An Inhibition of Return Mechanism for the Exploration of Sensorimotor
Contingencies

Abstract— The modelling of cognition is fundamental to de-
signing robots that are increasingly more autonomous. Indeed,
researchers take inspiration from human and animal cognition
in order to endow robots with the ability to learn and adapt
to their environment. In specific cases, the robot has to find
the right compromise between exploring the environment, or
exploiting its own experience to advance its knowledge of
a skill. Our approach considers a neurally-inspired model
to learning sensorimotor contingencies based on exploration
and exploitation. For the exploration, an inhibition of return
mechanism is implemented that generates new actions. In
this work, we investigate how the tuning of the inhibition
of return affects the exploratory behavior. To do so, we set
up an experiment where a 3D printed humanoid robot arm
GummiArm has to learn how to move a baby mobile toy with
only a visual feedback. The results demonstrate that the tuning
of the inhibition of return influences the exploratory behavior,
leading to a faster learning of sensorimotor contingencies as
well as the exploration of a reduced motor space.
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I. INTRODUCTION

The learning of new skills in robotics is a challenging task.
The understanding of human cognition provides new insights
on how to address these issues. For example, developmental
robotics is a research field that focuses on reproducing
developmental stages observed in infants [1]. The purpose of
such a paradigm can help to develop new machine learning
algorithms, but also provides a biological interpretation of
infant cognition [2].

In this research, we propose a neural model for learning
sensorimotor contingencies based on dynamic neural fields
with a humanoid robotic arm. At first, the architecture
proceeds an exploration stage by performing motor babbling
[3], then an exploitation phase generates an optimal sequence
of actions based on the knowledge acquired during the
exploration. The model embodies the sensorimotor expe-
rience with the robot’s body and takes inspiration from
reinforcement learning. Exploring the environment is chal-
lenging since the decisions taken at that stage influence the
representation and knowledge learned. Therefore, we study
the ability for an inhibition of return mechanism to produce a
”meaningful” choice regarding the selection of future actions.

Inhibition of return (IOR) is a neural effect involved in
spatial attention [4]. Posner et al. measured the time to look
at a specific peripheral location from a target, then asked
the subject to look back at the center. They then measured
the time needed to again look at the previous peripheral
location. They discovered that directly after looking at the
cued location (<250ms), the subject took less time to look

again toward this one. But after a short delay (250-300ms),
the time needed to look at this peripheral location rises.
The IOR function can be interpreted as a visual foraging
facilitator [5], avoiding already seen locations for visual
search. Various robotic models of visual attention implement
the IOR effect [6], [7], [8]. In this work, we use the inhibition
of return effect to avoid selecting an action already performed
during the motor babbling behavior.

Piaget was the first to introduce the notion of motor
babbling by formulating the ”primary circular-reaction hy-
pothesis” [3]. Indeed, he noticed that children generate
“reflexes” and these reflexes change (even slightly) when
they produce an effect on the children’s environment. This
constructivism approach suggests that infants evolve and
learn about the world by developmental stages. They first
associate their actions with the perceptual outcomes before
learning more complex tasks. This motor babbling behavior
has been studied by researchers in robotics to predict future
motor states to influence the exploration strategy [9]. Other
work demonstrated that motor babbling could lead to the
acquisition of more complex skills such as reaching with
obstacles and grasping [10]. To develop our model of motor
babbling with the IOR mechanism for action generation, we
adopt the Dynamic Field Theory.

Dynamic Field Theory (DFT) is a new approach to under-
stand cognitive and neural dynamics [11]. This is suitable to
deliver homeostasis to the architecture and provide various
ways of learning. The basic learning mechanism in DFT is
the formation of memory traces of positive activation of a
Dynamic Neural Field [12] as well as Hebbian Learning [13],
[14].

In this work, we propose to implement a motor babbling
behavior based on exploration and exploitation with Dynamic
Field Theory. An inhibition of return mechanism supports
the generation of actions during exploration. We set up an
experiment where the robot is attached to a baby mobile toy
with a rubber band, similar to the baby mobile experiment
with infants [15]. The proposed architecture is self-regulated
and uses Dynamic Neural Fields in a closed loop, meaning
the actions influence future perceptions. In particular, we
propose the following contributions:

o« A dynamic exploration architecture by varying the

strength of the IOR.

e A dynamic exploitation mechanism using new neural

dynamics.

o The grounding of visual stimuli with motor actions in

a memory field.
« Implementation and experimental results of the dynamic



exploration architecture.

The paper is organized as follows. Section II describes the
methodological background, with the dynamic field theory
and the associated related work. Section III presents the
model design, that includes the action selection strategy
and the exploration and exploitation stage that compose
the learning mechanism. Following, Section IV presents
the experimental setup and the results of the experiments.
Finally, Section V discusses the limitations of our work,
future efforts, and concludes the paper.

II. METHODOLOGICAL BACKGROUND

Dynamic Field Theory is a theoretical framework that pro-
vides a mathematically explicit way to model the evolution
in time of neural population activity [11]. It was originally
used to model reactive motor behavior [16] but demonstrated
its ability to model complex cognitive processes [17]. The
core elements of DFT are Dynamic Neural Fields (DNF)
that represent activation distributions of neural populations.
Stable peaks of activation form as a result of supra-threshold
activation and lateral interactions within a field. A DNF
can represent different features and a peak of activation at
a specific location corresponds to the current observation.
For example, a DNF can be used to represent a visual color
space (Red, Green, Blue) and a peak at the “’blue location”
would mean a blue object is perceived. Neural Fields are
particularly suitable to represent continuous space.

Dynamic Neural Fields evolve continuously in time under
the influence of external inputs and lateral interactions within
the Dynamic Field as described by the integro-differential
equation :

Tu(x,t) = —u(z,t) + h+ S(z,1)
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where h is the resting level (7 < 0) and S(x,?) is the external
inputs. u(x,t) is the activation field over feature dimension x
at time ¢ and 7 is a time constant. An output signal f{u(x,t))
is determined from the activation via a sigmoid function
with threshold at zero. This output is then convolved with
an interaction kernel w that consists of local excitation and
surround inhibition [18]. The role of the Gaussian kernel is
crucial since different shapes influence the neural dynamics
of a field. For example, local excitatory (bell shape) coupling
stabilizes peaks against decay while lateral inhibitory cou-
pling (mexican-hat shape) prevents activation to spread out
along the neural field. By coupling or projecting together
several neural fields of different features and dimensions,
DFT is able to model cognitive processes. If neural fields
are the core of the theory, other elements are essential to our
work.

Dynamic neural nodes are basically a 0-dimensional dy-
namic neural field and follow the same dynamics:

Ti(w,t) = —u(z,t) + b+ couf(u(t) + > S(a,t) (@)

The terms are similar to a Neural Field except for ¢,
which is the weight of a local nonlinear excitatory interac-
tion. A node can be used as a boost to another Neural Field.
By projecting its activation globally, the resting level of the
neural field will rise allowing to see the rise of peaks of
activation.

Finally, the memory trace is an other important component
of DFT:

—(=o(®) + f(u(®))) f(u(t)
L (3)
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with 74 < 7_. A memory trace in DFT has two different
time scales, a build up time 7 that corresponds to the time
for an activation to rise in the memory and a decay time
7_ which is the time decay of an activation. In our model,
we use a 2-dimensional memory trace which keeps track of
visual activation.

III. MODEL

In this work, we propose a cognitive architecture allowing
a robot to learn a specific movement with a visual motion
detector. The robot resembles a human arm, where the upper
arm roll motor is used for exploration and exploitation. For
clarity, we split our architecture according to the different
phases: exploration with the inhibition of return as an action
generation mechanism, and the exploitation of the motor
babbling outcomes. Every 2-Dimensional field is divided
by states and actions along respectively the horizontal and
vertical axis. The horizontal axis corresponds to the state of
the upper arm roll encoder. The vertical dimension gives the
possible actions to be selected. All neural fields are defined
in the interval [0;100] and represent a motor angle of the
upper arm motor within the interval [-1;1]. For example, If a
peak emerges at position [50;10], that means at motor state
50 (0 on the joint angle), the action 10 (-0.8) is taken.

A. Exploration

As described earlier, the exploration phase performs motor
babbling and observes the sensor outcomes of each action
(Figure 1). At first, the action formation (AF) field serves
as an action generation mechanism. The slow boost module
slowly rises the resting level of the AF field and IOR
Inhib field until a peak of activation emerges. These neural
fields (AF, IOR excit, memory trace action, IOR Inhib field)
form the inhibition of return mechanism. After an action
is performed, the activation of that action is stored into the
memory trace actions and projected back to action formation
field as an inhibition. This prevents the selection of the
same action in the future. Once a peak appears in AF field,
the slow boost module stops rising the resting level and
the peak spreads to the motor intention field. In some rare
cases, multiple peaks could emerge from the AF field and
the selective neural field allows the selection of only one of
them [11]. The Condition of Satisfaction (CoS) field receives
two inputs from the encoder and the motor intention field.
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Fig. 1: Exploration stage divided by the action generation mechanism with the inhibition of return (blue) and the recording
of the visual outcomes (green). A peak of activation from actions/states field spreads in memory trace only when the Rec
node is active. This means storing the visual activation exactly while an action is performing. The decay of the memory
trace 7_ is 10 seconds, and only happens when the Rec node is active. The motor module converts the neural field value

to the desired angle position.

When both of them reach the same location within the CoS
field, the activation goes beyond threshold and activates a
node that will reset the slow boost module.

After the generation of an action, the action/states field
records the visual outcomes of the action performed. Con-
cerning the reward peak module, it receives input from
the motion detector and the motor intention field. This is
where the grounding of visual perception is happening. The
implementation gathers the motor state position and the
visual perception value to form a Gaussian curve centered
on the motor’s position with an amplitude corresponding to
the motion detector’s value. If the visual outcomes are strong
enough, a peak forms in the action/states field and is then
stored in the memory trace. A high neural activation within
the memory trace represent an action with a high visual
outcome.

After exploring all possible sensorimotor outcomes, the
exploitation stage harnesses the neural activation to optimize
the robot’s motion.

B. Exploitation

The purpose of the exploitation phase (Figure 2) is rather
simple : follow the highest neural activation until reaching
a stable sequence of actions. Indeed, the 2-dimensional
memory trace is divided along horizontal and vertical axis
by state and action spaces respectively, a high activation
represents an action with a high visual value.

The slow boost module remains the same as in the
exploration phase and slowly rises the resting level of the
memory field. For a given state, rising the resting level
sees the emergence of the highest peak corresponding to
the action with the highest neural activation. The action
is then performed and the state position of the upper arm
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Fig. 2: Exploitation architecture. Some of the neural fields
and memory trace are present in the exploration mechanism.

roll motor is updated. While an action is performed, it is
stored into a final memory trace. The final memory trace
gathers the actions performed the same way as seen in the
exploration mechanism with the memory trace actions. The
only difference is the time decay 7_ fixed to 4 seconds.
This means that the motor states which are visited only
once during exploitation decay and disappear while the most
visited remain active. The activation within the final memory
trace represents the actions with the highest visual value, and
thus form a sequence.

In the next section, we will tune the strength of the inhi-
bition of return and evaluate its influence during exploration.

IV. EXPERIMENT AND RESULTS

The gummiArm robot [19] is a 7 degrees of freedom (+2
for the head) 3D printed arm. In our case, only the upper arm
roll joint will be used for demonstration of the architecture.
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Fig. 3: (a.) linear regression for 10 runs of exploration with a weak inhibition. The figure show an improvement over time
of visual activation during the exploitation of the exploratory behavior with a weak inhibition of return (b.) Distribution of
visual neural activation for 10 runs of exploration with a strong inhibition. Each experiment demonstrates a higher visual
neural activity while harnessing the sensorimotor contingencies (c.) Elapsed time before reaching a stable sequence of action
during the exploitation of 10 explorations with a weak IOR as well as the exploitation of 10 exploration with a strong IOR.
For both exploratory behavior, the exploitation stage follow a steady sequence of action over time. (d) Motor distribution
during exploration and exploitation for both exploratory behavior.



A rubber band is attached from the palm of the hand to
one of the moving toys in the baby mobile. The camera
mounted inside the head (Intel RealSense D435), is used as
the motion detector that subtracts two consecutive images
and applies a threshold to observe the changed pixels. The
result returns the sum of changed pixels which is scaled from
0 to 1 and represents the visual neural activation. The toys
hanging from the baby mobile are within the visual field of
the camera whereas the arm itself is out of sight.

In order to tune the inhibition of return, we vary the
strength of the synapses between IOR Inhib field and action
formation. In practice, this means applying a convolution
of a negative gaussian kernel to the output activation of
IOR Inhib field. We run 10 explorations with a weak IOR
(convolution with a gaussian kernel of amplitude 1.5 and
standard deviation o of 3.0) and 10 explorations with a strong
IOR (gaussian kernel of amplitude 3.5 and ¢ 15.0). For each
exploration, we run an exploitation stage. In total, we have
20 explorations (10 with a weak IOR, 10 with a strong IOR)
and 20 exploitations (10 from the 10 exploration with a weak
IOR and 10 from the exploration phase with a strong IOR).

A. Exploration with a weak Inhibition of return

The results demonstrates a general gain of visual neural
activation during exploitation over exploration (Figure 3a-
b). However, the visual neural activation are lower for an
exploratory behavior with a weak IOR. These results can be
explained by the actions selected during exploration (Figure
3-d). Indeed, the motor distribution for an exploration with
a weak IOR is more uniform than with a strong IOR (Figure
4 and 5). When a peak projects a weak inhibition from IOR
Inhib to action formation, the next action selected is located
close to that inhibition. This explains the low visual neural
activation during exploration, because almost the complete
motor space has been explored even with no visual feedback.
Regarding the exploitation of the sensorimotor contingencies,
the distribution of motor intention is mostly reduced to
[10;25],[50;62] and [75;87]. These motor spaces correspond
respectively to the extreme left, center-right and extreme
right location of the arm.
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Fig. 4: Memory Trace actions of all the actions selected
during an exploration with a weak IOR.

B. Exploration with a strong inhibition of return

If we look into the results of the exploration with a
strong IOR (Figure 3b), we can see a higher visual neural

activation during exploitation over exploration for almost all
the experiments. The motor intention distribution is more
restricted than for the exploration with a weak IOR (Figure
3d, Figure 5 and 4). This means that only the extreme left,
center and extreme right locations of the arm are explored.
This time, when a peak projects a strong inhibition to the
action formation field, the position of the next generated
action is distant from that inhibition. This results in an even
more restricted motor space during exploitation where only
the extreme left and extreme right position are visited. We
can wonder why the exploitation stage does not lead to
the same motor intention distribution after both exploratory
behaviors. This motor intention difference is due to the
representation of an action. In our architecture, we choose
to perform an action by selecting the next position of the
upper arm roll. For example, this means that the extreme
left location can be visited multiple times, but not from the
same motor angle origin, leading to different visual stimuli.
Therefore, it explains the motor intention distribution of the
exploitation with a strong IOR. The actions selected were
wide (extreme left to extreme right and vice versa) during
exploration, thus providing strong visual neural activation
and future sensorimotor contingencies to exploit.
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Fig. 5: Memory Trace actions for an exploratory behavior
with a strong IOR.

C. Global Interpretation

Despite the exploratory behavior (strong or weak IOR),
the exploitation stage always reaches a stable sequence of
actions. We compare the time needed by the exploitation to
follow an unchanged sequence of actions in Figure 3(c). The
results demonstrate a faster convergence toward a stabilized
sequence of actions if the exploration uses a strong inhibition
of return. This is particularly true for the settings of our
experiment (head of the robot centered on the baby mobile
toy) but might not be the case otherwise. The main findings
about tuning the Inhibition of return are :

1) The motor space explored with a weak inhibition of
return is wide and uniform.

2) A more restricted motor actions space with a strong
IOR. Due to the continuous nature of the Dynamic
Neural Fields, a strong inhibition at a certain location
would favor the emergence of an action far-off that
location.



3) A faster exploitation of the sensorimotor contingencies
for an exploratory behavior with a strong inhibition of
return.

We will summarize our findings in the next section and
discuss the implications for future work.

V. CONCLUSION AND DISCUSSION

This work proposes a cognitive architecture with an em-
bodiment approach that allows a robotic arm to optimize its
motion based on the neural activation coming from a motion
detector. As such, the approach is grounding the sensorimotor
experience within Dynamic Neural Fields. In experiments, a
GummiArm robot is moving a baby mobile and observes
the outcome of the actions taken to optimize its motion.
An Inhibition of return mechanism selects the next action
to perform, then the model records the visual outcome in a
visual memory trace. Indeed, the sensorimotor contingencies
can be encoded as neural activation within neural fields
and explored through motor babbling. Then, an exploitation
mechanism optimizes the motion of the robot, following
the path left by high neural activation. Exploiting the high
neural activations means choosing actions leading to the best
visual reward. Finally, the tuning of the inhibition of return
for generating a new action demonstrates two interesting
exploratory behaviors. A wide and uniform exploration of the
motor space happens when the IOR is weak. If the strength of
the inhibitory connection is strong, the motor space explored
is reduced and gathers extreme positions, but could accelerate
the exploitation of the sensorimotor contingencies.

The influence from the inhibition of return leads to in-
teresting future developments. For example, we currently
apply it to model low level sensorimotor cognition such
as motor babbling. Since motions are mostly goal directed
[20], [21], we will modify our model to use the complete
arm kinematics and the inhibition of return to influence
the selection of the next goal to pursue. In future work,
we plan to adapt the architecture to learn how to interact
with objects (e.g. touch, push aside, push forward). With a
strong inhibition, we could generate goals that would prefer
wide motions and therefore explore extreme locations. On
the contrary, a weak inhibition would generate a movement
close to a certain area of interest and allows to explore the
complete motor space.

Finally, we intend to extend our model to support an
autonomous exploration of the environment. In that case, the
synaptic inhibition should be able to adapt itself regardless of
the environment and the intended goal. Indeed, the strength
of the inhibition of return should facilitate the exploration
when learning a new task. To do so, we look forward to
developing an Hebbian learning mechanism that will adapt
the strength of the inhibition of return.

VI. APPENDICES

The complete architecture, the source code and all the
parameters are available at (*anonymous content but will be
shared*).
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