0·8%) 424 (6·3%) 45 (16·6%) 92 (5·6%) ·· 19 (5·8%)

ISUP 5 (4+5, 5+4, and 5+5) 568 (0·7%) 205 (3·1%) 221 (81·5%) 72 (4·4%) ·· 26 (7·9%)

Data are n (%). No cancer grade information is shown for Imagebase, because the grading of this set of samples was done independently by multiple observers. Imagebase 
cancer length was assessed by LE. ISUP=International Society of Urological Pathology. *Numbers in brackets are the Gleason scores associated with the ISUP grades.

Table 2: Baseline characteristics of included biopsy cores
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was graded by each of the 23 Imagebase panel 
pathologists and by the AI system. To evaluate how well 
the AI system agreed with the pathologists, we calculated 
all pairwise kappas and summarised the mean for each 
of the 23 raters. Additionally, we estimated the kappa 
with a grouping of the Gleason scores in ISUP grades 
(grade groups) 1, 2–3, and 4–5. We further estimated 
Cohen’s kappa against the study pathologist’s ISUP 
grading of the independent test dataset and the external 
validation dataset. For the external validation dataset, we 
also estimated Cohen’s kappa after calibrating the prob
abilities (ie, scaling the ISUP probabilities before 
assigning the predicted class).

We used t-distributed stochastic neighbour embedding 
and the deep Taylor decomposition to interpret the 
representation of the image data learned by the DNN 
models (appendix p 17).25

We excluded cores in which the on-slide annotations 
did not match the pathology report and cores with 
technical issues. Participants with missing patient 
characteristic data were not excluded, because these 
variables were not used in the statistical analysis.

All CIs are two-sided with 95% confidence and 
calculated from 1000 bootstrap samples. DNNs were 
implemented in Python (version 3.6.4) using TensorFlow 
(version 1.11), and all boosted trees using the Python 
interface for XGBoost (version 0.72; appendix p 5).

Role of the funding source
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report. The corresponding author had full access to 
all the data in the study and had final responsibility for 
the decision to submit for publication.

Results
Among the 59 159 STHLM3 participants, 7406 (12·5%) 
underwent systematic biopsy according to a standardised 
protocol consisting of 10 or 12 needle cores, with 12 cores 
being taken from prostates larger than 35 mL (figure 1; 
tables 1, 2). Among the biopsied participants, we 
randomly selected 1297, stratified by ISUP score, to be 
included in this study. After excluding slides with 
mismatched annotations or technical issues, we randomly 
split the remaining participants into training and test 
datasets, resulting in 6682 STHLM3 cores to be used for 
training of the AI system. We added another 271 cores 
from outside the study to the training dataset. The data 
are representative for a screening by invitation setting 
and include various diagnostically challenging cancer 
variants encountered in clinical practice (appendix p 35).

The AUC representing the ability of the AI system to 
distinguish malignant from benign cores was 0·997 
(95% CI 0·994–0·999) for the independent test dataset 
(benign = 910, malignant = 721) and 0·986 (0·972–0·996) 
for the external validation dataset (benign = 108, 
malignant = 222; figure 2). When ISUP 3–5 cases were 

removed, AUC values were 0·996 (0·992–0·999) for the 
independent test dataset and 0·980 (0·959–0·995) for 
the external validation dataset (appendix p 27). The 
performance of the AI system for cancer detection is 
summarised in table 3.

A visualisation of the estimated localisation of 
malignant tissue for an example biopsy is presented in 
the appendix (p 33) and the correlation between the 
cancer length estimates of the AI system and the 
measurements of the pathologist is presented in figure 3. 
The correlation between cancer length predicted by the 
AI and assigned by the reporting pathologist was 0·96 
(95% CI 0·95–0·97) for the independent test dataset and 
0·87 (0·84–0·90) for the external validation dataset. 
Further randomly selected example biopsies can be 
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Figure 2: Receiver operating characteristic curves and AUC for cancer detection in individual cores and 
individual participants
(A) Independent test dataset. (B) External validation dataset. Dashed grey lines represent the baseline curve 
corresponding to random guessing. AUC=area under the curve.
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inspected using TissUUmaps, an online tool for 
interactive examination of predictions alongside the core 
tissue. Results of model interpretation are shown in the 
appendix (pp 31–32).

For Gleason grading, the mean pairwise kappa achieved 
by the AI system on the 87 Imagebase cases was 0·62. 
The pathologists had values ranging from 0·60 to 0·73, 
and the study pathologist (LE) had a kappa of 0·73. When 
considering a narrower grouping of ISUP grades 
(ISUP 1, 2–3, and 4–5), which often forms the basis for 
primary treatment selection, the AI system scored higher 
than when considering all ISUP grades (figure 4A). The 
grades assigned by the panel and the AI to each Imagebase 
case are shown in the appendix (p 26).

The kappa obtained by the AI system relative to the 
pathology report in the independent test dataset of 
1631 cores was 0·83 (figure 4B). The kappa on the external 
validation dataset was 0·70 (figure 4C). By scaling the 
ISUP probabilities before assigning the predicted class 
(calibrating to the new site), the kappa increased to 0·76 
on the external validation data (figure 4D). Moreover, we 
compared the predictions of the AI system and the 
pathologist in terms of PSA relapses among the 
participants in the test dataset who underwent radical 
prostatectomy (appendix pp 22,36)

Discussion
We have shown that an AI system based on DNNs can 
achieve excellent discrimination between benign biopsy 
cores versus cores containing cancer and that the 

time-consuming task of measuring cancer length can be 
automated with high precision. Moreover, we have 
shown that an AI system can grade prostate biopsies 
within the performance range of highly experienced 
urological pathologists.

Owing to the poor discriminative ability of the PSA test 
and the systematic biopsy protocol of 10–12 needle cores, 
which is still in common use, most biopsies encountered 
in clinical practice are of benign tissue. To reduce the 
workload of assessing these samples, we evaluated the AI 
system’s potential to assist the pathologist by prescreening 
benign from malignant cores. Because the pathology 
report was used as gold standard for this evaluation, the 
AI system, by design, cannot achieve a higher sensitivity 
than the reporting pathologist. However, the sensitivity of 
the AI system could in fact be higher, because some 
malignant cores might be overlooked by the pathologist 
but detected by the AI. For example, Ozkan and 
colleagues5 evaluated the agreement of two pathologists 
in the assessment of cancer in biopsy cores. Following 
examination of 407 cases, one pathologist found cancer in 
231 cases, and the other found cancer in 202 cases. This 
finding suggests that an AI system could not only 
streamline the workflow, but also improve sensitivity by 
detecting cancer foci that would otherwise be accidentally 
overlooked.

The first attempt to use DNNs for the detection of cancer 
on prostate biopsies was reported by Litjens and 
colleagues.15 Using an approach similar to ours, but based 
on a small dataset, they could safely exclude 32% of benign 

Avoided benign 
biopsy cores, 
n (specificity)

Detected cancer 
biopsy cores, 
n (sensitivity)

Missed cores with cancer by ISUP score, n(%) Missed men 
with cancer, 
n (%)

ISUP 1 ISUP 2 ISUP 3 ISUP 4 ISUP 5

Independent test dataset

Example operating point 1—
sensitivity ≥99·9

570 (62·6%) 720 (99·9%) 0 1 (0·7%) 0 0 0 0

Example operating point 2—
sensitivity ≥99·6

788 (86·6%) 718 (99·6%) 2 (0·6%) 1 (0·7%) 0 0 0 0

Example operating point 3—
sensitivity ≥99·3

809 (88·9%) 716 (99·3%) 4 (1·1%) 1 (0·7%) 0 0 0 0

Example operating point 4—
sensitivity ≥99·0

864 (94·9%) 714 (99·0%) 4 (1·1%) 2 (1·4%) 0 0 1 (1·4%) 1 (0·5%)

External validation

Example operating point 1—
sensitivity ≥99·5

49 (45·4%) 221 (99·5%) 1 (1·5%) 0 0 0 0 1 (1·8%)

Example operating point 2—
sensitivity ≥99·1

78 (72·2%) 220 (99·1%) 2 (3·1%) 0 0 0 0 1 (1·8%)

Example operating point 3—
sensitivity ≥98·6

94 (87·0%) 219 (98·6%) 3 (4·6%) 0 0 0 0 1 (1·8%)

Example operating point 4—
sensitivity ≥97·7

97 (89·8%) 217 (97·7%) 3 (4·6%) 1 (1·6%) 1 (2·0%) 0 0 1 (1·8%)

Presented for each operating point are the number of benign biopsy cores that could be discarded from further consideration (specificity), the number of 
correctly detected malignant biopsy cores needing pathological evaluation (sensitivity), the number of missed malignant cores by ISUP score (percentage of all 
cores with the given ISUP score), and the number of missed men (percentage of all men with cancer). ISUP=International Society of Urological Pathology.

Table 3: Sensitivity and specificity at selected points on the receiver operating characteristic curves for cancer detection

For TissUUmaps see 
https://tissuumaps.research.

it.uu.se/sthlm3/
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cores. Campanella and colleagues16 showed an AUC of 
0·991 for cancer detection on an independent test dataset 
and 0·943 on external validation data. Attempts at grading 
of prostate tissue derived from prostatectomy or based on 
tissue microarrays have also been made.14,26 None of these 
studies achieved expert urological pathologist-level 
consistency in Gleason grading, estimated tumour burden, 
or investigated grading on needle biopsies, which is 
notable because this type of sampling is used for diagnosis 
and grading in virtually every pathology laboratory 
worldwide. To the best of our knowledge, no previous 
study has used a well defined cohort of samples to estimate 
the clinical implications, with respect to key medical 

operating characteristic metrics, such as sensitivity and 
specificity.27

The strengths of our study include the use of well 
controlled data collected within the STHLM3 trial, which 
included standardised biopsy procedures, centralised 
pathology reporting, and blinding of both the urologists 
and the pathologist to clinical characteristics, such as PSA. 
The prospectively collected, population-based data cover a 
large random sample of men. Prostate cancers diagnosed 
in STHLM3 are representative for a screening-by-
invitation setting, and the data include cancer variants that 
are difficult to diagnose (pseudohyperplastic and atrophic 
carcinoma), slides that required immunohistochemistry, 
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Figure 3: Concordance between cancer lengths estimated by the AI system and the pathologist
(A) Individual cores in the independent test dataset. (B) Total tumour burden (per participant) in the independent test dataset. (C) Individual cores in the external 
validation dataset. (D) Total tumour burden (per participant) in the external validation dataset. Corresponding linear correlation coefficients computed for all cores and 
malignant cores only are shown in each plot. Datapoints in the left plot are scattered along the x-axis for clarity.
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benign mimickers of cancer, slides with thick cuts, and 
fragmented cores and poor staining. Despite these 
difficult cases, the AI system achieved excellent diagnostic 
concordance with the study pathologist. Furthermore, we 
confirmed that the enrichment of high-grade cases in our 
datasets did not result in optimistic estimates of 
discriminative performance. The study was subjected to a 
strict protocol, in which the splitting of cases into training 
and test datasets was performed at a patient level and all 

analyses were prespecified before the evaluation of the 
independent test dataset, including code for producing 
tables, figures, and result statistics. A further strength is 
the use of Imagebase, which is a unique dataset for testing 
the performance of the AI against highly experienced 
urological pathologists.

We trained the AI system using annotations from a 
single, highly experienced urological pathologist (LE). 
The decision to rely on a single pathologist for model 

Figure 4: Gleason grading performance on test data
(A) Cohen’s kappa for each pathologist ranked from lowest to the highest. Each kappa value is the average pairwise kappa for each of the pathologists compared with 
the others. To account for the natural order of the ISUP scores, we used linear weights. The AI is highlighted with a green dot and an arrow. The study pathologist (LE) 
is highlighted with an arrow. Values computed based on all five ISUP scores are plotted in red, whereas values based on a grouping of ISUP scores commonly used for 
treatment decision are shown in blue. (B) A confusion matrix on the independent test data of 1631 slides. (C) A confusion matrix on the external validation data of 
330 slides. (D) Results on external validation data following calibration of the slide-level model. The blue shading represents the number of cores in each cell of the 
matrix. This procedure did not involve any model retraining. The results are presented for an operating point achieving a minimum cancer detection sensitivity of 
99%. AI=artificial intelligence. ISUP=International Society of Urological Pathology.
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training was done to avoid presenting the system with 
conflicting labels for the same morphological patterns 
and to thereby achieve more consistent predictions. The 
study pathologist has shown high concordance with other 
experienced urological pathologists in several studies,28,29 
and therefore represents a good reference for model 
training. For model evaluation, however, it is crucial to 
assess performance against multiple pathologists.

Technical variability is introduced during slide prep
aration and scanning, which might affect the predictions 
of the AI system. Given the sensitivity of DNNs to 
differences in input data, differences across labs and 
scanners could invalidate any discriminatory capacity of 
a DNN.30 Here, we showed that the capacity of the AI in 
discriminating between benign and malignant biopsies 
decreased, but remained excellent, in the external 
validation data compared with the independent test 
dataset. We did, however, observe some reduction in 
performance with respect to cancer length predictions 
and overall Gleason grading. By contrast with cancer 
detection, in which only a handful of correctly predicted 
patches might be sufficient, cancer length estimation 
relies on all patches being correctly predicted. Thus, 
imperfect generalisation is likely to first manifest itself in 
the length estimates. The reduction in grading 
performance was most notable for ISUP 2 grades. 
However, by scaling the AI’s predictions for the different 
classes (ie, calibrating five scalar parameters to the new 
site), the results were more similar to the results achieved 
on the independent test data. This is a key observation, 
because it suggests that although some fine tuning to a 
new site or scanner is likely required to achieve optimal 
performance, this tuning is lightweight and can be done 
using little data. Notably, it does not require redevelop
ment or retraining of either the DNN models or the slide-
level models, which would be infeasible both from a 
practical and regulatory perspective. Albeit a limitation of 
the method, requirement for such calibration is not 
uncommon when using a diagnostic test at a new site 
(eg, calibrants are routinely used in laboratory diagnostics 
to diagnose and prevent site-specific differences and 
variation in test results over time) and is unlikely to 
present a major hurdle for the clinical application of AI-
based diagnostics.

A limitation of this study is the absence of exact pixel-
wise annotations, because the annotations might highlight 
regions that include a mixture of benign and malignant 
glands of different grades. To address this issue, we 
trained the algorithm on slides with pure Gleason grades, 
used a patch size large enough to cover glandular 
structures, but small enough to minimise the presence of 
mixed grades within a patch, and we focused our attention 
on core and patient performance metrics, which avoids 
caveats of patch-level evaluation and is clinically more 
meaningful. Another limitation is the difficulty of using a 
subjective measure like ISUP grade as ground truth for AI 
models. We approached this problem by evaluating the 

ISUP grade assigned by the AI against a panel of 
experienced pathologists. We also confirmed that the 
classifications of the AI did not substantially differ from 
the pathologist’s when evaluating PSA relapses among 
the operated men in the trial.

We believe that the use of an AI system like the one 
presented in this Article could increase sensitivity and 
promote patient safety by focusing the attention of the 
pathologist on regions of interest, reduce pathology 
workload by automated culling of benign biopsies, and 
reduce the high intra-observer variability in the reporting 
of prostate histopathology by producing reproducible 
decision support for grading. A further benefit is that AI 
can provide diagnostic expertise in regions where it is 
unavailable.
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