
i

Miska Merikukka

ENTERPRISE APPLICATION
INTEGRATION WITH REST APIS

Master of Science Thesis
Faculty of Engineering and Natural Sciences

Examiner: Professor Kari Systä
Examiner: University Lecturer Timo Mäkinen

April 2021

ABSTRACT
Miska Merikukka: Enterprise application integration with REST APIs
Master of Science Thesis
Tampere University
Degree Programme in Management and Information Technology, MSc (Tech)
April 2021

Consulting and engineering business is extremely project-orientated, and its design tasks are
conducted by developing engineering information from different source data and specifications
and by iterating design. Project success depends significantly on the project organization’s ability
to manage source data, their change and the work related to them. In addition to talented person-
nel, robust processes, powerful software tools can enable effective management of source data.
In the target company, the tasks and source data were previously managed in two different sys-
tems, there were no true common practices and there was no proper way to exchange information
between the systems.

This thesis aimed to produce a proof of concept where two systems were integrated into single
system where source data can be managed. The proof of concept was a web application that
communicated with the two systems and provided a user interface (UI) by extending the UI of Jira
Cloud. All elements of the application have done with JavaScript on top to Node.js framework
while relying on libraries such as React and Express.

With the produced application and integration, the users can easily define the source data needed
for specific tasks and the documents produced by the task. This provides a robust way to sys-
tematically document source data and manage it.

Keywords: REST, API, EAI, Node.js, Express.js, integration, add-on, middleware

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

TIIVISTELMÄ
Miska Merikukka: Järjestelmäintegraation toteuttaminen käyttäen REST-rajapintoja
Diplomityö
Tampereen yliopisto
Johtamisen ja tietotekniikan koulutusohjelma
Huhtikuu 2021

Konsultointi ja suunnitteluliiketoiminta on erittäin projektiorientoitunutta ja työtehtävät toteutetaan
suunnittelumateriaalia kehittäen lukuisten lähtötietojen ja suunnitteluiteraatioden pohjalta. Me-
nestyminen projekteissa riippuu merkittävästi projektiorganisaation kyvystä hallita käytettyjä läh-
tötietoja, niistä johtuvia muutoksia ja niihin liittyviä töitä. Osaavan henkilökunnan ja toimivan pro-
sessin lisäksi tehokkaat tietotekniset työkalut mahdollistavat tehokkaan lähtötietojen hallinnan.
Aiemmin työtä ja lähtötietoja hallittiin kohdeyrityksessä kahdessa eri järjestelmässä, eikä yhte-
näistä toimintatapaa ollut, eikä tietoja voitu tehokkaasti vaihtaa järjestelmien välillä.
Tämä työ pyrki luomaan integraation toteuttamiskelpoisuutta esittelevän yksinkertaistetun toteu-
tuksen, jossa kaksi järjestelmää integroidaan yhdeksi kokonaisuudeksi. Se toteutettiin rakenta-
malla itsenäinen verkkopohjainen sovellus, joka kommunikoi integroitavien järjestelmien kanssa
ja jonka käyttöliittymä on toteutettu laajentamalla Jira Cloud -sovelluksen käyttöliittymää. Kaikki
sovelluksen osat on tehty JavaScript-kielellä Node.js viitekehykselle, ja se käyttää muun muassa
React ja Express -kirjastoja.
Sovelluksen ja integraation avulla käyttäjät voivat määritellä työtehtävien vaatimat lähtötiedot
sekä toimitettavat dokumentit yksittäisiin työtehtäviin, jolloin lähtötietojen hallinta helpottuu ja sen
dokumentointi systematisoituu.

Avainsanat: REST, API, EAI, Node.js, Express.js, integraatio, add-on, middleware

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck –ohjelmalla.

PREFACE

This thesis consisted of design and implementation of an integration and management

tool for a Finnish consulting and engineering company. The thesis was started in Sep-

tember 2020 and was finished in April 2021. I would like to thank my employer for giv-

ing me the opportunity to find solutions for a significant issue in our daily work as a part

of my thesis. I would also like to thank my thesis supervisor Kari Systä for his advises

on the documentation process. Biggest thanks go to my wife Krista and our daughter

for cheering me up and pushing me to accomplish this task.

In Turku, Finland on April 14th 2021

Miska Merikukka

CONTENT

1. INTRODUCTION ... 1

2. BACKGROUND .. 2
2.1 Problem identification and motivation ... 2

2.2 Engineering design process ... 3

2.3 Existing tools and process .. 4
2.4 Objectives ... 6

2.5 Enterprise Application Integration .. 7

2.5.1 Architecture patterns .. 8
2.5.2 RESTful services .. 10
2.5.3 Building user interfaces with React .. 11
2.5.4 Implementation methods of EAI ... 11
2.5.5 Commercial integration platforms ... 13

3. METHODOLOGY .. 15
4. RESULTS .. 17

4.1 System requirements ... 17

4.2 Add-on for Jira Cloud ... 22
4.2.1 Architecture .. 23
4.2.2 Application components and structure ... 24
4.2.3 User interface ... 27
4.2.4 Functionalities ... 31
4.2.5 Backend and business logic ... 34
4.2.6 Security ... 37
4.2.7 Development environment and installation 38

5. EVALUATION AND DISCUSSION ... 39
5.1 Requirements ... 39

5.2 Development process ... 40
5.3 Future development ... 41

6. CONCLUSION .. 42

REFERENCES ... 43

LIST OF SYMBOLS AND ABBREVIATIONS
API Application Programming Interface
AR Action Research
ASM Applied Signposting Model
CAD Computer-aided Design
COM Component Object Model
COTS Components Off-the-Shelf
CRM Customer Relationship Management
CRM Customer Relationship Management
DMS Document Management System
DS Design Science
DSM Design Structure Matrix
DX Digital Transformation
EAI Enterprise Application Integration
EC Engineering Change
ECM Engineering Change Management
EDA Event-driven Architecture
ERP Enterprise Resource Planning
ESB Enterprise Service Bus
HTTP Hypertext Transfer Trotocol
HTTPS Hypertext Transfer Protocol Secure
IM Information Management
iPaaS Integration Platform as a Service
JSON Javascript object notation
JWT JSON Web Token
ODBC Open Database Connectivity
OSS Open-source Software
PoC Proof-of-Concept
REST Representational State Transfer
ROI Return on Investment
SaaS Software as a Service
SOA Service-oriented Architecture
SOAP Simple Object Access Protocol
SQL Structured Query Language
TMS Task Management System
UI User Interface
XML eXtensible Markup Language

1

1. INTRODUCTION

Arguably all contemporary businesses can be considered as IT companies as they use

their enterprise applications as an integral part of their business processes. Companies

today often choose “best-of-breed” software to fit their specific business needs in differ-

ent functions [1]. While this can provide better tools and, it also presents the need to in-

tegrate that heterogeneous set of applications to work as a whole to enhance and in-

crease competitive advantage [2], [3]. Today, many companies rely heavily on soft-

ware-as-a service (SaaS) applications in addition to traditional on-premise and legacy

systems [1]. That set of applications is created with different technologies and hold

data in separate databases, different platforms, both in and out of bounds of the enter-

prise [4].

This study aims to solve a particular business and project management problem by ex-

tending the capabilities of one SaaS application by integrating it with an on-premise ap-

plication. By data integration and added functionality, a particular business processes

can be handled in a superior way, thus lowering costs caused by rework, poor infor-

mation management and communication, while making daily work easier and more

convenient.

The rest of the study is organized as follows: section 2.1 defines the problem and elab-

orates on the motivation for the study, sections 2.2 and 2.3 introduce the context in

which the study will focus on and section 2.4 formulates the objective for the study.

Section 2.5 discusses enterprise application integration purposes, patterns, architec-

tures and solutions. The used design science methodology is discussed in chapter 3.

Chapter 4 discusses the implementation of the design and execution of the add-on.

The system requirements defined during the study are presented in section 4.1, discus-

sion of chosen technologies and architecture and the description of the created solution

is found in section 4.2. Chapter 5 presents the analysis for the study and the conclu-

sion is presented in chapter 6.

2

2. BACKGROUND

This chapter introduces the business problem and why it would need to be solved.

Chapter introduces the objective of the thesis and elaborates on the environment in

which the problem lies in. It also discusses Enterprise application integration in general

and its technical aspects.

2.1 Problem identification and motivation

This thesis is commissioned to a multi-discipline engineering and consulting company

working in wide variety of fields. Engineering activities rely heavily on specialized soft-

ware which is used to conduct data-driven design where the iterative nature of the de-

sign process, detailed specifications and thousands of different individual tasks require

lot of effort in planning and orchestration of the process. Consulting and engineering

activities are heavily impacted by digital transformation (DX), which is argued to be

mandatory for all businesses to survive [5]. DX is a complex, and extensive concept,

and is a lot more than automation of manual tasks [5]. However, automation and pro-

cess digitalization are fields that can have huge impacts to many activities. Digitally en-

coding business processes can improve significantly companies’ capabilities and

productivity by leveraging automation, system integration and more efficient communi-

cation. Information management (IM) is a field where digitalization and intelligent solu-

tions offer lots of potential for improvement. Within IM, task management and in partic-

ular engineering change management (ECM) can benefit significantly from process en-

coding and automation [6]. Thus, studying potential improvements in ECM was chosen

as one of the DX projects at this time in the target company. Engineering changes (EC)

can be understood as “modifications to the structure, behavior and function of a tech-

nical artefact that has already been released during the design process” and ECM as

”organisation, control and execution of ECs” to minimize the negative impacts of ECs

[6].

ECM is a significant issue that cannot be neglected or under-estimated and it should be

an integral and important part of the design process. Significant portion of actual engi-

neering work is spent on engineering changes. In an environment where the work is

done by multiple teams with varying skill levels, co-operation and management will be

challenging. [7] The target company had identified the ECM to be a major factor in pro-

ject cost and schedule overruns. It was also understood that most of the needed infor-

3

mation was available or at least acquirable, but it was not generally known how differ-

ent information was linked to each other. There also was no robust way to manage and

utilize that information. This meant that due to lack of common practices and tools, pro-

ject outcomes varied significantly and data-driven continuous improvement in com-

pany’s project execution capabilities was not possible in this aspect. The hypothesis is

that the previously described challenges could be addressed by data integration and

additional functionality in the used software. It could also help in lowering costs caused

by rework, poor information management and communication.

2.2 Engineering design process

Engineering and design activities are series of iterative actions based on initially set

specifications, information defined in up- and downstream activities, and information

created within the activity itself. To streamline and shorten the time span of engineering

projects, many of the activities will be planned to be executed in parallel. This concur-

rent engineering approach can reduce the lead time significantly but can often lead to

unwanted rework and unplanned design iteration. Also, many engineering tasks inher-

ently need iteration, independent of other tasks. This means that planned design loops

are formed in addition to unwanted rework.

In an environment where subsequent tasks are interconnected, and output of a particu-

lar task is dependent on other tasks, the efficient management of the whole process is

essential. In a static plan, tasks can, and should be, determined in a way that uninten-

tional design loops are avoided or at least broken into separate tasks, thus allowing the

information to flow and specify in an appropriate way. Methods such as Design Struc-

ture Matrix (DSM) [8] or Applied Signposting Model (ASM) [7] can be used to model

such complex engineering systems. Methods such as DSM and ASM can help visual-

ize and understand the system as a whole, provide the needed structure to analyze the

system with powerful tools based on graph theory. Such analysis could reveal indirect

links and change propagation, distribution and impacts, as well as process iterations

and other patterns and effects in the network [8], [9]. In addition to setting the static

baseline for a project, the robust modelling of tasks can also provide better understand-

ing of design process system in situations where changes are unavoidable. Deeper un-

derstanding of the effects caused by a change can help reduce the cost and lead time.

Relying solely on heuristic understanding of a design process is not a sufficient way to

successfully manage complex projects. Instead, a robust and deterministic system of

interconnected tasks is to be defined, where relationships and dependencies are man-

aged so that at least the baseline can be set optimally. Such system, if kept up to date,

4

can also provide better situational awareness to support decision-making in dynamic

environments where changes are unavoidable and where actions must be taken to re-

solve the possible issues.

2.3 Existing tools and process

Effective information management is a crucial requisite in a complex project in many

ways. In this study, the focus is on source data management while other aspects, even

important, are excluded. Source data is all the information needed to perform a particu-

lar engineering task. Such information can be, for example, performance requirements,

specifications, instructions, or any kind of information that defines the work. The origin

of source data can be external such as the end user, main contractor, subcontractor, or

internal, such as another department in an organization. Source data can originate also

from stakeholders outside the project organization, for example, from non-governmen-

tal organizations. Effective management of this information is crucial for any project.

The target company uses on-premise M-Files document management software to man-

age and distribute documentation in a project. Most often the design and engineering

work cannot be done directly to a document and thus the document is only a represen-

tation of the actual design. It is also often the output and the end result of a task. The

documents are also inputs for other design activities, which in turn produce documents

for other purposes. In the target company, specific design and engineering tasks are

managed in Jira Cloud software, a SaaS collaboration system. Wide variety of infor-

mation is collected to specific tasks (in Jira Cloud) in order to plan, follow-up, guide and

report the execution of activities. However, the information in these two systems is not

linked and there is currently no way to effectively link inputs, outputs and the tasks to

each other. Such functionality with a vigorous process could create the needed capabil-

ity to effectively and efficiently manage the design process.

The basic structure to describe the process was formulated in accordance with the

needs of the design process. A specific design task can have multiple input documents

from which information is used and refined to produce an outcome (Figure 1). Thus,

specific documents are linked (related to) to specific tasks. As an example, and more

specifically, a task (in Figure 1) can use engineering information such as energy con-

sumption of an equipment, preliminary layout of a space and industry standard for

working environment temperature from documents A1, A2 and A3 respectively. The

task is to produce a heat balance calculation for space, the output B1. All projects con-

sist of large groups of such interconnected and dependent tasks and documentation as

inputs and outputs of those tasks. Figure 2 illustrates such relationships in a very small

5

scale. Even small projects often consist of hundreds of tasks whereas in larger projects

the number of tasks can easily grow to tens of thousands. Following the previous ex-

ample, the heat balance calculation for space (B1) could then be used as an input for

further downstream engineering activities (tasks) to produce, for example, the air bal-

ance calculation which in turn could be used to produce ducting layout and routing

plan. Engineering changes in such networks can have major impacts on downstream

activities and thus impacts to the project schedule and costs. Figure 2 shows also a

change in a document (marked with a red exclamation mark) and how that change can

propagate (red tasks, documents and relationships) through the network of engineering

tasks thus requiring rework for all affected tasks.

Figure 1. Relationship types between tasks and documents

6

Figure 2. Example of a change propagating in a small network of tasks and documents

(Figure 1 in within the dashed line)

2.4 Objectives

The objective of this study is to develop a proof-of-concept (PoC) that integrates the

document management system (DMS) M-Files and the task management system

(TMS) Jira Cloud in a way that documentation (in DMS) can be linked to engineering

tasks (in TMS) in order make management of engineering work easier and more ro-

bust. The PoC aims to test the hypothesis that such system can help in planning of the

work, controlling the used data and understanding the propagation of changes. By hav-

ing such tools for better understanding and control, unwanted costs related to planned

work, rework, and extra work can be lowered.

The study does not include the testing, deployment, and operations phase of the pro-

duced software. Also, the planning and collecting of user feedback after the initial re-

lease is out of the scope of this study. As only engineering activities are tracked in the

task management software, only activities and documents related to them are consid-

ered.

7

2.5 Enterprise Application Integration

According to Manouvrier and Menard [9] Enterprise Application Integration (EAI) “is a

collection of methods, tools, and services that work together to bring heterogenous ap-

plications into communication, as part of the traditional, distributed or extended enter-

prise”. The ultimate target is to get the entire system to work as a single unit [1]. Even

though EAI often deals with “automation islands” [10] that cannot easily communicate

with each other, that is certainly not the case here, as both systems provide highly ca-

pable application programming interfaces (API) to interact with their data [11], [12].

The topic of EAI is vast and has developed considerably from its conception in the

1980s in terms of its purpose, architecture, and technology [13]. Its purposes can

broadly be divided into three types: 1.) propagation and consistency of data, 2.) man-

agement of multi-step processes, and 3.) creation of composite applications (shown in

Figure 3) [9]. Data propagation can, in its simplest form, be seen as copying data to

other applications behind the scenes, but can also include data integrity checks, refor-

matting or some rule-based actions. Use cases for multistep processes can found in

situations where different stages of a process are handled in different applications, for

example, in purchasing, production and shipping applications. In such cases integration

is unidirectional and asynchronous but forms a coherent interdependent system. Com-

posite applications act as common façade for multiapplication setup using their func-

tionalities, or they can be seen as middleware intermediating between multiple applica-

tions. Interactions can be single or multistep processes and are often bidirectional. [9]

Figure 3. Purposes for EAI [9]

8

2.5.1 Architecture patterns

EAI deals with communication between heterogenous applications, meaning that it

does not consider individual applications architecture. This means that single applica-

tion’s architectural patterns are not in the domain of EAI nor the focus of this study. [9]

Instead, how multiple applications, such as Jira Cloud and M-Files communicate with

each other and how the system of systems is structured constitutes as the problem at

hand. EAI architectures have followed their times and trends. For example, as a data

format in information exchange, XML (eXtensible Markup Language) with SOAP (Sim-

ple Object Access Protocol) have in many cases been replaced by JSON (JavaScript

Object Notation) and REST (Representational State Transfer) due to latter’s better per-

formance, simplicity, scalability and extensibility [4], [14]. In terms of EAI and the bene-

fits of using JSON extend being the trend [4] as it reduces bandwidth and computing

time considerably and enforces security [4], [14].

Manouvrier and Menard [9] discusses exchange architectures and presents three

forms: “hub and spoke” (or star), “bus”, and “snowflake” (Figure 4). In the star architec-

ture, all information flows through a single hub. Bus acts as a technology-agnostic com-

munication platform where applications can act as servers or clients, thus elimination

the problem of single points of failure in the star architecture. [9] Snowflake architecture

is suitable for large-scale implementations with complex systems, where for example

business-to-business integrations are needed [9].

Figure 4. Basic forms of data exchange architectures [9]

9

In terms of software architecture paradigms, concepts such as event-driven architec-

ture (EDA) and service-oriented architecture (SOA) are in the forefront of system de-

sign in EAI implementation as design philosophies. [15] SOA is an architectural style

where individual applications offer their services with well-defined and published inter-

faces, and where applications can decide whether to consume those services or not.

Service-oriented systems consist of reusable components that offer services to other

services instead of offering them directly to users. Some SOA-based systems are built

using exclusively web technologies while others are built as on-premise software [16].

Many systems are a mix of both paradigms but where SOA can be seen as client-

driven request-response system, EDA is event-driven with a fire and forget principle,

where processes are split between sources and sinks (or event sources, and event

handlers) [15]. Both SOA [16] and EDA are loosely coupled architectures, which means

that components are connected by a network and thus can exchange information but

have their own operational logic [17]. Both systems in this study provide good APIs for

data exchange and Jira even provides webhooks [11] to allow EDA functionality.

Jira Cloud can be seen as an example of distributed component architecture with its

emphasis to extendibility. The basic features are provided by the Jira Core SaaS appli-

cation and its functionalities are extended by external service providers which use Jira

as a platform to offer and use their services. Figure 5 illustrates the Jira Core function-

alities as a component of the whole application which can be extended with add-on ap-

plications which all can communicate with each other. Jira add-ons (or plugins or apps)

are software that can be installed to plug into Jira software and aim to add functionality

to it. Apps are remotely contained web applications that integrate into cloud sites. [18]

Atlassian has a marketplace for these apps, similar to Apple Appstore [19]. Such archi-

tecture can provide a straightforward way to integrate other services with each other.

This can be seen in Atlassian Marketplace where multiple add-ons provide integration

to different systems, for example, to Salesforce and Google Drive [20].[16]

Figure 5. Jira Cloud as a distributed component architecture [16]

10

2.5.2 RESTful services

REST (Representational State Transfer) is a software architecture style utilizing simple

client-server interaction via HTTP(S) and more specifically post, get, put and delete

methods to transfer representational resources [16]. With such methods a resource can

be created, read, updated and modified [4]. In addition to HTTP, REST uses other

W3C/IETF standards such as URI (Uniform Resource Identifier) [12], which is used to

identify the location of a particular resource. As an example, a resource such as a M-

Files document object can be accessed in a URL https://{your-domain}.com/ob-

jects/{type}/{objectid}/{version}/properties/{id} with get request, given that request is au-

thenticated by the server. Response from the server in this case would be a JSON ob-

ject describing the properties of a particular document. Similarly, a delete method to the

same URI will delete the specific resource. [16] Figure 6 illustrates the basic structure

of the applications utilizing REST. Application A provides services to users while the

main purpose of Application B can be to provide services, such as weather or banking

data, to other services, in this case to Application A. A particular fundamental aspect of

REST is its statelessness, meaning that all requests made for the server must include

all necessary data to convey the information about the possible state of the interaction.

Such information can be authentication tokens for login information or other data about

the session stored in the request body or parameters.

Figure 6. Application using REST API

REST has low overhead [4], and it has gained wide adoption due to its simplicity,

scalability and performance [21]. According to Serrano et al. 2017 [21] “nearly all the

top 100 websites from Alexa 1 provide their own APIs”. This can be seen as an indica-

tor of the degree to acceptance for the technology [21]. A significant amount of data

online is exchanged through exposed web APIs which present the data in formats such

1 https://www.alexa.com/topsites

11

as JSON of XML [4]. It has also become a trend to use RESTful services in partic-

ular for distributed system development.[22]

2.5.3 Building user interfaces with React

As mentioned in section 2.5, composite applications act as common façade for mul-

tiapplication setup using their functionalities, and they can be seen as middleware inter-

mediating between multiple applications. A common user interface could be created as

an individual web service but in a case where an application can be extended in a way

that another software’s functionalities can be incorporated into it, an extension of exist-

ing UI is an option too. Creating UIs for web services can be accomplished with many

technologies. One particularly popular framework is React [23]. It is an open-source Ja-

vaScript library for building user interfaces. The framework makes it easy to create

component-based single page applications. It also provides a simple way to bind data

and manage the state of the application using props and state. The content is often

created using JSX, a syntax extension for JavaScript, which is then built into common

JavaScript and HTML. [23] Source code 1 shows the basic structure of a React compo-

nent where the text “Hello Taylor” is rendered to the user by using the render method,

JSX and props.

2

4

6

8

10

12

14

class HelloMessage extends React.Component {
 render() {
 return (
 <div>
 Hello {this.props.name}
 </div>
);
 }
}

ReactDOM.render(
 <HelloMessage name="Taylor" />,
 document.getElementById('hello-example')
);

Source code 1. Example of a simple React component [24]

2.5.4 Implementation methods of EAI

Badampudiet et al. [24] discussed about influencing factors for decision-making for

component and solution origins. EAI solutions fall into the same four categories and are

subject to similar factors. EAI can be created with components off-the-shelf (COTS),

open-source software (OSS), in-house development or outsourced development, which

can be evaluated with factors presented in Table 1 [24]. Badampudi et al. [25] argued

that the benefits for COTS & OSS over in-house development would be reduced time-

12

to-market, reduced development effort, and ability to add complex functionality,

whereas in-house development over COTS & OSS was seen to have the ability to add

unique functionality, to have reduced maintenance costs, easy integration and reduced

testing time. In addition to implementation factors, it is important to have a detailed un-

derstanding of the integration requirements for the existing systems and environment,

as well as a view of opportunities their integration. [24]

 Table 1. Collection of themes and factors comparing system integration options [9]

High-level themes Themes / factors Description

Project metrics
factors

Time

Time to test and integrate
Time to market
Cost of components
Total cost of ownership
Cost of replacing components
Maintenance cost

Effort
Selection and integration effort
Development effort

Quality
Quality in general
External factors

External factors

Market trend Component evolution

Source code availability
Access and use of source code
Source code documentation

Technical support

Response time
Support availability
Code customization
Changes in requirements

License
License fee
License obligations

Software
development
activity factors

Integration Ease of integration

Requirements

Task complexity
Task uniqueness
Requirement uncertainty
Requirements negotiations
Requirements suitability

Maintenance Ease of maintenance

13

2.5.5 Commercial integration platforms

In the past enterprise application integrations have been done as point-to-point integra-

tions where different applications have been connected directly with each other [9].

Separate connectors (or adapters) are made for different applications to link them with

each other via specific information exchange infrastructure [1]. These types of connec-

tions are most often custom-made for each case, and while they can be straightforward

to create, their maintainability may cause issues due to high complexity and rapidly ris-

ing number or individual connections. Figure 7 illustrates the rising number of connec-

tions as the number of connected applications increases. If all applications must be

connected to each other, as application increase from 1 to 5, the connections increase

from 1 to 10. While companies often can easily have, for example, 10 applications, the

number of connections will rise to 45 as number of connections c follows function c =

(n-1)!, where n is the number of applications.

Figure 7. Rising number or point-to-point connections

The above-mentioned fact is highlighted in many iPaaS (Integration Platform as a Ser-

vice) system providers’ marketing material and in literature [26]. It can be argued that

all systems do not necessarily have to connected to all other systems. This alone low-

ers the number of needed connections significantly. This may be the case, for example,

where the master data stored in certain applications must be accessible by a particular

application such as an ERP system, but there may not be a need for the rest of the ap-

plications to communicate with each other. Another key selling point of an iPaaS is the

ready-made connectors for legacy systems [1], [26]–[28]. In these cases, iPaaS solu-

tions can also be a convenient way to modernize on-premise legacy systems by lift-

and-shift approach [27], [28]. In addition to highly customizable logic, iPaaS solutions

provide low code and no code rule-based configurations in connecting systems [29].

IPaaS can be set to listen and react to requests and act upon those [30]. Though iPaaS

solutions simplify integration and definitely streamline connections, especially in cases

where shadow copying and simple joining or rule-based actions are needed, the high-

level views, such as shown in Figure 8, hide the complexity. Implementing iPaaS solu-

tions does not remove the need to manage the connections in a robust way. The

A B

A B

C

1

1

32

A B

D

1

2
6

C

5
4

3

A

B

C

1 2

6

D

7

5 10

E

3

8

4

9

14

needed business logic must be defined and created, and possible changes must be

handled in an orderly manner.

Figure 8. Dell Boomi system overview Think AI [31]

15

3. METHODOLOGY

The thesis relies on the three-step cycle view (Figure 9) proposed by Hevner [32] and

thus follows the design science (DS) methodology. The aim of design science research

is to improve the target environment by introducing new and innovative artefacts and

processes [31]. Design science research method was chosen due to its wide use in the

field of information technology and its process’ good fit to iterative problem solving in

cases where the outcome is unclear and needs to be define during the execution. This

study, as well as many others, resemble closely action research (AR) studies by nature

but where AR concept relies on the researcher being an active participant in the organi-

zation solving practical issues therein, DS aims at designing and creating a useful arte-

fact [33]. In this particular case, much of the AR has been done and thus the documen-

tation for it has been excluded and the research question formalized in terms and

scope of DS research method.

Figure 9. Design Science Research Cycles [31]

As Hevner [31] presents, in this design science research the environment with the cur-

rent systems (sections 2.2 and 2.3), problems and opportunities (2.1), and Study objec-

tives (2.4) are presented in the chapter 2, Background. Aside from study objectives, the

information was known in detail prior to the study by the author but multiple discussions

with company personnel were conducted in order verify mutual understanding. Based

on this information the relevance cycle generated the functional and non-functional re-

quirements presented in the section 4.1, System requirements. As proposed by Hevner

[31], the design cycle iterates between the rigor and relevance cycle as additional infor-

mation from the environment, existing knowledge base and from the application devel-

16

opment is uncovered. Application logic, structure and UI design needed multiple itera-

tions. This was mostly due to know-how and understanding developing as the study

progressed. At the same time the effectiveness of the produced system was increased

as multiple versions were developed and reviewed. Chapter 4 elaborates on the deci-

sion made, and technologies and approaches chosen during the study, and as such

describe the design cycle. Hevner’s [34] rigor cycle should link the past knowledge to

the research project, thus ensuring its novelty and innovation. This was done by lever-

aging the existing studies, frameworks and technical solutions in the design and crea-

tion of the produced application. Findings of the rigor cycle as discussed in chapter 5 –

“Evaluation and Discussion”.

17

4. RESULTS

The objective of the thesis was to produce a proof-of-concept that could help the man-

agement of engineering source data by integrating two applications and extending their

functionality. This chapter presents the solution for the problem and discusses the for-

mulated system requirements and elaborates on the produced proof-of-concept’s tech-

nology, functionality and design decisions.

4.1 System requirements

Functional (Table 2) and non-functional (Table 3) requirements were formed based on

current understanding of the problem and by gathering feedback from people using

both systems (Jira and M-Files) and those who were familiar with the desired process

during the study. The feedback was documented in personal notes during multiple in-

formal discussions with these people and compiled to the system requirements tables.

Table 2. Functional requirements

No. Functional requirement In
PoC

Non-functional
requirement

1 Can be accessed by all employees Yes Usability
2 Documents stored in M-Files can be searched in Jira Yes Usability,

Extendibility

3 Documents stored in M-Files can be accessed in Jira Yes Usability,
Extendibility

4 Notifies when related entities change No Usability
5 Can execute actions for both systems within the appli-

cation
Yes Usability,

Extendibility

6 Can create reports No Usability

7 Can create visualizations of formed entities and their re-
lationships

No Usability

8 Documents can be linked to tasks Yes Usability
9 Documents can be source data Yes Usability
10 Documents can be output of the task Yes Usability
11 Changing linked documents must be controllable by

tasks status
No Usability

12 Change history of linked documents must be stored No Usability
13 System must require credentials to access documents Yes Security

18

Based on the objectives of the study, functional requirements that were not essential in

creating the proof-of-concept (PoC) application and whose creation would’ve caused

significant increase in development time or their implementation was found to beneficial

to create outside application, were left out of the PoC add-on. For example, as seen in

Table 2 ”In PoC” column, the notification system (No. 4) was left out for its estimated

high development time, and the reporting function (No. 6) because it would be better to

be handled by reporting systems in Jira Cloud, M-Files, or by external reporting solu-

tions used by the company. Functional requirement 11 was seen to be handled by Jira

Cloud system administration and functional requirement 12 can be fulfilled by how M-

Files stores the related data. Other functional requirements were fulfilled, and their doc-

umentation is discussed in section 5.1. Basic non-functional requirements were formed

in the beginning of the study in order to capture specific aspects important to the imple-

mentation, such as information security, the ease of use and the availability of the sys-

tem. The practical fulfilment of these requirements in discussed in section 5.1.

Table 3. Non-functional requirements

Non-functional requirement Description
Usability Easy to use

Usability
Shall not significantly slow down the use of the applica-
tion

Security
IT Security shall not decline by the introduction of the
add-on

Availability
Availability of M-Files and Jira cannot be lowered by the
system

Availability System availability 99%

Scalability

The system shall scale in par with the integrated systems
(i.e., User experience shall not deteriorate due to the
add-on)

Maintainability
System shall be easy to maintain. System shall be devel-
oped according to the needs of the users.

Extendibility Functionalities can be added to the system
Portability System can run in various environments

In addition to the functional requirements, the target users’ use cases were defined and

are shown in Figure 10. A particularly valuable functionality – the analysis of the linked

documents was defined to be excluded from the add-on produced in this study as it

would be more suitable to be included in another system (see functional requirements

in Table 2). The implementation of such functionality was mandatory for the system but

not for the proof-of-concept application produced in the study.

19

Figure 10. Use cases

The basic workflow for the use of the add-on is shown as an activity diagram in Figure

11. It shows the functionalities for browsing, opening and linking documents within the

task management software Jira. Single sign-in was not implemented in the add-on so

users must login also to M-Files within Jira. Basic information of related documents of a

specific task can be viewed without logging in with M-Files credentials but viewing any

information other than document’s name, id and version, the users must log in with his

or her M-Files credentials. After signing in, the users can search for documents, open

them, and create links between documents and tasks. The sequence of messages be-

tween the user and different parts of the system is shown in Figure 12 where, for exam-

ple, the initial opening of a task in Jira connects only to Jira servers whereas opening

the view to use the addon connects to the add-on server.

20

Figure 11. Activity diagram of the basic functionalities

21

Figure 12. Sequence diagram for basic functions

22

4.2 Add-on for Jira Cloud

Integration of M-Files and Jira Cloud could have been done in many ways and with

many technologies. Due to Jira Cloud being a SaaS application and because it pro-

vides a powerful REST API and its documentation and other resources are very user

friendly, the use of REST became the starting point for the development. An ODBC

(Open Database Connectivity) driver for Jira would have been available [12] but its use

would’ve unnecessarily increased the complexity of the system. Especially writing di-

rectly to Jira’s database could have caused issues in data integrity. M-Files provides a

COM (Component Object Model) and a REST API [35]. The support for REST is not as

extensive as it is for COM but after learning that the needed functionalities were possi-

ble to create with REST, a decision was made to use REST in both ends of integration.

The needed functionalities determined that a simple rule-based integration method was

not enough to fulfill needs of the solution since the solution cannot be specified in terms

of “if this then that” [36]. Data propagation with data consistency checks, even together

with multistep processes is a deterministic flow which is not enough to enable the func-

tionalities needed. The needed solution would need a specific business logic to enable

user input from both systems and in a way that would be as convenient as possible to

use. This meant that using commercial of the shelf (COTS) products such as IFTTT,

Microsoft Flow, or Dell Boomi Flow, or other open-source software (OSS) such as

Apache Airflow, was not an option. COTS products and OSS could have been ex-

tended to fulfill the needs of the target company but in this case would have increased

the complexity of the system and needed further development effort. There also was no

need to use iPaaS solution to connect legacy systems nor need to connect multiple ap-

plications. In addition to above-mentioned technical aspects the cost of commercial

iPaaS systems such as Dell Boomi would have increased the cost of the PoC unneces-

sarily. For future use, it could be beneficial to use iPaaS for the basis for the integration

if more systems need to be integrated. Future activities in relation to the add-on are

discussed in section 5.3.

Since user input was needed to define the links between tasks and documents, the

most convenient way was to extend either of the existing systems. Both Jira Cloud and

M-Files can be extended but as Jira Cloud acts as the task management system in

which designers work in, it was considered to be the more suitable option. Also, the de-

veloper-friendliness and the technology agnosticism of extension of Atlassian products

played a big role in the decision. The use of REST APIs and server-client architecture

allowed to choose quite freely the used technology. Based on the developer’s previous

experience, simplicity of having one programming language for front and backend, as

23

well as being able to develop and run the application in various environments, a JavaS-

cript-only solution was chosen.

A composite application with a star topology was created in service-oriented architec-

ture (SOA) using Node.js and specifically Express server to act as an independent mid-

dleware between Jira Cloud and M-Files. It provided data integration with a multistep

process for linking information in those systems together. By extending Jira Cloud’s

user interface (UI) with React.js, the add-on application was able to seamlessly extend

the capabilities of Jira Cloud as well as the Jira Cloud – M-Files system of systems.

The produced solution plays also a key role in endorsing vendor independence as it al-

lows the TSM to use other REST-enabled DMSs with little modification. However, as

the UI component is specifically made for Jira Cloud, migrating to another TMS would

mean major recreation of the integration application.

Functional requirements that were defined to be implemented in the PoC were suc-

cessfully fulfilled and their details are discussed in sections 4.1, 4.2.4 and 5.1. Non-

functional requirements for usability were fulfilled with Atlassian-compliant modern UI,

maintainability and extendibility was kept in mind with proper commenting of code. Ex-

tendibility could have been better if the codebase would have been structured with a

large-scale application in mind. However, as a PoC, the application structure (see

4.2.2), originating from Atlassian scaffoldings, will suit the purpose. As a Node.js appli-

cation, the portability is good as it can be run in basically any Windows, Mac or Linux

environments. Based on tests in the development environment, the application per-

formed reasonably fast, and no availability issues were found in the system itself or in

the systems it connected to. Scalability, as was determined in the non-functional re-

quirements, was not considered in the application itself. Stress tests with 100+ simulta-

neous users should be conducted during the test phase. Planned way to ensure scala-

bility and availability is to use products such as NGINX [33] for horizontal scalability

and load balancing. Security aspects are discussed in detail in section 4.2.6.

4.2.1 Architecture

The architecture of the add-on follows the guidelines provided by the application plat-

form provider Atlassian. The produced add-on cloud service sits between the two soft-

ware services used in the company. Figure 13 depicts the high-level entities and the

way they communicate. In terms of system architecture as presented in section 4.2.1,

the created application is a of form star in its simplest way. Atlassian provides its own

24

framework for extending their offerings in cloud with add-ons. The add-ons are inde-

pendent web-applications which communicate with Atlassian application via REST

APIs. All functionalities of Jira Cloud are not available via REST interfaces [33]. Often

add-ons render content to the main application inside an iframe but that doesn’t have to

be the case. Because Atlassian provides a scaffolding for add-on development for their

cloud services, and due to their particular technology stack, the following technologies

and libraries were used to produce the add-on in this study: Node.js, Express.js, At-

laskit, Material-ui, React and Axios.

Figure 13 High-level representation of overall architecture of the produced add-on –
“Middleware add-on” (Derived from article “Introduction to Atlassian Connect” [37])

4.2.2 Application components and structure

Atlassian provides a scaffolding for a Jira Cloud add-on. It is a blueprint and an exam-

ple application to show the basic structure and functionality of an add-on application for

Jira Cloud. Such scaffolding will ease and speed up the development process. Hence,

the PoC deliberately utilizes that structure, even though in the longer run the code will

most likely need refactoring. File .env holds environment variables such as API end-

points, ports, database mapping configurations separately from the other source code.

This is done in order to allow easier configuration and better security, as if for example,

API endpoints change, different information need to be mapped or mappings change,

the parameters can be set and changed in this file (Source code 2).

25

2

4

6

8

10

12

14

REST_***_JIRA_DOMAIN=https://*****.atlassian.net/
REST_***_MFILES_DOMAIN='https://mfiles.******/REST'
REST_***_MFILES_VAULT='C8BD0C48-2A52-4063-8B56-**********'
[…]

LISTEN_PORT=5000
[…]

JIRA_DOCUMENT_LINK_FIELD=customfield_10042
[…]

JIRA_ISSUE_OBJECT_TYPE_IN_M_FILES=112
JIRA_ISSUE_LINK_PROPERTY_DEFINITION_IN_M_FILES=1189
JIRA_ISSUE_CLASS_ID=2

Source code 2. Parts of the environment variables in .env file

The entry point to the application is App.js and it imports dependencies, configures ap-

plication and starts the server. Source code 3 shows parts of the code defined in

App.js. Atlassian-connect.json is a descriptor file which is used to specify the add-on

specifications such as endpoint URL for the add-on and needed permissions in JSON

to Jira Cloud. In this particular use case, both read and write permissions are needed.

The information in the descriptor is used during the installation of the add-on inside

Jira. The dependencies and configurations used in both development and production

environments are stored in config.json. Source files for dependencies are located in

node_modules folder. A separate directory was reserved for utility functions such as

logging.js. A public directory provides static files such as images and client-side JavaS-

cript (glance.js, Source code 4). Source code 4 shows the importing of the React library

and parts of the React component and its states. The Express routings for requests

from client are separated into a single file (index.js), which is imported in the entry point

App.js. Source code 5 shows the importing of necessary libraries such as Axios, and

an example for two routes. All the different React components are defined in the views

directory as JSX files such as Login.jsx and Search.jsx. They correspond to all the

building blocks of the UI and they are discussed more in the section 4.2.3.

26

2

4

6

8

10

12

14

16

18

20

22

24

26

import express from 'express';
import bodyParser from 'body-parser';
[…]

const app = express();
const addon = ace(app);
[…]

app.set('port', port);
app.set('trust proxy', 1)
[…]

const devEnv = app.get('env') === 'development';
app.use(bodyParser.json());
app.use(addon.middleware());
[…]

if (devEnv) app.use(errorHandler());
[…]

routes(app, addon);
[…]

http.createServer(app).listen(port, () => {
 console.log('App server running at http://' + os.hostname() + ':' +
port);
[…]

Source code 3. Parts of the application entry point App.js

2

4

6

8

10

12

14

16

18

20

22

import React, { flex } from 'react';
import { useState, useEffect } from 'react';
[…]

const Glance = () => {

 const [searchWord, setSearchWord] = useState('');
 const [results, setResults] = useState([]);
 […]

 return (
 <div>
 {!loggedInMF ? <Login/> : <></>}
 <Links/>
 <Search/>
 <Results/>
 </div>
)
};

export default Glance;

Source code 4. Parts of the main React component

27

2

4

6

8

10

12

14

16

18

import axios from 'axios';
import fs from 'fs';
[…]

export default function routes(app, addon) {

 app.post('/createissuemfiles', addon.authenticate(),
addon.checkValidToken(), (req, res) => {

[…]

});
[…]

 app.get('/', (req, res) => {
 res.redirect('/atlassian-connect.json')
 });
[…]

})

Source code 5. Parts of the Express routes in Index.js

4.2.3 User interface

The user interface (UI) follows mostly the design guidelines provided by Atlassian –

company behind Jira [37]. It uses also UI elements from Atlassian’s Atlaskit to ensure

the look of seamless integration [38]. In addition to elements in Atlaskit, also custom el-

ements and elements from Material-UI [37], [38] were used. Atlaskit and Material-UI

are UI libraries which offer ready-to-use UI components [23].

The placement of the UI for the integration application is implemented as an issue

glance – an interface element provided by the Jira Cloud developer framework. It has

the ability to have a minimal footprint with minimum information by default and has an

extended view with all the functionalities. Figure 14 shows a sketch for the user inter-

face where the functionalities for the add-on are placed in a glance view. Green ele-

ments represent the add-on and its varied footprints and functionalities in minimized

(on left) and extended (on right) form. White and blue elements represent default UI el-

ements in Jira Cloud.

28

Figure 14. Sketch for the add-on’s user interface Atlassian “Glance view”

The extended view holds functionalities for all actions executed with the addon. Figure

15 illustrates the basic layout of the extended view and its functionalities. Top part of

the UI is reserved for the currently linked documents and the lower part for the search-

ing functionality. Each element in both previously mentioned parts can be extended to

show additional information and corresponding files. The user interface of the add-on is

done using React [39] components which are rendered inside an iframe. Figure 16 de-

picts the nested hierarchy of the used components. In addition to the component men-

tioned below, other components such as buttons, forms, and icons from Material-ui and

Atlaskit were used [40].The state of the application was handled with React state func-

tionality. Table 4 lists the used variables and their purpose. Picture 1 shows the actual

issue view where the add-on is placed in the section on the right column similarly to

Figure 14. Picture 2 shows the ”Manage related documents” section where the number

of linked documents is shown.

29

Figure 15. Sketch for extended glance view

Figure 16. Hierarchy of the used React components

30

Table 4. UI’s state variables

Variable Type Purpose
searchWord String Search word in the search box
results Array List of search results from M-Files
links Array Existing linked source documents

targets Array Existing linked target documents
token String Authentication token to authenticate traffic
isSaved Boolean Status of saving (controls the visibility of the save

button)

loggedInMF Boolean Login status of M-Files (controls the visibility of the
login view)

linkSource Boolean Linking type (controls if document is linked as
source or target)

showHint Boolean Controls the visibility of UI hints

Picture 1. Jira issue view - Basic layout

31

Picture 2. Jira issue view, Right panel with issue glance element

4.2.4 Functionalities

Opening the basic issue view in Jira shows the basic content of the issue. During page

loading only visible data is sent to the browser. This means that in the case of the pro-

duced integration add-on only the number of linked documents is fetched. This infor-

mation is stored in Jira database and is thus provided by the Jira server. By clicking the

”Manage related documents” section (Picture 2) the user interface reveals the ex-

tended view. In this stage, the view with its elements and data is fetched from the add-

on server (see also Figure 12). Within this view, the documents inside M-Files can be

searched, downloaded, inked and unlinked. Picture 3 illustrates downloading a file re-

lated to a document. The extended view shows possible linked documents in two sec-

tions: target and source data documents (see Figure 1) as well as the search box (Pic-

ture 4). All linked and searched documents show the name of the document, its unique

id number and the version of the document. By clicking the ”i” icon the view extends to

show all metadata related to that document (Picture 5). Next to the ”i” icon there will be

a down arrow if the document has files related to it. By clicking the down arrow, the ele-

ment extends to show the files related to it. Those files in turn can be downloaded and

viewed by clicking the name of the file in the extended view. Clicking the actual docu-

ment name adds or removes the linking between the issue and document. The linking

type (target or source) is shown as a paper clip icon (Picture 4) and can be switched by

clinking it.

32

Picture 3. Jira issue view, extended glance with available file downloads

Picture 4. Jira issue view, extended glance with linked documents

33

Picture 5. Jira issue view, extended glance with document metadata

The search functionality is available only for users who are authenticated with their M-

Files credentials. If the user has not provided the credentials and thus may not have

the rights to access files, only the linked documents’ names are visible to them. Docu-

ments cannot be viewed or searched. After authorization, the logged in user can

search documents within the configured M-Files Vault in the basic extended glance

view (Picture 6). All previously mentioned functionalities apply also for the search.

34

Picture 6. Jira issue view, extended glance with search results

4.2.5 Backend and business logic

Express framework is an open-source backend web application framework for Node.js

[41]. It handles the registration of the add-on, user login for M-Files and creation, up-

dating and erring the links in both systems. Any actions done for M-Files were first re-

quested from the add-on. From there the add-on server parsed and redirects the re-

quests with additional required attributes to the M-Files REST API with Axios, a prom-

ise-based HTTP client and library for Node.js [39]. The additional attributes are used to

map data and between systems according to environment in use. In addition to data

mapping the server also handles errors, checks for duplicates and keeps a simple high-

level log. A custom express middleware in the add-on scaffolding also authenticates

and checks the validity of the token in every request [42], [43]. Table 5 lists all end-

points for the produced add-on. As an example, when user saves changes for linked

documents, the front-end JavaScript makes a post request to the add-on, which in turn

makes a put request to M-Files endpoint. Upon success, the add-on forwards confirma-

tion to the front-end which calls (put) Jira Cloud API directly to create a similar record to

Jira database. Figure 17 illustrates the simplified sequence of actions in the previous

example while leaving out exceptions, necessary preceding events and internal calls

such as checks and authorizations.

35

Table 5. Add-on API endpoints and their required parameter

Method Path Body parameters

POST /createissuemfiles description(String), jiraKey(String)
POST /linktomfiles linkedObjectIDs(Array)
POST /signtomfiles username(String), password(String)
POST /searchmfiles searchWord(String)
POST /getDocProperties id(int), version(int)
GET / -
GET /login-dialog -
GET /glance -

Figure 17. Sequence diagram for linking documents in M-Files to issues in Jira Cloud

The data related to the linking of documents (in M-Files) and tasks (in Jira Cloud) is

stored primarily within Jira Cloud database while the same information is mirrored to M-

Files for browsing and reporting purposes. Thus, the add-on does not store any infor-

mation. The linking information is processed as JSON with the REST APIs, but the in-

formation is stored in some SQL databases [43]. Database schemas are not freely

available for neither products, and the data structures are encapsulated and not visible

to the add-on nor the developer. However, due to the chosen technologies for the inte-

grations, there is no need to gain access for this information. The link between a docu-

ment and a task is stored in Jira Cloud as shown in Source code 6 and is accessed

with post and get requests to a task-specific API endpoint. A specific task in Jira Cloud

36

is linked to a specific version of a specific document in M-Files. For example, a task

with a key “PN-30” and an id of “10144” in Jira Cloud has the record shown in Source

code 6. It shows that it is linked to a document of type “0”, id of “50” and version of 18”.

The record also shows additional information such as the name of the document and

the files related to that document.

2

4

6

8

10

12

14

16

18

20

22

24

26

28

{
 "key": "relatedDocuments",
 "value": {
 "documents": [
 {
 "Title": "Test Contract - Rev. A (ID TEST01-3)",
 "ID": "50",
 "ObjVer": {
 "Version": 18,
 "VersionType": 4,
 "ID": 50,
 "Type": 0
 },
 "Files": [
 {
 "Name": "mfiles4B",
 "EscapedName": "mfiles4B.txt",
 "Extension": "txt",
 "FileGUID":"{0CDA39CF-8B22-4800-99AE-CF610B268488}",
 "ID": 4,
 "Version": 2,
 "FileVersionType": 3
 }
]
 }
]
 }
}

Source code 6. Abbreviated example of a document link in Jira Cloud as JSON

The information in M-Files can be assessed and modified in a similar manner but the

information is most likely stored in separate tables and linked with foreign keys. In M-

Files (Figure 18), the links between engineering tasks and documents can be seen as

a hierarchical structure even though no actual hierarchies are formed. This can be

seen as the hierarchy wraps around itself showing the task “PN-30” as its own child in

Figure 18. To continue the previous example, in M-Files, browsing the task “PN-30” will

show related documents “Työnkierron kuvakkeet – Rev. B (ID TEST01-143)” and "Test

Contract - Rev. A (ID TEST01-3)", which alongside other information such as Author

and Project, shows the linked task “PN-30”. Linking functionality with the add-on in Jira

Cloud is shown in Picture 4 on page 32, and data topology is shown Figure 1 and Fig-

ure 2 on page 6.

37

Figure 18. Linked documents and Jira issues in M-Files

4.2.6 Security

Many aspects must be considered when building applications that are open to the web

as they can expose company data to the web. Petzold & Hoogvliet [44] blogged about

Atlassian add-on security where they raised endpoint communication, authorization

concept, add-on requirements and the protection of private add-on as the main aspects

of Atlassian Connect application security. This, in addition to OWASP Top 10 standard

awareness documentation [11], was set as a reference for security.

The fact that both integrated applications interact via public network with REST APIs

was considered and evaluated during the study. In the case of this particular add-on,

the goal was to ensure that the security of the used applications does not deteriorate

upon introduction of the add-on. In particular, this means that the communication be-

tween applications is secure and that all actions are authorized. This was achieved by

communicating only with Hypertext Transfer Protocol Secure (HTTPS) and authenticat-

ing all requests with JSON Web Tokens (JWT).

As users log in to Jira, no user authentication for the actual use of the add-on is neces-

sary but the communication between the add-on and the actual Jira Core application is

done by authenticating each request with JWT [12]. This means that all requests for the

browser to the server are authenticated and validated and thus only the communication

between authorized clients is possible. The JWT authentication method is provided by

Atlassian but the use is under responsibility of the developer.

38

There is currently no way to integrate the Jira user permission management with the

user management of M-Files. Thus, users’ permissions to query documentation must

be verified in the add-on. All allowed Jira users can see the name and ID of the linked

documents, but they cannot search, add, open or request other metadata without being

authenticated. The authentication is done by forwarding the login details to the M-Files

REST API, which in turn, returns a token which is then attached to the user session,

thus allowing the use based on M-Files privileges. M-Files developer portal documenta-

tion recommends authentication tokens which upon receiving can be attached to the

request headers. [45]

4.2.7 Development environment and installation

Based on ease of use and past experience the application was developed with Visual

Studio Code [46] and ngrok [47] was used to expose local development server to the

Jira platform during development. The application itself runs on Node.js Java-script

runtime environment [31].

Installation of the add-on is done by Jira Cloud instance administrator via administra-

tion panel within the system. In this particular case the produced add-on is intended for

internal use within the organization so the application is installed by referring to the

add-on server address. This particular method is not optimal for use in production but is

suitable for the purpose of the study. If a decision is made to extend the use of the add-

on the Atlassian Marketplace supports (and endorses) private listings as which the pro-

duced add-on should be registered. Updating a cloud service add-on is very straightfor-

ward as any new functionality or modification is instantly available to all users after

modifications are pushed to the add-on server.

39

5. EVALUATION AND DISCUSSION

The evaluation of the proof-of-concept done against the requirements specified during

the study. This chapter discusses the fulfilment of those requirements, describes the

development process, and presents possible future development initiatives.

5.1 Requirements

As described in chapter 4.1 System requirements, all functional requirements were ful-

filled with the exception of functional requirements 6, 7, 11 and 12 (see Table 2) which

were considered to be more suitable to handle outside the produced add-on and num-

ber 4 which was excluded due to estimated relatively high development time. The add-

on can be accessed by anyone in the organization with proper authorization, docu-

ments and their links can be accessed in both systems and links can be created in Jira

Cloud.

Based on initial demonstrations the use of the add-on was seen by future users as intu-

itive and easy to use. The “uncached” load time of a page in the development environ-

ment ranged between 7-9 seconds and the add-on timing as on average 2,5 seconds

with actual download time of 1,5 seconds. Load times will be significantly lowered by

minifying code and deploying the add-on to a proper production environment. The pres-

ence of the add-on doesn’t seem to be affecting the usability in terms of loading time

since identical performance was documented without the add-on. The add-on does not

deteriorate the availability of Jira Cloud or M-Files even if the availability of the add-on

would be affected in some way. Only the capability to link documents (in M-Files) to

tasks (in Jira Cloud) and browsing files in Jira Cloud would be affected. Availability was

not stress tested during this thesis. In its proof-of-concept form, the application’s scala-

bility is not very scalable. This is due to decisions made during development. However,

as stated in section 4.2 the scalability can be easily increased with software such as

NGINX.

System security relies to the authorization from M-Files and Jira Cloud. All traffic to the

add-on must originate from either Jira Cloud or from M-Files and the requests are au-

thenticated with tokens. All data generated and handled by the add-on is routed with

HTTPS and the token does not store any information outside Jira Cloud or M-Files, and

also in that respect cannot deteriorate the security.

40

As the add-on is created as a Node.js application, the portability is great. Depending on

the IT departments preferences the application can be deployed to companies own

servers running Windows, or to cloud running most probably some Linux-based sys-

tem. Extendibility suffered in terms of application structure since no systems were cre-

ated in order to allow additional components to be added to the add-on. However, new

functionalities can be added to the system. Maintenance of the source code must be

done in-house and can require some work. Security updates for the dependencies

used must done and possible updates on Jira Cloud or M-Files REST APIs must be re-

acted upon.

The objective of this study was to create a proof-of-concept application that would help

the target company to lower costs caused by rework, poor information management

and communication, while making daily work easier and more convenient. The study

showed that such system can be created by extending the capabilities of existing sys-

tems by creating a cloud-based add-on that integrates two separate systems into a

connected system of systems that functions as one. This system ties existing digital

tools together with the engineering process and allows an easy way to manage the use

of source data.

5.2 Development process

The development of the add-on followed the chosen design science methodology fairly

naturally. The insights from the environment came to a large degree from the developer

itself but discussions with different interest groups verified and developed the under-

standing. Even though the basic idea behind the developed system was formed many

design cycles were done in order fully understand the issues related to both systems to

be integrated. Also, aspects of the user experience required multiple iterations. In addi-

tion to iterations in application design, a significant portion of design loops were due to

personal learning in system design and application development. It can be said that

even though the knowledge base formed for the target company by this add-on is fairly

confined, the personal knowledge space was significantly increased. As [48] describes

the three-cycle-process, the creation of the proof-of-concept consisted of dozens of rel-

evance, design and rigor cycles thus making the design fulfill the objectives of the

study.

41

5.3 Future development

Based on the results of this study, the created application will be transferred to produc-

tion and will be used in a chosen future project. As this study focused on creating a

proof-of-concept application, future development could focus on extending functionality

of the application and redesigning the architecture to ease further development work.

Future functionalities could be 1.) settings panel that would enable field and metadata

mapping settings, 2.) Notification functionality, 3.) integration with CAD software

Cadmatic with its newly released REST APIs, 4.) splitting software into microservices

or at least split the front and backend and 5.) study of benefits its integration with com-

mercial iPaaS solutions.

Further work and efforts could be done to extend the integration further in other highly

process-wise connected domains such as CAD, CRM and ERP application. Also,

broad analysis of needed tools, their integration with dedicated integrations platforms

(iPaaS) and custom integration solutions and their security, performance, functionality

and maintainability are topics that must be addressed in the near future.

42

6. CONCLUSION

The objective of this thesis was to design and develop an application that integrates the

target company’s document management system M-Files with its task management

system Jira Cloud. This proof-of-concept was done in order to assess whether integrat-

ing two essential systems could form a coherent process and digital system that could

help in planning of the work, controlling the used data and understanding the propaga-

tion of changes.

According to Nunamaker et al. [49] “the last mile of research” consists of three stages:

proof-of-concept, proof-of-value and proof-of-use. The proof-of-concept was validated

by demonstrating the feasibility of the cloud service and its potential to provide a robust

way of facilitating source data management. Proof-of-value was produced by defining

and creating the solution. With that a deeper understanding of the engineering pro-

cesses and tasks and their dependencies, extent, effects and propagation can be ob-

tained, thus allowing better decision-making and cost-saving. With the study, under-

standing of system integration and its value was improved and further activities in more

comprehensive integration can be done with greater confidence. However, as the pro-

duced add-on (Node application) can be considered as fairly trivial to create and crea-

tion of such can be seen as business as usual, the scientific knowledge base was not

mentionable extended during this study. In terms of design science research, the study

managed to improve the target environment by introducing a new and innovative appli-

cation and process to the target company. The proof-of-use was validated, and the

weak market test was passed as the system was found operationally feasible and it will

be first tested in a chosen project, and if found suitable, the system is planned to be

used in all other complex projects that use Jira and M-Files as well. At this point, it is

yet impossible to estimate the return on investment (ROI) to the produced system and

its possible successors. Such estimations can be done considering, for example, previ-

ously unbillable hours, rework, degree of manual work, or ease of use in relation to in-

vested resources put to the add-on. However, it is probably very challenging to meas-

ure such aspects accurately because of their dependencies to many other aspects.

The author suggests the target company to invest in determining longer-term goals and

requirements for their whole technology stack to ensure that they have a coherent and

effective overall toolset to support their business.

43

REFERENCES

[1] N. Ebert, K. Weber, and S. Koruna, “Integration Platform as a Service,”
Business and Information Systems Engineering, vol. 59, no. 5, pp. 375–
379, Oct. 2017, doi: 10.1007/s12599-017-0486-0.

[2] W. He and L. da Xu, “Integration of distributed enterprise applications: A
survey,” IEEE Transactions on Industrial Informatics, vol. 10, no. 1. IEEE
Computer Society, pp. 35–42, 2014, doi: 10.1109/TII.2012.2189221.

[3] T. Mitra, Business-driven development. 2005.
[4] J. Meng, S. Mei, and Z. Yan, “RESTful web services: A solution for

distributed data integration,” 2009, doi: 10.1109/CISE.2009.5365234.
[5] G. Doukidis, D. Spinellis, and C. Ebert, “Digital Transformation?A Primer

for Practitioners,” IEEE Software, vol. 37, no. 5, pp. 13–21, Sep. 2020, doi:
10.1109/MS.2020.2999969.

[6] N. Iakymenko, A. Romsdal, E. Alfnes, M. Semini, and J. O. Strandhagen,
“Status of engineering change management in the engineer-to-order
production environment: insights from a multiple case study,” International
Journal of Production Research, vol. 58, no. 15, pp. 4506–4528, 2020, doi:
10.1080/00207543.2020.1759836.

[7] S. Eppinger and T. Browning, Design Structure Matrix Methods and
Applications. 2012.

[8] D. Wynn, C. Eckert, and P. Clarkson, “Applied Signposting: A Modeling
Framework to Support Design Process Improvement,” Proceedings of the
ASME Design Engineering Technical Conference, vol. 2006, Jan. 2006,
doi: 10.1115/DETC2006-99402.

[9] B. Manouvrier and L. Menard, Application Integration : EAI B2B BPM and
SOA. Hoboken, UNITED STATES: John Wiley & Sons, Incorporated, 2008.

[10] F. Losavio, D. Ortega, and M. Perez, “Modeling EAI [Enterprise
Application Integration],” in Proceedings - International Conference of the
Chilean Computer Science Society, SCCC, 2002, vol. 2002-January, pp.
195–203, doi: 10.1109/SCCC.2002.1173194.

[11] “Jira REST API,”
https://developer.atlassian.com/cloud/jira/platform/rest/v3/intro/, 2020.

[12] “M-Files Developer Portal,” 2020. https://developer.m-files.com/
(accessed Feb. 04, 2021).

[13] D. Chen, G. Doumeingts, and F. Vernadat, “Architectures for enterprise
integration and interoperability: Past, present and future,” Computers in
Industry, no. 59, pp. 647–659, 2008, doi: 10.1016/j.compind.2007.12.016.

[14] J.-C. Jeon and J. Chung, “Developing a Prototype of REST-Based
Database Application for Shipbuilding Industry: A Case Study,” 2017, doi:
10.1109/PlatCon.2017.7883701.

[15] J. Mathew, “SOA vs. EDA: Is Not Life Simply a Series of Events?,” 2019.
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-
events/ (accessed Jan. 12, 2021).

[16] I. Sommerville, Software Engineering, 10th ed. Pearson, 2015.
[17] D. Chen, G. Doumeingts, and F. Vernadat, “Architectures for enterprise

integration and interoperability: Past, present and future,” vol. 59, 2008, doi:
10.1016/j.compind.2007.12.016.

[18] “Marketplace,” 2020. https://marketplace.atlassian.com/ (accessed Apr.
02, 2021).

[19] “NGINX,” 2021. https://www.nginx.com/ (accessed Feb. 22, 2021).

44

[20] “Atlassian Marketplace,” 2021. https://marketplace.atlassian.com/
(accessed Feb. 05, 2021).

[21] D. Serrano, E. Stroulia, D. Lau, and T. Ng, “Linked REST APIs: A
Middleware for Semantic REST API Integration,” in Proceedings - 2017
IEEE 24th International Conference on Web Services, ICWS 2017, 2017,
pp. 138–145, doi: 10.1109/ICWS.2017.26.

[22] “Why is ReactJS Gaining So Much Popularity?,” 2020.
https://medium.com/devtechtoday/why-is-reactjs-gaining-so-much-
popularity-6af4c43a3236 (accessed Apr. 08, 2021).

[23] “React,” 2021. https://reactjs.org/ (accessed Feb. 05, 2021).
[24] D. Badampudi, C. Wohlin, and K. Petersen, “Software component

decision-making: In-house, OSS, COTS or outsourcing-A systematic
literature review,” The Journal of Systems and Software, vol. 121, pp. 105–
124, 2016, doi: 10.1016/j.jss.2016.07.027.

[25] N. Bolloju and S. Murugesan, “Cloud-based B2B systems integration for
small-and-medium-sized enterprises,” in ACM International Conference
Proceeding Series, 2012, pp. 477–480, doi: 10.1145/2345396.2345475.

[26] S. Orban, “6 Strategies for Migrating Applications to the Cloud,” Nov. 01,
2016. https://medium.com/aws-enterprise-collection/6-strategies-for-
migrating-applications-to-the-cloud-eb4e85c412b4 (accessed Feb. 05,
2021).

[27] “Boomi - Getting started,” 2021. https://community.boomi.com/ (accessed
Feb. 05, 2021).

[28] “MuleSoft Developer,” 2021. https://developer.mulesoft.com/ (accessed
Feb. 05, 2021).

[29] Y. Y. Lin, Y. Nagai, T. H. Chiang, and H. K. Chiang, “Design and Develop
Artifact for Integrating with ERP and ECS Based on Design Science,” in
ACM International Conference Proceeding Series, Mar. 2020, pp. 218–223,
doi: 10.1145/3388176.3388193.

[30] Think AI, “New Enterprise Integration Services,” 2021.
https://thinkaicorp.com/1new-enterprise-integration-services/ (accessed
Feb. 24, 2021).

[31] A. Hevner, “A Three Cycle View of Design Science Research,”
Scandinavian Journal of Information Systems , 2007, [Online]. Available:
https://www.researchgate.net/publication/254804390.

[32] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, “A
design science research methodology for information systems research,”
Journal of Management Information Systems, vol. 24, no. 3, pp. 45–77,
Dec. 2007, doi: 10.2753/MIS0742-1222240302.

[33] E. Petzold, “Introduction to Atlassian Connect,” 2016.
https://blog.codecentric.de/en/2016/06/introduction-atlassian-connect/
(accessed Jan. 12, 2021).

[34] “CData Jira ODBC Driver,” 2021. https://www.cdata.com/drivers/jira/
(accessed Feb. 23, 2021).

[35] IFTTT, “IFTTT home page,” 2021. https://ifttt.com/home (accessed Feb.
24, 2021).

[36] “Marketplace App Licensing,” 2020.
https://www.atlassian.com/licensing/marketplace (accessed Apr. 02, 2021).

[37] “Atlaskit,” 2021. https://atlaskit.atlassian.com/ (accessed Feb. 05, 2021).
[38] “Material-UI,” 2020. https://material-ui.com/ (accessed Feb. 01, 2021).
[39] “Customize Atlassian products with apps,”

https://developer.atlassian.com/, 2020. https://developer.atlassian.com/
(accessed Jan. 12, 2021).

[40] “Express,” 2020. https://expressjs.com/ (accessed Apr. 02, 2021).
[41] “Axios,” 2020. https://github.com/axios/axios (accessed Apr. 02, 2021).

45

[42] M-Files User Guide, “Database engine and data storage,” 2021.
https://www.m-files.com/user-guide/latest/eng/technical_details.html
(accessed Feb. 05, 2021).

[43] E. Petzold and O. Hoogvliet, “Security of Atlassian Connect add-ons,”
Sep. 13, 2016. https://blog.codecentric.de/en/2016/09/security-atlassian-
connect-add-ons/ (accessed Jan. 12, 2021).

[44] OWASP® Foundation, “Top 10 Web Application Security Risks,” 2017.
https://owasp.org/www-project-top-ten/ (accessed Jan. 12, 2021).

[45] “Visual Studio Code,” 2020. https://code.visualstudio.com/ (accessed Feb.
04, 2021).

[46] “ngrok,” 2020. https://ngrok.com/ (accessed Feb. 04, 2021).
[47] “Node.js,” 2020. https://nodejs.org/en/about/ (accessed Feb. 04, 2021).
[48] J. F. Nunamaker, R. O. Briggs, D. C. Derrick, and G. Schwabe, “The Last

Research Mile: Achieving Both Rigor and Relevance in Information
Systems Research,” Journal of Management Information Systems, vol. 32,
no. 3, pp. 10–47, Jul. 2015, doi: 10.1080/07421222.2015.1094961.

[49] M. Marian, “iPaaS: Different Ways of Thinking,” Procedia Economics and
Finance, vol. 3, pp. 1093–1098, Jan. 2012, doi: 10.1016/s2212-
5671(12)00279-1.

