Flexible Energy Module for Low Power Internet of Things Devices by Perovskite Solar Cell and Printed Supercapacitor

Maedeh Arvani, Arto Hiltunen, Noora Lamminen, Jari Keskinen, Steffen Mansfeld, Paola Vivo, Donald Lupo

Tampere University
Laboratory for Future Electronics
Faculty of Information Technology and Communication Sciences
Tampere, Finland
Introduction

- In this presentation we talk about a flexible energy supply unit made by printing flexible disposable aqueous supercapacitor modules onto a light harvester.
- Novel material for printable separator to make a fully printable supercapacitor.
- Printing the series connected supercapacitors monolithically on the back side of an OPV module is a fast, easy and cheap method to fabricate future energy modules for IoT.
- The device combines energy harvesting and storage module for harvesting light under normal indoor conditions.
- The flexible printed supercapacitor is charged by perovskite solar cell.
Layout pattern of the monolithic supercapacitors

Single supercapacitor (top) and two series connected supercapacitors (bottom).

Materials for supercapacitors:
Current collectors: Graphite ink
Electrodes: Activated carbon powder, chitosan, acetic acid, water
Separator: Cellulose paper (Dreamweaver Silver) or chitosan + microfibrillated cellulose
Electrolyte: NaCl + water
Sealing: Adhesive tape
Methods: stencil printing and screen printing.
Printable separator, composite of chitosan and MFC: CM5050

Figure 1(a) MFC, (b) Chitosan, (c) 80%MFC solution+20%chitosan solution, (d) 80%Chitosan solution+20%MFC solution, (e) 50%Chitosan solution+50% MFC solution film on glass substrate

https://doi.org/10.1007/s10800-020-01423-2
Properties of the OPV before and after heat treatment

Absorption spectra of the OPV before and after heat treatment.

IV characterization of the OPV before and after heat treatment, in dark and under radiation of light.

-> ink curing doesn’t deteriorate OPV properties
Single supercapacitor printed on the backside of the OPV

The OPV modules were from an educational solar cell kit made by infinityPV. The stated efficiency of the OPVs was 5%.

The light source was a 4000 K, 806 lm LED lamp from Airam Company. It was installed 41.5 cm above the OPV modules to simulate indoor lighting. The light intensity during measurement was 5 mW/cm².

The capacitance of the supercapacitor was 218 mF, equivalent series resistance (ESR) was 22 Ω and leakage current was 8.3 µA.
Charge and discharge curve of the single printed supercapacitor charged by OPV
Series connected supercapacitors printed on the backside of the OPV

The performance of the module after charging to 2 V using the Maccor characterization interface shows capacitance of 93 mF, ESR of 22 Ω and leakage current of 47 µA.
Charge and discharge curve of the series connected printed supercapacitors with paper separator, charged by OPV
Two series connected fully printed supercapacitors printed on backside of OPV, can be charged up to 2V
Charge and discharge curves of the series connected printed supercapacitors with CM5050 separator charged by OPV

The device was first characterized with the Maccor interface, yielding capacitance of 125 mF, ESR of 56 Ω and leakage current of 7.4 µA.
Solar cells

- FTO|c-TiO2|m-TiO2|Perovskite|Spiro-OMeTAD|Au
- Area 1 cm²
- Used for charging singly, or connecting two in series
- Measured under LED light bulb 4000 K, 1000 lux
Solar cell performance

Lamp power measured with Coherent PM3 thermopile sensor; 0.67 mW/cm²
Supercap charging (184 mF)

Charging with one cell (1 cm²)

Charging with two 1 cm² cells in series
Stability under heating stress

<table>
<thead>
<tr>
<th></th>
<th>Efficiency (%)</th>
<th>FF (%)</th>
<th>Isc (mA/cm²)</th>
<th>Voc (V)</th>
<th>Area (mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>28.6</td>
<td>73.9</td>
<td>0.28</td>
<td>1.0</td>
<td>110</td>
</tr>
<tr>
<td>30 min at 95 C in air</td>
<td>22.4</td>
<td>63.2</td>
<td>0.27</td>
<td>0.9</td>
<td>110</td>
</tr>
</tbody>
</table>
CONCLUSION

• We have demonstrated an architecture for the integration of monolithic supercapacitor modules and flexible PV modules onto a single substrate

• The energy module can provide sufficient energy from indoor light to charge the energy storage, which can maintain a large fraction of the energy for several days

• The printed energy module can provide an environmentally and economically sustainable source of energy to autonomous wireless sensor nodes for the IoT
Thanks for your attention!