
Panu Kortelainen

MANAGE YOUR WORKFLOWS

A Classification Framework and Technology Review of
Workflow Management Systems

Faculty of Information Technology and Communication Sciences (ITC)
Master of Science Thesis

April 2021

i

ABSTRACT

Panu Kortelainen: Manage your Workflows: A Classification Framework and Technology Review
of Workflow Management Systems
Master of Science Thesis
Tampere University
Master’s Programme in Information Technology
April 2021

Managing workflows and complex asynchronous operation flows is a common problem that
needs to be solved in a variety of software products. Workflow management systems are used to
provide solutions that implement those features and orchestrate their execution. The infrastructure
and data models in those products vary significantly and the amount of them can make the choice
of a single workflow management system a tedious task.

In this thesis, we try to make this task easier by providing a common classification framework
that can be used to compare different workflow management systems with each other. By using
the classification framework we can distinguish the project and technical viewpoints from each
other and provide a more objective baseline for the comparison of different workflow manage-
ment systems. A systematic mapping study is used as a method to derive an initial classification
framework for the workflow management systems.

In the scope of this study we focus on cloud-native and open source products to get a clear
view on the freely available modern solutions on the field. A set of the most popular products
with those characteristics is chosen by using a variety of different popularity metrics. As a result
we have ten different workflow management systems that meet our popularity and study scope
requirements and that can be reviewed against the classification framework.

The initial classification framework is refined with the results of a documentation analysis done
on the selected workflow management systems. After that a full technology review is conducted
on them using the classification framework. The steps and results of this technology review are
documented in the thesis.

Finally, the learnings of that process are gathered into a set of guidelines for selecting a work-
flow management system. Those guidelines can be used to recreate the study with a new set of
systems and iterate through them until a final choice can be made. By offering a classification
framework, guidelines for its usage and an example of the review we believe that the work can
be extended on any set of workflow management systems and used to perform a review on them
against each other.

Keywords: workflow, workflow management, workflow management system, workflow engine,
classification, comparison, cloud-native, open source, technology review

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

TIIVISTELMÄ

Panu Kortelainen: Hallitse työnkulkusi: luokitteluviitekehys ja teknologiakatsaus työnkulun hallin-
tajärjestelmille
Diplomityö
Tampereen yliopisto
Tietotekniikan DI-ohjelma
Huhtikuu 2021

Työnkulun ja monimutkaisten asynkronisten operaatioiden hallinta on yleinen ongelma johon
erilaisissa ohjelmistoprojekteissa täytyy löytää ratkaisu. Työnkulun hallintajärjestelmän (workflow
management system) käyttö on yksi tapa ratkaista tähän teemaan liittyvät ongelmat. Eri järjestel-
miä on lukuisia ja niiden välillä on suuria eroja niin infrastruktuurissa kuin tietomalleissakin, joten
oikean järjestelmän valinta voi osoittautua todella vaikeaksi haasteeksi.

Tässä diplomityössä pyritään helpottamaan valintaprosessia luomalla yleinen luokitteluviiteke-
hys, jonka avulla erilaisia työnkulun hallintajärjestelmiä voidaan verrata systemaattisesti toisiinsa.
Käyttämällä luokitteluviitekehyksen kategorisointia voidaan projektikohtaiset ja tekniset näkökul-
mat helpommin erottaa toisistaan ja luoda objektiivisempi lähtökohta eri järjestelmien vertailulle.
Luokitteluviitekehyksen pohja on luotu tekemällä systemaattinen kartoitustutkimus alan vastaa-
vaan kirjallisuuteen.

Työn rajaamiseksi keskityttiin järjestelmiin jotka ovat pilvinatiiveja (cloud-native) sekä avoimen
lähdekoodin (open source) tuotteita. Näin saatiin selkeä rajaus, johon sisältyvät järjestelmät ovat
ilmaiseksi saatavilla ja sopivat hyvin moderniin ohjelmistoprojektiin. Edellä mainittuja reunaehto-
ja ja erilaisia käyttöaktiivisuuteen liittyviä metriikoita hyödyntäen valittiin kymmenen suosituinta
järjestelmää tarkempaa arviointia varten.

Kartoitustutkimuksen avulla luodun viitekehyksen kehittämiseksi ja varmentamiseksi valituil-
le järjestelmille tehtiin ensin dokumentaatioanalyysi. Sen jälkeen viitekehys otettiin käyttöön te-
kemällä järjestelmien välinen laaja teknologiakatsaus, jossa kaikki luokittelut otettiin huomioon.
Katsauksen vaiheet ja tulokset on dokumentoitu osana tätä työtä.

Lopuksi työn aikana opituista asioista ja tuloksista kerättiin ohjeet työnkulun hallintajärjestel-
män valintaan. Ohjeiden avulla voidaan valintapäätökseen liittyvä prosessi käydä läpi alusta lop-
puun työssä käytettyä työtapaa mukaillen. Voidaan todeta, että luokitteluviitekehyksen, valintaoh-
jeistuksen ja esimerkinomaisen teknologiakatsauksen myötä on tutkimuksen laajentaminen hel-
posti toteutettavissa erilaisille uusille järjestelmille ja projekteille.

Avainsanat: workflow, työnkulku, työnkulun hallintajärjestelmä, luokittelu, vertailu, avoin lähdekoo-
di, pilvipalvelu

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.

iii

PREFACE

The journey has been long but not exhausting. As years go by, you tend to get attached
to places, their customs and especially the people around you. I have an unsurpassed
gratitude towards all of you who have, in a way or other, been with me during this time,
sharing the voyage. The amount of things I have learned from you is more than what can
be deciphered from the diploma or the pages of this thesis.

My life has been enriched by multiple different organizations and groups while studying
in the Tampere University, and its predecessor Tampere University of Technology. Those
groups have given me a sense of time and permanence, in a way that I feel being a part
of a longer line of similar stories.

I must thank the Student Unions, new and old, for providing a thriving community to do
and learn. I am thankful to TiTe, my guild, for growing me up from a freshman into an
active teekkari. I am thankful to the sporrrrts team NMKSV and the friends from TEA-club
for good times and a lifelong companionship. I am more than grateful to each of the small
and the big boards, projects and positions of trust that I was privileged to be a part of.
Also, special kudos for the rocks who write for providing peer support and joy to my days
of research.

I am also forever grateful to my family for giving me a safe environment to grow and learn.
I wouldn’t be here without your support.

I might not be here either without Nokia Corporation understanding that it’s not about the
destination but the journey, and reminding me that sometimes you also need to arrive
somewhere. In the end, big thanks to Davide Taibi and David Hästbacka for providing
continuous support and guidance during the thesis writing process. I wish all the best for
your future studies.

Now it is finally the time to give a closure for this era and continue towards a new, intrigu-
ing future.

Tampere, 7th April 2021

Panu Kortelainen

iv

CONTENTS

1 Introduction . 1

2 Research questions . 3

3 Background . 4

3.1 Workflow management . 4
3.1.1 Workflow concepts . 5
3.1.2 Workflow definition language . 6
3.1.3 Workflow management systems . 8

3.2 Cloud-native workflow management . 10
3.2.1 Virtualisation: Docker . 11

4 Research methodology . 12

4.1 Study search . 12
4.1.1 Search scope . 12

4.2 Search strategy . 13

4.3 Study selection . 14
4.3.1 Selection criteria . 14
4.3.2 Selection process . 14

4.4 Snowballing . 15

4.5 Data extraction . 15

4.6 Data synthesis: derive initial classification framework 15

4.7 Identification of the relevant workflow management systems 16
4.7.1 Phase 1: WfMS Search . 18
4.7.2 Phase 2: WfMS Selection . 18

4.8 Analyze workflow management system documentation 21

4.9 Refining the classification framework . 21

4.10 Conduct workflow management system technology review 22

5 A workflow management system classification framework 23

5.1 A project view on workflow management systems 25
5.1.1 Licensing . 26
5.1.2 Installation . 26
5.1.3 Source code and release maturity 26
5.1.4 Community . 26
5.1.5 Interface availability . 26
5.1.6 Documentation . 27

5.2 A technical view on workflow management systems 27
5.2.1 Development . 27
5.2.2 Architecture details . 27

v

5.2.3 Workflow features and control mechanisms 28
5.2.4 Application delivery . 28
5.2.5 Code reuse and external integrations 28

6 A workflow management system technology review 29

6.1 A project view on workflow management systems 29
6.1.1 Licensing . 29
6.1.2 Installation . 30
6.1.3 Source code and release maturity 31
6.1.4 Community . 32
6.1.5 Interface availability . 33
6.1.6 Documentation . 34

6.2 A technical view on workflow management systems 35
6.2.1 Development . 35
6.2.2 Architecture details . 37
6.2.3 Workflow features and control mechanisms 38
6.2.4 Application delivery . 39
6.2.5 Code reuse and external integrations 40

7 Workflow management system selection guidelines 42

7.1 Define requirements and motivations . 43

7.2 Identify special requirements and prioritize 43

7.3 Choose workflow management systems to be evaluated 44

7.4 Perform a technology review . 44
7.4.1 The project view, priorities and early elimination 44
7.4.2 The technical view and details . 44
7.4.3 Re-evaluate the initial requirements 45

7.5 Decision making and validation of the results 45

8 Threats to validity . 47

9 Discussion . 49

9.1 Implication for practitioners and researchers 50

9.2 Trends . 51

10 Conclusions and future work . 52

Bibliography . 53

vi

LIST OF FIGURES

3.1 Workflow Reference Model by WfMC [14] 8

4.1 The research methodology and procedure 13

5.1 Distribution of selected studies over publication types 24
5.2 Distribution of selected studies over year published 24
5.3 The classification framework: categories for project view and technical view 25

7.1 The WfMS Selection Process . 43

vii

LIST OF TABLES

4.1 Study selection: the use of selection criteria 15
4.2 Data extraction: the data collected from each study 16
4.3 Initial set of workflow management systems and reasons for exclusion in

this research . 17
4.4 Popularity: Search and code activity thresholds 19
4.5 Popularity: Media and scientific literature platforms 19
4.6 Full popularity data: workflow management systems chosen for documen-

tation analysis . 20
4.7 List of selected workflow management systems, popularity scores and doc-

umentation sources . 21

5.1 Study selection: Results of study search and snowballing 23

6.1 Project view: Licensing . 30
6.2 Project view: Installation platforms and dependencies 31
6.3 Project view: Source code and release maturity 32
6.4 Project view: Interface availability . 33
6.5 Project view: Documentation . 34
6.6 Technical view: Development . 35
6.7 Technical view: Architectural details . 37
6.8 Technical view: Workflow features . 38
6.9 Technical view: Application delivery . 40
6.10 Technical view: Code reuse by integrations 41

7.1 The final workflow management system classification framework 46

viii

LIST OF SYMBOLS AND ABBREVIATIONS

API Application programming interface

BPMN Business Process Model and Notation

CI/CD Continuous integration and continuous delivery

CLI Command-line interface

CNA Cloud-native application

CNCF Cloud Native Computing Foundation

CWL Common Workflow Language

DAG Directed Asyclic Graph

GUI Graphical user interface

IDE Integrated development environment

JSON JavaScript Object Notation

PDL Process Definition Language

REST Representational state transfer standard

RQ Research Question

WAPI Workflow application programming interface

WDL Workflow Description Language

WfMC Workflow Management Coalition

WfMS Workflow Management System

WS-BPEL Web Services Business Process Execution Language

XPDL XML Process Definition Language

YAML YAML Ain’t Markup Language

YAWL Yet Another Workflow Language

1

1 INTRODUCTION

Managing workflows and complex asynchronous operation flows has been a common
problem in software systems for decades. [1] The solutions range from utility tools that
automate high-level business objectives via graphical user interface to programmable
solutions that handle and followup complex, dynamically generated execution graphs and
rules in scalable cloud-native environments.

These workflow management systems (WfMS) provide an infrastructure and models for
executing, monitoring and evolving different kinds of workflow processes and tasks.

However, the solutions base is huge and the most common denominator is the theoret-
ical model behind workflow management systems. Therefore, the technical and project
characteristics vary significantly between different workflow tools. This makes selecting
the most suitable tooling a complex task with multiple dimensions from high-level project
requirements balanced against low-level functional requirements.

The goal of this thesis is to provide a workflow management system classification frame-
work to make it easier to choose what kind of a system would suit the needs of a specific
organization or a software project. The classification framework comprises of two differ-
ent viewpoints.

The project view summarizes high-level needs of e.g. a project manager or a software
architect who need to narrow down what kind of a systems are valid to consider. The
second viewpoint is named technical view, and it has a more detailed set of technical
requirements, which can be used to make the final choice between tools that meet the
project and business requirements.

By applying the workflow management system classification framework we can review our
alternatives objectively and get a more thorough view on the strengths and weaknesses
of the system that has been chosen for our purpose.

To narrow down the study and to focus on the modern approaches of the field we chose to
limit our study to cloud-native workflow management systems and their characteristics.
By this meaning software systems that are designed to be run in cloud environments.
We also decided to include only freely available open source products to ensure a more
comparable set of items to be analyzed. These decisions allowed us to get a good view
on the current options that are available for any project to use, thus enabling the creation
of a classification framework that works with modern day workflow management systems.

2

The initial classification framework was formed by conducting a systematic mapping study
on available scientific literature related to comparison and classification of workflow man-
agement products. The results were then refined to align with the context of this study
by a documentation analysis done on the most popular open source and cloud-native
workflow management systems.

The classification framework was also used to perform a workflow management system
technology review, which classifies ten popular workflow management systems to give
a good understanding on the current tools available for use. The results and lessons
learned during this review were also gathered together into selection guidelines which
can be used to apply the classification framework to a new set of suitable tools to consider
for project specific needs.

The contribution of this work is threefold:

(i) A workflow management systems classification framework,

(ii) A workflow management system technology review and

(iii) Workflow management system selection guidelines.

The structure of this paper is organised in the following way. Section 2 introduces and
describes the research questions of the study. Section 3 consists of background and the-
ory about workflow management systems and related concepts. Section 4 goes through
the research methodology used to achieve the results of this paper. Section 5 introduces
the Workflow management system classification framework and its views. Section 6 con-
tains the Workflow management system technology review, which is used to create the
Workflow management system selection guidelines in Section 7. In Section 8 the validity
of this study is pondered and Section 9 holds the discussion and implications of the study.
The Section 10 consists of future work and conclusions for the topic.

3

2 RESEARCH QUESTIONS

This section discusses the research questions and provides background for them. The
research questions are as follows:

RQ1 What are the main classification features to distinguish workflow management sys-
tems from each other?

The problem in making a choice about what would be the best workflow management
system for a certain software project is that we should first be able to identify the dif-
ferences in those systems. Before being able to do so we need to find the right things
to measure and combine those into a meaningful set of data. This research question
combines the literature review, documentation analysis and forming of the classification
framework itself.

RQ2 Which are the most popular open source, cloud-native and generic workflow man-
agement systems? What are the main differences between these systems?

For gaining an understanding on what are the most popular open source, cloud-native
and generic workflow management systems we can make sure that the data we are
looking at is relevant and corresponds to the actual usage of the systems. This research
question is used to filter out the most interesting workflow management systems in the
scope of this study. After that a technology review is done to evaluate the differences
between the systems.

RQ3 How to select an open source Workflow management system for a generic cloud-
native environment?

One of the main motivations of this thesis was to find a way to help choosing a suit-
able workflow management system for a certain project. To fully utilize the classification
framework and the results of the technology review we aggregate the results into selec-
tion guidelines. That can then be used to make the decision-making easier when adopting
a new workflow management system.

4

3 BACKGROUND

To get a good understanding on the concepts discussed in this study we describe the
theoretical background behind the subject in this section. The study focuses on concepts
around cloud-native workflow management systems and their evaluation. Therefore, we
discuss workflow management topics, such as workflow management systems, workflow
definition languages and common concepts in workflow management. We also look into
cloud-native applications, their features and implementation concepts.

3.1 Workflow management

The concept of workflows has developed from the need to define processes in industrial
manufacturing and the surrounding activities such as office practises. From the separa-
tion of those work activities into tasks, procedures, roles and rules, the efficiency could be
controlled and bottlenecks more easily defined. The main rationale for embracing the new
way of defining processes was efficiency, and splitting the work into smaller pieces made
it possible to reorganize and tune the overall process. Even though the first implementa-
tions of workflows were performed by humans, the shift into information technology based
solutions was natural as the rules and tasks were just now partly done by software. [2]

The management of those workflows became an important step in how the actual execu-
tion itself is eventually delivered as the requirements change, the workflows grow more
complicated and the amount of data increases. Monitoring, controlling and modifying
the complex workflows requires a system that can answer the needs of the changing
landscape. For this purpose, workflow management systems (WfMSs) were developed.
The WfMSs provide a core component in service-oriented systems that require complex
orchestration or are tightly coupled with business processes.

Workflow or a process definition language (PDL) is a crucial part in the process of imple-
menting or choosing a workflow management system. As the language chosen affects
the way how the workflows are defined and how the applications used by the WfMS are
developed it has a heavy impact on the whole system developed around it. If the lan-
guage proves to be a wrong choice for the business requirements or if it has a limited
transferability between different workflow management systems, it can easily lead into a
vendor lock-in and difficulties in implementing the required use cases. [3]

For tackling this problem, there has been a significant effort in the standardization of the
workflow concepts. One of the biggest contributors on this field has been the Workflow

5

Management Coalition (WfMC), which is a global organization bringing together orga-
nizations, developers and research groups engaged in the topic. They have created
XML Process Definition Language (XPDL), which is the leading process definition format
used to store and exchange process models, the Business Process Simulation standard
(BPSim), which defines parametrization and interchange of data allowing analysis for op-
timization of the process models and the Business Process Analytics Format (BPAF),
which provides efficiency and effectiveness insight for organizational processes. [1]

The XPDL format is especially interesting in the scope of this study as it can be used
to describe the process definition, workflow, itself. The XPDL is also used as the se-
rialization format for BPMN, which is a visual process notation standard that is widely
adopted in the industry. However, the standardization has not been a complete success
and BPMN standard has been criticized for containing multiple ambiguities and under-
specifications of its concepts. [3] This can cause different stakeholders to implement the
constructs differently and by that significantly reduce the benefit of having a standard in
the first place.

As for the recent years of development in the field of cloud computing, the workflow
management systems have also moved towards being designed in a scalable, cloud-
native way. This development has created multiple new workflow management systems
in the field to challenge the design principles and architectural choices made in the older
systems.

The recent advancements in the field of workflow management have also moved towards
new ways of defining workflows. The standard definitions are not used as widely as be-
fore and their place has been taken by defining the workflows in less strict JavaScript
Object Notation (JSON) or YAML Ain’t Markup Language (YAML) formats. Some of the
WfMSs have completely removed the need for a common language by providing only
APIs that can be used by a programming language making the whole workflow definition
a software development process. These approaches have their advantages and disad-
vantages, which can be discussed in the following sections.

3.1.1 Workflow concepts

Georgakopoulos et al. [2] define workflow as "a collection of tasks organized to accom-
plish some business process". These tasks are described to be performed either by
software systems, humans or as a combination of them both. The definition from WfMC
Terminology and Glossary [4] leans to the same way as they describe workflows as "the
automation of a business process, in whole or part, during which documents, informa-
tion or tasks are passed from one participant to another for action, according to a set of
procedural rules".

From these definitions we can see that workflow consists of tasks or work items that con-
duct work, pass information or make decisions. These tasks can be defined as something
that is done by the computer, or something done by an external source, e.g. a human

6

pressing a button. This form of work can also be described as an activity. Also rules
are mentioned as part of a workflow definition. For example, they can be post- or pre-
conditions that are used to determine whether a process can be started or completed. [4]

For handling the connections between different tasks Aalst and Hee [5] use the term
routing. It is described to determine "which tasks need to be performed and in which
order". According to the source, routing can determine if tasks are run sequentially, in
parallel, selectively or iteratively.

Sequential routing means that the tasks are executed one by one in a sequence where
each of the tasks depends on the previous one. The tasks in sequence often pass their
results as an input to the next task. The opposite of sequential routing would be parallel
routing where the tasks are executed simultaneously. In this case the result of each of
those tasks cannot affect the others and they have no dependency on each other. Parallel
routing is also often referred to as a parallel split or a fork. [6] Parallel tasks are initiated
by an AND-split and ended by a similar AND-join operation that is a synchronization
pattern for converging the branches of execution.

Selective or conditional routing is a concept where there are multiple optional tasks that
could be run, but based on a set of rules or properties a choice is made on which of the
tasks are to be initiated. This behaviour could be described as a kind of a switch-case
situation where the case is a condition or a set of conditions. If only one route can be
taken this kind of an operation is an exclusive choice or a XOR-split and the end of it
a simple merge or a XOR-join. If multiple choices are available the pattern is called a
multi-choice branch or an OR-split. This kind of a workflow pattern can be merged by a
structured synchronizing merge, multi-merge or a structured discriminator pattern. [6]

The last form of routing mentioned was iterative routing or an arbitrary cycle, in which
one task in a workflow is repeated multiple times. It can be described as kind of a while-
loop where the condition needs to be met before the loop ends. This could mean running
a certain task for ten times in a row or repeating a task execution until a certain other
condition is met.

3.1.2 Workflow definition language

The workflow patterns described in previous section are a subset of different control
mechanisms that are recognized as a part of workflows. All or some of these patterns
are somehow implemented in different workflow or process definition languages. There
are multiple different solutions to describe how the workflow is formed. The XPDL format
standardized by WfMC [1], as mentioned before, is the most prominent one in the field.
On top of that there are multiple other standardization efforts such as Web Services
Business Process Execution Language (WS-BPEL) [7], Yet Another Workflow Language
(YAWL) [8], Common Workflow Language (CWL) [9] and Workflow Description Language
(WDL). [10]

7

During recent years of development the definition of workflows has also gone into a direc-
tion where the definition follows no standard at all. The strict standards can seen as an
overhead to the development work and the implementation of the standard is not guar-
anteed to be equivalent between different workflow management systems. [3] Workflows
are defined in formats like JSON or YAML where the contract is only between the work-
flow management system and the definition language it has. This creates a risk of vendor
locking when taking a new system into use.

Some of the workflow management systems have completely removed the need to have a
separate workflow definition language. Instead, they have implemented a programmable
API that can be used to write the workflows as code. This, however, makes work-
flows more a technical solution not providing easy way to contribute without programming
knowledge.

To summarize the workflow definition languages mentioned previously, they have been
collected below to give a good idea on the possibilities in the field.

XPDL (XML Process Definition Language) is a format ratified by WfMC (2002) that can be
used as a interchange process model between different tools. It describes the process
definition, network of different activities and their relationships together with criteria for
starting or terminating processes. XPDL is also a serialization format for BPMN, which is
a visual process notation standard that is widely adopted in the industry. [11]

Whereas the first definition of BPMN was purely graphical, the second version of it also
introduced execution semantics and serialization syntax. For modern workflow manage-
ment systems, BPMN 2.0 specification is one of the most used definition languages,
allowing all the key stakeholders to participate and understand in the definition process.
The latest version for the specification, BPMN 2.0.2, was published in 2014. [12]

WS-BPEL (Web Services Business Process Execution Language) or simply BPEL is also
an XML-based executable language published for Web Services and Service Oriented
Architecture (SOA) in 2003. It tries to standardize the business process orchestration
mechanics such as sequencing parallel and asynchronous operations, fault handling and
long running transactions. Because BPEL is designed with web service approach it mod-
els web services as processes in its definition. [7]

YAWL (Yet Another Workflow Language) is a graphical workflow definition language
based on Petri nets and extended to facilitate complex workflow features on top of that.
The design of YAWL is based on the workflow patterns introduced by Van der Aalst et
al. [13] and it tries to tackle the problems of other workflow languages inability to provide
solutions to the patterns introduced. [8]

CWL (Common Workflow Language) standard specifies a data and execution model for
workflows implemented on top of a variety of platforms. The target segment for the
language is data-intensive science meaning fields such as bioinformatics, chemistry or
physics. The notation used is written in JSON or YAML format. CWL is one of the newer
workflow definition languages as its version 1.0 dates to year 2016. [9] WDL (Workflow

8

Figure 3.1. Workflow Reference Model by WfMC [14]

Description Language) is a language that tries to specify data processing workflows in
a human-understandable format. The main users of this community driven standard are
also mainly in the field of science like in CWL.

Workflows as Code have no other language expression than a software interface that can
be used to perform the workflow operations. The interface then takes care of the workflow
features such as state handling, scalability or fault handling. The approach of using code
instead of an external language makes the workflow definition a lot more versatile as
it contains all the features the programming language would. It, however, makes the
workflow management system not available for other stakeholders than programmers as
defining workflows cannot be done straight in a language that could be used without
programming experience.

3.1.3 Workflow management systems

Workflow management system is a software system designed to define, control and man-
age workflow execution. A generic workflow application architecture has been specified
by WfMC in a Workflow Reference Model. [14] In the model the interfaces and compo-
nents of a workflow management system are defined together into six different sections
as displayed in Figure 3.1.

The workflow enactment service is the run-time environment for the workflow process
that executes the workflow instances in one or more workflow engines. It is also respon-
sible for interpreting the process definition and communicating with external interfaces
if needed. The process and activity control logic is separated in the model. Also, the
enactment service does not necessarily need to be a single entity; it may be either func-

9

tionally distributed or centralized. For interacting with the enactment service there is a
workflow application programming interface (WAPI) between the interfaces marked from
I1 to I5. [14]

A workflow engine described in the reference model is the actual execution environment
of the workflow instance. The level of responsibilities between the engine and the whole
enactment service, however, varies. The workflow engine typically interprets the pro-
cess definition, controls the execution and handles the data required in specific process
instance.

The interfaces described in the picture use the WAPI to access the workflow enactment
service. The Workflow API is used to interchange data and workflow definitions, to control
the activities done and to monitor the whole service. The interfaces as defined in the
workflow reference model are described below. [14]

The first interface (I1) is used to exchange process definition information between the
counterparts. It may be used to import or export the definition from the runtime envi-
ronment to the workflow definition environment. This makes it possible to differentiate
the process modeling from the actual work done in code level. It also allows the user
to choose their modeling tool as long as it produces definition that can be read by the
workflow enactment service.

The second interface (I2) towards the workflow client applications. The client application
can be, for example, an application that records user inputs from a machine towards the
workflow enactment service. The API then uses a predefined interface to map the inputs
to specific workflow definitions. The client applications could also control the process flow
or follow the status of certain process in stances.

The third interface (I3) described in the picture is towards invoked applications which are
external from the workflow management system like system process calls or transac-
tions. These interfaces may be triggered by the workflow engine and they may respond
notifications or events back to the system.

The fourth interface (I4) is an interface that is used to communicate between other work-
flow enactment services. That interface can be used to transfer activities or data between
other workflow services.

The last interface (I5) is used to monitor and administer the system. This interface han-
dles user and role management, auditing and other supervisory functions. The use of
this interface allows multiple different solutions to be managed and monitored by a single
management system.

The ideas of the workflow model described above are still visible in many modern day
workflow management systems. Even though paradigms change and certain architec-
tures gain more space in the field, the generic aspects still remain valid.

10

3.2 Cloud-native workflow management

The cloud-native applications have been reshaping the field of software engineering since
the first general purpose public cloud service was introduced by Amazon Web Services
in 2006. [15] The first release started a trend of providing software, infrastructure or plat-
forms as a service in the cloud. This kind of a product family is often described as being
cloud-native.

According to the research done by Kratzke and Quint [16] the term cloud-native is com-
monly understood to mean applications or services that are designed using cloud-native
application (CNA) principles, built with certain architectures, containing certain prop-
erties and utilizing a set of methods accompanied with the design patterns. All of these
high-level topics are affecting each other and contributing towards a cloud-native ap-
proach.

The study mentioned in the previous section proposes a cloud-native application to be
defined as being "distributed, elastic and horizontal scalable system composed of (mi-
cro)services which isolates state in a minimum of stateful components". [16] For tradi-
tional workflow management systems, the change towards being a CNA requires a care-
ful design on the stateful components as most of the implementations rely on a traditional
database that cannot be scaled horizontally. Also scalability of the workload in an elastic
manner is a problem with systems that are not designed with that in mind.

The rest of the definition states that "the application and each self-contained deploy-
ment unit of that application is designed according to cloud-focused design patterns and
operated on a self-service elastic platform". [16] This underlines the need for carefully
designing the components in a cloud-native manner. It can be seen in many established
applications that are moving towards a cloud deployment that the first steps of design
only containerize the old components into a set of deployables that might not actually be
designed for that purpose. This might lead into deploying a set of monolithic applications
inside a container.

For cloud-native workflow management systems there are a few key aspects that can
be risen as examples to be taken under a more detailed inspection when determining
the capabilities of running efficiently in a cloud environment. The concept of stateful
components for storing the workflow data was mentioned in the previous sections and it
is definitely one of the most critical aspect to be taken into consideration. A truly cloud-
native application cannot be designed as being highly available and scalable without also
handling the state in aforementioned fashion.

Additionally, the design must not rely on any components that act as a single point of
failure, for example a workflow software might rely on a single instance scheduler that
dispatches the work orders. If this kind of a component fails, it ensures a downtime for
the whole system relying on it.

11

3.2.1 Virtualisation: Docker

The concept of virtualisation is tightly coupled with cloud-native architectures, especially
when specifying the container solutions of it. In principle, virtualisation means wrapping
a piece of software infrastructure as an entity that emulates a whole software system. A
virtual machine is one way to implement virtualisation; in it the whole operating system
is emulated on top of a hypervisor system. For container based virtualisation, the whole
encapsulated software works on top of the kernel of the host. This allows a smaller
overhead and further empowers customization of the contents.

A common way to deploy cloud-native applications is using a tool named Docker. Docker
is a container engine that provides management for containerized applications. A con-
tainerized application is an application that is deployed using lightweight virtualisation
technology wrapping the software run into an executable package that includes every-
thing needed for running the application. The containers deployed this way are often
used to form a set of software components that communicate with each other to provide
the needed functionality. [17]

12

4 RESEARCH METHODOLOGY

In this section we present the research method applied. We adopted a systematic map-
ping study process, following the guidelines proposed by Petersen et al. [18] together
with the snowballing techniques proposed by Wohlin [19]. A simplification of the whole
process is shown in Figure 4.1.

The whole process of our study consists of eleven distinguishable phases. In first three
sections, we defined the conditions for study search, the search strategy and described
the selection criteria for the studies. After that we used the studies found during the
search phase to apply a snowballing technique to them in order to find studies that we
had previously missed. After that the study data was assessed and extracted into a set
of predefined data fields.

From aforementioned data we derived an initial classification framework for the research.
After that, we did a systematic search for workflow management systems, applied our
exclusion criteria on them and conducted a popularity study on the remainders. With
those results we selected ten workflow management systems for further analysis. Those
were used to refine the initial classification framework using the data we had discovered.
This framework was then used to do a thorough review on the engines. The following
sections describe the research method’s used in detail.

4.1 Study search

In this stage, we specify the search scope to identify the most applicable bibliographic
sources to support this mapping study. The rationale for the scope decisions is described
in the following section.

4.1.1 Search scope

The scope of the search should be defined carefully as it has a big impact on the effort
required and the coverage acquired from the primary studies related to our researched
topic. For this mapping study we chose to define our scope by specifying a time period
of relevant publications and to describe which kind of electronic databases we use for
searching them.

The time period to be used to limit our search was chosen to start from 1993 when the

13

Figure 4.1. The research methodology and procedure

Workflow Management Coalition was established and their workflow standardization work
began. [1] The search period end was chosen to be 2020 as that is when this study was
started.

The electronic databases considered from the search results in this study were chosen
to be the ten main databases discussed by Chen et al. [20], including: Google Scholar,
IEEEXplore, ACM Digital Library, El Compendex & Inspec, ISI Web of Science, CiteSeer,
Science Direct, SpringerLink, Wiley InterScience, SCOPUS and Kluwer Online.

4.2 Search strategy

The search strategy that we followed for this study comprised of two parts:

(i) The search string was analyzed and adjusted to return meaningful results from the
search engine. The initial search was done with ("workflow management system")
AND (comparison OR evaluation). We also included alternative term "workflow
engine" and "classification framework" into the search string. During the evaluation
of the search string we noticed that our results were more accurate when applying
a plural form to the first keyword pair. The search phrase was finally changed to
("workflow engines" OR "workflow management systems") AND (comparison OR
evaluation OR "classification framework")

(ii) The automatic searches were performed on Google Scholar and the results were
collected until no relevant papers were emerging in consequent ten pages of twenty
articles in the search results.

14

4.3 Study selection

In this section we describe the selection criteria and the selection process that was fol-
lowed in the study.

4.3.1 Selection criteria

Papers to be included (I) or excluded (E) in the search were identified and chosen with
the following criteria:

I1: The paper evaluates and compares existing workflow management systems or
workflow engines

I2: The paper is peer-reviewed and published in a journal, a conference proceeding, a
workshop proceeding or a chapter of a book.

E1: The paper focuses solely on certain aspects of the system, e.g. performance
benchmarks

E2: The paper is not available as full text

E3: The paper is published in a form of a tutorial, an abstract or a talk, which is not
considered to contain enough information for the study and thus cannot be included
in the results.

4.3.2 Selection process

The selection process of the study by the defined inclusion and exclusion criteria is de-
scribed in Table 4.1. A more thorough explanation on how the process itself was con-
ducted is following:

(i) The first round of study selection: a researcher went through the studies based on
the title and the returned matching keywords shown on the Google Scholar search
while applying the inclusion criteria I1 and I2 and exclusion criteria E1 to the con-
tents. The exclusion criteria E2 and E3 were not used in this step as the availability
of a full text or the form of the paper cannot be reliably known without opening the
relevant database link. Every study with any doubt about its inclusion was included
for the second round of the selection process.

(ii) The second round of study selection: a researcher went through the abstracts of
the studies selected in the first round while applying the inclusion criteria I1 and
exclusion criteria E1 and E3 to them. Because inclusion criteria I2 was already
identified fully in the first round of selection it was not necessary to apply it anymore
in this round. Any doubts in the inclusion of a study resulted in the study being
included in the third round of study selection.

(iii) The third round of study selection: a researcher did a full text reading of the studies
included in this section while applying the inclusion criteria I1 and exclusion criteria

15

E1 and E2 on the selected studies. As the exclusion criteria E3 was already identi-
fied fully in the second round of selection it was not necessary to apply it anymore
in this round. Any doubts were discussed with the other researchers until issues
were resolved and the final results were mutually accepted.

Table 4.1. Study selection: the use of selection criteria

Selection round Criteria used

1st round: selection by title and matching keyword results I1, I2, E1

2nd round: selection by abstract I1, E1, E3

3rd round: selection by full text I1, E1, E2

4.4 Snowballing

On top of the selection process we used the snowballing technique [19] to identify a more
thorough set of relevant publications. In practise, we performed a forward snowballing by
analyzing all the research papers with citations to any of the publications selected earlier,
and after that performed a backwards snowballing recursively by analyzing the research
papers that were cited by the initial set of publications. Each of these checks follow the
three steps mentioned in the selection process and each of the newly selected papers
were snowballed themselves.

By doing this we ensured that a minimal amount of relevant studies were left out in the
study selection phase. In the end, all of the results were combined together and used in
the following steps of the study.

4.5 Data extraction

To start formulating answers for the research questions in Section 2, the selected sources
were used to provide the information portrayed in Table 4.2. This data was recorded and
then used to form the initial classification framework.

Before starting the final data extraction, the data items to be collected were tested with a
pilot data extraction on three studies. The findings were collected and the extracted fields
were updated if ambiguities still existed.

4.6 Data synthesis: derive initial classification framework

Data synthesis is used to gather the extracted data together to get closer into answering
the research questions by forming a classification framework for workflow management
systems. For creating an initial classification framework to begin with, a technique called
keywording [21] was used. The overall procedure was the following:

16

Table 4.2. Data extraction: the data collected from each study

Data item Description

D1 Year The year when the study was published

D2 Venue The name of the venue where the publication was published

D3 Type
Journal, conference paper, workshop proceeding or a book
chapter

D4
Evaluation
categories

High level categories on which the evaluation was separated
in the study

D5
Evaluated
attributes

The attributes used to evaluate the WfMSs in each corre-
sponding category

1) One author analyzed the data collected of each publication for identifying common
concepts and keywords matching them, the second author then verified the cor-
rectness, and in case of disagreements, discussed with inconsistencies with the
first author.

2) The keywords found were discussed and gathered together into clusters to form the
initial classification framework.

After going through the process, we had a set of categories that could be used in the clas-
sification framework, e.g. Development, Licensing, Release maturity, Architecture and
Code reuse, each of them containing more detailed criteria and details. As an example,
Development contains the workflow and workflow task definition categories, which listed
the supported languages and definition styles for the workflow management systems.

4.7 Identification of the relevant workflow management
systems

In this step we selected ten relevant workflow management systems for subsequent re-
finement of the initial classification framework. The workflow management systems ana-
lyzed and collected in this section will also answer the RQ2 as we collect a diverse set of
popularity data from different sources.

We defined that a workflow management system must comply with the following require-
ments to be included in further documentation analysis and review:

• The workflow management system must be general-purpose in a way that it is not
designed only for certain operations or scenarios (e.g. employee processes in a
company or data transformation workflows)

• The workflow management system must be cloud runnable in Docker or as a server-
less distribution.

• The workflow management system must be open source and usable in production

17

without commercial licenses.

• The workflow management system must be actively maintained and established,
meaning that there must be a sufficient number of stakeholders contributing towards
new releases for the system, and that the popularity meets certain thresholds.

• The workflow management system documentation must be available in English.

We conducted the search and selection of relevant workflow management systems by
applying these requirements and following a process described in the following sections.

Table 4.3. Initial set of workflow management systems and reasons for exclusion in this
research

Exclusion reason Name

N/A - Included Activiti

Apache Airflow

Argo Workflows

Brigade

Cadence

Camunda BPM

Conductor

Digdag

Flyte

Kogito

N8n

Wexflow

Zeebe

Commercial license Flowable

Prefect

Processmaker

Rundeck

Not generic-purpose Azkaban

Luigi

Not maintained Lyra

18

4.7.1 Phase 1: WfMS Search

For searching the workflow management systems, we used both gray and white literature
sources. The systems mentioned in the studies found during the systematic mapping
study were considered together with the results of a search done on predefined search
keywords on Google. As a verification step on finding a comprehensive list of results we
compared them to an unofficially maintained list of open source workflow management
systems [22]. The initial list of items used for the research was limited by applying an
effort bounded stopping criteria [23] on selecting twenty different workflow management
systems for further analysis of the search results.

We went through the initial list of workflow management systems found at this stage and
checked them against the criteria defined earlier. This resulted in the exclusion of seven
systems on the list. For example, we excluded Lyra, because it was not actively main-
tained by its authors as they stopped working on the project. Also, four of the systems
stated that they would require a commercial license to be used in production and two of
them were considered to be tailored for a too specific use case. The initial list of workflow
management systems and their reasons of exclusion, if applicable, are listed in Table 4.3.

It should also be noted that Activiti and Camunda BPM are two considerably similar sys-
tems as Camunda BPM is a development fork of Activiti, which split off the project in
2013. Anyhow, the development has been diverged onto different branches for so long
that we could not leave either one out of the scope of this study for that reason. [24]

4.7.2 Phase 2: WfMS Selection

To find the actively maintained and widely used workflow management systems that have
their source code available and that can be used in a production environment without
commercial obligation, we chose popularity as one of our main criteria in the selection.
This way we could get a set of workflow management systems that represents the real
use of them in the field. We used a set of popularity quantifiers for the systems like the
amount of search engine hits, GitHub repository statistics and amount of Stack Over-
flow [25] questions posted on the topic.

The amount of search engine hits was counted by applying the workflow management
system name as the search string (e.g., “Apache Airflow”, “Zeebe”, “Argo Workflows”)
or by adding keyword "workflow" in the end of the search on names that gave multiple
unrelated results (e.g. "Cadence workflow"). We approximated the overall popularity and
activity of the source code in GitHub by measuring the amount of releases, contributors
(including anonymous) and stars given by GitHub users. GitHub statistics were fetched
using the GitHub API. In Table 4.4 we describe the search and code activity thresholds
that were used to choose the final tools.

These thresholds were used to cut out part of the initially found workflow management
systems by having a requirement of matching at least three of these thresholds.

19

Table 4.4. Popularity: Search and code activity thresholds

Platform (measure) Threshold

(amount)

Google hits 50k

Stack Overflow questions 50

Github stars 500

contributors 50

releases 20

Table 4.5. Popularity: Media and scientific literature platforms

Platform (measure) Threshold

(amount)

Media Hits Reddit 1000

Medium 1000

DZone 50

Scientific Search Hits Google Scholar 100

ResearchGate 50

Scopus 10

LinkedIn Group Members 200

Google Group Amount 1

Posts 500

Community Page Exists Yes

This resulted in the following list of tools: Apache Airflow, Activiti, Argo Workflows, Brigade,
Cadence, Camunda BPM, Conductor, Kogito, N8n and Zeebe.

To make a more thorough popularity assessment of these tools we also did an analysis
on their appearances in different online media platforms and scientific literature. We also
added thresholds for those to be able to quantify which workflow management systems
are the most popular in the field. These thresholds and sources analyzed can be found
from Table 4.5.

Ta
bl

e
4.

6.
Fu

ll
po

pu
la

rit
y

da
ta

:
w

or
kfl

ow
m

an
ag

em
en

ts
ys

te
m

s
ch

os
en

fo
rd

oc
um

en
ta

tio
n

an
al

ys
is

P
la

tfo
rm

M
ea

su
re

A
pa

ch
e

A
irfl

ow
C

am
un

da
B

P
M

C
on

du
ct

or
A

ct
iv

iti
C

ad
en

ce
B

rig
ad

e
Ze

eb
e

A
rg

o
W

or
kfl

ow
s

N
8n

K
og

ito

G
oo

gl
e

hi
ts

35
0k

15
0k

10
00

k
34

0k
77

8k
13

3k
16

9k
10

k
39

k
86

k

G
itH

ub
st

ar
s

17
00

0
16

00
27

00
71

00
39

00
20

00
13

00
58

00
81

00
12

9

co
nt

rib
ut

or
s

14
54

21
6

15
3

26
9

68
87

55
23

3
68

27
6

re
le

as
es

14
4

91
28

2
49

4
51

31
59

88
33

1
20

S
ta

ck
O

ve
rfl

ow
qu

es
tio

ns
50

0
50

0
50

0
50

0
50

0
26

7
33

47
2

10
23

M
ed

ia
hi

ts
R

ed
di

t
27

20
12

0
40

09
44

23
70

71
3

43
12

60
51

14

M
ed

iu
m

88
30

78
0

12
30

13
9

12
50

48
9

40
3

11
30

70
1

19
2

D
Zo

ne
19

8
17

7
53

35
19

15
3

2
55

7
0

34

S
ci

en
tifi

c
se

ar
ch

hi
ts

G
oo

gl
e

S
ch

ol
ar

45
10

71
4

27
00

12
80

20
6

25
10

0
21

50
8

12

R
es

ea
rc

hG
at

e
15

8
12

50
63

6
86

80
87

3
17

0
59

0
22

S
co

pu
s

35
10

2
29

0
0

0
10

0
0

Li
nk

ed
In

gr
ou

p
M

em
be

rs
63

7
79

1
-

88
6

-
-

16
-

-
-

G
oo

gl
e

gr
ou

p
A

m
ou

nt
1

2
-

1
-

-
-

-
-

2

Po
st

s
37

22
66

29
13

43
2

57
2

1
61

2
11

0
10

09

C
om

m
un

ity
P

ag
e

E
xi

st
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

21

Table 4.7. List of selected workflow management systems, popularity scores and docu-
mentation sources

Workflow management
system

Popularity
Score

Documentation Source

Apache Airflow 14 https://airflow.apache.org/docs/

Camunda BPM 13 https://docs.camunda.org/manual/

Conductor 12 https://netflix.github.io/conductor/

Activiti 11 https://www.activiti.org/documentation

Argo Workflows 11 https://argoproj.github.io/argo/

Cadence 11 https://cadenceworkflow.io/docs/cadence/

Brigade 7 https://docs.brigade.sh

Zeebe 7 https://docs.zeebe.io

Kogito 6 https://docs.jboss.org/kogito/release/latest

N8n 4 https://docs.n8n.io/reference/reference.html

Table 4.7 contains the final workflow management systems selected for the documenta-
tion analysis and the popularity score calculated by the amount of popularity thresholds
passed (in Table 4.4 and Table 4.5) and the respective documentation sources we con-
sidered. Data used to calculate the popularity score based on predefined thresholds can
be found from Table 4.6. The data was fetched on 3.7.2020.

4.8 Analyze workflow management system documentation

The documentation analysis was done by going through the official documentation sources
of the workflow management systems listed in Table 4.7. While doing the documentation
analysis it was reflected against the initial classification framework and the missing parts
were notioned. After conducting the full documentation analysis the results were dis-
cussed between the authors to reflect the needed changes for the initial classification
framework.

4.9 Refining the classification framework

After conducting the documentation analysis and doing the modifications based on the
notions that were found there, the whole classification framework was analyzed as a
whole by the authors. The results of the refinement and the final workflow management
system classification framework is described in Section 5 (Workflow management system
classification framework).

https://airflow.apache.org/docs/
https://docs.camunda.org/manual/
https://netflix.github.io/conductor/
https://www.activiti.org/documentation
https://argoproj.github.io/argo/
https://cadenceworkflow.io/docs/cadence/
https://docs.brigade.sh
https://docs.zeebe.io
https://docs.jboss.org/kogito/release/latest/html_single/
https://docs.n8n.io/reference/reference.html

22

4.10 Conduct workflow management system technology
review

The final step to fulfil the goals of this study was to do a thorough technology review for the
workflow management systems identified in Section 4.7. The review was done by going
through the classification framework categories for each of the workflow management
systems and collecting the results down on a spreadsheet.

The results of the technology review were collected by the first author. After that, the
verification of the results was done by the other author. For resolving conflicts the issues
were discussed and final results were recorded only after all the parties were satisfied
with them. The full technology review and the results are presented in Section 6 (Work-
flow management system technology review).

23

5 A WORKFLOW MANAGEMENT SYSTEM
CLASSIFICATION FRAMEWORK

To make a justified choice on what kind of a workflow management system to use in
a project, many things need to be taken into consideration. The mapping study de-
scribed in previous sections was used to supply us with relevant data to form the clas-
sification framework. We conducted a study search, which resulted in a total of twelve
studies to pass our selection criteria described in Table 4.1. The studies are as fol-
lows: [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36] and [37]. Those studies
were also snowballed, which resulted in four more studies: [38], [39], [40] and [41] to be
included in this study. The total amount of studies used to derive the initial classification
framework was sixteen. The results of studies filtered out and selected by study search
and snowballing are described in Table 5.1.

Table 5.1. Study selection: Results of study search and snowballing

Selection round Studies passed

Study search Passed 1st round 43

Passed 2nd round 35

Passed 3rd round 12

Snowballing Passed 1st round 6

Passed 2nd round 5

Passed 3rd round 4

Total 16

The distribution of the results over publication types were split as described in Figure 5.1.
From the results it is clear that most of the academic discussion over the topic is done in
conference proceedings, which totaled thirteen different studies. For journal entries we
had two matches and only one book chapter was used as a source in the study.

When looking into the yearly distribution of the publications shown in Figure 5.2 it can
be seen that the studies range evenly from the beginning until the end of the time period
chosen. This implies that the topic has had a considerably constant amount of interest
over the years in the community.

24

Conference Journal Book chapter
0

5

10

Figure 5.1. Distribution of selected studies over publication types

The publications were analyzed to form an initial classification framework, which was
then analyzed against the official documentation provided by the selected modern day
workflow management systems shown on Table 4.7. This analysis helped to refine the
classification framework towards answering the relevant questions for modern workflow
management systems. Especially the cloud-native aspects were included more strongly
through the documentation analysis.

1995 2000 2005 2010 2015 2020

0

1

2

3

4

Figure 5.2. Distribution of selected studies over year published

As a result of conducting the mapping study and the workflow management system docu-
mentation analysis we identified two different levels of concerns and used those to define
a project view and a technical view on the classification of workflow management sys-
tems. The views can be used to split the work required in making the choice between
project management and technical experts.

The project view comprises of high-level requirements that can be used to narrow down
the search and make a decision on whether a system applies for a more thorough anal-
ysis. This can mean, for example, checking if the license or the platform requirements

25

Figure 5.3. The classification framework: categories for project view and technical view

of the system are suitable for the project under development. These requirements also
comprise a set that can be checked quite fast compared to the more technical properties.

On the other hand, the technical view focuses on the details that can be used to deter-
mine which of the systems actually provides the best solution for the technical problem
being solved. For example, the availability of access management features or workflow
definition languages might prove to be the differentiating factor between two otherwise
equally classified workflow management systems.

Using these two views we expect to be able to distinguish the workflow management
systems from each other and provide a good set of features to be checked before making
a choice. The requirements and categories used to define the project view are explained
in the next subsection followed by the technical view described in the subsection after it.
Figure 5.3 summarizes the contents of both of the views.

5.1 A project view on workflow management systems

The project view on the workflow management system classification framework has cat-
egories and requirements that are of interest to project managers or architects identifying
which system would comply with the generic project requirements. The project view con-
sists of the following categories:

- Licensing,

- Installation,

- Source code and release maturity,

- Community,

- Interface availability and

26

- Documentation.

These categories are explained in detail in the following sections.

5.1.1 Licensing

The licensing category of the classification framework gives us insight on what licenses
are used in the products and helps us categorize them. All the products chosen in this
study for technology review have their source available but there can be limitations on
how, and what parts of, the code can be used.

5.1.2 Installation

The installation category defines the platforms in which the workflow management system
can be installed and also shows the dependencies needed to be installed with it. We also
look up the availability of an official docker image for the system. This category can be
a strict limiting factor if the project being developed has strict platform requirements or
knowledge.

5.1.3 Source code and release maturity

The source code availability and languages used are checked in this category. We also
classify the release maturity of the workflow management systems. The statuses are
defined by following the states of maturity discussed in a book about continuous delivery
by Humble and Farley [42] or by using the definitions applied by CNCF organization [43],
if applicable. To give perspective on the life-cycle of the products, we also included the
first release date available on GitHub for the products.

5.1.4 Community

The activity of different community platforms is analyzed under this category. We look into
different media and collaboration platforms to analyse the impact of the product across
the field. The popularity was already assessed when including or excluding workflow
management systems for the technology review but this aspect should also be considered
in the classification of the systems.

5.1.5 Interface availability

In the interface category we assess the availability of different interfaces to access or
control the workflow management systems. Different types of interfaces are divided into
command-line interface (CLI), application programming interface (API) and graphical user
interface (GUI). This category gives a view on the structure and principles on how the

27

products are designed and how they are supposed to be used. It also provides valuable
information on the capabilities of the systems.

5.1.6 Documentation

The documentation category analyses the availability of different types of documentation
for the systems. These types of documentation being evaluated are workflow develop-
ment, production deployment of the system, architecture and further platform develop-
ment. There categories are classified with the following values: having a documentation,
documentation lacking, no documentation.

5.2 A technical view on workflow management systems

The technical view on the workflow management system classification framework has
categories and requirements that are of interest to software development and operations
specialists identifying which platform would comply with low level, technical requirements.
The technical view consists of following categories:

- Development,

- Architecture details,

- Workflow features and control mechanisms,

- Application Delivery and

- Code reuse and external integrations.

These categories are explained in detail in the following sections.

5.2.1 Development

The development category consists of details on how the workflow management systems
implement their workflows and workflow tasks. We also look into available integrated
development environment (IDE) extensions and plugins available to find out which of the
systems provide that kind of support for the development work.

In the workflow definition part of the category we look into the way how the high-level
workflows are being created and defined in the system. This can vary from pure code
solution to strict definition languages. We also analyse the implementation details for the
lower level of abstraction inside workflows called workflow tasks.

5.2.2 Architecture details

In the architecture details category we look into architectural principles and details for the
workflow management systems. This consists of support for asynchronous messaging,
high availability, scalability, state persistency.

28

5.2.3 Workflow features and control mechanisms

The workflow features and control mechanisms category consists of the capabilities of the
workflows themselves in the system. The basic functionality in the workflow management
systems to be checked is the availability of features like wait for signal and branching of
tasks. A more complex feature considered is forming a dynamically advancing graphs
of execution. This means that the execution flow can be determined runtime and will
produce a different outcome on different circumstances.

On top of that the capability to schedule workflows, limit the rate of workflow tasks and
enforce global semaphores on shared resources are taken into consideration. Also, ac-
cess management support on the workflow management system is determined in this
category.

The contents of this category contain a limited set of functionality as the amount of dif-
ferent workflow specific features is very large. If the requirements of a software project
are relying on certain workflow features, those need to be checked separately. There are
good scientific studies about feature compliance especially for workflow management
systems designed to follow some specific workflow management standard.

5.2.4 Application delivery

The application delivery category contains features like deployment automation support
and utility tool availability to be used in continuous integration and delivery (CI/CD) pro-
cesses. The data collected in this section will give a view of how much work is done
and still needed when taking the product into use by a CI/CD pipeline. The capability to
support deployment and integration procedures is an important factor when evaluating
the maintenance costs of using and developing on top of the product.

5.2.5 Code reuse and external integrations

The code reuse and external integrations category is used to evaluate the amount of work
done beforehand to support different use cases for the system. In this category we look
into the availability of code samples and example workflows. We also look into external
service integrations provided for the system to create a view on the extensibility it has.
It is a clear advantage if the workflow management system already supports some tools
that are otherwise used in the project.

29

6 A WORKFLOW MANAGEMENT SYSTEM
TECHNOLOGY REVIEW

In this section, the workflow management systems that passed our popularity thresholds,
listed in Table 4.7, are evaluated against our classification framework. The first part of
this section focuses on the project view and the second part on the technical view of the
framework.

6.1 A project view on workflow management systems

The categories introduced in Section 5 will provide a foundation for comparing and classi-
fying the workflow management systems from the project view level. This level of classi-
fication will provide means for an early analysis of inclusion from high-level requirements
point of view. This helps in the workflow management system choice process as cer-
tain tools can be immediately ruled out without starting a more thorough technical view
analysis.

6.1.1 Licensing

Detailed information about the licences used in our systems under review are listed in
Table 6.1. As can be seen from the table, majority of the workflow management systems
are under permissive Apache 2.0 or MIT licenses. However, two of the systems use a
more limiting license that, in both cases, limits the use of the software in certain business
cases.

Zeebe Community License allows free usage as long as the customers cannot freely
create and define the services that are orchestrated by the workflows they have designed.
This means that the service provider can create back-end services, which the customer
can then use to define custom workflows. However, the use is not allowed if the service
provider offers the capability to create the back-end services and the workflows. This can
be considered as selling Zeebe-as-a-service.

N8n uses Apache 2.0 with Commons Clause, which limits the usage if the software that
utilizes N8n produces revenue to the company. This revenue is limited to 30 000 USD per
annum and after that a separate license needs to be agreed on. This makes N8n fully
free-to-use only for smaller software products or internal systems. The authors call the

30

Table 6.1. Project view: Licensing

License

Apache Airflow Apache 2.0

Camunda BPM Apache 2.0

Conductor Apache 2.0

Activiti Apache 2.0

Cadence MIT

Brigade Apache 2.0

Zeebe Zeebe Community License

Argo Workflows Apache 2.0

N8n Apache 2.0 with Commons Clause (fair-code)

Kogito Apache 2.0

license "fair-code". [44]

6.1.2 Installation

Table 6.2 shows what are the platforms and dependencies that are used for production
deployment of the systems under study. We also collected information about the avail-
ability of official Docker images for the systems. As can be seen all of the systems run in
containers as we searched specifically for cloud-native solutions. There are, however, no-
table differences in the limitations on what platforms and with which other dependencies
the systems are supposed to be run with.

Most notably, Brigade, Argo Workflows and Kogito are developed to be used on a certain
platform only, this is a clear limiting factor on the choice as it enforces the deployment
platform for the whole infrastructure that is being run with the workflow management
system. Also, a link between the licensing and installation platform can be seen on Zeebe
and N8n, as they have an as-a-service installation and specifically restricted the license,
so that it cannot be provided by any other service provider than the developers of the
platform.

The dependencies introduced also vary between the workflow management systems as
some of them enforce the use of specifically named persistent storages and others offer
support for multiple solutions. For example, Conductor relies on another Netflix product
Dynomite to provide a high availability production setup, while a solution like Activiti sup-
ports multiple different database solutions. Also, Kubernetes specific installations rely on
the internals of the platform and therefore need less external dependencies.

It should also be taken into consideration that each of the Docker deployable tools are

31

Table 6.2. Project view: Installation platforms and dependencies

Platforms Dependencies
Official
Docker
Image

Apache
Airflow

Kubernetes,
Docker

MySQL or PostgreSQL database Exists

Camunda
BPM

Docker,
Kuber-
netes, as-a-
service

PostgreSQL, Oracle, MySQL, MariaDB,
IBM DB2, Microsoft SQL or H2 database

Exists

Conductor Docker Dynomite, Elasticsearch
Only build
instructions

Activiti

Docker,
Kuber-
netes, as-a-
service

H2, MySQL, Oracle, PostgreSQL, DB2
or MSSQL database and Elasticsearch

Exists

Cadence Docker
Apache Cassandra, MySQL1database or
Elasticsearch

Exists

Brigade Kubernetes - Exists

Zeebe
Kubernetes,
Docker, as-
a-service2

Elasticsearch Exists

Argo
Workflows

Kubernetes - Exists

N8n
Docker, as-
a-service2

Postgres, MySQL, MariaDB or MongoDB1

database
Exists

Kogito OpenShift Infinispan Exists
1 not recommended for production
2 hosted as-a-service installation in early access or beta stage

usable on most of the cloud environments available. It just might require extra work from
the team taking it into use if no instructions are provided by the platform itself.

6.1.3 Source code and release maturity

The source code information and release maturity of the systems under review are shown
on Table 6.3. As all of the considered workflow management systems are open source
their codebase is relatively similar. Each of the systems has its source code available in
GitHub and the code is fully available.

The main difference on the source code level is the programming language used to pro-
vide the functionality. It can be seen that Java and Golang are the languages used for

32

Table 6.3. Project view: Source code and release maturity

Programming
language

Maturity
First
release

Apache Airflow Python Production Jan 2015

Camunda BPM Java Production Mar 2013

Conductor Java Production Dec 2016

Activiti Java Production Jun 2010

Cadence Golang Production Jun 2017

Brigade Golang CNCF Sandbox Oct 2017

Zeebe Java Ready to market Jul 2017

Argo Workflows Golang CNCF Incubating Nov 2017

N8n TypeScript Ready to market Jun 2019

Kogito Java Development preview Jun 2019

majority of the products. Golang has been growing as a language of choice on many
cloud-native products as major platforms like Kubernetes and Docker have proven to
be powerful tools made with the language. [45] It is also natural choice for some of the
systems under our review as they are developed by extending existing Kubernetes func-
tionality.

The maturity of the workflow management systems is clearly varying a lot as some of
the products have seen over five years of releases while others have not reached their
second year yet. The ones with production label have already seen vast use under big
loads whereas some of the platforms are still looking for major production usage.

6.1.4 Community

For analysis of community activity, we already did a comprehensive study on the work-
flow management system popularity assessment part of the study, where we decided
what systems to choose for the documentation review. From those it can be said that
Apache Airflow, Camunda BPM, Conductor, Activiti, Argo Workflows and Cadence hold
the highest score among the systems under study whereas other products have consid-
erably less activity around them.

The results of the popularity assessment can be seen from Tables 4.7 and 4.6.

33

6.1.5 Interface availability

Table 6.4 shows the available interfaces for the workflow management systems. Most
of the studied systems have some kind of a command-line interface that can be used
to control the system by e.g. creating or starting new workflows. The API can be used
for dynamically querying data or performing operations. Graphical user interface, on the
other hand, is in the workflow management system context usually, by minimum, used to
view the execution graphs of the workflows. However, there are four outliers in the data
and those are Conductor, Cadence BPM, Zeebe and N8n.

Table 6.4. Project view: Interface availability

CLI API GUI

Apache Airflow Yes Yes Yes

Camunda BPM No Yes Yes 1

Conductor No Yes Yes

Activiti No Yes Yes

Cadence Yes Yes Yes

Brigade Yes Yes Yes

Zeebe Yes Yes Yes 2

Argo Workflows Yes Yes Yes

N8n Yes No Yes

Kogito Yes Yes Yes
1 limited features for free
2 free only for non-production usage

Conductor, Camunda BPM and Activiti are not having a command-line interface available.
For Camunda BPM and Activiti the main way to run the workflow and BPM methods is
through their Java or REST API. They both also always require an XML to be generated
for a workflow before it can be run.

Conductor heavily relies on using its REST API to handle all the interactions with the sys-
tem. These, for example, vary from creating workflow definitions to starting and following
workflows. This emphasises their ability to create new workflows on the flow as any user
of the workflow management system could be a client for the system.

Zeebe and Camunda BPM, on the other hand, provide all the interfaces we looked into,
but they had limitations on the GUI usage based on their revenue model. For Zeebe,
it is stated in the documentation that it is allowed to use the GUI for free as long as
you use it in non-production environments only. This is expected as their license is not
entirely permissive and they are also providing a hosted version of the system in the near
future. Camunda BPM is slightly different in this sense as it provides a more extensive

34

feature-set on the enterprise license of the software.

For N8n, the difference compared to other workflow management systems is the lack
of a documented API towards the system. The whole concept relies heavily on defining
the workflows on the GUI with multiple predefined integrations to various different external
systems. While a possibility for extension by code is provided, it can be fully used through
the graphical interface.

6.1.6 Documentation

The categories studied under documentation for workflow management systems are
shown in Table 6.5. Workflow development documentation is not included in the table
as it was sufficient for all of the systems. It can be seen that most of the documentation
categories are available, however the quality varies a lot. Main issues within the docu-
mentation are with production deployment which for the limited services only contains a
quickstart command-line example or a vague list of configurations.

Table 6.5. Project view: Documentation

Production
deploy-
ment

Architecture
Platform
develop-

ment

Apache Airflow Yes Yes Yes

Camunda BPM Yes Yes Yes

Conductor Limited Yes Limited

Activiti Yes Yes Yes

Cadence Limited Yes Yes

Brigade Yes Yes Yes

Zeebe Yes Yes Yes

Argo Workflows Yes Yes Yes

N8n Limited No Yes

Kogito Yes Yes Yes

For N8n, the architecture has not been documented sufficiently as the system acts as a
black box for the user and can be used without knowing much of the underlying architec-
ture.

Participating in the open source platform development was fairly well documented, how-
ever, Conductor as being initially only an internal system, does not provide more than a
small guide on creating a patch for a new feature.

35

6.2 A technical view on workflow management systems

The categories introduced in Section 5 will provide a foundation for comparing and clas-
sifying the workflow management systems from a technical view level. This level of clas-
sification will provide means for a more thorough analysis of the workflow management
system capabilities.

6.2.1 Development

The results of the Development category of the technical view are shown in Table 6.6.
The way how workflow definitions are implemented varies from strict modeling languages
to pure code implementation. Task implementation, however, is more focused on pro-
gramming languages because the business logic usually requires some coding. For one
workflow management system, N8n, it was noticed that graphical user interface was suf-
ficient for creating fully functional workflows.

Table 6.6. Technical view: Development

Workflow Definition Task Implementation

Apache Airflow Python Python

Camunda BPM BPMN 2.0, CMMN 1.1, DMN 1.1 Java

Conductor JSON DSL Java, Python, Golang

Activiti BPMN 2.0 Java

Cadence Java, Golang, Python, C# Same as for workflows

Brigade Javascript Container

Zeebe BPMN 2.0, JSON Java, Golang, more1

Argo Workflows Kubernetes CRD Container

N8n JSON GUI, TypeScript

Kogito BPMN 2.0, DMN 1.2, more2 Java

languages marked in cursive are unofficial
1 C#, Delphi, Ruby, Node.js, Rust, Python, TypeScript, GitHub Action
2 DRL, XLS/XLSX decision tables

As we looked into the IDE extensions and plugins available, we found matches for five
of the workflow management systems. For Brigade, the extension for VS Code provides
project views and workflow running functionality. It is still, however, under development
and not published in the VS Code Marketplace. For Argo, there was a suggestion to use
a Kubernetes custom resource definition validator in the IDE. The Workflow management
systems with some bigger impact on the development work were Camunda BPM, Activiti
and Kogito, which offered the use of different modeling language extensions for IDEs. All
of the previously mentioned workflow management systems had an extension for Eclipse,

36

whereas Camunda BPM had also support for IntelliJ IDEA and NetBeans editors. Kogito
also offered support for VS Code.

According to the data in Table 6.6, workflow definitions can be divided into three cat-
egories: workflow as standardized modeling language, workflow as configuration and
workflow as code.

It is a certain advantage to BPMN 2.0 and other standardized definitions that they offer
a well tested and functional set of features that have validators, editors and know-how
already in the field of technology. This also allows people who are not developers a way to
create workflows and define decision models. It, however, might prove to be inflexible and
cumbersome in situations where the requirements are simple but end up requiring a lot
of extra configuration. If the organization has existing workflow definitions and knowledge
in the standardized models and wants to widen the spectrum of workflow creators, there
is a certain advantage in the usage of Camunda BPM, Activiti, Zeebe and Kogito as a
workflow management system. It should also be noted that Kogito and Camunda BPM
offer a wider set of standardized definitions to be used in workflow creation.

Four of the workflow management systems offered workflow definitions as configuration:
Conductor, Zeebe, Argo workflows and N8n. The most used format was JSON, which
can be useful as it is also a very common content-type format for REST interfaces. This
is used heavily in e.g. Conductor, which offers an endpoint to start workflows and all the
required information can be given in the request itself. For Zeebe, it was mentioned in
the previous paragraph that it uses BPMN 2.0, but also JSON definitions are supported.
They are internally, however, transformed into the aforementioned notation.

N8n uses a slightly different kind of workflow definition schema as it utilizes Kubernetes
Custom Resource Definition (CRD) to define the workflows. This is a natural choice for
a tool that runs natively in Kubernetes environment as it can therefore be modified and
controlled by the same toolset as any other resource handled in the Kubernetes cloud.
The CRD definition is in yaml format which is a superset of JSON.

Compared to the more standard way of defining the workflow, the configuration approach
also offers a possibility to include people without programming experience into the defini-
tion work but trades off simplicity at the cost of standardized notation.

For the workflow as code, we can see three systems that utilize it. This allows flexibil-
ity of the programming language but makes workflow definition only possible for people
with programming experience. The way it is done, however, varies a lot between these
systems.

Apache Airflow uses Python for everything and the workflow definition is in a form of a
Directed Asyclic Graph (DAG), which needs to be defined from end-to-end before the run.
These graphs are then scheduled to be run in a defined manner. The Brigade system
works a bit like Apache Airflow, but the language used is Javascript and the system is
based on catching different events and acting on top of those. Cadence, however, does
not require a preset workflow definition as such but it relies on durable functions which

37

are a concept that preserve the state of execution on function level.

6.2.2 Architecture details

The architectural details we chose to look up in this context are shown on Table 6.7. Each
of the workflow management systems somehow implemented message queues so that
is not visible on the table. It can be seen that most of the systems implement all of our
points of interest.

Table 6.7. Technical view: Architectural details

High availability Scalability Persistent state

Apache Airflow No Yes Yes

Camunda BPM Yes Limited Yes

Conductor Yes Yes Yes

Activiti Yes Limited Yes

Cadence Yes Yes Yes

Brigade Yes Yes Limited

Zeebe Yes Yes Yes

Argo Workflows Yes Yes Yes

N8n No No No

Kogito Yes Yes Yes

For Apache Airflow there is a single point of failure in the design as the implementation
focuses on a single scheduler unit that runs the workflows. If that goes down, a downtime
is ensured. There are unofficial community workarounds for the issue but it has not been
fixed for the product itself. Therefore, Apache Airflow cannot be considered as a highly
available service.

The Camunda BPM and Activiti both have the database as a limiting factor in scalability
as they rely in a relational database that only scales up, not out. This, however, seems to
be enough for most of the use cases.

The issue with Brigade is that it is designed to be more like a scripting tool for e.g. CI
pipelines, deployments, packaging tasks et cetera. It is discouraged to implement long-
running tasks with it. The state persistency is basically limited per task or per workflow of
the system.

For N8n, the infrastructure is still lacking many of the features that other systems have. It
does have a storage but that is mainly used to store the workflow definitions and finished
executions. It also does not offer scalability or high availability in the same way as other
systems. This limits the use to smaller projects and internal usage as it cannot be relied

38

on in more business critical projects. It however works very flexibly on the tasks it per-
forms and is constantly under development so it is worth following to see how the solution
evolves.

A special notice should be given to Conductor, Zeebe, Cadence, Argo Workflows and
Kogito which all met our architectural notions by having a design that has been delivered
from the beginning with cloud capabilities in mind. The usage of scalable and fault-
tolerant components is a key requirement for most of the modern day software projects
and a very favourable way to design a system. For example Zeebe uses event sourcing
to solve most of the problems that would be traditionally handled with a database, also
allowing a much higher throughput via the decision.

6.2.3 Workflow features and control mechanisms

The distinguishing workflow features and control mechanisms we were interested in about
the workflow management systems are visible in Table 6.8. Each of the systems sup-
ported basic functionality like having wait signals or branches of tasks so those are not
listed in the table.

Table 6.8. Technical view: Workflow features

Dynamically
advancing

graph
Scheduling

Access
management

Global
Semaphores

Rate
limiting

Apache Airflow Limited Yes Yes Limited Yes

Camunda BPM Limited Yes Yes No No

Conductor Yes No No Yes Yes

Activiti Limited Yes Yes No No

Cadence Yes Yes No No Yes

Brigade Limited Yes Yes No No

Zeebe Limited Yes Yes No No

Argo Workflows Yes Yes Yes No No

N8n No Yes Yes No No

Kogito No Yes Yes No No

One feature that we thought would bring valuable information about the flexibility of a
workflow management system is the capability to form a dynamically advancing graph
of executions. This means that the execution flow can be determined runtime and will
produce a different outcome on different circumstances. Conductor, Cadence and Argo
Workflows implemented this by introducing dynamic forks, child workflows and various
programmable features.

39

The limited capability on Apache Airflow means that the system does not support this
kind of a feature very well. This kind of behavior can be achieved if the following task is
predefined to loop through the dynamic list of items. This, however, doesn’t allow control
over failures inside the task so if one of them fails, all fails. It is also possible to provide
this kind of functionality by creating multiple workflows but the functionality lacks proper
implementation for this. Brigade also has a similar limitation to achieve this but it requires
a new workflow to be defined to listen to the results of the previous one.

Camunda BPM, Activiti and Zeebe all have the same kind of problems as Apache Airflow
and Brigade. They are also modeled in BPMN and the deployment of a new workflow re-
quires a new specification file created and to be exported into the system. The capability
to do so varies between the systems.

For scheduling there was one workflow management system, Conductor, that did not
provide any scheduling capability out of the box. It, however, encouraged the usage of an
external scheduler that would trigger workflows from it via REST or messaging endpoint.
Access management had a similar kind of situation as scheduling, both Conductor and
Cadence trusted something else in the cluster to handle that.

Global semaphore and rate limiting were considered features that are critical for certain
types of environments. For Apache Airflow it was possible to add a semaphore for a
certain workflow and amount of parallel tasks in it, but it was not possible to secure
a certain task from being run in multiple workflows simultaneously. Conductor has a
definable maximum amount of parallel tasks supported. Rate limiting was implemented
for Cadence on top of the two workflow management systems mentioned earlier.

6.2.4 Application delivery

Application delivery details of the classification framework are in Table 6.9. It can be
seen that the deployment automation features provided by the workflow management
systems are limited for the platform agnostic tools as they can be deployed in any cloud
environment. This leaves the deployment procedure automation to the deployer of the
application.

For Kubernetes or Openshift platforms, the deployment procedures are built into the plat-
form tools and defined for the service beforehand. This makes the deployment of those
tools easier than for the ones that do not have that capability built in. Apache Airflow, had
deployment procedures unofficially available for multiple different platforms.

The continuous integration and deployment utility tools were found for three of the ap-
plications. Brigade offers a testing tool that simulates the workflows being run without
having a need for other dependencies. This is useful for creating functional tests that
checks the workflow execution logic.

For Zeebe there is a configurable test container available to be used in e.g. integration
tests. Automatically running that kind of a test setup is important, especially for larger

40

Table 6.9. Technical view: Application delivery

Deployment automation CI / CD utility tools

Apache Airflow No 1 No

Camunda BPM Helm No

Conductor No No

Activiti Helm No

Cadence No No

Brigade Helm brigtest

Zeebe Helm zeebe-test-container

Argo Workflows Kubernetes Argo CI, CD and Rollouts

N8n No No

Kogito Openshift No
1 Unofficial deployment solutions available

projects. This kind of utility is therefore a valuable asset that removes the need to create
and maintain a working test version of the workflow management system in each project.

For Argo Workflows, there are CI, CD and Rollout utility tools available in the product fam-
ily. They utilize Kubernetes to provide deployment strategies and automation for software
projects. If a team uses Argo Workflows and deploys it with the tooling provided, it is a
fair consideration to start using the same tooling for other parts of the project too.

6.2.5 Code reuse and external integrations

Each of the workflow management systems had ready-made code samples and example
workflows. Conductor and Brigade, however, had only documentation tutorials available
to provide examples on how to use the features. The integration possibilities as part of
code reuse classification are shown on Table 6.10.

First of all, N8n should be mentioned as an exemplary product in this field as they utilize
the community to submit their workflows and integrations to be used by everyone. This
allows having hundreds of different workflows and utilities available, reducing the need
for code and, in many cases, allowing workflow creation via graphical interface only. This
makes the product a very viable choice for a project where multiple different public plat-
forms and interfaces need to be used together ranging from cloud provider solutions to
social media services.

For other workflow management systems, the set of integrations is more limited. Most of
the systems support the use of services provided by public cloud providers like Amazon,
Google or Azure. Those are mostly covering the use of the storage functionality of the

41

providers.

Table 6.10. Technical view: Code reuse by integrations

Ready-made integrations

Apache Airflow Amazon Web Services, Google Cloud Platform, Microsoft Azure
(limited), Databricks, Qubole

Camunda BPM Cawemo, Amazon aurora PostgreSQL, Microsoft SQL server,
IBM DB2, CockroachDB, Spring

Conductor Amazon S3, Azure Blob storage

Activiti Spring, CDI, ActiveMQ

Cadence Kafka

Brigade Azure (Container Registry, Event Grid, DevOps, VSTS), GitHub,
GitLab, DockerHub, BitBucket, Kubernetes events, Trello

Zeebe GraphQL, Spring, Kafka, GitHub Action, Node-RED, Hazelcast,
Event Store DB

Argo Workflows Minio, Amazon S3, Google Cloud Storage, Alibaba Cloud OSS,
Kafka

N8n Over 90 integrations to different platforms

Kogito Quarkus, Spring Boot, GraalVM, Knative, Kafka, Infinispan, Key-
cloak

42

7 WORKFLOW MANAGEMENT SYSTEM
SELECTION GUIDELINES

The third contribution of this work (RQ3) is to provide a way to support the decision mak-
ing of selecting a workflow management system. In this section, we provide guidelines
and recommendations to compare any workflow management systems classified by our
workflow management system classification framework with each other. The goal is to
make the evaluation of different systems easier and to provide a view that gives a solid
baseline for evaluation.

After conducting the workflow management system technology review in Section 6 we
went through the results and combined them into groups and categories to follow. These
categories follow the results already found through the work done for the classification
framework in Section 5, however providing a more generic approach in this section.

By the help of the categories discussed in this section we can determine different sce-
narios and offer a baseline for finding the best fitting workflow management systems for
specific projects. Making a choice, however, always needs thorough consideration and
project-specific prioritization of the requirements to be valid.

To provide a clear process for the workflow management system selection we separated
the decision making process into following steps:

1. Define requirements and motivations

2. Identify special requirements and prioritize

3. Choose WfMS to be evaluated

4. Perform a technology review

a) The project view, priorities and early elimination

b) The technical view and details

c) Re-evaluate the initial requirements

5. Decision making and validation of the results

A visualisation of the steps is available as Figure 7.1. The following sections are used to
describe the steps in detail.

43

Figure 7.1. The WfMS Selection Process

7.1 Define requirements and motivations

Before collecting the data or identifying the workflow management systems to be con-
sidered, we emphasize the need to do a thorough analysis on the project requirements,
motivations and the environment where the workflow management system is considered
to be introduced. Without understanding these base requirements the analysis may prove
to result in a wrong decision, which is only perceived after using a significant amount of
time in the process.

One thing to consider in the beginning of the process is that moving to use a work-
flow management system may impose more resource and development overhead on the
system under development than the requirements actually would when developing the
functionality yourself. The motivation needs to be clear and the achievable benefits large
enough to consider introducing a new component to the system.

Each project also introduces their own set of requirements towards the workflow manage-
ment system. It is important to identify those and find a set of requirements that satisfy
the needs of the project but leave room for a comprehensive list of different workflow
management systems.

7.2 Identify special requirements and prioritize

The requirements of a software project vary and prioritization is the key to find the right so-
lutions. In Table 7.1 we introduce the generic categorization and classification framework
introduced in this study to be used as a baseline for the decision makers to determine
their requirements and needs. A priority does not need to be clear for each of the re-

44

quirements before conducting a more thorough technology review, and a change in the
prioritization of requirements can also be done during the process if needed.

On top of the requirements or classification introduced by this study, we encourage to
take a look into the special needs of the project and also cover them in the evaluation if
not already covered. The importance of different factors is always project specific.

7.3 Choose workflow management systems to be evaluated

This study provides a good baseline for choosing suitable open source and cloud-native
workflow management systems to be used in the evaluation. However, new systems
emerge all the time and a periodic check on the projects is encouraged. Also, if the
conditions of inclusion end exclusion for your project are different than in this study, the
set of tools might also be significantly different.

To make a choice of the systems to be evaluated, a popularity study is a good option for
filtering out the relevant options. A similar process as described in Section 4.7 can be
repeated to get an up-to-date view of the workflow management systems available.

7.4 Perform a technology review

After making a choice of what workflow management systems to include in the study, a
technology review, similar to what was done in Section 6, needs to be done. The results
of this study can be used as a benchmark and as part of the study itself if they match the
set of requirements set for your project.

7.4.1 The project view, priorities and early elimination

A recommended approach is to first go through the project view and the highest priority
items for your study and make an early elimination of systems not matching the require-
ments set at this state. This way more time is left for analysis of details and technical
aspects of the workflow management system. This step can be conducted by a person
without deeply technical background and should be fairly easy to do.

7.4.2 The technical view and details

As the technical view consists of more detailed requirements for the systems and might
contain information that cannot be found as easily as the aspects of project view, it is
done after the first step. This step might prove to be hard to conduct for certain systems
if the documentation is lacking or expertise on the topics is not good enough. This step
is recommended to be done by a person with technical knowledge about the domain and
the technical requirements of the project.

45

7.4.3 Re-evaluate the initial requirements

Because the evaluation process is done around multiple different systems with different
kinds of features the person doing the analysis also gets a lot of information that was not
available in the beginning of the process. Requirements and priorities set in the beginning
might need adjusting and new aspects found during the evaluation might bring in more
requirements for the study. When realizing there are gaps in the evaluation, the new
requirements must also be taken into account in the decision making process.

7.5 Decision making and validation of the results

After conducting the technology review and adjusting the requirements to get a complete
set of results, a decision needs to be made. For some projects the choice might be
clear, but usually there are multiple options that can be valid for the project. In this case,
a further comparison of the small set of workflow management systems might provide
needed information to make a choice.

However, before committing and making the final choice, we recommend a proof of con-
cept deployment and workflow execution to be done for the system and possible alter-
natives. This is done to ensure a real experience-based evaluation on the ease of use
and effort needed for the actual development and workflow definition work needed when
using the system.

46

Table 7.1. The final workflow management system classification framework

Category Details

Project
view

Licensing Used license

Limitations

Installation Platform

Dependencies

Docker image availability

Source code and maturity Programming language

Stage of maturity

Project age

Community Community page availability

Github stars, contributors, releases

Stack Overflow questions

Google hits

Interface availability CLI

API

GUI

Documentation Workflow development

Production deployment

Architecture

Platform development

Technical
view

Development Workflow definition

Task implementation

IDE extensions

Architecture High availability

Scalability

State persitency

Asynchronous messaging

Workflows Feature support

Control mechanisms

Application delivery Deployment automation

CI/CD utilities

Code reuse Workflow examples

Code samples

Available integrations Cloud environments

External software assets

47

8 THREATS TO VALIDITY

Four main types of threats to the validity of a quantitative research are presented by
Wohlin et al. [46] as follows: external, internal, conclusion and construct validity. In this
section we can identify how those apply to our study and also discuss the mitigation
actions we took to reduce their effect.

External validity means that we should be able to generalize our results to study items
also outside of our current scope. This has been taken into consideration by system-
atically going through each of the workflow management systems and by refining our
classification framework during the whole process. Also, the search process was done in
a way that allows us to apply the same procedure to future studies and in a sense refresh
the data currently collected about the workflow management systems.

Internal validity in this study can be described as how well our study methods resulted
in the outcome without having factors which we did not take into account affecting the
results. This was mitigated by having multiple revisions of the classification framework
and popularity study. However, many factors taken into use in the popularity study relied
on factors not totally under our control, e.g. the search result amounts could also contain
hits that are not relevant for our study and about some completely different topic than what
we searched for. This was mitigated by trying to define clear keywords for the search and
by trying to use multiple different indicators and thresholds for popularity.

Conclusion validity focuses on how sure we can be that the method or treatment actually
is related to the actual outcome of the study. In our case this was mitigated by the
thorough analysis of the data, the usage of well-known sources and benchmarking other
research done on the field before jumping into conclusions. A risk of having a bias during
the data extraction phase and iterative documentation analysis is, however, there, as not
every step of the iterative process was recorded in the study.

Construction validity means the validity of measurement against the measured target.
This means that the study successfully measures what it claims to measure. In our
study, the classification framework and selection guidelines are constructed using the
mapping study and documentation analysis in a way that provides a view on the workflow
engines themselves. The validity of this work relies on the clarity of documentation and
the methods used thorough the study.

The validity can also be compromised by having only a single author doing most of the
search based work and another author validating the results as it leaves room for bias in

48

the search procedures and results. This, however, was mitigated by the clearly set goals
on what to search for and how. The results are also publicly available to be re-checked
after the study was initially done.

49

9 DISCUSSION

The amount of scientific discussion on evaluation and comparison of workflow manage-
ment systems has been fairly constant during the years as can be seen in the distribution
of studies found in Table 5.2. In this section we discuss our position in that timeline and
the implications of this work for practitioners and researchers interested in the results. On
top of that we consider the overall trends that could be deciphered from the data collected
during the research process.

Determining the main classification features for distinguishing different workflow manage-
ment systems from each other (RQ1) required us to perform a systematic literature review
and a documentation analysis on the more recent systems.

During the literature review we analyzed 43 different academic studies, of which 12 were
selected as a baseline for our study. By applying the snowballing technique we found
4 more studies. The initial classification framework was therefore constructed by using
16 academic studies. For complementing the classification framework we also did a
documentation analysis on the chosen workflow management systems. By doing both of
the procedures we tried to align our context towards the work done previously and tie it
together with the modern trends in the field of cloud-native workflow management.

The categories of the classification framework reflect multiple aspects of the workflow
management system from project and technology views. As was expected, the documen-
tation analysis of the most popular solutions fitting our criteria brought in some details,
such as Docker and CI / CD availability, that might have been missed with only using the
results of the literature review.

For answering the question of choosing the most popular workflow management systems
for documentation analysis and determining the main differences between them (RQ2)
required us to perform the following steps. First we conducted an initial popularity search
that resulted in 20 different workflow management systems. Then from those we chose
10 for further analysis using our popularity criteria defined in Section 4.7.

The results indicate that there are certain older, more established, workflow management
systems that clearly passed our thresholds and multiple newer systems which did not
reach the same level of popularity yet. It is notable, although expected, that the popularity
follows closely the maturity of the products as can be seen when comparing the popularity
data against the maturity data collected in the technology review.

50

After selecting the systems they were used to conduct the documentation analysis and
the results were combined with the initial classification framework to form a final version
of it. The classification framework is shown in Table 7.1. After forming the classification
framework a thorough technology review was done to separate the workflow management
systems by their distinguishable features and to provide answers to the latter part of the
research question number two. The results and conclusions of the technology review are
available in Section 6.

The differences between the workflow management systems were clear on areas such as
workflow definition language or the platform used. The differences of the systems were
depending mainly on the type of the system and the business goal they were solving.
It was surprising that many of the newer systems did not apply any standards in the
workflow definition but implemented it on their own instead. There were also a couple
of licenses on the products that were unexpected: Zeebe and N8n were applying a non-
orthodox license to protect their product against profitable use from software-as-a-service
vendors.

One of the main learnings of this study are documented as an answer to the RQ3: "How
to select an open source Workflow Management System for a generic cloud-native en-
vironment?". Section 7 describes the routine for selecting the best system for a certain
use-case. The guidelines documented in that section can be used to go through the
whole selection process from the beginning to an end.

The refinement of those guidelines went hand-in-hand with the study process itself as the
workflow management system selection and technology review phases provided a good
view on the different aspects of the selection process.

9.1 Implication for practitioners and researchers

From the point of view of a researcher this study adds up to the longer trend of evalua-
tions by adding a viewpoint from a cloud-native perspective for the workflow management
systems. The results allow other researchers to use our classification framework as a
baseline and provide missing aspects in the evaluation for further inspection.

Researchers should pay attention to bringing in more specific evaluation details such
as workflow definition details, usability assessment or performance comparison. These
topics would bring value to the overall research on the field of workflow management.

The study also shows that new workflow management systems are being released con-
stantly and the feature set of them keeps evolving all the time. Researchers and practi-
tioners should keep up with the new releases and follow the trends forming around them.

For practitioners, the research gives tools to conduct a structured comparison based on
their project-specific use case. The categories and guidelines in this study can be used to
refine the selection process and provide a more objective look on the available workflow
management systems. Also, it is important to remember that the prioritization of the

51

categories is the most important part of making a final choice between the systems.

The selection guidelines given as one of the results of this study also require further
usage and it is encouraged for practitioner and researchers alike to use them and provide
feedback for possible future refinement.

9.2 Trends

The technology and literature reviews gave a good insight on the trend in which the work-
flow management systems have been, what the current situation is and what kind of
future trends there are in the field.

One of the trends that is clearly visible in the newer workflow management systems is that
the workflow definition language and task implementation methods have been moving
away from the standards like BPMN and DMN, which have been very prominent in the
older systems. As can be seen from Table 6.6, in which the data is recorded, the newer
workflow management systems have been moving towards using their own definition
formats or purely using only code as their approach to define the workflows.

This impacts the solutions base in a way that the systems are not inherently interoperable
when the workflow definitions are not standardized. It also ultimately rules out some of
the stakeholders that might be interested in defining their own workflows and definitions.

The use of standardized definition languages, however, has been also debated in the
community. For example BPMN has been clearly critizised for having too loose definitions
that leave room for implementing the same control structures in a different way. [3] This
kind of problems can be seen as one reason for moving away from the standardized
definition languages even though the newer versions of BPMN, for example, have been
trying to resolve these problems.

Another interesting trend is the that there are multiple very well competing solutions like
Conductor by Netflix and Cadence by Uber Technologies that have been mainly devel-
oped by a single company for their own use from a scratch and only later released as
open source for the communities to use. This implies that the solutions already available
have not met the requirements of the new emerging systems. For both of the use cases
the requirements are very demanding on cloud-native requirements like scalability and
high availabilty.

Both of these trends seem to imply a change in the paradigm of workflow management
systems towards a more fragmented field of systems. For the future, it would be beneficial
to continue following the discussion and seeing if the trend continues or if new standards
take space in the field.

52

10 CONCLUSIONS AND FUTURE WORK

The goal of this work is to make choosing a generic cloud-native workflow management
system an easier task by analyzing their popularity, defining means for classification and
providing best practises for the selection process. The work around the topic evolved
from the analysis of academic sources by conducting a systematic mapping study into
the creation of a workflow management system classification framework, conducting a
technology review and forming a set of selection guidelines for the workflow management
systems.

During the study we found multiple general purpose and workflow specific categories
to be used for classifying the workflow management systems against each other. The
categories provided us with an overall view on the concept of workflow management sys-
tems and gave us means to compare them. The analysis and details of the classification
against chosen workflow management systems are documented in Section 6 (Workflow
management system technology review).

For conducting the selection process and a workflow management system technology re-
view for a specific project we gathered a set of selection guidelines in Section 7 (Workflow
management system selection guidelines) to make the process easier.

The overall discussion of the research questions and the implications of this study are
documented in Section 9 (Discussion). There we highlight the results of this study and
provide references to the most important parts in it.

On top of the work done in this study it is easy to add more workflow management sys-
tems under review to provide a more thorough view on the current field of technology. The
amount of academic publications on the current state of workflow management systems
is limited even though it would be beneficial to follow the trends and developments on this
topic more closely. Therefore, we encourage to use the framework provided in this study,
and to refine or extend it if seen that the existing categories are not relevant enough for
specific kind of workflow management systems or use-cases under study.

53

BIBLIOGRAPHY

[1] Workflow Management Coalition website, Available (accessed 10.7.2020): http :
//www.wfmc.org/.

[2] D. Georgakopoulos, M. Hornick, A. Sheth, An Overview of Workflow Management:
From Process Modeling to Workflow Automation Infrastructure, Distributed and Par-
allel Databases, Vol. 3, Apr. 1995, pp. 119–153.

[3] E. Börger, Approaches to modeling business processes: A critical analysis of BPMN,
workflow patterns and YAWL, Software & Systems Modeling, Vol. 11, July 2012,
pp. 1–14.

[4] WFMC, Workflow Management Coalition Terminology and Glossary (WFMC-TC-
1011), tech. rep., Workflow Management Coalition, United Kingdom, 1999.

[5] W. V. Aalst, K. V. Hee, Workflow Management: Models, Methods, and Systems,
Cooperative information systems, MIT press, 2002.

[6] N. Russell et al., Workflow Control-Flow Patterns: A Revised View, Jan. 2006.

[7] A. Y. Manoj Das, Business Process Management and WS-BPEL 2.0: What’s next
for SOA Orchestration?, Oct. 2006.

[8] W. Der, W. Aalst, A. Ter, YAWL: Yet another workflow language (revised version),
Jan. 2003.

[9] B. Chapman et al., Common Workflow Language, v1.0, ed. by P. Amstutz, M. Cru-
soe, N. Tijanić, Specification, product of the Common Workflow Language working
group. http://www.commonwl.org/v1.0/, figshare, United States, July 2016.

[10] Workflow Description Language website, Available (accessed 10.12.2020): https:
//openwdl.org/.

[11] R. Shapiro, M. M. et al., Process Definition Interface – XML Process Definition
Language: Version 2.00, Oct. 2005.

[12] About the Business Process Model and Notation specification version 2.0.2, Avail-
able (accessed 8.2.2021): https://www.omg.org/spec/BPMN/2.0.2.

[13] Workflow Patterns website, Available (accessed 10.7.2020): http://www.workflowpatterns.
com/.

http://www.wfmc.org/
http://www.wfmc.org/
https://openwdl.org/
https://openwdl.org/
https://www.omg.org/spec/BPMN/2.0.2
http://www.workflowpatterns.com/
http://www.workflowpatterns.com/

54

[14] D. Hollingsworth, The Workflow Reference Model, Jan. 1995.

[15] Simple Storage Service S3 release page, Available (accessed 15.1.2021): https:
//aws.amazon.com/releasenotes/release-amazon-s3-on-2006-03-13/.

[16] N. Kratzke, P.-C. Quint, Understanding Cloud-native Applications after 10 Years of
Cloud Computing - A Systematic Mapping Study, Journal of Systems and Software,
Vol. 126, Jan. 2017, pp. 1–16.

[17] C. Pahl et al., Cloud Container Technologies: A State-of-the-Art Review, IEEE Trans-
actions on Cloud Computing, Vol. PP, May 2017, pp. 1–1.

[18] K. Petersen, S. Vakkalanka, L. Kuzniarz, Guidelines for conducting systematic map-
ping studies in software engineering: An update, Inf. Softw. Technol., Vol. 64, 2015,
pp. 1–18.

[19] C. Wohlin, Guidelines for Snowballing in Systematic Literature Studies and a Repli-
cation in Software Engineering, Proceedings of the 18th International Conference
on Evaluation and Assessment in Software Engineering, EASE ’14, Association for
Computing Machinery, London, England, United Kingdom, 2014, Available: https:
//doi.org/10.1145/2601248.2601268.

[20] L. Chen, M. Ali Babar, H. Zhang, Towards an Evidence-Based Understanding of
Electronic Data Sources, 14th International Conference on Evaluation and Assess-
ment in Software Engineering, Apr. 2010.

[21] K. Petersen et al., Systematic Mapping Studies in Software Engineering, Proceed-
ings of the 12th International Conference on Evaluation and Assessment in Soft-
ware Engineering, EASE’08, BCS Learning & Development Ltd., Italy, 2008, pp. 68–
77.

[22] Wahnon, awesome-workflow-engines, https : / / github . com / meirwah / awesome -
workflow-engines, 2020.

[23] V. Garousi, M. Felderer, M. V. Mäntylä, Guidelines for including grey literature
and conducting multivocal literature reviews in software engineering, Information
and Software Technology, Vol. 106, 2019, pp. 101–121, Available: http : / / www.
sciencedirect.com/science/article/pii/S0950584918301939.

[24] D. Meyer, Camunda engine since Activiti fork, Oct. 2016, Available: URL: https :
//camunda.com/blog/2016/10/camunda-engine-since-activiti-fork/.

[25] Stack Exchange Inc, Stack Overflow, Available (accessed 10.7.2020): http://www.
stackoverflow.com/.

https://aws.amazon.com/releasenotes/release-amazon-s3-on-2006-03-13/
https://aws.amazon.com/releasenotes/release-amazon-s3-on-2006-03-13/
https://doi.org/10.1145/2601248.2601268
https://doi.org/10.1145/2601248.2601268
https://github.com/meirwah/awesome-workflow-engines
https://github.com/meirwah/awesome-workflow-engines
http://www.sciencedirect.com/science/article/pii/S0950584918301939
http://www.sciencedirect.com/science/article/pii/S0950584918301939
https://camunda.com/blog/2016/10/camunda-engine-since-activiti-fork/
https://camunda.com/blog/2016/10/camunda-engine-since-activiti-fork/
http://www.stackoverflow.com/
http://www.stackoverflow.com/

55

[26] M. Berger et al., Evaluating workflow management systems, Database and Expert
Systems Applications. 8th International Conference, DEXA’97. Proceedings, IEEE,
1997, pp. 412–417.

[27] M. Pérez, T. Rojas, Evaluation of Workflow-type software products: a case study,
Information and Software Technology, Vol. 42, Iss. 7, 2000, pp. 489–503, Available:
http://www.sciencedirect.com/science/article/pii/S0950584900000938.

[28] S. Eswaran et al., Adapting and evaluating commercial workflow engines for e-
Science, 2006 Second IEEE International Conference on e-Science and Grid Com-
puting (e-Science’06), IEEE, 2006, pp. 20–20.

[29] K. Baïna, WFESelector-A tool for comparing and selecting workflow engines, In-
ternational Conference on Enterprise Information Systems, Vol. 2, SCITEPRESS,
2007, pp. 330–337.

[30] E. Bernroider, M. Bernroider, A comparative study of business process manage-
ment tools based on open source software and a commercial reference, IMETI
2008 - International Multi-Conference on Engineering and Technological Innova-
tion, Proceedings, Vol. 1, Jan. 2008, pp. 225–230.

[31] R. Garcês et al., Open Source Workflow Management Systems: A Concise Survey,
in: 2009 BPM & Workflow Handbook, Jan. 2009, pp. 179–190.

[32] H. Gruber, Evaluation of workflow management systems, 2009 IEEE Conference
on Commerce and Enterprise Computing, IEEE, 2009, pp. 307–311.

[33] K. Baïna, S. Baïna, User experience-based evaluation of open source workflow
systems: The cases of Bonita, Activiti, jBPM, and Intalio, 2013 3rd International
Symposium ISKO-Maghreb, IEEE, 2013, pp. 1–8.

[34] A. Delgado et al., A systematic approach for evaluating BPM systems: Case stud-
ies on open source and proprietary tools, IFIP International Conference on Open
Source Systems, Springer, 2015, pp. 81–90.

[35] V. Ferme et al., Workflow management systems benchmarking: unfulfilled expec-
tations and lessons learned, 2017 IEEE/ACM 39th International Conference on
Software Engineering Companion (ICSE-C), IEEE, 2017, pp. 379–381.

[36] J. Lenhard et al., Lessons learned from evaluating workflow management systems,
International Conference on Service-Oriented Computing, Springer, 2017, pp. 215–
227.

[37] R. Singh et al., Evaluating Scientific Workflow Engines for Data and Compute In-
tensive Discoveries, 2019 IEEE International Conference on Big Data (Big Data),
IEEE, 2019, pp. 4553–4560.

http://www.sciencedirect.com/science/article/pii/S0950584900000938

56

[38] A. Tsalgatidou, T. Panepistimiopolis, Selection criteria for tools supporting business
process transformation for electronic commerce, Proceedings of EURO-MED NET,
Vol. 98, 1998, pp. 244–253.

[39] P. Wohed et al., Patterns-based evaluation of open source BPM systems: The
cases of jBPM, OpenWFE, and Enhydra Shark, Information and Software Tech-
nology, Vol. 51, Iss. 8, 2009, pp. 1187–1216.

[40] A. Z. Ravasan, S. Rouhani, H. Hamidi, A Practical Framework for Business Process
Management Suites Selection Using Fuzzy TOPSIS Approach, International Con-
ference on Enterprise Information Systems, Vol. 2, SCITEPRESS, 2014, pp. 295–
302.

[41] A. Delgado, D. Calegari, Evaluating non-functional aspects of business process
management systems, 2017 XLIII Latin American Computer Conference (CLEI),
IEEE, 2017, pp. 1–10.

[42] J. Humble, D. Farley, Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation, 1st, Addison-Wesley Professional, 2010.

[43] CNCF, Cloud Native Computing Foundation projects website, https://www.cncf.io/
projects/, 2020.

[44] J. Oberhauser, K. Malac, Fair-code website, https://faircode.io/, 2020.

[45] P. Belagatti, Why is Go so Damn Popular Among Developers, https : / / dev. to /
pavanbelagatti/why-is-go-so-damn-popular-among-developers-2d6h, 2020.

[46] C. Wohlin, Experimentation in Software Engineering: An Introduction, International
Series in Engineering and Computer Science, Kluwer Academic, 2000, Available:
https://books.google.fi/books?id=nG2UShV0wAEC.

https://www.cncf.io/projects/
https://www.cncf.io/projects/
https://faircode.io/
https://dev.to/pavanbelagatti/why-is-go-so-damn-popular-among-developers-2d6h
https://dev.to/pavanbelagatti/why-is-go-so-damn-popular-among-developers-2d6h
https://books.google.fi/books?id=nG2UShV0wAEC

	Introduction
	Research questions
	Background
	Workflow management
	Workflow concepts
	Workflow definition language
	Workflow management systems

	Cloud-native workflow management
	Virtualisation: Docker

	Research methodology
	Study search
	Search scope

	Search strategy
	Study selection
	Selection criteria
	Selection process

	Snowballing
	Data extraction
	Data synthesis: derive initial classification framework
	Identification of the relevant workflow management systems
	Phase 1: WfMS Search
	Phase 2: WfMS Selection

	Analyze workflow management system documentation
	Refining the classification framework
	Conduct workflow management system technology review

	A workflow management system classification framework
	A project view on workflow management systems
	Licensing
	Installation
	Source code and release maturity
	Community
	Interface availability
	Documentation

	A technical view on workflow management systems
	Development
	Architecture details
	Workflow features and control mechanisms
	Application delivery
	Code reuse and external integrations

	A workflow management system technology review
	A project view on workflow management systems
	Licensing
	Installation
	Source code and release maturity
	Community
	Interface availability
	Documentation

	A technical view on workflow management systems
	Development
	Architecture details
	Workflow features and control mechanisms
	Application delivery
	Code reuse and external integrations

	Workflow management system selection guidelines
	Define requirements and motivations
	Identify special requirements and prioritize
	Choose workflow management systems to be evaluated
	Perform a technology review
	The project view, priorities and early elimination
	The technical view and details
	Re-evaluate the initial requirements

	Decision making and validation of the results

	Threats to validity
	Discussion
	Implication for practitioners and researchers
	Trends

	Conclusions and future work
	Bibliography

